
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUTOMATED RANDOM EMBEDDING FOR PRACTICAL
BAYESIAN OPTIMIZATION WITH UNKNOWN EFFECTIVE
DIMENSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian optimization is widely employed for optimizing complex black-box func-
tions but struggles with the curse of dimensionality. Random embedding, as a
dimension reduction strategy, simplifies tasks that possess the effective dimension
by optimizing within a low-dimensional subspace. However, determining the
effective dimension of a task in advance remains a significant challenge, which
influences the selection of the subspace dimensionality and the optimization perfor-
mance. Traditional methods use fixed subspace dimensions provided by experts
or rely on trial and error to estimate subspace dimensions with many resources
consumed. To this end, this paper proposes an automated random embedding
for high-dimensional Bayesian optimization with unknown effective dimension,
called Dynamic Shared Embedding Bayesian Optimization (DSEBO). DSEBO
starts with a low dimension and switches to a higher subspace if the solutions in the
current subspace show preliminary convergence. DSEBO dynamically determines
the dimension of the next subspace based on the quality of the solutions in differ-
ent subspaces and shares the queried solutions with the new subspace to achieve
a better initialization. Theoretically, we derive a regret bound for DSEBO and
demonstrate that DSEBO can better balance approximation and optimization errors.
Extensive experiments on functions with dimensionality of varying magnitudes and
real-world tasks with unknown effective dimensions reveal that, compared with
state-of-the-art methods, alternating optimization across different subspaces results
in significant improvements in high-dimensional optimization, both in terms of
optimization regret and time.

1 INTRODUCTION

Optimization (Boyd & Vandenberghe, 2004) is widely used in various fields, such as eco-
nomics (Mehta & Grosan, 2015), machine learning (Freund & Schapire, 1997; Elsken et al., 2019),
and reinforcement learning (Qian & Yu, 2021). It aims to find the global optimal solution x∗ of
the objective function f(x) in the D-dimensional search space X ⊂ RD, formally expressed as
x∗ = argminx∈X⊂RDf(x). However, in black-box optimization scenarios, the expression of the
objective function is unknown (Shahriari et al., 2016), where gradient-based optimization techniques
are ineffective. In contrast, the derivative-free optimization methods (Zhou et al., 2019; Shahriari
et al., 2016; Yu et al., 2025) can handle these complex optimization problems.

Bayesian optimization (BO) (Srinivas et al., 2010; Shahriari et al., 2016; Garnett, 2023) is one of the
most valuable derivative-free optimization methods for its excellent performance. However, the curse
of dimensionality has persistently remained a critical issue in BO (Shahriari et al., 2016; Wang et al.,
2016; Binois & Wycoff, 2022; Santoni et al., 2024). Specifically, as the dimension increases, more
evaluations of the objective function are required to adequately explore the solution space, making
BO challenging to locate the optimal solution efficiently within finite computational resources.

Random embedding (RE) (Wang et al., 2016; Qian et al., 2016) is a remarkable approach to addressing
high-dimensional optimization tasks with effective dimension. By constructing a mapping between a
lower-dimensional subspace and the original search space via an embedding matrix, optimization can
be performed in the low-dimensional subspace, thus alleviating the scalability issue for BO methods.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

This approach exploits the inherent effective dimension of high-dimensional optimization tasks, where
the function value is influenced by only a few relevant dimensions. By focusing on these dimensions,
random embedding significantly enhances the efficiency and performance of high-dimensional BO
within limited resources. However, a critical challenge is how to accurately determine the effective
dimension of a function. Selecting an appropriate low-dimensional subspace to perform optimization
is crucial for the efficacy of embedding technique: a too-small subspace fails to adequately capture
the effective dimension of the function, resulting in a loss of optimal solution, while a too-large
subspace diminishes the advantages of the reduced dimensionality provided by random embedding.

However, previously in practice, the dimensionality of the low-dimensional subspace is typically
determined via heuristic or trial-and-error approaches. These methods usually require performing
multiple optimizations across various subspaces to achieve a more effective solution, which incurs
significant computational costs. Currently, there is no direct method to predict the effective dimension
required to capture the fundamental characteristics of the target function (Papenmeier et al., 2022).

Problem. When using BO with RE for high-dimensional optimization tasks with unknown effective
dimension, how to automatically determine the appropriate subspace dimension during optimization?

Contribution. To address the aforementioned problem, this paper proposes an effective approach to
high-dimensional BO by developing a dynamic shared embedding Bayesian optimization (DSEBO)
algorithm, which can automatically expand subspace dimension to handle tasks with unknown
effective dimension. The shared embedding technique is introduced to leverage solutions from a low-
dimensional subspace within a higher-dimensional subspace, thereby better guiding the initialization
of the high-dimensional subspace and accelerating convergence. Based on the technique, DSEBO
starts from a lower-dimensional subspace, dynamically determines the next subspace dimension
according to the convergence of solutions in different subspaces, and facilitates transitions between
various subspaces. The theoretical analysis derives a regret bound for DSEBO, highlighting its ability
to balance approximation and optimization errors more effectively than GPUCB. Experiments on
high-dimensional synthetic functions and real-world tasks show the effectiveness and superiority of
DSEBO. The hyper-parameter experiments illustrate the robustness of DSEBO.

The subsequent sections present the related work and preliminaries, describe the proposed DSEBO
method, show the theoretical and empirical results, and conclude the paper.

2 RELATED WORK

This section reviews the related work: the high-dimensional optimization algorithms, and the multi-
armed bandit (MAB) algorithms used for the subspace dimension selection.

2.1 HIGH-DIMENSIONAL OPTIMIZATION ALGORITHM

Embedding-based methods define a low-dimensional effective subspace where function values change
dramatically, allowing optimization algorithms to operate within the subspace for lower computational
costs. Linear embedding methods map low-dimensional points to high-dimensional space via an
embedding matrix. Notable works include REMBO (Wang et al., 2016), a foundational method,
and SREBO (Qian et al., 2016), which extends REMBO to sequential settings. HesBO (Nayebi
et al., 2019) uses hash matrices for linear mapping, SIRBO (Zhang et al., 2019) employs sliced
inverse regression to identify the effective dimension, and ALEBO (Letham et al., 2020) provides a
comprehensive analysis of the embedding process. Using nested random subspaces to dynamically
increase the optimization space from a low dimensionality to a high dimensionality approaching D,
BAxUS (Papenmeier et al., 2022) can handle high-dimensional tasks. Nonlinear embedding methods
use complex functions to map subspaces to the original space, like VAEBO (Gómez-Bombarelli et al.,
2018), which employs unsupervised learning to train variational encoders.

Apart from embedding-based methods, there are high-dimensional optimization algorithms that do
not rely on subspace embedding. In the BO field, one method is TuRBO (Eriksson et al., 2019),
which handles high-dimensional tasks by dividing the optimization space into smaller regions for
local optimization. SAASBO (Eriksson & Jankowiak, 2021) identifies and optimizes only on a few
important dimensions. DuMBO Bardou et al. (2024) relaxes additive structure constraints by using
decentralized message-passing and a refined acquisition function. MCTS-VS (Song et al., 2022)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

employs Monte Carlo tree search to iteratively select a subset of variables and optimize them within a
low-dimensional subspace. RDUCB (Ziomek & Bou-Ammar, 2023) uses random tree decomposi-
tions to build additive Gaussian process (GP) models, leveraging cycle-free pairwise-dimensional
interactions for optimization. Recently, SBO-SE (Xu et al., 2025) introduces a robust initialization
strategy for the length-scale of GP kernel, addressing the vanishing gradient in high-dimensional
BO. In the field of evolutionary algorithms, LMMAES (Loshchilov et al., 2019) approximates the
covariance structure with a small set of evolution paths. DCEM (Amos & Yarats, 2020) introduces a
differentiable variant of the cross-entropy method using a smooth top-k operation.

All these methods rely on special assumptions, such as effective dimension. The failure to meet these
underlying assumptions can lead to a significant decline in performance.

2.2 MULTI-ARMED BANDIT

The problem of selecting subspace dimension can be modeled as an MAB problem. Specifically, dif-
ferent candidate dimensions are treated as different arms in the MAB problem, where the convergence
value of the optimized function on these dimensions serves as the reward for each arm.

The MAB problem (Sutton & Barto, 2018; Jin et al., 2022) centers on the trade-off between exploration
and exploitation. For instance, Softmax (Sutton & Barto, 2018) employs the exponential probability
rule for arm selection. Thompson Sampling (TS) (Jin et al., 2022) is a probabilistic model-based
approach that samples arms according to their posterior distributions. Additionally, other algorithms
like Extreme, Random, ϵ-Greedy, Expectation, Upper Confidence Bound (UCB), and the UCB-E
algorithm, which extends the traditional UCB algorithm, are also widely adopted methods in practice.

3 PRELIMINARIES

This section briefly introduces Bayesian optimization (BO), the optimal ϵ-effective dimension, and
random embedding to explain the necessary preliminary knowledge and notation.

Bayesian Optimization. BO (Shahriari et al., 2016; Garnett, 2023) is a well-known derivative-free
optimization method that strategically leverages prior knowledge to guide optimization. BO first
constructs a surrogate model of the objective function, typically a Gaussian process, based on the
observed dataset D. With the model, BO estimates the posterior distribution and calculates an
acquisition function to balance “exploration” and “exploitation” in the search space X ⊂ RD, thus
determining the candidate x ∈ X . A common acquisition function is UCB (Srinivas et al., 2010),
defined as αUCB(x) = µt(x)+

√
κt+1σt(x), where µt(x) estimates the objective function and σt(x)

represents model uncertainty. The hyper-parameter κ controls the trade-off between “exploration”
and “exploitation” for efficient optimization. Details are provided in the Appendix A.

Random Embedding. Random embedding (Wang et al., 2016; Nayebi et al., 2019) is a popular
subspace embedding method, which can effectively achieve dimensionality reduction when the
high-dimensional optimization tasks have effective dimension (i.e., the function value is influenced
by only a few relevant dimensions). However, it is challenging to meet the effective dimension
assumption in real tasks. In this case, Qian et al. (2016) propose the concept of optimal ϵ-effective
dimension to relax the assumption, defined as:
Definition 3.1. [Optimal ϵ-Effective Dimension (Qian et al., 2016)] For any ϵ > 0, a function
f : RD → R is said to have an ϵ-effective subspace Vϵ, if there exists a linear subspace Vϵ ⊆ RD,
s.t. for all x ∈ RD, we have |f(x)− f(xϵ)| ≤ ϵ, where xϵ ∈ Vϵ is the orthogonal projection of x
onto Vϵ. Let Vϵ denote the collection of all the ϵ-effective subspaces of f , and dim(V) denote the
dimension of V . We define the optimal ϵ-effective dimension of f as dϵ = minVϵ∈Vϵ

dim(Vϵ).

For a high-dimensional optimization problem x∗ = argminx∈X⊂RDf(x), a random matrix A ∈
RD×d with elements sampled from a Gaussian distribution N (0, σ2) embeds the d-dimensional
subspace Z ⊂ Rd into the D-dimensional search space X ⊂ RD. The optimizer only needs to
optimize z ∈ Z in the low-dimensional subspace, and then embed z into X through the matrix
A to get the solution x = pX (Az). Here, pX (Az) = argminx∈X ∥x − Az∥2 is to project illegal
points (i.e. Az /∈ X) back to the X region. Subsequently, the objective function f is evaluated in the
solution x, and the sample point (z, f(pX (Az))) is added to the subspace dataset. The optimizer
uses the updated dataset to complete the next optimization iteration. See Appendix A for details.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Optimization in di-dimensional Subspace

Dataset

Objective
Function

Optimizer
Random

Embedding

�� ∈ ℝ��

�� = �� ��×���� (��, �(��))

Update

(b) Expand to the Next Subspace Dimension

(c) Initialization of Embedding Matrix, Dataset, and Optimizer in di+1-dimensional Subspace

Dataset of di-dimensional Subspace

Initial Dataset of di+1 : ��×�ℎ =

∎ ∎ ∎ ∎ ∎ ∎ ∎
∎ ∎ ∎ ∎ ∎ ∎ ∎
∎ ∎ ∎ ∎ ∎ ∎ ∎
∎ ∎ ∎ ∎ ∎ ∎ ∎
∎ ∎ ∎ ∎ ∎ ∎ ∎

�×�ℎ

��×��+1

Shared Embedding Matrix
Extract the Top-di+1 Rows of the

 (��, �(��)) �=1
� , �� ∈ ℝ��

Initial Optimizer
with Dataset

 (��
′, �(��

′)) �=1
� , ��

′ ∈ ℝ��+1

��+1 = �� + Δ��Change

��
′ ≔ ��

⊤ ���+1−��
⊤

�(��
′) = �(��)

Construct
Solution-Value
Pairs in ℝ��+1

Change di to di+1

�(��) Has
Converged

Calculate Δ��

Figure 1: The framework of DSEBO. Subplot (a) shows BO with random embedding, where
optimization occurs in a di-dimensional subspace, and solutions are mapped to the high-dimensional
space through random embedding. Subplot (b) shows dynamic dimension expanding, which expands
the subspace dimension to achieve an improved evaluation while keeping the dimension not too high.
Subplot (c) shows the process of initializing a new subspace, extending the low-dimensional dataset,
initializing the optimizer, and sharing the embedding matrix.

4 THE PROPOSED METHOD

This section introduces an automated random embedding method, dynamic shared embedding
Bayesian optimization (DSEBO), to handle optimization tasks with unknown effective dimension.

4.1 DYNAMIC SHARED EMBEDDING BAYESIAN OPTIMIZATION

To automatically identify the appropriate subspace for high-dimensional BO tasks, the DSEBO
algorithm is proposed, illustrated in Figure 1 with pseudo-code in Appendix B.

As shown in Figure 1, DSEBO operates in three stages: (a) optimizing in the di-dimensional subspace,
(b) expanding to a new subspace, and (c) initializing the new subspace. DSEBO starts with a lower
dimension dl, iteratively optimizes within the subspace until convergence (the convergence criteria
will be introduced later), then expands to a higher-dimensional subspace to continue optimization.
By gradually increasing and optimizing each subspace, the objective function is optimized while
dynamically expanding the subspace dimension. DSEBO considers the differences in the optimal
solutions obtained from each subspace when determining dimensionality changes. It also adjusts
the scale of these changes during optimization to adapt to functions with different dimensionalities.
Besides, DSEBO uses a shared embedding matrix to share evaluation data among different subspaces,
allowing data points from low-dimensional subspace to provide better initialization for new high-
dimensional subspace, thus conserving the limited budget.

The following section will explain how data are shared between different subspaces and how dynamic
strategy is designed to determine the next subspace dimension.

4.2 DATASET INITIALIZATION WITH SHARED EMBEDDING

Optimization is performed sequentially on multiple subspaces while dynamically expanding di-
mensions. However, independent random matrix mappings prevent sharing sampling points across
different dimensional subspaces. Therefore, a proposed shared embedding technique enables the
utilization of identical sampling points across different subspaces.

The shared embedding technique maintains a shared matrix S ∈ RD×dh , where D is the dimension
of the search space and dh is the dimension of the largest subspace. Each subspace uses a part of this
matrix to embed solutions into the search space. Specifically, for a subspace of dimension d, the first
d rows of the matrix S form the embedding matrix Ad. This ensures that for any two subspaces Vi
and Vj with dimensions di and dj (assuming di < dj), Adi

and the first di rows of Adj
are identical.

Thus, Vi is a subspace within Vj , allowing Vj to share sampled data points from Vi.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

𝒛 = 1			2			3 !∈ ℝ"

𝒛′ = 1			2			3			0			0 ! ∈ ℝ#

Expand to the higher
dimension by
concatenating a zero
vector at the end

Using the Shared Embedding Matrix,
get 𝒙 = 𝒙′ after embedding, and 𝒛 and
𝒛′ can share evaluation value.

𝒙 = 𝐴"𝒛

𝒙′ = 𝐴#𝒛′

𝒙 = 𝒙′ ∈ ℝ!

𝑓(𝐴#𝒛′) = 𝑓(𝐴"𝒛)

The Shared Embedding Matrix

𝑆$×&! =
A3

A5

-5.4 -3.1 6.4 … 7.3

1.7 -5.3 2.5 … 2.5

-4.5 -5.4 -6.3 … -8.6

1.3 -0.7 2.2 … 9.1

-4.0 5.0 -6.1 … -5.1

6.4 5.1 -5.4 … 1.2

Figure 2: An example of the shared embedding technique.

Figure 2 illustrates the shared embed-
ding process across different subspaces.
A 3-dimensional vector z ∈ R3 is ex-
panded to 5-dimensional z′ ∈ R5 by
appending zeros. These vectors are then
transformed into the search space RD

using matrices A3 and A5, respectively,
from the shared embedding matrix S.
After embedding, the solutions x and x′

in the search space are identical, allowing them to share the same evaluation, i.e., f(A5z
′) = f(A3z).

Based on the method, each new subspace uses data from the existing lower-dimensional subspace to
initialize its dataset. The initialization algorithm is shown in Appendix C. In the first iteration t = 1,
the dataset is empty and initialized with a random point. For dimension expansion, the current dataset
D(t) is generated from the previous dataset D(t−1). This is done by appending zeros to each solution
vector z to expand it to the new subspace while keeping the original evaluation value y.

Through the proposed shared embedding technique, higher-dimensional subspaces can reuse the
evaluated data in lower-dimensional subspaces, since the function values of corresponding solutions
remain invariant across subspaces due to the connection between subspace embedding matrices.

4.3 DYNAMIC DIMENSION EXPANDING STRATEGY

While the shared embedding technique enables new subspaces to reuse existing data from lower-
dimensional subspaces, determining optimal switching timing and targets remains a challenge.

Algorithm 1 Dynamic Dimension Expanding Strategy

Input: Current dimension d(t), dimension range [dl, dh]
1: if t ≤ 2 then
2: ∆d(t) = ⌊dh−dl

β ⌋
3: else
4: Compute the si = − bi+1−bi

di+1−di
, i ∈ {1, 2, . . . , n− 1}

5: smin, smax ← minn−1
i=1 si,maxn−1

i=1 si
6: if smin = smax then
7: ∆d(t) ← ∆d(t−1)

8: else
9: ∆d(t) ← ⌊k∆d(t−1)⌋, where k = sn−1−smin

smax−smin
+0.5

10: end if
11: end if
12: d(t+1) = min(d(t) +∆d(t), dh)
Output: The next dimension d(t+1).

Intuitively, the subspace dimension
should be updated when the cur-
rent subspace converges. Specifi-
cally, if the optimal value in the sub-
space remains unchanged for T times,
the process can be considered con-
verged. The initial value of T is set to
⌊budget/2β⌋, controlled by a hyper-
parameter β. To determine whether
optimization has converged at the cur-
rent dimension, T is updated as fol-
lows: T = ⌊(1 + (d(t) − dl)/(dh −
dl)) · budget/2β⌋, where d(t) is the
current subspace dimension, dl and
dh are the lower and upper bounds
of the dimension range. As d(t) in-
creases, so does T . This aligns with
the intuition that higher-dimensional subspaces demand more effort to converge. Based on the
definition of T , when to update the subspace dimension is solved. Another problem is how much
larger the dimension of the new subspace should be.

According to the relationship between subspace dimensions and convergence values, a dynamic
dimension expanding strategy is designed to select the next subspace dimension within the specified
range [dl, dh]. Starting from a small dimension dl, the strategy dynamically determines the subsequent
dimension, and ultimately identifies a subspace where it can converge to an improved solution without
excessively larger dimension. To achieve this, the dimensions of the optimized subspace and the
corresponding optimal values are recorded as di and bi, where i indicates the i-th optimized subspace,
with i ∈ {1, 2, . . . , n} representing that n subspaces have been optimized. Based on di and bi, the
dynamic dimension expanding strategy is designed as Algorithm 1. This strategy determines the next
dimension at the t-th iteration by calculating the dimension change ∆d(t). Initially, if fewer than two
subspaces have been optimized, ∆d(t) is set to ⌊(dh − dl)/β⌋, as stated in lines 1–2. Otherwise, the
slopes of bi with respect to di are calculated according to: si = −(bi+1 − bi)/(di+1 − di), where
i ∈ {1, 2, . . . , n− 1}. This equation measures the rate at which the optimal value improves as the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

dimensionality of the optimized subspace increases, quantifying the improvement of expanding the
subspace. si are calculated for minimum optimization and should be inverted for maximum.

Next, a proportion value k is used to determine the change in the current dimension, defined by the
formula: k = (sn−1−smin)/(smax−smin)+0.5, where smin = minn−1

i=1 si and smax = maxn−1
i=1 si.

According to the equation, the most recent slope is normalized through min-max scaling to the range
[0.5, 1.5] and then used to determine the change in the current dimension. The value of k reflects
the impact of increasing the subspace dimension on the convergence value in the current context.
If the value of k within the range [1.0, 1.5] indicates a significant impact of the dimension on the
convergence value, otherwise it suggests a lesser effect. The algorithm then dynamically scales the
change in dimension ∆d(t−1) from the previous iteration using the value of k, yielding the current
dimension change ∆d(t), as described in line 9. Subsequently, based on this dimension change, the
new dimension is calculated as d(t+1) = min(d(t) +∆d(t), dh), as described in line 12.

We would like to emphasize that, unlike BAxUS (Papenmeier et al., 2022), which increases dimen-
sions exponentially and eventually optimizes in the full space, DSEBO adopts the proposed dynamic
dimension expanding strategy. Specifically, DSEBO automatically and nearly linearly expands the
subspace dimension within range [dl, dh], leading to lower computational costs and better scalability.

5 THEORETICAL ANALYSIS

In this section, we present the regret analysis of the naive GPUCB algorithm and DSEBO. To begin, we
define ϵ(d) as the approximation error associated with the d-dimensional subspace, formally expressed
as ϵ(d) = minx∈Rd f(Φ(x)) −minz∈RD f(z), where Φ : Rd → RD denotes the embedding that
maps a low-dimensional point into the original D-dimensional search space. Using this notation, we
derive the simple regret bound for the naive GPUCB algorithm.

Here, simple regret is defined as rf (T) = minTt=1 f(Φ(xt)) − minz∈RD f(z), which measures
the difference between the best function value found by the algorithm (after embedding the low-
dimensional solution back into the high-dimensional space) and the true global optimum.
Theorem 5.1. Suppose that the search space X is compact and convex with dimension d, and
every x ∈ X satisfies ∥x∥∞ ≤ b. For GP sample paths f with an RBF kernel, choose δ ∈ (0, 1),

and define β(t) = 2 log
(
t22π2/3δ

)
+ 2D log

(
t2dbr

√
log (4Da/δ)

)
, where a and b are constants

satisfying Pr (supx∈X |∂f/∂xj | > L) ≤ ae−(L/b)2 . By running the GPUCB algorithm with βt using
an initialization with a zero mean function and a covariance function k(x,x′), the simple regret is

bounded by O∗
(
2ϵ(d) +

√
(log T)d+1/T

)
, where O∗ omits logarithmic factors.

Due to space limitations, we defer the proof in this section to Appendix D. For DSEBO, the dimensions
of the subspaces are updated periodically. Let the number of updates be H , and denote the subspaces
in different phases as {Zh}Hh=1, with dimensions {dh}Hh=1 and durations {Th}Hh=1. We then present
the following theorem. Theorems 5.1 and 5.2 stem from Srinivas et al. (2010); Qian et al. (2016).
Theorem 5.2. Suppose that each subspace Zh is compact and convex, and that every x in the
subspaces satisfies ∥x∥∞ ≤ b. For GP sample paths f with RBF kernel, pick δ ∈ (0, 1), and define

β(t) = 2 log
(
t22π2/3δ

)
+ 2dh log

(
t2dhbr

√
log (4dha/δ)

)
,

where a and b are constants such that Pr
(
supx∈Zh

|∂f/∂xj | > L
)
≤ ae−(L/b)2 . Running DSEBO

with βt for the initialization of a GP with mean function zero and covariance function k(x,x′), we

obtain a simple regret bound of O∗
(
2
∑H

h=1 ϵ(dh)Th/T +
√∑H

h=1(log Th)dh+1/T

)
.

Remarks. We compare the theoretical results of DSEBO and GPUCB. It can be observed that the
first term of DSEBO is larger than that of GPUCB, while the second term is smaller. This indicates
that DSEBO effectively balances the trade-off between approximation error and optimization error.
To illustrate this, assume that the approximation error satisfies ϵ(d′) = O∗ ((D − d′)/D). Consider
a common setting where T = 1000, H = 10, d = 20, D = 100, and the dimension of subspaces
increasing evenly up to d, substituting these values into the bound yields an approximation error ratio

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500

Iteration

101

102

103

B
es

t-s
o-

fa
r

Levy (D = 1000)

0 100 200 300 400 500

Iteration

105

106

107

B
es

t-s
o-

fa
r

Rosenbrock (D = 1000)

0 100 200 300 400 500

Iteration

0

100

200

300

B
es

t-s
o-

fa
r

Griewank (D = 1000)

DSEBO (ours)
Random Search
REMBO with d = 50
REMBO with d = 30

SIRBO with d = 50
SIRBO with d = 30
HesBO with d = 50
HesBO with d = 30

VAEBO with d = 50
VAEBO with d = 30
ALEBO with d = 50
ALEBO with d = 30

BAxUS
TuRBO
MCTSVS
RDUCB

SBO-SE
LMMAES
DCEM

0 100 200 300 400 500

Iteration

101

102

B
es

t-s
o-

fa
r

Sphere (D = 1000)

Figure 3: Results on partial synthetic functions compared with various high-dimensional optimization
algorithms. All algorithms are independently repeated 10 times.

between DSEBO and GPUCB of O∗(1.25). This implies a modest increase in approximation error
for DSEBO compared with GPUCB. However, the optimization error ratio between GPUCB and
DSEBO is O∗(100), indicating a significant reduction in optimization error for DSEBO. This implies
that DSEBO sacrifices a little approximation error in exchange for a much lower optimization
error to realize a lower total error (i.e., a better trade-off).

6 EXPERIMENT

This section evaluates the performance of the proposed DSEBO, shows its effectiveness and superi-
ority through a series of experiments on both synthetic functions and real-world tasks. The code is
available in https://anonymous.4open.science/r/DSEBO-7532.

The Setting of Synthetic Functions. We construct high-dimensional objective functions based
on synthetic functions meeting the optimal ϵ-effective dimension (as Definition 3.1). Specifically,
let f : Rdf → R be a base testing function, with its domain adjusted to [−1, 1]df . The high-
dimensional synthetic function Fc : RD → R is crafted to simulate the minimization of f , defined
by: Fc(x) = f(x1:df

− c) − K−1
∑D

i=df+1(xi − c)2, where x ∈ RD is the input to Fc, and
x1:df

denotes the first df dimensions of x. The constant vector c ∈ Rd, filled with the scalar
c, is introduced to shift the optimal solution away from the origin. The constant K modulates
the influence of dimensions beyond the initial df . Evidently, Fc possesses an optimal ϵ-effective
dimensionality df , with ϵ ≤ K−1. In the experiments, we construct high-dimensional functions with
D = 1000, 10000 respectively, de = 30 and K = 10000, based on 6 synthetic functions from http:
//www.sfu.ca/~ssurjano/optimization.html, including Levy, Rosenbrock, Griewank,
Sphere, and so on. All experiments on synthetic functions are minimum optimization problems.

The Setting of Real-World Tasks. We evaluate DSEBO on three real-world datasets. The first dataset
is the Microsoft Learning to Rank (MSLR) (Qin et al., 2010), specifically the MSLR-WEB-10K
version, containing over 10000 queries, each with 136 features per website page. The second dataset
is Lasso-Hard from LassoBench (Sehic et al., 2022), a 1000-dimensional optimization task designed
to identify sparse regression coefficients that minimize Lasso regression loss. The third dataset is
LIMO (Eckmann et al., 2022), a framework for molecular generation aimed at optimizing specific
properties by operating in a 1024-dimensional latent space. Further details of these datasets are
provided in the Appendix E. All experiments on real-world tasks are minimum optimization.

The Setting of DSEBO. DSEBO requires specifying the subspace dimension search range [dl, dh],
and a hyper-parameter β. For any high-dimensional problems, the recommended initial subspace
dimension is dl = 5, and the upper boundary of the search range is dh = min(D, 100), which is the
setting for all experiments. Given that the performance of the Bayesian optimizer declines sharply
for dimensions above 100, the search range is capped at 100. The hyper-parameter β controls the
scale of the dimension expansion, and we set β = 12.0. The shared embedding matrix S ∈ RD×dh

is initialized with elements independently sampled from the Gaussian distribution N (0,
√
1/dh).

6.1 PERFORMANCE OF HIGH-DIMENSIONAL OPTIMIZATION

In this section, DSEBO is compared against high-dimensional optimization algorithms under limited
resources. The comparable methods include REMBO (Wang et al., 2016), SIRBO (Zhang et al.,
2019), HesBO (Nayebi et al., 2019), VAEBO (Gómez-Bombarelli et al., 2018), and ALEBO (Letham

7

https://anonymous.4open.science/r/DSEBO-7532
http://www.sfu.ca/~ssurjano/optimization.html
http://www.sfu.ca/~ssurjano/optimization.html

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5

0

B
es

t-s
o-

fa
r

MSLR

0 100 200 300 400 500
Iteration

101

102

B
es

t-s
o-

fa
r

Lasso-Hard

0 100 200 300 400 500
Iteration

10

5

0

5

B
es

t-s
o-

fa
r

LIMO

0 100 200 300 400 500
Iteration

9.00

8.75

8.50

DSEBO (ours)
Random Search
REMBO with d = 80

REMBO with d = 50
SIRBO with d = 80
SIRBO with d = 50

HesBO with d = 80
HesBO with d = 50
VAEBO with d = 80

VAEBO with d = 50
ALEBO with d = 80
ALEBO with d = 50

BAxUS
TuRBO
MCTSVS

RDUCB
SBO-SE
DuMBO

LMMAES
DCEM
SAASBO

Figure 4: Results on real-world datasets compared with different high-dimensional optimization
algorithms. All algorithms are independently repeated 10 times.

et al., 2020), all of which are based on subspace embedding techniques and REMBO serves as an
ablated version of DSEBO without the dynamic dimension expanding strategy. We also compare
with BAxUS (Papenmeier et al., 2022), which dynamically selects the next subspace dimension.
For methods that do not rely on subspace embedding, we conduct TuRBO (Eriksson et al., 2019),
SAASBO (Eriksson & Jankowiak, 2021), DuMBO (Bardou et al., 2024), MCTS-VS (Song et al.,
2022), RDUCB (Ziomek & Bou-Ammar, 2023), SBO-SE (Xu et al., 2025), LMMAES (Loshchilov
et al., 2019), DCEM (Amos & Yarats, 2020) and random search. For further details, refer to
Appendix F. All algorithms are tested on high-dimensional optimization tasks with unknown effective
dimensions, with hyper-parameters d = 30, 50 for synthetic functions and d = 50, 80 for real-world
tasks. All algorithms are allocated 500 evaluation budget for optimization unless optimization either
exceeds 8 hours of runtime (such as SIRBO, ALEBO, VAEBO, etc.) or encounters out-of-memory
errors with 16 GB of RAM (such as SAASBO). All algorithms are independently repeated 10 times.

The best-so-far solutions found by the algorithms on partial synthetic functions and real-world
datasets are shown in Figure 3 and Figure 4. The horizontal axis represents the number of iterations,
with each iteration consuming 1 budget unit. The vertical axis records the best-so-far function value.
The remaining results of synthetic functions with D = 1000, all results of synthetic functions with
D = 10000, and detailed results are shown in Appendix G. To further verify DSEBO’s capability in
handling high-dimensional optimization tasks, we also conduct experiments by adjusting the shifting
scalar c of the synthetic functions, with results shown in the Appendix G.

The experimental results show (1) Superiority. Compared with other high-dimensional BO algo-
rithms, DSEBO can find optimal solutions across almost all tasks, including real-world tasks and
high-dimensional synthetic functions of different magnitudes. (2) Efficiency. In high-dimensional
tasks with unknown effective dimensions, DSEBO dynamically expands the subspace dimension
to find the optimal solution within limited resources. This allows DSEBO to achieve the optimal
solution with minimal cost, whereas subspace-based methods require multiple complete optimization
processes across different subspace dimensions (Wang et al., 2016) and non-subspace-based methods
require optimization in the original high-dimensional space, both consuming significant computa-
tional resources. (3) Continuous Improvement. Due to its ability to dynamically expand subspace
dimensions, the performance of DSEBO continues to improve when other algorithms have converged.
When the optimization process converges in the current subspace, DSEBO can expand to a larger
subspace for further optimization, ensuring continuous progress. (4) Adaptability. DSEBO starts
from a lower initial subspace, which makes its initial evaluation values different (such as having
a good initial value on synthetic functions while getting poor initial performance on real-world
datasets), but DSEBO adapts to the specific tasks and continues to converge towards the optimal
solution. (5) Necessity. The experimental results show that some high-dimensional embedding BO
algorithms (such as REMBO) have obvious performance differences on different subspaces. This
illustrates the necessity of designing a dynamic subspace dimension expanding strategy.

6.2 PERFORMANCE OF DYNAMIC DIMENSION EXPANDING STRATEGY

To further evaluate the performance of the dynamic dimension expanding strategy, we compare a series
of MAB strategies, including Extreme Bandits (Extreme), Classic UCB (C-UCB) (Auer et al., 2002),
ϵ-Greedy (Langford & Zhang, 2007), Softmax strategy (Sutton & Barto, 2018), Successive Halving
(S-Halving) (Karnin et al., 2013), UCB-E (Audibert et al., 2010), Thompson Sampling (TS) (Jin et al.,
2022), Expectation strategy (Expectation), and Random strategy. Each MAB strategy selects different

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Iteration

25
50

C
ho

se
n

D
im

.
9

8

7

6

B
es

t-s
o-

fa
r

MSLR

450 460 470 480 490 500
9.0

8.8

0 100 200 300 400 500
Iteration

0

100

C
ho

se
n

D
im

.

0

50

100

B
es

t-s
o-

fa
r

Lasso-Hard

DSEBO (ours)
Extreme

Random Policy
-greedy

C-UCB
Softmax

TS
UCB-E

S-Halving
Expectation

0 100 200 300 400 500
Iteration

0

50

C
ho

se
n

D
im

. 10

0

B
es

t-s
o-

fa
r

LIMO

Figure 5: Results on real-world tasks compared with the MAB strategies, and the subspace dimensions
selected by DSEBO during the optimization process. All experiments are repeated 10 times.

subspaces for optimization, with dimensions drawn from {10, 20, 30, 50, 70, 90, 100}. A detailed
description of these algorithms is provided in the Appendix F. All strategies are allocated a budget of
500 evaluations, each subspace is initialized by one point, and the experiments are independently
repeated 10 times. The experimental results on real-world tasks are presented in Figure 5, showcasing
the best-so-far solution found (top) and the subspace dimension expansions (bottom). Results for
synthetic functions are provided in the Appendix G.

Experimental results show that: (1) Superiority and Tailor-Made. DSEBO designs a dynamic
dimension expanding strategy for high-dimensional BO problems with unknown effective dimensions.
Compared with the general MAB strategies, it can converge to better performance on various tasks. (2)
Effectiveness of Shared Embedding. Through experimental results on synthetic functions, it can be
found that on tasks with particularly high dimensions, random strategy has the worst results, followed
by strategies that explore larger subspace dimensions. Unlike DSEBO, other strategies cannot share
data to explore different subspace dimensions. Therefore, exploration in different dimensions brings
a huge overhead and reduces the convergence efficiency. (3) Reasonable Expansions. The results
for four synthetic functions show that when the space dimension is below the effective dimension
de, DSEBO rapidly increases it. However, once the effective dimension is exceeded, the growth rate
slows down, reflecting the rationality of DSEBO in expanding subspace dimensions.

6.3 HYPER-PARAMETER ANALYSIS

We conduct hyper-parameter analysis on β and the upper boundary of search range dh to verify the
robustness of DSEBO under different hyper-parameter settings. The detailed results and analysis are
shown in Appendix H. The hyper-parameter analysis verifies that the chosen hyper-parameter values
are reasonable, and shows the robustness of the DSEBO across different settings.

7 CONCLUSION AND DISCUSSION

Conclusion. This paper introduces the DSEBO method for automated random embedding in high-
dimensional Bayesian optimization with unknown effective dimensions. We propose the dynamic
shared embedding BO, which dynamically expands the subspace dimension during optimization.
Utilizing a shared embedding matrix, one subspace can share the initial dataset from a lower-
dimensional subspace. The dynamic dimension expanding strategy determines the dimension of the
next subspace, thereby achieving better optimization performance within limited resources. The
theoretical analysis establishes a regret bound for DSEBO, proofing its superior ability to balance
approximation and optimization errors compared with GPUCB.

Discussion. Currently, due to the effective dimension being unknown during the optimization process,
DSEBO is unable to halt dimension expansion near the effective dimension, which may lead to
unnecessary increases in the subspace dimensionality. In the future, we will explore more adaptive
strategies to effectively identify the effective dimension and enable dynamic subspace adjustment
(not just dimension expansion) and further integrate the dynamic dimension expanding strategy
into other high-dimensional optimization methods, such as evolutionary algorithms, to improve
optimization efficiency. Furthermore, we will explore the integration of DSEBO with multiple
random embeddings (Cartis et al., 2023) or learned embedding from data (Garnett et al., 2014)
approaches to better address high-dimensional optimization tasks with effective dimension.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICS AND REPRODUCIBILITY STATEMENTS

Ethics. This work does not include any human subjects, personal data, or sensitive information. All
testing datasets utilized are publicly accessible, and no proprietary or confidential information has
been employed.

Reproducibility. Experimental settings are described in Section 6 with further details of the methods
included in Appendix B and Appendix C. The datasets utilized in this paper are all publicly available
and open-source. The link to our anonymous code repository is https://anonymous.4open.
science/r/DSEBO-7532. No LLMs were used in conducting the research or writing this paper.

REFERENCES

Brandon Amos and Denis Yarats. The differentiable cross-entropy method. In Proceedings of the
37th International Conference on Machine Learning, volume 119, pp. 291–302, Virtual Event,
2020.

Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. Best arm identification in multi-armed
bandits. In Proceedings of the 23rd Conference on Learning Theory, pp. 41–53, Haifa, Israel,
2010.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47:235–256, 2002.

Anthony Bardou, Patrick Thiran, and Thomas Begin. Relaxing the additivity constraints in decentral-
ized no-regret high-dimensional Bayesian optimization. In Proceedings of the 12th International
Conference on Learning Representations, 2024.

Mickael Binois and Nathan Wycoff. A survey on high-dimensional Gaussian process modeling
with application to Bayesian optimization. ACM Transactions on Evolutionary Learning and
Optimization, 2(2):8:1–8:26, 2022.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge university press, Cam-
bridge, 2004.

Coralia Cartis, Estelle M. Massart, and Adilet Otemissov. Bound-constrained global optimization of
functions with low effective dimensionality using multiple random embeddings. Mathematical
Programming, 198(1):997–1058, 2023.

Peter Eckmann, Kunyang Sun, Bo Zhao, Mudong Feng, Michael K. Gilson, and Rose Yu. LIMO:
latent inceptionism for targeted molecule generation. In Proceedings of the 39th International
Conference on Machine Learning, volume 162, pp. 5777–5792, Baltimore, MD, 2022.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. Journal
of Machine Learning Research, 20:55:1–55:21, 2019.

David Eriksson and Martin Jankowiak. High-dimensional Bayesian optimization with sparse axis-
aligned subspaces. In Proceedings of the 37th Conference on Uncertainty in Artificial Intelligence,
pp. 493–503, Virtual Event, 2021.

David Eriksson, Michael Pearce, Jacob R. Gardner, Ryan Turner, and Matthias Poloczek. Scalable
global optimization via local Bayesian optimization. In Advances in Neural Information Processing
Systems 32, pp. 5497–5508, Vancouver, Canada, 2019.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

Roman Garnett. Bayesian Optimization. Cambridge University Press, Cambridge, 2023.

Roman Garnett, Michael A. Osborne, and Philipp Hennig. Active learning of linear embeddings for
Gaussian processes. In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence,
pp. 230–239, Quebec, Canada, 2014.

10

https://anonymous.4open.science/r/DSEBO-7532
https://anonymous.4open.science/r/DSEBO-7532

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS Central Science, 4(2):268–276, 2018.

Tianyuan Jin, Pan Xu, Xiaokui Xiao, and Anima Anandkumar. Finite-time regret of Thompson sam-
pling algorithms for exponential family multi-armed bandits. In Advances in Neural Information
Processing Systems 35, pp. 38475–38487, New Orleans, LA, 2022.

Zohar Shay Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed
bandits. In Proceedings of the 30th International Conference on Machine Learning, pp. 1238–1246,
Atlanta, GA, 2013.

John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side
information. In Advances in Neural Information Processing Systems 20, pp. 817–824, Vancouver,
Canada, 2007.

Benjamin Letham, Roberto Calandra, Akshara Rai, and Eytan Bakshy. Re-examining linear embed-
dings for high-dimensional Bayesian optimization. In Advances in Neural Information Processing
Systems 33, Virtual Event, 2020.

Ilya Loshchilov, Tobias Glasmachers, and Hans-Georg Beyer. Large scale black-box optimization
by limited-memory matrix adaptation. IEEE Transactions on Evolutionary Computation, 23(2):
353–358, 2019.

Dhagash Mehta and Crina Grosan. A collection of challenging optimization problems in science, en-
gineering and economics. In Proceedings of the 17th IEEE Congress on Evolutionary Computation,
pp. 2697–2704, Sendai, Japan, 2015.

Amin Nayebi, Alexander Munteanu, and Matthias Poloczek. A framework for Bayesian optimization
in embedded subspaces. In Proceedings of the 36th International Conference on Machine Learning,
volume 97, pp. 4752–4761, Long Beach, CA, 2019.

Leonard Papenmeier, Luigi Nardi, and Matthias Poloczek. Increasing the scope as you learn: Adaptive
Bayesian optimization in nested subspaces. In Advances in Neural Information Processing Systems
35, pp. 11586–11601, New Orleans, LA, 2022.

Hong Qian and Yang Yu. Derivative-free reinforcement learning: A review. Frontiers of Computer
Science, 15(6):156336, 2021.

Hong Qian, Yi-Qi Hu, and Yang Yu. Derivative-free optimization of high-dimensional non-convex
functions by sequential random embeddings. In Proceedings of the 25th International Joint
Conference on Artificial Intelligence, pp. 1946–1952, New York, NY, 2016.

Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. LETOR: A benchmark collection for research on
learning to rank for information retrieval. Information Retrieval, 13(4):346–374, 2010.

Maria Laura Santoni, Elena Raponi, Renato De Leone, and Carola Doerr. Comparison of high-
dimensional Bayesian optimization algorithms on BBOB. ACM Transactions on Evolutionary
Learning and Optimization, 4(3):17:1–17:33, 2024.

Kenan Sehic, Alexandre Gramfort, Joseph Salmon, and Luigi Nardi. Lassobench: A high-dimensional
hyperparameter optimization benchmark suite for lasso. In Proceedings of the 2nd International
Conference on Automated Machine Learning, volume 188, pp. 2/1–24, Baltimore, MD, 2022.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking the
human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2016.

Lei Song, Ke Xue, Xiaobin Huang, and Chao Qian. Monte Carlo tree search based variable selection
for high dimensional Bayesian optimization. In Advances in Neural Information Processing
Systems 35, pp. 28488–28501, New Orleans, LA, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. Gaussian process
optimization in the bandit setting: No regret and experimental design. In Proceedings of the 27th
International Conference on Machine Learning, pp. 1015–1022, Haifa, Israel, 2010.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou, Xuanjing Huang, and Xipeng Qiu. Bbtv2:
Towards a gradient-free future with large language models. In Proceedings of the 27th Conference
on Empirical Methods in Natural Language Processing, pp. 3916–3930, Abu Dhabi, United Arab
Emirates, 2022.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press,
Cambridge, 2018.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando de Freitas. Bayesian
optimization in a billion dimensions via random embeddings. Journal of Artificial Intelligence
Research, 55:361–387, 2016.

Zhitong Xu, Haitao Wang, Jeff M Phillips, and Shandian Zhe. Standard Gaussian process is all
you need for high-dimensional bayesian optimization. In Proceedings of the 13th International
Conference on Learning Representations, 2025.

Yang Yu, Hong Qian, and Yi-Qi Hu. Derivative-Free Optimization: Theoretical Foundations,
Algorithms, and Applications. Springer, 2025.

Miao Zhang, Huiqi Li, and Steven W. Su. High dimensional Bayesian optimization via supervised
dimension reduction. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pp. 4292–4298, Macao, China, 2019.

Yangwenhui Zhang, Hong Qian, Xiang Shu, and Aimin Zhou. High-dimensional dueling optimization
with preference embedding. In Proceedings of the 37th AAAI Conference on Artificial Intelligence,
pp. 11280–11288, Washington, DC, 2023.

Zhi-Hua Zhou, Yang Yu, and Chao Qian. Evolutionary Learning: Advances in Theories and
Algorithms. Springer Publishing Company, Incorporated, Berlin, 2019.

Juliusz Krysztof Ziomek and Haitham Bou-Ammar. Are random decompositions all we need in
high dimensional Bayesian optimisation? In Proceedings of the 40th International Conference on
Machine Learning, volume 202, pp. 43347–43368, Honolulu, HI, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DETAILED PRELIMINARIES

This section provides additional details on Bayesian optimization, the optimal ϵ-effective dimension,
and random embedding to further clarify the preliminaries, necessary background and notation.

A.1 BAYESIAN OPTIMIZATION

0
0.25

0.5
0.75

1
x1 0

0.25
0.5

0.75
1

x 2

10
5
0
5
10
15

20

f (x
1,

x 2
)

(a) Function with effective di-
mension

5 30 60 85 110 135
Dimension of Subspace

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
 o

n
Fu

nc
tio

n
Va

lu
e

(b) ϵ-effective dimension for
MSLR

Figure 6: An illustration for a synthetic function with effec-
tive dimension and the test for the existence of ϵ-effective
dimension in real dataset MSLR Zhang et al. (2023).

Bayesian optimization (BO) (Srinivas
et al., 2010; Shahriari et al., 2016; Gar-
nett, 2023) is a well-known derivative-
free optimization method that strategi-
cally utilizes prior knowledge to guide
the sampling process. First, BO con-
structs a surrogate model, typically a
Gaussian process (GP), based on sam-
ples of the objective function. Next,
BO calculates the acquisition func-
tion based on this model to guide the
subsequent sampling process and the
trade-off between “exploration” and
“exploitation” in the search space.

Based on the observed dataset D, BO
estimates the posterior distribution of
the objective function P (f |D) ∝ P (D|f)P (f), where P (f) denotes the prior distribution of the
objective function and P (D|f) is the likelihood. This posterior distribution incorporates information
about the objective function and is used to inform subsequent modeling and optimization. Once
the posterior distribution has been obtained, BO employs an acquisition function to determine the
next sampling point. A common choice is UCB (Srinivas et al., 2010), defined as αUCB(x) =
µt(x) +

√
κt+1σt(x), where µt(x) estimates the objective function, associated with “exploitation”,

while σt(x) represents the uncertainty of the objective function, associated with “exploration”. The
hyper-parameter κ in UCB balances “exploration” and “exploitation” for efficient optimization.

A.2 RANDOM EMBEDDING

If the high-dimensional objective function has effective dimension, the subspace embedding technique
can effectively achieve dimensionality reduction. For example, Figure 6(a) shows a 2-dimensional
synthetic function f(x1, x2) with a 1-dimensional effective dimension. In such cases, only a few
dimensions significantly influence the objective function and are prioritized during optimization.

However, it is challenging to satisfy the effective dimension assumption in real tasks. In this case,
Qian et al. (2016) propose the concept of optimal ϵ-effective dimension to relax the assumption,
which is defined as Definition 3.1.

Dataset Objective Function

Optimizer Random Embedding

Use new dataset to
update optimizer

Subspace solution 𝒛 ∈ 𝒵

High-dimensional
space solution
𝒙 = 𝑝𝒳(𝐴𝒛)

Evaluation result

𝑓 𝑝𝒳 𝐴𝒛 = 𝑓(𝒙)

Store data and optimize
on the low-dimensional
subspace 𝒵 ⊂ ℝ"

Embedding solutions from
subspace𝒵 ⊂ ℝ" to high-
dimension 𝒳 ⊂ ℝ# using
random matrix

Figure 7: The process of BO with random embedding.

Empirical evidence shows that many
high-dimensional tasks (Sun et al.,
2022) and datasets (Zhang et al., 2023)
follow the ϵ-effective dimension. A
typical example is the MSLR task (as
Figure 6(b)), where 50-dimensional
subspace fully captures the variation
in the objective function, and other di-
mensions have a low impact, i.e., the
ϵ-effective dimension of the MSLR
dataset does not exceed 50.

Random embedding (RE) (Wang
et al., 2016; Nayebi et al., 2019) is
a widely used subspace embedding method as shown in Figure 7. For a high-dimensional optimiza-
tion problem x∗ = argminx∈X⊂RDf(x), a random matrix A ∈ RD×d with elements sampled from a

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Gaussian distribution N (0, σ2) embeds the d-dimensional subspace Z ⊂ Rd into the D-dimensional
search space X ⊂ RD. The optimizer only needs to optimize z ∈ Z in the low-dimensional
subspace, and then embed z into X through the matrix A to get the solution x = pX (Az). Here,
pX (Az) = argminx∈X ∥x − Az∥2 is to project illegal points (i.e., Az /∈ X) back to the X re-
gion. Subsequently, the objective function f is evaluated in the solution x, and the sample point
(z, f(pX (Az))) is added to the subspace dataset. The optimizer uses the updated dataset to complete
the next optimization iteration.

B PSEUDO-CODE OF DSEBO

The pseudo-code of DSEBO is shown in Algorithm 2. The algorithm aims to optimize a high-
dimensional objective function f(·) with unknown effective dimensions on a D-dimensional space
within a limited number of evaluations to find its minimum value. DSEBO requires budget (i.e.,
total evaluations), the subspace dimension search range [dl, dh], and a hyper-parameter β. For a
high-dimensional problem, one can search from the dimension 5, i.e., dl = 5, and the recommended
value of the upper boundary of the search range dh is min(D, 100). When the dimension exceeds
100, the performance of the Bayesian optimizer will drop sharply, so the search range of the subspace
will not exceed 100. The hyper-parameter β controls the scale of the dimension expansion.

Before optimization, the algorithm will initialize the shared embedding matrix and set some necessary
parameters, as shown in lines 1–2, where T controls the judgment of whether the solution converges,
indirectly controlling the number of dimension expansion iterations. During the optimization phase,
if a subspace has not been initialized, the algorithm will initialize its dataset, optimizer, current
optimal solution b, and random embedding matrix in sequence, as shown in lines 4–9. Then, the

Algorithm 2 DSEBO Algorithm
Input: D-dimensional objective function f(·), budget, dl = 5, dh = min(D, 100), hyper-parameter

β.
1: Initialize the shared embedding matrix SD×dh

, whose elements are sampled from N (0,
√

1/dh)

2: t = 1, d(1) = dl, T = ⌊ budget2β ⌋
3: while t <= budget do
4: if t = 1 or d(t) ̸= d(t−1) then
5: D(t) ← Initialize dataset using shared embedding
6: Using D(t) update the optimizer Bd(t)

7: b← min{y|(z, y) ∈ D(t)}
8: Ad(t) ← The first d(t) rows of matrix SD×dh

9: end if
10: z(t) ← Next solution given by the optimizer Bd(t)

11: x(t) ← Random Embedding z(t), i.e., pX (Ad(t)z(t))
12: f(x(t))← Query the objective function
13: D(t+1) ← D(t) ∪ {(z(t), f(x(t)))}
14: Using D(t+1) update the optimizer Bd(t)

15: if |f(x(t))− b| > 0.5 then
16: b← f(x(t))
17: end if
18: if b has no change in T iterations then
19: d(t+1) ← Update dimension using dynamic dimension expanding strategy
20: T ← ⌊(1 + d(t)−dl

dh−dl
) budget2β ⌋

21: else
22: d(t+1) ← d(t)

23: end if
24: t← t+ 1
25: end while
26: z∗ ← argmaxz{y | (z, y) ∈ D(t)}
Output: The best solution x∗ = A(t)z∗.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 3 Dataset Initialization

Input: Previous dimension d(t−1), current dimension d(t), dataset D(t−1) of previous space.
1: if t = 1 then
2: D(1) ← Add a random d(1)-dimensional solution
3: else
4: D(t) ← ∅
5: for all (z, y) ∈ D(t−1) do
6: z′ = (z⊤,0d(t)−d(t−1))⊤

7: D(t) ← D(t) ∪ {(z′, y)}
8: end for
9: end if

Output: Dataset D(t) of current space.

following step is Bayesian optimization based on stochastic embedding, including steps such as the
optimizer giving the next solution, embedding the solution into the high-dimensional search space,
querying the objective function, updating the dataset and the optimizer, as shown in lines 10–14. The
updating of the optimal value b achievable by the current algorithm occurs in lines 15–17, with the
error constrained within the range of α. If the solution has converged in the current subspace, i.e., b
has not changed in T iterations, expand to the new subspace and update T (the convergence time
T of the higher-dimensional subspace solution is usually larger, so we update it), as shown in lines
18–20. Repeat the above steps until the budget is exhausted, and finally embed the subspace into the
search space to obtain the optimal value found by the algorithm.

C PSEUDO-CODE OF DATASET INITIALIZATION ALGORITHM

In high-dimensional optimization problems, when the optimization process enters a new subspace,
it is necessary to initialize the dataset in the new dimensional space. To fully utilize the data from
the existing lower-dimensional subspace, this algorithm generates the new dataset by extending
the existing data into the higher-dimensional space. As shown in Algorithm 3, in the first iteration
(t = 1), the dataset starts empty and is initialized with a random point in the current dimensional
space. For subsequent dimension expansions, the dataset D(t) for the current dimension is generated
by expanding the previous dataset D(t−1). This expansion is achieved by appending zeros to each
solution vector z, thereby extending it into the new subspace while preserving the original evaluation
value y. This method ensures that valuable data from lower dimensions are retained and utilized in
the higher-dimensional optimization process.

D PROOF OF SECTION 5

D.1 PROOF OF THEOREM 5.1

Proof. By Theorem 2 of Srinivas et al. (2010), the regret bound is O∗
(√

T (log T)d+1
)

in the
absence of approximation error. To complete the analysis, we need to account for the impact of the
approximation error.

From Lemma 1 of Qian et al. (2016), the approximation error is given by 2ϵd. Combining these
results, the total regret bound becomes the sum of the regret without approximation error and the
approximation error term. This completes the proof.

D.2 PROOF OF THEOREM 5.2

Proof. Let σ(t)(·) be the standard deviation function in step t, r(t) be the single-step regret without
considering the approximation error. Lemma 5.2 of Srinivas et al. (2010) reveals that (r(t))2 =

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

4β(t)(σ(t−1))2(x(t−1)). Therefore,

T∑
t=1

(r(t))2

=

T∑
t=1

4β(t)(σ(t−1))2

(a)

≤
T∑

t=1

4β(T)(σ(t−1))2

= 4β(T)
T∑

t=1

(σ(t−1))2(x(t−1))

= 4β(T)
T∑

t=1

σ2
(
σ−2(σ(t−1))2(x(t−1))

)
≤ 4β(T)

T∑
t=1

σ2C2 log
(
1 + σ−2(σ(t−1))2(x(t−1))

)
(b)

≤ C1β
(T)

H∑
h=1

γTh
,

where (a) is because β(t) is nondecreasing, (b) comes from Lemma 5.3 of Srinivas et al. (2010).

According to Theorem 5 of Srinivas et al. (2010), we have γTh
= O(log Th)

dh+1. Plugging this into
the above inequality, and use Cauchy-Schwarz inequality as Lemma 5.4 in Srinivas et al. (2010), we
obtain the final result.

E REAL-WORLD DATASETS

In this section, we provide a detailed introduction to the real-world datasets used in our experiments.

MSLR (Qin et al., 2010): The first real-world dataset is the Microsoft Learning to Rank (MSLR)
dataset (Qin et al., 2010), specifically the MSLR-WEB-10K version, which includes over 10000
queries, each with 136 features per website page. Each website page has a relevance judgment,
ranging from 0 (irrelevant) to 4 (completely relevant). When dealing the dataset, we normalize
the dataset and then use neural networks to model the dataset as the objective function. Given the
complexity of using the dataset as an oracle, we assess preferences through the neural network’s
predictions instead. The architecture of this neural network is designed with three hidden layers, each
containing 128, 64, and 32 neurons, and utilizes the Sigmoid function as the activation mechanism.

Lasso-Hard (Sehic et al., 2022): The second dataset is Lasso-Hard from LassoBench (Sehic et al.,
2022), a 1000-dimensional optimization task designed to identify sparse regression coefficients that
minimize Lasso regression loss.

LIMO (Eckmann et al., 2022): The third dataset is LIMO (Eckmann et al., 2022), a framework for
molecular generation aimed at optimizing specific properties by operating in a 1024-dimensional
latent space learned through a variational autoencoder. Specifically, the LIMO dataset is a drug-like
molecule design task, where the objective function is designed to balance the octanol-water partition
coefficient, accessibility, and the presence of large rings.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500

Iteration

105

106

107

B
es

t-s
o-

fa
r

Dixon (D = 1000)

0 100 200 300 400 500

Iteration

12

10

8

6

4

2

0

B
es

t-s
o-

fa
r

Michalewicz (D = 1000)

DSEBO (ours)
Random Search
REMBO with d = 50
REMBO with d = 30

SIRBO with d = 50
SIRBO with d = 30
HesBO with d = 50
HesBO with d = 30

VAEBO with d = 50
VAEBO with d = 30
ALEBO with d = 50
ALEBO with d = 30

BAxUS
TuRBO
MCTSVS
RDUCB

SBO-SE
LMMAES
DCEM

Figure 8: Results on remaining 1000-dimensional synthetic functions compared with various high-
dimensional optimization algorithms. All algorithms are independently repeated 10 times.

F BASELINES IMPLEMENTATION DETAILS

F.1 HIGH-DIMENSIONAL OPTIMIZATION METHODS

REMBO (Wang et al., 2016): REMBO, the first random embedding approach, repeats using the
BoTorch framework in the experiments. We adhere to the same hyper-parameter specifications
detailed in (Wang et al., 2016).

HesBO (Nayebi et al., 2019): HesBO takes a novel approach to avoid embedding at the boundary by
altering the generation process of the embedding matrix. For our implementation, we have utilized
the version made available by the author at the GitHub repository: https://github.com/
aminnayebi/HeSBO.

SIRBO (Zhang et al., 2019): Unlike traditional random embedding techniques, SIRBO computes the
embedding matrix using the sliced inverse regression (SIR) method. We use the author’s implementa-
tion from https://github.com/cjfcsjt/SILBO/blob/master/SIR_BO.py.

VAEBO (Gómez-Bombarelli et al., 2018): VAE-BO employs a variational auto-encoder (VAE) to
discern the embedding relationship between high-dimensional spaces and their lower-dimensional
counterparts. And we also utilize the code made available by the author: https://github.com/
lamda-bbo/MCTS-VS/blob/master/baseline/vae_bo.py, adjusting the learning rate
to 0.001 and updating the VAE model every 20 iterations.

ALEBO (Letham et al., 2020): ALEBO refines the acquisition function within constraints to become
the state-of-the-art (SOTA) method for random embedding. We use the author’s implementation from
https://github.com/facebookresearch/alebo.

BAxUS (Papenmeier et al., 2022): BAxUS is an embedding-based method designed to optimize
high-dimensional black-box functions by using nested random subspaces and a unique dimensionality
growth strategy. We use the author’s code from https://github.com/LeoIV/BAxUS.

MCTS-VS (Song et al., 2022): MCTS-VS employs Monte Carlo tree search to iteratively select
and optimize a subset of variables within a low-dimensional subspace. The implementation from
https://github.com/lamda-bbo/MCTS-VS is used.

TuRBO (Eriksson et al., 2019): TuRBO is an efficient method for handling high-dimensional
optimization by dividing the space into smaller regions for local optimization. We use the code from
https://github.com/uber-research/TuRBO.

SAASBO (Eriksson & Jankowiak, 2021): SAASBO focuses on optimizing only a few important
dimensions, thus reducing computational complexity in high-dimensional spaces. We implement the
method using the author’s code from https://github.com/martinjankowiak/saasbo.

17

https://github.com/aminnayebi/HeSBO
https://github.com/aminnayebi/HeSBO
https://github.com/cjfcsjt/SILBO/blob/master/SIR_BO.py
https://github.com/lamda-bbo/MCTS-VS/blob/master/baseline/vae_bo.py
https://github.com/lamda-bbo/MCTS-VS/blob/master/baseline/vae_bo.py
https://github.com/facebookresearch/alebo
https://github.com/LeoIV/BAxUS
https://github.com/lamda-bbo/MCTS-VS
https://github.com/uber-research/TuRBO
https://github.com/martinjankowiak/saasbo

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

DuMBO Bardou et al. (2024): DuMBO employs decentralized message-passing and a refined
acquisition function to relax additive structure constraints in high-dimensional Bayesian Optimization,
achieving asymptotic optimality on functions with complex decompositions. The code for DuMBO
can be found at https://github.com/abardou/dumbo.

RDUCB (Ziomek & Bou-Ammar, 2023): RDUCB uses random tree decompositions to construct
additive GP models with cycle-free pairwise dimensional interactions, effectively addressing the
challenge of being misled by local data in high-dimensional optimization. The code for RDUCB is
available at https://github.com/huawei-noah/HEBO.

SBO-SE (Xu et al., 2025): SBO-SE employs a robust strategy to initialize the length-scale of the GP
kernel, avoiding the vanishing gradient problem during Gaussian process training in high-dimensional
Bayesian optimization. The code we use is implemented based on the BoTorch library.

LMMAES Loshchilov et al. (2019): LMMAES reduces the time and space complexity of traditional
matrix adaptation evolution strategy by approximating the covariance structure using a small set
of evolution paths. The code for LMMAES is available as part of the pypop library at https:
//github.com/Evolutionary-Intelligence/pypop.

DCEM Amos & Yarats (2020): DCEM is a differentiable variant of the cross-entropy method
that enables gradient-based end-to-end learning by employing a smooth top-k operation, address-
ing the challenges of backpropagating through non-differentiable or discrete optimization steps.
The implementation of DCEM can be found in the pypop library at https://github.com/
Evolutionary-Intelligence/pypop.

F.2 MULTI-ARMED BANDIT STRATEGY

ϵ-greedy (Langford & Zhang, 2007): This method strikes a simple balance between exploration
and exploitation by selecting the best known action most of the time while occasionally choosing
randomly with a small probability ϵ. This ensures that the algorithm does not rely solely on the
existing knowledge and periodically explores other options, potentially discovering more optimal
strategies. In our experiments, we set ϵ = 0.5.

C-UCB (Auer et al., 2002): Classic Upper Confidence Bound (C-UCB) is the foundational algorithm
in the UCB family, which selects actions based on a trade-off between their past rewards and a
confidence interval, ensuring a balance between exploiting known rewards and exploring less certain
options. In our experiments, the κ is set to

√
2 log(T)/ni as default, where T is the total number of

iterations and ni is the number of i-th subspace optimized time.

UCB-E (Audibert et al., 2010): The UCB-E algorithm enhances the traditional Upper Confidence
Bound approach by introducing a controllable exploration factor, c. This factor allows for fine-tuning
the exploration level, independent of each arm’s estimated uncertainty, making it especially useful in
scenarios where the standard uncertainty model might not adequately represent the exploratory needs.
In our experiments, we set c = 0.5.

TS (Jin et al., 2022): Thompson Sampling (TS) is a probabilistic approach that selects arms based
on samples drawn from their estimated reward distributions, effectively balancing exploration and
exploitation by adapting to the uncertainty in the estimate of each arm’s reward.

Softmax (Sutton & Barto, 2018): In the Softmax method, the selection of arms is controlled by a
probability distribution weighted by the estimated value of each arm, which is adjusted according to
the temperature parameter τ . Lower τ favors the best arms, while higher τ increases exploration of
unknown arms. In our experiments, we set τ = 1.0.

S-Halving (Karnin et al., 2013): Successive Halving is a method of saving budgets by first allocating
equal resources to all candidates and then phasing out underperforming candidates, focusing resources
on the most promising bandits as the process iterates.

Extreme: The extreme strategy is designed to achieve exploitation by aggressively focusing on the
arms that appear to be optimal, often used in environments where the cost of exploration is high or
when quick decisions are critical.

Expectation: The expectation strategy selects arms based on the expected value of the reward,
typically favoring arms with higher average rewards.

18

https://github.com/abardou/dumbo
https://github.com/huawei-noah/HEBO
https://github.com/Evolutionary-Intelligence/pypop
https://github.com/Evolutionary-Intelligence/pypop
https://github.com/Evolutionary-Intelligence/pypop
https://github.com/Evolutionary-Intelligence/pypop

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Iteration

100

101

102

103

B
es

t-s
o-

fa
r

Levy (D = 10000)

0 100 200 300 400 500
Iteration

105

106

107

B
es

t-s
o-

fa
r

Rosenbrock (D = 10000)

DSEBO (ours)
Random Search
REMBO with d = 50

REMBO with d = 30
SIRBO with d = 50
SIRBO with d = 30

HesBO with d = 50
HesBO with d = 30
BAxUS

TuRBO
MCTSVS

LMMAES
DCEM

0 100 200 300 400 500
Iteration

0

500

1000

1500

2000

2500

B
es

t-s
o-

fa
r

Griewank (D = 10000)

0 100 200 300 400 500
Iteration

101

102

B
es

t-s
o-

fa
r

Sphere (D = 10000)

0 100 200 300 400 500
Iteration

104

105

106

107

B
es

t-s
o-

fa
r

Dixon (D = 10000)

0 100 200 300 400 500
Iteration

10.0

7.5

5.0

2.5

0.0

B
es

t-s
o-

fa
r

Michalewicz (D = 10000)

Figure 9: Results on 10000-dimensional synthetic functions compared with various high-dimensional
optimization algorithms. All algorithms are independently repeated 10 times.

Random: The random strategy selects actions randomly, ensuring equal exploration of all available
options. It is useful for baseline comparisons or when no prior data exists. Although simple, it can
occasionally reveal overlooked possibilities in complex scenarios.

G DETAILED RESULTS

The remaining experimental results of the synthetic functions with D = 1000 mentioned in the
Section 6 are shown in Figure 8. The experimental results of the synthetic functions with D = 10000
are shown in Figure 9. When dealing with high-dimensional tasks with D = 10000, since SIRBO
cannot complete 500 iterations within 8 hours, only the results of the first 100 iterations are plotted.
Experimental results show that on 6 synthetic functions, DSEBO shows the fastest convergence speed
and can find solutions with high performance.

Additionally, the comparison results of synthetic functions between DSEBO and a series of MAB
strategies are presented in Figure 10. As evidenced by the figures, DSEBO verifies significant
advantages over other arm selection strategies by dynamically expanding subspace dimensions,
efficiently sharing data across dimensions, and achieving faster convergence and superior performance
in high-dimensional optimization tasks.

Table 1, Table 2, Table 3, Table 4 and Table 5 record the final mean convergence value of various
algorithms under each experimental environment, the optimal solution that can be found, and the mean
operation time. The results show that DSEBO can provide a better dynamic dimension expanding
strategy and show good optimization performance in all synthetic functions and real-world tasks,
which reflects in stable convergence performance and the ability to explore excellent solutions.

To further evaluate the capability of DSEBO, we conduct experiments on the Sphere function by
shifting the optimal solution’s location through varying c, as shown in Figure 11, which verifies that
DSEBO consistently maintains its superior performance across different functions.

H HYPER-PARAMETER ANALYSIS

We conduct hyper-parameter analysis on β and the upper boundary of search range dh on two synthetic
functions to verify the robustness of DSEBO under different hyper-parameter configurations, as
shown in Figure 12 and Figure 13.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

100

102

B
es

t-s
o-

fa
r

Sphere (D = 1000)

0 100 200 300 400 500
Iteration

10
20
30

C
ho

se
n

D
im

.
0

1000

B
es

t-s
o-

fa
r

Levy (D = 1000)

DSEBO (ours)
Extreme

Random Policy
-greedy

C-UCB
Softmax

TS
UCB-E

S-Halving
Expectation

0 100 200 300 400 500
Iteration

25
50

C
ho

se
n

D
im

. 105

106

107

B
es

t-s
o-

fa
r

Rosenbrock (D = 1000)

0 100 200 300 400 500
Iteration

0

50

C
ho

se
n

D
im

.

100

200

B
es

t-s
o-

fa
r

Griewank (D = 1000)

450 460 470 480 490 500

11.2

11.4

0 100 200 300 400 500
Iteration

25
50

C
ho

se
n

D
im

. 0

1

B
es

t-s
o-

fa
r

1e7 Dixon (D = 1000)

0 100 200 300 400 500
Iteration

0
50

C
ho

se
n

D
im

. 10

5

0

B
es

t-s
o-

fa
r

Michalewicz (D = 1000)

0 100 200 300 400 500
Iteration

0

100

C
ho

se
n

D
im

.

Figure 10: Results on synthetic functions compared with different MAB strategies, and the subspace
dimensions selected by DSEBO throughout the optimization process. All algorithms are indepen-
dently repeated 10 times.

0 100 200 300 400 500

Iteration

0

200

400

600

800

B
es

t-s
o-

fa
r

Sphere (c = 0.1)

0 100 200 300 400 500

Iteration

0

200

400

600

B
es

t-s
o-

fa
r

Sphere (c = 1.0)

DSEBO (ours)
TuRBO
MCTSVS

REMBO with d = 30
REMBO with d = 50
HesBO with d = 30

HesBO with d = 50
SIRBO with d = 30
SIRBO with d = 50

DCEM
LMMAES

0 100 200 300 400 500

Iteration

0

200

400

600

800

1000

B
es

t-s
o-

fa
r

Sphere (c = 2.0)

0 100 200 300 400 500

Iteration

0

250

500

750

1000

B
es

t-s
o-

fa
r

Sphere (c = 3.0)

0 100 200 300 400 500

Iteration

0

500

1000

1500

B
es

t-s
o-

fa
r

Sphere (c = 4.0)

0 100 200 300 400 500

Iteration

0

500

1000

1500

B
es

t-s
o-

fa
r

Sphere (c = 5.0)

Figure 11: Results on the 1000-dimensional Sphere function with an effective dimension of 30 for
varying c, compared with various algorithms. All algorithms are independently repeated 10 times.

The experiments of hyper-parameter β show that when β is too large (e.g., β = 24, 32), the dimension
updates more frequently, but the change in dimensionality is very small. Conversely, when β is too
small (e.g., β = 1, 4), the change in dimensionality becomes less intuitive, significantly affecting
the convergence of the solution. Nevertheless, DSEBO consistently finds good solutions across
different β configurations, except for the extreme hyper-parameter values (e.g., β = 1, 4). From
the experiments of the upper boundary of search range dh, it can be observed that setting dh = 100
yields satisfactory optimization performance. Moreover, compared to dh = 80 and dh = 120,
dh = 100 results in a more reasonable subspace dimension selection that does not simply opt for
higher dimensions indiscriminately.

The hyper-parameter analysis verifies that the chosen hyper-parameter values are reasonable, and
shows the robustness of the DSEBO across different settings.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Iteration

0

100

C
ho

se
n

D
im

. 2

3

4

5

B
es

t-s
o-

fa
r

Levy
= 1 = 4 = 8 = 12 = 16 = 24 = 32

0 100 200 300 400 500
Iteration

0

100

C
ho

se
n

D
im

.

10

20

30

40

B
es

t-s
o-

fa
r

Sphere

Figure 12: Results of hyper-parameter β experiments in the synthetic functions with D = 1000,
de = 30. All experiments are repeated 10 times.

0 100 200 300 400 500
Iteration

0

100

C
ho

se
n

D
im

. 0

5

10

15

20

B
es

t-s
o-

fa
r

Levy
dh = 60 dh = 80 dh = 100 dh = 120

0 100 200 300 400 500
Iteration

0

100

C
ho

se
n

D
im

.

10

20

30

40

B
es

t-s
o-

fa
r

Sphere

Figure 13: Results of hyper-parameter dh experiments in the synthetic functions with D = 1000,
de = 30. All experiments are repeated 10 times.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 1: Detailed results of high-dimensional optimization algorithms on synthetic functions with
D = 1000.

Objective Function Method
Convergence Value Best Solution

Time (s)d=30 d=50 d=30 d=50

Rosenbrock (D=1000)

SIRBO 413740.1875±120969.2969 459225.1875±96250.1875 259375.1562 348556.6562 54
HesBO 633849.8750±200530.8281 819959.5000±137244.8906 341874.2500 681234.4375 125

REMBO 6223221.1331±641472.7863 6183677.2826±809638.4103 5236903.2094 5851605.9492 766
ALEBO 121149.1016±46185.1758 109807.8828±15043.3242 81243.7891 92437.4062 27665
VAEBO 81353.2500±13184.3848 89912.2031±11958.9248 63902.0126 79479.9531 21107
BAxUS 33332.2138±2957.4265 23831.3776 1241

MCTSVS 129055.41±59201.297 70404.7031 57
TuRBO 79969.6875±14060.7158 56217.6797 156
RDUCB 915660.5000±222155.5938 556649.5465 16653
SBO-SE 643878.8125±201391.4688 254839.0312 1334
DCEM 527429.5391±83910.8251 390377.3541 7

LMMAES 447685.8176±110445.6733 252948.5421 14
Random Search 2509598.2157±520699.5662 1677970.2069 4

DSEBO (ours) 37699.6758±780.7019 37010.5820 1046

Sphere (D=1000)

SIRBO 87.9686±15.1527 95.3077±7.7289 49.4295 85.0751 90
HesBO 120.2445±13.1439 114.5023±28.0399 99.4486 70.6100 305

REMBO 350.8991±98.4352 498.2905±18.5448 192.5025 477.4872 453
ALEBO 31.3825±10.4225 37.4376±2.5337 19.4079 35.9000 26648
VAEBO 37.4775±6.6590 37.6364±5.9088 25.1240 31.1741 15163
BAxUS 17.8187±2.7321 14.4317 785

MCTSVS 36.5522±4.2780 29.4209 51
TuRBO 29.7788±11.4849 14.512 137
RDUCB 174.8453±12.5177 151.0879 13759
SBO-SE 152.2971±9.8699 135.7395 506
DCEM 122.1613±15.5641 100.8576 11

LMMAES 99.1157±15.992 76.3501 12
Random Search 46.3139±37.8249 40.1777 5

DSEBO (ours) 3.9387±1.3304 2.4966 339

Levy (D=1000)

SIRBO 90.0148±16.1821 97.3569±11.5434 63.7397 77.0712 95
HesBO 149.0245±36.4953 146.9163±18.3832 117.1409 108.5397 295

REMBO 1046.6322±67.1422 1206.4437±76.6944 927.1597 1087.9023 756
ALEBO 35.7776±1.6821 35.0879±9.3454 34.5007 24.4679 25213
VAEBO 18.6543±6.8300 19.4487±8.2072 11.1254 8.6804 15323
BAxUS 6.7886±0.0155 6.7753 630

MCTSVS 32.6922±8.1272 18.0643 118
TuRBO 6.4294±0.1092 6.2491 185
RDUCB 198.5230±27.5693 146.3279 13496
SBO-SE 184.6281±29.2152 110.4856 753
DCEM 134.6127±14.4924 110.9705 9

LMMAES 98.4986±9.0345 81.0548 11
Random Search 113.8001±18.2524 88.0861 5

DSEBO (ours) 2.2816±0.7567 1.5805 268

Griewank (D=1000)

SIRBO 61.7318±0.9419 62.0860±0.9048 60.1888 60.1376 92
HesBO 64.8294±8.3552 73.6908±5.3223 44.9517 63.0216 315

REMBO 11.4265±0.8796 220.8467±2.4297 11.0122 215.4218 639
ALEBO 18.1015±1.3217 18.4540±1.2353 16.8223 17.3414 23792
VAEBO 14.6719±0.4778 13.9477±0.6756 14.1418 12.7958 14685
BAxUS 11.2585±0.0474 11.1369 1360

MCTSVS 62.4722±1.7076 60.0604 64
TuRBO 63.1086±1.5921 61.1658 259
RDUCB 164.7312±56.6559 74.8729 15583
SBO-SE 88.7530±1.0904 86.7066 843
DCEM 80.5171±1.4105 77.9347 10

LMMAES 83.7417±2.1408 79.8172 12
Random Search 41.1532±0.4551 40.3172 4

DSEBO (ours) 11.2488±0.1092 10.9793 276

Dixon (D=1000)

SIRBO 582309.6250±127018.3516 512858.5000±120621.3672 399245.0938 282305.4062 116
HesBO 512598.8125±150171.8906 662775.3750±159014.9062 314195.2812 361927.0312 148

REMBO 10028901.2305±751474.3750 11296827.1480±432756.4375 8892939.2391 10683308.8750 531
ALEBO 108987.9219±41572.4883 127629.6016±37048.0312 47649.1914 94961.3281 23283
VAEBO 229556.6719±119026.5547 117513.2344±54179.7344 111616.2344 68923.3125 11638
BAxUS 44058.0664±15399.4717 26695.2305 953

MCTSVS 126604.6875±52375.7891 56397.1484 58
TuRBO 738974.3125±436899.8750 111616.2344 218
RDUCB 1566930.6250±470125.1562 825860.3044 16561
SBO-SE 1208742.0000±248711.9062 864583.7500 657
DCEM 900571.3348±214454.3493 495204.757 11

LMMAES 682351.8439±98667.3857 515423.2172 13
Random Search 270112.6082±53654.5844 184623.3812 11

DSEBO (ours) 39076.9609±10246.4609 25189.1094 597

Michalewicz (D=1000)

SIRBO -8.4669±0.5782 -8.7477±0.7193 -9.3439 -9.8313 144
HesBO -8.3571±0.9363 -7.6276±0.9776 -9.9054 -9.1226 136

REMBO -3.3269±0.4194 -3.0310±0.4671 -3.9171 -3.7214 784
ALEBO -8.8393±0.5495 -8.4900±0.9351 -9.7144 -10.0362 26832
VAEBO -8.4725±1.0752 -7.7547±1.2024 -10.5696 -10.0460 11251
BAxUS -10.1528±0.3488 -10.4914 1072

MCTSVS -7.9805±0.6546 -8.9399 34
TuRBO -8.4346±1.2460 -10.4085 246
RDUCB -6.4992±0.5495 -7.8331 14549
SBO-SE -7.7120±0.6833 -8.6905 542
DCEM -7.6842±0.8374 -9.2082 8

LMMAES -7.3345±0.4382 -7.9377 14
Random Search -7.7538±0.5373 -9.0669 16

DSEBO (ours) -10.6887±1.1657 -12.9019 465

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 2: Detailed results of high-dimensional optimization algorithms on real-world tasks.

Objective Function Method
Convergence Value Best Solution

Time (s)d=50 d=80 d=50 d=80

MSLR

SIRBO -8.6166±0.0063 -8.5711±0.0094 -8.6594 -8.6050 71
HesBO -8.7637±0.0161 -8.6621±0.0272 -8.8077 -8.8044 219

REMBO -8.0890±0.0195 -8.8185±0.0145 -8.8886 -8.8850 252
ALEBO -8.8336±0.0112 -8.8620±0.0197 -8.8814 -8.8962 24016
VAEBO -7.7777±0.1623 -7.7285±0.1480 -8.5001 -8.2889 9766
BAxUS -8.8998±0.0964 -9.0185 554

MCTSVS -8.8755±0.1140 -9.0446 49
TuRBO -8.9199±0.1023 -9.0642 212

SAASBO -8.8604±0.0472 -8.9474 14326
RDUCB -8.8035±0.0944 -8.9027 3776
DuMBO -8.7808±0.1257 -8.9408 6873
SBO-SE -8.7492±0.1289 -8.9026 307
DCEM -8.7281±0.0806 -8.8316 5

LMMAES -8.6829±0.1933 -9.2051 8
Random Search -4.2603±1.4577 -7.5904 2

DSEBO (ours) -8.9396±0.0914 -9.1933 245

Lasso-Hard

SIRBO 39.8469±2.7875 40.0981±1.9785 37.9968 37.7477 145
HesBO 41.2607±11.5219 47.6895±8.0687 24.9073 37.6182 317

REMBO 31.1405±21.1006 41.2012±7.1255 6.7579 34.3955 740
ALEBO 11.2730±5.7479 17.7599±3.1188 8.0080 12.9113 21846
VAEBO 23.4285±9.4164 14.2004±3.6496 10.9416 9.8085 13657
BAxUS 6.1045±0.5563 5.1150 642

MCTSVS 9.4854±2.7239 7.6786 133
TuRBO 11.5030±7.3585 4.2641 276
RDUCB 11.6843±6.2225 4.4439 14924
DuMBO 20.0604±4.6829 12.6193 14700
SBO-SE 49.3089±4.2530 42.7787 584
DCEM 43.6111±6.5621 32.1892 96

LMMAES 5.5371±3.2662 1.8479 112
Random Search 45.2683±1.5762 42.5421 29

DSEBO (ours) 3.8613±0.4896 3.4248 483

LIMO

SIRBO -5.2516±0.8961 -5.1352±0.4046 -6.8275 -5.8603 126
HesBO -5.2117± 1.4180 -4.7430 ±0.8296 -7.7866 -6.2939 229

REMBO -3.526±0.9881 -3.6328±0.3971 -5.0612 -4.3895 164
ALEBO -7.5033±1.5741 -5.9202±0.7087 -10.4432 -6.8159 25496
VAEBO -8.0703±1.3382 -8.3918±2.0633 -9.7784 -11.4423 14205
BAxUS -6.8716±0.9177 -8.065 1562

MCTSVS -5.3277±0.7252 -6.5733 104
TuRBO -4.2479±1.3035 -6.9445 291
RDUCB -4.0750±0.6278 -5.4911 16256
DuMBO -5.9619±0.8675 -7.0755 21299
SBO-SE -4.6146±0.6944 -5.8465 544
DCEM -4.3841±0.4846 -5.3127 114

LMMAES -6.5043±1.1578 -7.805 126
Random Search -1.8629±0.6874 -3.0679 12

DSEBO (ours) -10.6613±2.4279 -14.2513 294

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 3: Detailed results of high-dimensional optimization algorithms on synthetic functions with
D = 10000.

Objective Function Method
Convergence Value Best Solution

Time (s)d=30 d=50 d=30 d=50

Rosenbrock (D=10000)

SIRBO 654297.3750±251160.9062 620616.1250±226600.6094 391632.6250 429690.8438 7255
HesBO 740927.6875±95669.8203 823125.9375±180349.7031 621726.5464 558716.9375 159

REMBO 4762362.9526±1058705.0084 6043180.2348±539507.1027 3476606.4671 5216455.1280 795
BAxUS 34236.7869±2550.1297 29355.3671 3995

MCTSVS 57851.9000±6859.1123 50801.8242 272
TuRBO 1788346.6±1056224.8 404563.2812 389
DCEM 412348.2053±73896.1685 272307.0427 31

LMMAES 572015.3508±114679.9362 357881.9302 54
Random Search 3022829.2621±516710.6428 2262149.8444 18

DSEBO (ours) 36658.1680±4038.2712 31940.3965 1076

Sphere (D=10000)

SIRBO 114.9471±17.8656 106.1076±12.5741 92.1035 85.4588 7528
HesBO 143.2573±26.0684 135.1932±21.8210 113.4040 103.8779 230

REMBO 282.7653±54.2532 497.3164±34.3274 198.8264 446.1657 581
BAxUS 20.0685±2.4054 15.9891 3182

MCTSVS 42.4199±11.5857 24.8201 383
TuRBO 174.1312±39.0554 118.9279 264
DCEM 124.469±14.4034 100.0146 30

LMMAES 123.6035±14.0609 97.1999 50
Random Search 68.6981±8.4385 53.9599 14

DSEBO (ours) 6.4338±2.1632 4.6624 343

Levy (D=10000)

SIRBO 151.7623±8.6825 134.7558±19.8493 139.4174 112.8558 7632
HesBO 176.8307±52.7794 147.1899±18.5760 119.6019 131.4840 155

REMBO 1012.7800±231.5087 1266.2434±85.5595 606.2893 1168.6647 562
BAxUS 57.4391±0.0222 57.4031 3038

MCTSVS 64.1901±5.2330 58.3096 451
TuRBO 72.8131±0.4172 72.2262 356
DCEM 164.0851±22.484 126.7344 41

LMMAES 140.5668±13.6518 120.7209 65
Random Search 131.8982±18.8193 102.7094 17

DSEBO (ours) 2.7522±1.2717 1.8678 290

Griewank (D=10000)

SIRBO 655.2772±17.9869 652.7079±12.9206 636.1684 643.0330 8631
HesBO 571.2280±34.4433 711.1620±39.2822 522.5161 672.2633 157

REMBO 101.1997±0.0365 2173.1267±9.0637 101.1423 2161.6895 537
BAxUS 101.9942±0.5218 101.4823 3092

MCTSVS 835.3915±6.4354 825.446 267
TuRBO 882.3385±3.0383 878.386 382
DCEM 830.4092±3.2544 825.6568 28

LMMAES 840.1342±2.4772 835.4587 57
Random Search 422.5575±1.2538 420.7823 16

DSEBO (ours) 101.4063±0.0356 101.1153 527

Dixon (D=10000)

SIRBO 764620.5000±178713.5156 711741.6875±220006.9375 504689.5000 393210.5938 6855
HesBO 527328.7500±293799.1562 593128.7500±238018.3594 195464.7500 247606.3281 195

REMBO 8629979.1862±1030159.7500 9811402.4797±1358266.3750 7375704.5000 7227984.3564 658
BAxUS 40101.4234±7970.3999 34711.2812 3463

MCTSVS 288137.3750±118116.6797 138630.5781 250
TuRBO 1712952.6250±153219.5156 1534449.3750 294
DCEM 906037.6463±127875.9288 757046.0837 33

LMMAES 967289.2009±145768.8284 658107.9851 55
Random Search 277199.8422±75239.0032 107642.0207 19

DSEBO (ours) 38253.0625±8405.7793 23499.7630 366

Michalewicz (D=10000)

SIRBO -5.2707±0.8001 -5.4101±0.5353 -6.2494 -6.1494 5983
HesBO -5.3715±0.6174 -5.4323±0.6975 -6.4223 -6.5907 803

REMBO 0.7975±0.2896 1.0713±0.1826 0.3354 0.8087 579
BAxUS -10.3466±1.5608 -11.8395 3992

MCTSVS -10.7175±1.1713 -11.5057 342
TuRBO -4.2744±0.8549 -5.4950 276
DCEM -5.2218±0.6693 -6.3025 37

LMMAES -4.6498±0.4431 -5.4561 62
Random Search -3.2545±0.4323 -3.9067 14

DSEBO (ours) -11.7390±0.6309 -12.7581 391

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 4: Detailed results of MAB strategies on synthetic functions with D = 1000.
Objective Function Method Convergence Value Best Solution Time (s)

Rosenbrock (D=1000)

Extreme 2160763.7500±1467483.8750 571516.5625 359
Random 3700211.5000±1493292.5000 1157037.0000 371
ϵ-greedy 2273714.5000±1358569.0000 52278.8203 1193
C-UCB 2211636.7500±1624777.0000 779282.4375 395
Softmax 2211636.7500±1624777.0000 779282.4375 398

TS 1856110.0000±834666.1875 383319.5625 474
UCB-E 2248272.2500±1751758.2500 779282.4375 463

S-Halving 2328358.7500±1153945.5000 463237.6562 401
Expectation 2248154.2500±1751778.3750 779282.4375 555

DSEBO (ours) 37699.6758±780.7019 37010.5820 1046

Sphere (D=1000)

Extreme 129.6299±181.8460 13.1881 1223
Random 150.9959±121.5409 25.4365 146
ϵ-greedy 19.5962±3.7292 13.1885 468
C-UCB 22.8336±7.7990 13.1881 1603
Softmax 63.3230±127.7900 13.1881 1348

TS 20.9170±4.5001 13.1881 1791
UCB-E 22.8336±7.7990 13.1881 1555

S-Halving 80.7406±113.8652 13.1898 939
Expectation 20.5691±4.5567 13.1881 1613

DSEBO (ours) 3.9387±1.3304 2.4966 399

Levy (D=1000)

Extreme 363.8994±380.7985 4.2985 1013
Random 750.0236±276.8358 40.4695 134
ϵ-greedy 217.8715±167.7238 2.9233 411
C-UCB 233.7007±167.9456 4.2985 1289
Softmax 272.7462±251.0918 4.2985 1393

TS 267.9188±218.1308 4.2985 1288
UCB-E 217.7698±150.8256 4.2985 1268

S-Halving 360.4880±277.0266 18.9699 976
Expectation 222.1218±201.5956 4.2985 1227

DSEBO (ours) 2.2816±0.7567 1.5805 268

Griewank (D=1000)

Extreme 11.4613±0.3793 11.2658 1285
Random 11.8220±1.5041 11.2802 95
ϵ-greedy 11.5547±0.6718 11.2663 365
C-UCB 11.4613±0.3793 11.2658 1285
Softmax 11.4613±0.3793 11.2658 1289

TS 11.4613±0.3793 11.2658 1287
UCB-E 11.4613±0.3793 11.2658 1290

S-Halving 11.6494±1.0168 11.2120 1047
Expectation 11.4613±0.3793 11.2658 1301

DSEBO (ours) 11.2488±0.1092 10.9793 276

Dixon (D=1000)

Extreme 6540823.5000±2834092.7500 1504931.8750 455
Random 6720030.5000±1582640.6250 4071802.5000 592
ϵ-greedy 5106037.5000±1698677.7500 2753771.2500 362
C-UCB 4299205.5000±2713686.0000 51601.1992 465
Softmax 4299205.5000±2713686.0000 51601.1992 604

TS 3428899.5000±2103435.0000 33287.6367 621
UCB-E 4299205.5000±2713686.0000 51601.1992 716

S-Halving 6044710.5000±3704331.5000 2606495.7500 1124
Expectation 4299205.5000±2713686.0000 51601.1992 603

DSEBO (ours) 39076.9609±10246.4609 25189.1094 597

Michalewicz (D=1000)

Extreme -4.6286±2.2142 -8.8314 503
Random -4.2663±0.8069 -5.8979 92
ϵ-greedy -5.7135±1.5460 -7.9152 271
C-UCB -6.0991±0.9943 -7.8918 366
Softmax -6.0994±0.9661 -7.3633 570

TS -6.6686±1.2886 -8.8314 284
UCB-E -6.2666±1.0264 -7.5300 204

S-Halving -4.8470±1.2241 -6.6878 429
Expectation -6.5533±1.3236 -8.8314 344

DSEBO (ours) -10.6887±1.1657 -12.9019 465

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 5: Detailed results of MAB strategies on real-world tasks.
Objective Function Method Convergence Value Best Solution Time (s)

MSLR

Extreme -8.8175±0.0982 -8.9992 548
Random -8.8245±0.1437 -9.0390 129
ϵ-greedy -8.7972±0.0639 -8.9243 346
C-UCB -8.8482±0.0580 -8.9549 494
Softmax -8.8766±0.0657 -9.0177 663

TS -8.8586±0.0928 -9.0130 744
UCB-E -8.9054±0.1266 -9.1812 332

S-Halving -8.8690±0.1694 -9.1396 557
Expectation -8.8185±0.1308 -9.1285 627

DSEBO (ours) -8.9396±0.0914 -9.1933 245

Lasso-Hard

Extreme 52.0638±19.5580 7.6819 402
Random 52.3876±15.1716 15.5185 342
ϵ-greedy 44.1027±17.8642 7.4094 438
C-UCB 43.4808±23.4663 7.4081 819
Softmax 45.7185±25.1736 7.4081 821

TS 39.6904±24.0790 6.7548 783
UCB-E 46.0051±22.9438 7.6461 382

S-Halving 53.6740±14.7570 27.8280 405
Expectation 42.9734±21.6694 7.4081 795

DSEBO (ours) 3.8613±0.4896 3.4248 483

LIMO

Extreme -3.9495±1.0746 -5.7674 406
Random -3.7930±1.0581 -5.2494 161
ϵ-greedy -4.0860±0.8866 -6.0472 276
C-UCB -5.1490±1.6835 -8.1142 151
Softmax -4.4801±1.1440 -6.0536 433

TS -4.4772±0.7694 -5.7674 386
UCB-E -4.8374±1.2162 -6.6388 789

S-Halving -3.9992±1.1429 -6.6801 193
Expectation -4.0141±1.5697 -6.2238 376

DSEBO (ours) -10.6613±2.4279 -14.2513 294

26

	Introduction
	Related Work
	High-Dimensional Optimization Algorithm
	Multi-Armed Bandit

	Preliminaries
	The Proposed Method
	Dynamic Shared Embedding Bayesian Optimization
	Dataset Initialization with Shared Embedding
	Dynamic Dimension Expanding Strategy

	Theoretical Analysis
	Experiment
	Performance of High-dimensional Optimization
	Performance of Dynamic Dimension Expanding Strategy
	Hyper-Parameter Analysis

	Conclusion and Discussion
	Ethics and Reproducibility Statements
	Detailed Preliminaries
	Bayesian Optimization
	Random Embedding

	Pseudo-code of DSEBO
	Pseudo-code of Dataset Initialization Algorithm
	Proof of Section 5
	Proof of Theorem 5.1
	Proof of Theorem 5.2

	Real-World Datasets
	Baselines Implementation Details
	High-dimensional Optimization Methods
	Multi-armed Bandit Strategy

	Detailed Results
	Hyper-parameter Analysis

