
Concept Unlearning for Large Language Models

Tomoya Yamashita Takayuki Miura Yuuki Yamanaka
Toshiki Shibahara Masanori Yamada

NTT Social Informatics Laboratories
{tomoya.yamashita,tkyk.miura,yuuki.yamanaka}@ntt.com

{toshiki.shibahara,masanori.yamada}@ntt.com

Abstract

Existing studies have reported that corpora on the Web for training large language
models (LLMs) may contain undesirable information such as Personally Identi-
fiable Information, leading to privacy violations when operating LLMs. To deal
with this problem, Machine Unlearning (MU) has attracted attention, aiming to
forget arbitrary information from AI models. However, the existing MU responds
to a deletion request for specific data points in the AI model, and it is difficult to
respond to a deletion request for a specific concept in the LLM (e.g., a person’s
name). This paper proposes a new MU requirement called Concept Unlearning
(CU) to make LLMs forget arbitrary concepts from the perspective of a knowledge
graph. This will allow us to define forgetting in terms of "knowledge", which
is more intuitive to humans, and allow us to design effective methods for LLM
forgetting. We also propose a method to realize CU by generating appropriate
token sequences using LLMs and applying gradient ascent on the generated token
sequences. The effectiveness of our method is confirmed by the dataset created
from Wikipedia and LLM-as-a-Judge.

1 Introduction

The development of computer technology and AI research has led to remarkable performance
improvements in large language models (LLMs). One of the main factors improving LLMs is the use
of large Web corpora as training data. It has been reported that the size of training data is important
for training LLMs, and training LLMs with large corpora is considered an essential process for
acquiring high-performance LLMs [Hoffmann et al., 2022, Muennighoff et al., 2024]. However,
corpora on the Web may contain undesirable information such as Personally Identifiable Information,
and existing studies have reported that LLMs trained using such training data violate privacy [Carlini
et al., 2019, 2021]. In addition, the EU General Data Protection Regulation (GDPR), which regulates
the handling of personal data, requires LLM providers to respond to data deletion requests from data
suppliers promptly. These issues need to be solved so that LLMs can be socially trusted and used
safely and ethically.

One approach to these challenges is machine unlearning (MU), which aims to forget the information
of arbitrary training data from the AI model [Nguyen et al., 2022]. In the existing MU problem
setting, the following two steps are typically performed.

1. Specify the forgetting target data points in the training dataset.
2. Apply the forgetting process to the AI model on the target data points.

Existing MU researches focus on proposing methods that achieve high forgetting performance on
the target data points, i.e., corresponding to Step 2 [Bourtoule et al., 2021, Ginart et al., 2019, Yao
et al., 2023, Neel et al., 2021]. However, a deletion request to LLMs is not necessarily to delete

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

specific data points (sentences) in the training dataset, but to delete specific concepts (e.g., a person’s
name). In such a case, it is difficult to conduct Step 1, specifying the forgetting target data points
corresponding to the target concept in the training dataset. This is because it is difficult to determine
if a sentence is the forgetting target sentence, i.e., should the LLM forget about the father of the target
concept, friends, or teachers? Many existing MU methods can achieve high forgetting performance
on the forgetting target data points, however, it is out of scope to determine whether each data point is
to be forgetting target or not. Therefore, many existing MU methods are difficult to respond deletion
requests for specific concepts to LLMs.

To solve this problem in LLM forgetting, we propose Concept Unlearning (CU), which is a new
requirement for MU. In CU, we use a knowledge graph (KG) to interpret the knowledge held by
LLMs. KG is a network of various types of knowledge and has been used in research on interpreting
the knowledge of LLMs [Petroni et al., 2019, Luo et al., 2023]. CU requires removing the knowledge
about the forgetting target from the KG of LLMs and does not require specifying the forgetting target
data points in the training dataset. Therefore, Step 1 can be designed more flexibly for realizing CU.

In this paper, we design a method to realize CU by applying Gradient Ascent (GA) on appropriate to-
ken sequences. In the proposed method, we consider generating the forgetting target token sequences
automatically from the KG. By generating from the KG, it is possible to prepare the forgetting target
token sequences without excess or deficiency, and Step 1 can be executed appropriately for CU. We
use an LLM (reference LLM) to obtain the token sequences corresponding to the forgetting target
concept from the KG. Then we apply GA on the forgetting target LLM with the obtained token
sequences. In the evaluation experiment, we defined the target concept for forgetting a person’s name.
We created and used a dataset derived from Wikipedia to evaluate whether our method satisfies the
CU requirements. In addition, we evaluate our method by LLM-as-a-Judge using GPT-4o. Through
evaluation experiments, we confirm that our method is effective for realizing CU. Also, we confirmed
that our method does not interfere with LLMs’ general knowledge by evaluating them before and
after the forgetting process using 8 datasets that questioned their general knowledge.

2 Preliminary

2.1 Notation

LLM is defined as a function fθ : V N → V M that converts an input token sequence x ∈ V N into an
output token sequence y ∈ V M . Here, let V ⊂ N denote the vocabulary set of LLM. V is assumed
to contain an empty token ϵ. Let N and M be the length of the input and output token sequence, and
θ be the model parameters of LLM. The output of the LLM yi = (fθ(x))i can be defined as follows.

yi ∼
{

pθ(y|x) (i = 1)
pθ(y|x, y1, · · · , yi−1) (i > 1).

(1)

In Eq. 1, pθ is the output probability distribution of the LLM and 1 ≤ i ≤ M . As Eq. 1 indicates,
LLM generates a token sequence autoregressively by generating the next token based on the input
token sequence and inputting the generated tokens back into the model.

2.2 Related Works

2.2.1 Knowledge Graph

Knowledge Graph (KG) is a graph structure network of various types of knowledge used for
knowledge coordination, integration, and advanced analysis. KG is also used in research to in-
terpret the knowledge held by LLMs [Petroni et al., 2019, Luo et al., 2023]. In KG format,
the knowledge possessed by LLM is represented in (s, r, o) tuple form, and KG is defined as
KG = {(s, r, o)} ⊂ E × R× E , where s is a string representing subject, r is a string representing
relation, and o is a string representing object. E is a set of strings representing entities, and R is a
set of strings representing relationships. An example of a sentence corresponding to the knowledge
(s, r, o) such that s = “Donald John Trump”, o = “NewYork”, r = “born in” is “Donald John Trump
was born in NewYork.”. An overview of KG is shown in Fig. 1. Here, KG is drawn with entities
as nodes and relations as edges. When constructing a KG of LLM, we mask a portion of the above
knowledge (s, r, o) and convert it into a prompt. If the LLM can correctly answer the masked prompt,

2

Figure 1: The overview of CU and differences between CU and MU. CU requires removing the
forgetting target node and the edges of other nodes connected to the target node from the KG of the
LLM. On the other hand, MU requires removing the knowledge of some target sentences and does
not consider KG.

the LLM is considered to possess the above knowledge [Petroni et al., 2019, Luo et al., 2023]. In this
paper, we consider the LLM forgetting based on KG.

2.2.2 Machine Unlearning

Machine Unlearning (MU) is a task that aims to forget the arbitrary training data from the AI
model [Bourtoule et al., 2021, Ginart et al., 2019, Yao et al., 2023, Neel et al., 2021]. The MU
problem setting is shown below. Let Z be the data point space and 2Z be the power set of Z . Let
D ∈ 2Z be the training dataset sampled from Z andH be the hypothesis set of the AI model. Also,
define Df ⊂ D as the forgetting target dataset. Let A be a learning algorithm and U be the forgetting
algorithm. Let A and U be stochastic algorithms, respectively, and let θ∗ ∼ A(D) be the trained
model. The requirement for MU is that the probability distributions of A(D \Df) and U(Df , θ

∗)
are identical.

As seen from the problem setting above, when applying MU, it is necessary to define a forgetting
target dataset Df ⊂ D. However, there may be cases where the deletion request to LLM is for a
specific concept, not a specific data point. In such cases, it is difficult to specify the forgetting target
dataset in the training dataset, and the existing MU problem setting may not be able to handle the
forgetting of the target concept. Therefore, a different requirement for forgetting is needed to meet
the concept deletion requirement for LLM.

2.2.3 Knowledge Edit

Knowledge Edit (KE) is a research area that aims to edit the knowledge possessed by LLMs by
modifying the model parameters [Meng et al., 2022, Dai et al., 2022]. In these studies, the knowledge
possessed by LLMs is defined by KG, and the goal of KE is to edit the objective on the specific
knowledge (s, r, o) to (s, r, o′). For example, if we edit the knowledge (“Donald John Trump”, “born
in”, “NewYork”) to (“Donald John Trump”, “born in”, “Seattle”), the LLM output will be “Donald
John Trump was born in Seattle.”. KE differs from MU in that the purpose of KE is to edit the
knowledge (s, r, o) on the KG of LLM, not to forget some knowledge.

3 Concept Unlearning

CU is a new requirement for MU that seeks to remove forgetting target entities from the KG of the
LLM. An overview of CU is shown in Fig. 1. Defining et as the string representing the forgotten
entity, the knowledge containing the forgotten entity can be written as (et, r, o) or (s, r, et), where
o ̸= et and s ̸= et. To delete the forgetting target entity on KG of the LLM, it is necessary to
delete the node of et and the edges of other nodes connected to the forgetting target node. These
requirements for KG can be reduced to the following two requirements for CU.

Requirement 1 (Node Unlearning): Do not output the forgetting target entity.
The deletion of the target node on the KG of LLM corresponds to not outputting et when the LLM is

3

given a prompt masking the token sequence et for the knowledge containing the forgetting target
entity ((et, r, o) or (s, r, et)) [Petroni et al., 2019]. In this paper, we call this requirement Node
Unlearning (NU) and formulate it as follows

∀x ∈ V N
(
et ̸⊂ x→ et ̸⊂ fθ(x)

)
, (2)

where et is a tokenized token sequence of the target entity. This formula specifies that the LLM does
not output et when an input token sequence x does not contain et. It corresponds to the removal of
the target node from the KG of the LLM.

Requirement 2 (Edge Unlearning): Do not explain the forgetting target entity well.
The deletion of edges connecting to the forgetting target node on the KG of the LLM means that
when the LLM is given a prompt that masks the token sequence other than the forgetting target entity
et, the LLM does not output the correct knowledge containing the forgetting target ((et, r, o) or
(s, r, et)) [Petroni et al., 2019]. In this paper, we call this requirement Edge Unlearning (EU) and
formulate it as follows

∀x ∈ V N
(
et ⊂ x→ [x,fθ(x)] /∈ U t

)
, (3)

where [x,fθ(x)] is a token sequence combining the input and output of the LLM, and let U t be
a set of token sequences representing the correct knowledge containing the forgetting target entity
((et, r,o), (s, r, et)). This formula specifies that when a forgetting target entity et is input to the
LLM, no other entities connected to et are output, corresponding to the removal of edges between
the target node and the other nodes on the KG of the LLM.

4 Proposal

In this chapter, we propose a method to realize CU. The proposed method aims to realize CU by
performing GA on the LLM using appropriate token sequences for each CU requirement. The
appropriate token sequences are generated by cooperating the forgetting target LLM and another
LLM (reference LLM). In this chapter, we first describe the functions and GA used in our method as
base functions, and then explain the forgetting process for each CU requirement.

4.1 Base functions

First, we define the MASK function and the MAKE_PROMPT function.
MASK(x, et): In the token sequence x, replace the substring matching the token sequence et

representing the forgetting target entity with a [MASK] token and return it.
MAKE_PROMPT(x, et): Using the MASK function, replace the substring of the token sequence
x that matches the forgetting target entity et with a [MASK] token, and then create a prompt that asks
what the token sequence is supposed to describe and return it. The algorithm of the MAKE_PROMPT
function is shown in Algorithm 1.

GA is a learning algorithm that updates the model parameters of an AI model in the direction of
climbing with respect to the loss. GA updates the parameters in the opposite direction of Gradient
Descent, a common learning algorithm, and can be written as follows.

θ ← θ + λ∇θL(x;θ), (4)
where θ are the model parameters of the AI model, λ is the learning rate, and L is the loss with
respect to the data x. When GA is applied to the model, the model parameters are updated to increase
the loss with respect to the given data x, thus degrading the accuracy of the data x. In MU that aims
to forget the arbitrary training data, a method based on GA has been proposed Neel et al. [2021], Yao
et al. [2023]. In this paper, we aim to realize CU by performing GA several times on the appropriate
token sequences for the two CU requirements.

4.2 Forgetting algorithm for NU

NU specifies that the LLM will no longer output a token sequence representing the forgetting target
entity; by relaxing the definition formula for NU, we obtain the following formula.

∀x ∈ V N

et ̸⊂ x→
M−|et|∑
i=1

|et|∏
j=1

pθ(e
t
j |x,yout,i, e

t
j)≪ 1

 , (5)

4

Algorithm 1 MAKE_PROMPT function

Require: x, et
1: if et ⊂ x then
2: xmask = MASK(x, et)
3: xprompt = “Tell me [MASK] in the following. {xmask}”
4: else
5: xprompt = “Tell me what the following says. {xmask}”
6: end if
7: return xprompt

Algorithm 2 Forgetting algorithm for NU

Require: et, xpro=“Tell me about {et}.”, θ,
θref , λ

1: yref = fθref (xpro)
2: xref = MAKE_PROMPT(yref , e

t)
3: y = fθ(xref)
4: if et ⊂ y then
5: θ ← θ + λ∇θL1(yref ;θ)
6: end if

Algorithm 3 Forgetting algorithm for EU

Require: et, xpro=“Tell me about {et}.”, θ,
θref , λ

1: y = fθ(xpro)
2: xref = MASK(y, et)
3: yref = fθref (xref)
4: if et ⊂ yref then
5: θ ← θ + λ∇θL2(y;θ)
6: end if

where yout,i = [y1, · · · , yi] represents the first to i-th of the LLM output token sequence, and
etj =

[
e1, . . . , e

t
j

]
represents the first to j-th of the token sequence representing the forgetting target

entity. Eq 5 expresses that the probability of outputting a token sequence et representing the forgetting
target entity at any position in the output token sequence is as close to 0 as possible. If Eq. 5 is
satisfied, the LLM does not output the forgetting target entity et, and the NU requirement is satisfied.
We define L1 as the loss function as follows.

L1(x;θ) = − log

M−|et|∑
i=1

|et|∏
j=1

pθ(e
t
j |x,yout,i, e

t
j). (6)

Next, we consider the token sequences for the NU forgetting algorithm. In order to efficiently realize
NU by GA, it is desirable to obtain token sequences such that the expression 5 takes small values, i.e.,
the input token sequence that has a high probability of outputting et for the target LLM. To obtain
such a token sequence x, we use a reference LLM θref . In our method, the reference LLM is used to
obtain a description of the forgetting target entity. Therefore, the reference LLM is required to know
the forgetting target entity.

When obtaining the token sequence for the NU forgetting algorithm, the prompt xpro =“Tell me
about {et}.” is given to the reference LLM θref to obtain yref , which is a description of the forgetting
target entity. Then, by applying the MAKE_PROMPT function to the obtained explanatory text yref ,
a prompt xref is generated to ask what yref explains. The prompt xref is then input to the target LLM,
and the output is checked to see if et is included. If et is included in the output of the target LLM,
yref is used as the token sequence for the NU forgetting algorithm. This algorithm can perform GA
on the token sequence yref that has a high probability of outputting et for the target LLM to and can
realize NU efficiently. NU forgetting algorithm is shown in Algorithm 2.

4.3 Forgetting algorithm for EU

EU specifies that when the LLM is given a token sequence representing the forgetting target entity, it
should not output a token sequence representing other entities associated with the forgetting target
entity. By relaxing Eq 3, we obtain the following formula.

∀x ∈ V N ,∀y ∈ U t,

(
pθ(y|x) =

M∏
i=1

pθ(yi|x, y1, . . . , yi−1)≪ 1

)
. (7)

5

Figure 2: Wiki-Person dataset． A dataset consisting of entities to be forgotten (subjects) and
sentences about the entities to be forgotten (sentences). The character string representing the target to
be forgotten in the sentences is replaced by [MASK].

Equation 7 expresses that for any input, the LLM does not output a token sequence representing
correct knowledge about the forgetting target entity. Therefore, if Eq 7 is satisfied, the EU requirement
that no token sequence representing other entities related to the forgetting target entity is satisfied.
The above equation defines the loss L2 in the following form.

L2(x;θ) = − log
∏M

i=1 pθ(yi|x, y1, · · · , yi−1)

= −
∑M

i=1 log pθ(yi|x, y1, · · · , yi−1). (8)

Next, we consider the token sequences for the EU forgetting algorithm. To efficiently realize EU
by GA, it is desirable to use token sequences included in U t, i.e., sentences that explain the correct
knowledge including the forgetting target entity. To select such explanatory sentences, we use the
reference LLM θref .

In the process for EU, the target LLM is first given xpro =“Tell me about {et}.” and obtain the
output y. Then, the output y is processed in the MAKE_PROMPT function to generate a prompt
yref that asks what y explains about. yref is then input to the reference LLM, which checks whether
y is in Ut or not. If et is included in the output of the reference LLM, we judge that y is in U t and is
used as the token sequence for the EU forgetting algorithm. This algorithm allows us to learn the
target LLM to avoid the output of the token sequence contained in U t, effectively achieving EU. The
forgetting algorithm for EU is shown in Algorithm 3.

5 Experimental Setup

We describe the dataset used in the experiment. We made a dataset of forgetting target entities and
their descriptions from Wikipedia. The forgetting target entity in this experiment is a person’s name.
The Wikipedia article about the forgetting target person’s name is divided into paragraphs, and the
paragraphs that contain the person’s name are collected and used as data. In addition, the strings of
the forgetting target person’s name in the descriptions are replaced with [MASK]. We show a part
of the dataset in Fig. 2. The dataset contains the names of 20 target persons. Hereafter, this dataset
is referred to as the Wiki-Person dataset. We also use 8 datasets for evaluating general knowledge
of the LLM (HellaSwag, Lambada, Winogrande, COPA, ARC-Easy, ARC-Challenge, MathQA,
and PubmedQA). HellaSwag and Lambada are datasets of linguistic reasoning ability, winogrande
and COPA are datasets of commonsense-based reasoning ability, and ARC-Easy, ARC-Challenge,
MathQA, and PubmedQA are datasets of scientific reasoning ability. Using these datasets, we
evaluate if our method damages the general performance of the target LLM [Jang et al., 2022].

5.1 Implementation

The LLMs used in the evaluation experiments are the Mistral-7B Instruction model [Jiang et al.,
2023] and the Llama3-8B model [Touvron et al., 2023]. In addition, the Mistral-7B Instruction
model is used as the reference LLM in the forgetting process. The learning rate of GA in the
forgetting process is set to 10−7, and Adam is used as the learning algorithm. In the evaluation
experiment, the forgetting algorithm corresponding to each of the CU requirements is performed 10
times alternately. The subject of the Wiki-Person dataset is used as the forgetting target person’s name,
and the forgetting performance is evaluated after applying the forgetting process to each subject. In
the evaluation experiments, we do not evaluate the person names of which the LLM already satisfies
CU requirements before the forgetting process (i.e., the person that the LLM does not know from the
beginning).

6

Table 1: Forgetting evaluation for our method.

(a) Mistral-7B Instruction model.

Viorate for NU ↓ Viorate for EU ↓
Pre-forget 0.25± 0.09 0.70± 0.29
Post-forget 0.1± 0.15 0.00± 0.00

(b) Llama3-8B model.

Viorate for NU ↓ Viorate for EU ↓
Pre-forget 0.21± 0.05 0.74± 0.32
Post-forget 0.12± 0.07 0.31± 0.32

5.2 Evaluation Metrics

Evaluation for each CU requirement

To evaluate the NU requirement, we input the LLM the task of answering [MASK] in the description
of the Wiki-Person dataset. Then, we evaluate whether the LLM outputs the forgetting target
entity. The prompt given to the LLM is MAKE_PROMPT(x, et), where x is a description in the
Wiki-Person dataset and et is a token sequence representing the forgetting target entity.

When evaluating the EU requirement, the LLM is given a prompt (“Tell me about {et}.”) to output
a description of the forgetting target entity. Then, the MAKE_PROMPT function is applied to the
explanatory text x output from the LLM and obtain the prompt y = MAKE_PROMPT(x, et),
which asks what the explanatory text is about. The obtained prompt y is input to GPT-4o to answer
what y explains and check if the answer of GPT-4o contains the forgetting target entity. In this process,
we evaluate whether the LLM outputs a token sequence about the correct knowledge ((et, r,o),
(s, r, et)) involving the forgetting target entity in the manner of LLM-as-a-judge Zheng et al. [2024].

Evaluation of LLMs for general performance.

To evaluate the general performance of LLMs, we test them with the 8 inference tasks (HellaSwag,
Lambada, Winogrande, COPA, ARC-Easy, ARC-Challenge, MathQA, PubmedQA). This evaluation
is performed on LLMs with and without our forgetting process to see how our method affects the
performance of LLMs in general.

6 Experimental Results

The performance of the CU requirements is shown in Tables 1a and 1b. For each requirement, the
rate of outputs that violate the requirement is measured for each forgetting target entity, and the table
shows the mean and standard derivation in the entity direction. Our forgetting process for both the
Mistral-7B-Instruction model and the Llama3-8B model significantly reduces the rate of outputs
that violate the requirement. Tables 2a and 2b show the output obtained by inputting the prompt
“Tell me about Galileo Galilei. If you don’t know, say I don’t know.” to the Mistral-8B-Instruction
model before and after our forgetting process about Galileo Galilei. Table 2a confirms that the LLM
outputs the correct description of Galileo Galilei before forgetting that he was an Italian physicist,
mathematician, astronomer, and philosopher and that he is regarded as the father of observational
astronomy. On the other hand, from Table 2b, we can confirm that the LLM answers “I don’t know.”
and describes a person other than Galileo Galilei, and does not say about Galileo Galilei.

These results confirm that our method can make the LLM that satisfies each CU requirement to some
extent. However, from Tables 1a and 1b, it can also be confirmed that both the Mistral-7B-Instruction
model and the Llama3-8B model are not able to reduce the rate of outputs that violate the CU
requirements to zero. Tables 1a and 1b, also show that the standard deviation is large. Looking at the
individual forgetting results, we can see that the LLM can satisfy the CU requirements for some of
the forgetting target entities, while it cannot satisfy them for the other forgetting target entities. It is a
subject for future work to reduce the standard deviation in forgetting performance due to differences
in forgetting target entities by developing a method. In this study, the Mistral-8B-Instruction model
was used as the reference LLM, but the forgetting performance of our method is expected to vary
depending on the performance of the reference LLM. The search for a reference LLM suitable for
the forgetting process is also a future work. Also, Table 2b shows that our method can eliminate
the description of Galileo Galilei, but it describes a different person, which is a hallucination. This
result indicates that our GA-based method may generate LLMs that cause hallucinations about the
forgetting target entity, and there is still room for debate as to what kind of LLMs should be aimed
for the forgetting model.

7

Table 2: LLM output when asked about Galileo Galileo.

(a) Pre-forgotten LLM.

Output
Galileo Galilei (1564-1642) was an Italian
physicist, mathematician, astronomer, and
philosopher who played a major role in the
Scientific Revolution.
He is considered to be the father of
observational astronomy and is best known for
his improvements to the telescope and his
astronomical discoveries.

(b) Post-forgotten LLM.

Output
I don’t know. Galen Leo Galen or Galenus,
known as Galen of Pergamon, was a Greek
physician, philosopher, and scientist, considered
one of the most influential figures in the history
of medicine.
He was born in Pergamon, a city in the Roman
province of Asia Minor, in 12 or 13 February
AD 150 and died in February AD 216.

Table 3: Performance Evaluation for Mistral-7B-Instruction model.
HellaSwag ↑ Lambada ↑ Winogrande ↑ COPA ↑ ARC-Easy ↑ ARC-Challenge ↑ MathQA ↑ PubmedQA ↑

Before 0.56 0.70 0.66 0.88 0.88 0.77 0.14 0.38
After 0.57 0.67 0.66 0.87 0.88 0.77 0.14 0.38

Tables 3 and 4 show the evaluation results of the general performance of LLM before and after
forgetting. These tables show that there is no significant degradation in general performance for our
forgetting process. Our method generates appropriate token sequences for forgetting and applies GA
to them. Therefore, we believe that the damage to the remained concepts can be kept small, and as a
result, the degradation of the general performance of the remained is minimized.

7 Conclusion

In this paper, we proposed CU as a new requirement for MUs to respond to deletion requests for
LLMs. In addition, we proposed an approach to realize CU by performing GA on appropriate
token sequences. For the evaluation, we created a person name dataset (Wiki-person dataset) from
Wikipedia and confirmed that our method can suppress the output of the forgetting target entities to
some extent. However, it was also confirmed that our method promotes hallucination, and there is
still room for debate as to what kind of LLM should be aimed at forgetting. We also confirmed that
there are cases where CU cannot be fully realized depending on the forgetting target, and we will
discuss the improvement of these cases in the future.

Table 4: Performance Evaluation for Llama3-8B model.
HellaSwag ↑ Lambada ↑ Winogrande ↑ COPA ↑ ARC-Easy ↑ ARC-Challenge ↑ MathQA ↑ PubmedQA ↑

Before 0.38 0.70 0.52 0.57 0.43 0.38 0.17 0.02
After 0.38 0.70 0.52 0.56 0.46 0.41 0.17 0.03

References
Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,

Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium
on Security and Privacy (SP), pages 141–159. IEEE, 2021.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In 28th USENIX security
symposium (USENIX security 19), pages 267–284, 2019.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pages
2633–2650, 2021.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
in pretrained transformers. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 8493–8502, 2022.

8

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data
deletion in machine learning. Advances in neural information processing systems, 32, 2019.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. arXiv
preprint arXiv:2210.01504, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Linhao Luo, Trang Vu, Dinh Phung, and Reza Haf. Systematic assessment of factual knowledge in
large language models. In Findings of the Association for Computational Linguistics: EMNLP
2023, pages 13272–13286, 2023.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. Advances in Neural Information Processing Systems, 35, 2022.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36, 2024.

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods
for machine unlearning. In Algorithmic Learning Theory, pages 931–962. PMLR, 2021.

Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin,
and Quoc Viet Hung Nguyen. A survey of machine unlearning. arXiv preprint arXiv:2209.02299,
2022.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H. Miller, and
Sebastian Riedel. Language models as knowledge bases? In Conference on Empirical Methods in
Natural Language Processing, 2019. URL https://api.semanticscholar.org/CorpusID:
202539551.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. arXiv preprint
arXiv:2310.10683, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

9

https://api.semanticscholar.org/CorpusID:202539551
https://api.semanticscholar.org/CorpusID:202539551

	Introduction
	Preliminary
	Notation
	Related Works
	Knowledge Graph
	Machine Unlearning
	Knowledge Edit

	Concept Unlearning
	Proposal
	Base functions
	Forgetting algorithm for NU
	Forgetting algorithm for EU

	Experimental Setup
	Implementation
	Evaluation Metrics

	Experimental Results
	Conclusion

