
Published as a conference paper at ICLR 2024

TIGHT RATES IN SUPERVISED OUTLIER TRANSFER
LEARNING

Mohammadreza M. Kalan
Statistics, Columbia University
mm6244@columbia.edu

Samory Kpotufe
Statistics, Columbia University
samory@columbia.edu

ABSTRACT

A critical barrier to learning an accurate decision rule for outlier detection is the
scarcity of outlier data. As such, practitioners often turn to the use of similar
but imperfect outlier data from which they might transfer information to the tar-
get outlier detection task. Despite the recent empirical success of transfer learn-
ing approaches in outlier detection, a fundamental understanding of when and
how knowledge can be transferred from a source to a target outlier detection task
remains elusive. In this work, we adopt the traditional framework of Neyman-
Pearson classification—which formalizes supervised outlier detection—with the
added assumption that one has access to some related but imperfect outlier data.
Our main results are as follows:

• We first determine the information-theoretic limits of the problem under a
measure of discrepancy that extends some existing notions from traditional
balanced classification; interestingly, unlike in balanced classification, seem-
ingly very dissimilar sources can provide much information about a target,
thus resulting in fast transfer.

• We then show that, in principle, these information theoretic limits are achiev-
able by adaptive procedures, i.e., procedures with no a priori information on
the discrepancy between source and target outlier distributions.

1 INTRODUCTION

A primary objective in many data science applications is to learn a decision rule that separates a com-
mon class with abundant data from a rare class with limited or no data. This is a traditional problem
which often appears under the umbrella term of outlier detection or rare class classification, and has
seen a resurgence of interest in modern applications such as malware detection in cybersecurity and
IoT (Jose et al., 2018; Kumar & Lim, 2019), fraud detection in credit card transactions (Malini &
Pushpa, 2017), disease diagnosis (Bourzac, 2014; Zheng et al., 2011), among others. A main goal
in these applications—which distinguishes it from traditional classification where performance is
asssessed on average over all classes—is to achieve low classification error on the rare class, while
at the same time maintaining low error w.r.t. the common class. Such a constrained objective is com-
monly referred to as Neyman-Pearson classification. Formally, letting µ0, µ1 denote the common
and rare class distributions, Neyman-Pearson classification takes the form:

Minimize µ1-error over classifiers h in some hypothesis space H
subject to keeping the µ0-error of such an h under a threshold α.

In this work, we focus on the common supervised setting where practitioners have access to not only
training data from the common class, but also some (limited amount of) data from the rare class or,
pertinently, from a related distribution they hope has information on the rare class. Henceforth,
for simplicity of notation, we denote the target rare class distribution by µ1,T and the related but
imperfect rare class distribution by µ1,S , where ”S” stands for source. As an example, such related
rare-class data may be from a different infected device in IoT applications, or from similar cancer
types in medical applications, or from laboratory simulations of a rare class. This is thus a transfer
learning problem, however for supervised outlier detection rather than for traditional classification
as is usual in the literature.
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Figure 1: µ0 = N (a0, σ
2) is the common distribution, and µ1,S , µ1,T = N (a1,S , σ

2), N (a1,T , σ
2) are the

source and target distributions. The universally optimal decision rules for the source and target are identical,
i.e., h∗S,α = h∗T,α, in fact for any value of α ∈ [0,1] (see Section 3).

While this outlier transfer problem is quite common in applications due to the scarcity of rare
class data (Su et al., 2023; Wen & Keyes, 2019; Aburakhia et al., 2020), the problem has so far
received little rigorous attention. Our main aim is therefore to further theoretical understanding of
this timely problem, and in particular to gain much needed insight on the extent to which related but
imperfect rare class data may improve performance for the target Neyman-Pearson classification
problem. Such achievable transfer performance of course must depend on how far the related rare
class distribution µ1,S is from the target µ1,T —somehow properly formalized—and or whether the
related rare-class distribution µ1,S induces similar optimal decision rules as for the target rare class
distribution µ1,T .

We first argue that, unlike in traditional classification, seemingly very different source and target
distributions µ1,S , µ1,T may induce the same exact (universally) optimal decision rules in Neyman-
Pearson classification; this is obtained as a consequence of a simple extension of the classical
Neyman-Pearson Lemma (Lehmann & Lehmann, 1986) to the case of transfer (see Proposition 3.6).
This is illustrated in Fig 1 and explained in detail in Section 3. As a consequence, unlike in usual
classification, we can approximate the universally best classifier h∗T,α under the target arbitrarily
well asymptotically, i.e., with sufficiently large data from a seemingly unrelated source.

However, the story turns out more nuanced in finite sample regimes, i.e, as we consider the rate of
such approximation (in terms of relevant sample sizes), even when µ1,S and µ1,T admits the same
optimal classifiers. That is, two different sources µ1,S and µ′1,S may yield considerably different
transfer rates in finite-sample regimes even if both of them share the same optimal classifier as
the target µ1,T : this is because a given source may yield more data near the common decision
boundary h∗T,α than another source, thus revealing h∗T,α at a faster rate. In particular, we show
in our first main result of Theorem 4.5—a minimax lower-bound—that the rate of convergence of
any outlier-transfer approach is in fact controlled by a relatively simple notion of outlier-transfer-
exponent (adapted from transfer results in traditional classification) which essentially measures how
well a source may reveal the unknown decision boundary. Theorem 4.5 is in fact rather general: the
minimax lower-bound holds for any hypothesis spaceH of finite VC dimension (at least 3), and any
number of sample sizes from µ0, µ1,S , µ1,T , including the case of no sample from the rare target
class µ1,T . Moreover, the result holds generally h∗S,α and h∗T,α are the same or not.

We finally turn our attention to whether such rates may be achieved adaptively, i.e., from samples
alone without prior knowledge of the discrepancy between µ1,S and µ1,T as captured by both the
transfer-exponent and the amount of difference between optimal classifiers h∗S,α and h∗T,α. We show
in Theorem 4.6 that this is indeed the case: the minimax lower-bounds of Theorem 4.5 can be
matched up to logarithmic factors by some careful adaptation approach that essentially fine-tunes
classifiers learned using source data with whatever target data is available. This is described in
Section 4.8.

1.1 RELATED WORK

Outlier detection and transfer learning have mostly been studied separately, despite the clear need
for transfer learning in applications of outlier detection where the rare class of data is by definition,
always scarce.

As such, transfer learning works have mostly focused on traditional classification and regres-
sion starting from seminal works of Mansour et al. (2009); David et al. (2010); Ben-David et al.
(2010; 2006), to more recent works of Hanneke & Kpotufe (2019; 2022); Kalan et al. (2022);
Mousavi Kalan et al. (2020); Lei et al. (2021). The works of Hanneke & Kpotufe (2019; 2022)
are most closely related as our notion of outlier-transfer-exponent may be viewed as an extention
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of their notion of transfer-exponent; however, besides for the fact that both notions capture discrep-
ancies around decision boundaries, transfer in outlier detection is fundamentally different from the
case of traditional classification studied in the above works: for instance, as stated earlier, distribu-
tions that are significantly different in traditional classification can be quite close in outlier transfer
as revealed in this work.

Theoretical works on outlier detection on the other hand have mostly focused on unsupervised
and supervised settings, but without considering the more practical transfer setting. Unsupervised
outlier-detection assumes that only data from the common class µ0 is available; theoretical works
include studies of density-level set estimation (Steinwart et al., 2005; Polonik, 1995; Ben-David &
Lindenbaum, 1997; Tsybakov, 1997) where outliers are viewed as data in low density regions, or
in works on so-called one-class classification that aim to learn a contour of the common class µ0

(Schölkopf et al., 2001). Supervised outlier-detection has commonly been formalized via Neyman-
Pearson classification, where some data from both the common and rare classes are used to optimize
and constrain empirical errors. Early works include (Cannon et al., 2002; Scott & Nowak, 2005;
Blanchard et al., 2010; Rigollet & Tong, 2011) which establish convergence rates in various distri-
butional and model selection settings, but all exclude the question of transfer.

Transfer learning for outlier detection has in fact received much recent attention in the methodologi-
cal literature (Xiao et al., 2015; Andrews et al., 2016; Idé et al., 2017; Chalapathy et al., 2018; Yang
et al., 2020) where various approaches have been proposed that aim to leverage shared structural
aspects of source and target rare class data.

On the theoretical front however, much less is understood about outlier transfer. The recent work
of Scott (2019) initiates theoretical understanding of the problem: they are first to show that, in
some situations where both source and target share the same optimal classifiers, various procedures
can guarantee consistency (i.e., taking sample size to infinity) even as source and target µ1,S , µ1,T

appear different. Our Proposition 3.6 shows that in fact optimal classifiers may be shared in even
more general situations, similarly implying consistency for seemingly very different source and
target rare-class distributions. Our main results of Theorems 4.5 and 4.6 reach further in deriving the
first insights into the finite-sample regimes of outlier-transfer, by establishing information-theoretic
limits of the problem, along with notions of discrepancies between source and target that tightly
capture such limits.

2 SETUP

We first formalize the Neyman-Pearson classification framework, followed by its extension to the
transfer case.

2.1 NEYMAN-PEARSON CLASSIFICATION

Let µ0 and µ1 denote probability distributions on some measurable space (X ,Σ). Furthermore,
suppose thatH is a hypothesis class consisting of measurable 0-1 functions on the domain X , where
we view h(x) = 0 or 1 as predicting that x is generated from class µ0 or µ1. We view µ0 and µ1 as
representing a common and rare class of (future) data.
Definition 2.1. We are interested in the so-called Type-I and Type-II errors defined as follows:

Rµ0(h) = µ0(h(x) = 1), Rµ1(h) = µ1(h(x) = 0).

Neyman-Pearson classification then refers to the problem of minimizing Type-II error subject to low
Type-I error:

Minimize
h∈H

Rµ1(h)

s.t. Rµ0(h) ≤ α (2.1)

Under mild conditions, the universally optimal classifier, i.e., taking H as the set of all measurable
0-1 functions, is fully characterized by the classical Neyman-Pearson Lemma (see Appendix A) in
terms of density ratios. Namely, let p0 and p1 denote densities of µ0 and µ1 w.r.t. some dominating
measure ν, then the minimizer of (2.1) has the form h∗α(x) = 1{ p1(x)

p0(x)
≥λ} whenever there exists λ

such that Rµ0(h
∗
α) is exactly α1.

1If we further allow for randomized classifiers, then Neyman Pearson Lemma fully characterizes universally
optimal solutions of (2.1) and establishes uniqueness almost-surely under mild restrictions.
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In the Section 3 we ask when such universal minimizer transfers across source and target rare-class
distributions.

2.2 TRANSFER LEARNING SETUP

Population Setup. We consider the following two source and target Neyman-Pearson problems,
defined for a fixed common class distribution µ0, and source and target rare-class distributions µ1,S

and µ1,T :

Minimize
h∈H

Rµ1,S
(h)

s.t. Rµ0(h) ≤ α (2.2)

Minimize
h∈H

Rµ1,T
(h)

s.t. Rµ0(h) ≤ α (2.3)

We let (µ0, µ1,S , α) and (µ0, µ1,T , α) denote these source and target problems. We will see later that
the limits of outlier-transfer, especially in finite-sample regimes, are well captured by discrepancies
between these two problems. In particular, we will be interested in discrepancies between optimal
solutions and the measure of the corresponding decision boundaries under involved distributions.
We henceforth let h∗S,α and h∗T,α denote (not necessarily unique) solutions of (2.2) and (2.3) (which
we assume exist).

Finite-Sample Setup. We assume access to n0, nS , nT i.i.d. data points respectively from
µ0, µ1,S , µ1,T , where we allow nT = 0. The transfer-learning procedure is then allowed to return
ĥ ∈H satisfying

Rµ0(ĥ) ≤ α + ϵ0,

for some slack ϵ0 = ϵ0(n0), usually of order n
−1/2
0 . The goal of the learner is to minimize the

target-excess error
E1,T (ĥ) ≐max{0,Rµ1,T

(ĥ) −Rµ1,T
(h∗T,α)}.

A main aim of this work is to understand which rates of E1,T (ĥ) are achievable in terms of sample
sizes nS and nT , and which notions of discrepancy from source to target helps capture these limits.

3 EQUIVALENCE OF POPULATION PROBLEMS

As discussed in the introduction, we may have seemingly very different source and target distribu-
tions µ1,S and µ1,T which however yield the same (universally) optimal classifiers. We investigate
this phenomena in this section, the main aim being to illustrate how fundamentally different outlier
transfer is from traditional classification. To this end we consider the set U of all possible measurable
0-1 functions on X , and letH = U in the dicussion below.

We will henceforth say that the source problem (µ0, µ1,S , α) is equivalent to the target problem
(µ0, µ1,T , α) (at the population level), if all solutions to (2.2) are also solutions to (2.3). Clearly,
when this is the case, source samples alone can drive down the target risk at least asymptotically.

We first notice that Neyman-Pearson Lemma offers some immediate answers under mild conditions.
To see this, let p0, p1,S , p1,T denote densities w.r.t. a common dominating measure ν. In what
follows we will simply let the dominating measure ν ≐ µ0 + µ1,S + µ1,T . As previously discussed,
Neyman-Pearson Lemma characterizes optimal classifiers in terms of level sets of density ratios.

Definition 3.1 (Level sets). LS
λ ∶= {x ∶

p1,S(x)
p0(x) ≥ λ} and LT

λ ∶= {x ∶
p1,T (x)
p0(x) ≥ λ}. Here, when the

denominator of a fraction is zero we view it as infinity no matter if the nominator is zero or nonzero.

The following then establishes equivalence between source and target under mild conditions as a
direct consequence of Neyman-Pearson Lemma.

Proposition 3.2. Suppose µ0, µ1,S , µ1,T are mutually dominating. Assume further that µ0(L
S
λ) is

continuous and strictly monotonic in (0,1) as a function of λ. Then, if {LS
λ}λ≥0 ⊂ {L

T
λ }λ≥0, we

have for all 0 < α < 1, that any h∗S,α is a solution of the target problem (2.3).

The above statement was already evident in the work of Scott (2019) where it is assumed that source
density ratios are given as a monotonic function of the target density ratios; this immediately implies
{LS

λ} ⊂ {L
T
λ }.
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Figure 2: µ0, µ1,S , µ1,T = N (a0, σ
2),N (a1,S , σ

2),N (a1,T , σ
′2) where a1,S = a1,T and σ′ < σ. Optimal

decision rules differ.

The statement is illustrated in the examples of Fig 1 with Gaussian distributions where the source
may appear significantly different from the target (and in fact would yield different Bayes classifiers
in traditional classification). To contrast, consider the example Fig 2 where the source problem
yields different level sets than for the target problem (simply by changing the Gaussian variance),
and we hence do not have equivalence.
Remark 3.1 (Issue with Disjoint Supports). We have assumed in the Proposition 3.2 that all 3
distributions are mutually dominating, while in practice this might rarely be the case. However,
without this assumption (essentially of shared support), we may not easily have equivalence between
source and target.

For intuition, consider a region A of space where µ1,S(A) = 0 while µ1,T (A) > 0. Then let h∗,0S,α = 0

on A and h∗,1S,α = 1 both optimal under the source problem; clearly we may have R1,T (h
∗,0
S,α) >

R1,T (h
∗,1
S,α) since µ1,T (A) > 0.

The rest of this section is devoted to handling this issue by restricting attention to more reasonable
classifiers that essentially classify any point outside the support of µ0 as 1. The right notion of
support is critical in establishing our main relaxation of the above proposition, namely Proposition
3.6 below.

We require the following definitions and assumptions.
Definition 3.3 (Restricted Universal Hyposthesis Class). We let U∗ consist of all 0-1 measurable
functions on the domain X such that for every h ∈ U∗, h ≡ 1 on {x ∶ p0(x) = 0} a.s. ν.

Definition 3.4. We say that α is achievable if there exist thresholds λ and λ′ such that µ0(L
S
λ) = α

and µ0(L
T
λ′) = α.

Definition 3.5 (α-level set). Whenever α is achievable, we define LS(α) as the level set in the
source whose measure under µ0 is α. The definition of LT (α) which corresponds to the target is
the same.
Remark 3.2. Definition 3.4 ensures that LS(α) exists, but it may not be unique. However, we will
show in Appendix A by Proposition A.2, it is unique a.s. ν.

The following proposition relaxes the conditions of Proposition 3.2 above by restricting attention to
universal classifiers in U∗. Its proof is technical to various corner cases described in the Appendix.
Proposition 3.6. Let 0 ≤ α < 1 and suppose that α is achievable. Then (µ0, µ1,S , α) is equivalent to
(µ0, µ1,T , α) under U∗ iff LS(α) ∈ {LT

λ }λ≥0 a.s. ν. In particular, if α is achievable for all 0 ≤ α < 1
and LS(α) ∈ {LT

λ }λ≥0 a.s. ν for all 0 ≤ α < 1, then (µ0, µ1,S , α) is equivalent to (µ0, µ1,T , α) for
all 0 ≤ α < 1.
Remark 3.3. Notice that the statements of Proposition 3.6 trivially also hold over any hypothesis
class H (rather than just U∗) containing the level sets 1LS(α),1LT (α) ∈ H and where, for every
h ∈H, h ≡ 1 on {x ∶ p0(x) = 0} a.s. ν.

We illustrate this final Proposition in Figure 3: the simple restriction to U∗ reveals more scenarios
where source is equivalent to target (at the population level) even when the distributions appear
significantly different.

4 FINITE SAMPLE RESULTS

Neyman-Pearson Lemma offers the solution(s) of the optimization problem (2.3) when we have the
knowledge of the underlying distributions. However, in practical scenarios, we typically lack infor-
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(a) µ0, µ1,S , µ1,T
(b) Source and target so-
lutions.

(c) h′∗S,α is an optimal so-
lution for source but not
for target.

Figure 3: Illustration of Example A.4 (see Appendix A.3), where h∗S,α = h∗T,α in U∗, while h′∗S,α ∈ U is also
optimal for source but not for target. In other words, the source problem remains equivalent to the target over
the more reasonable decision rules of U∗.

mation about these distributions and only possess some samples drawn from them. In addressing
this challenge, Cannon et al. (2002) embarked on an empirical study of Neyman-Pearson classifi-
cation and introduced a relaxed version of Neyman-Pearson classification problem. Let n0 and nT

be the number of i.i.d. samples generated by µ0 and µ1,T , respectively, and ϵ0 > 0. Cannon et al.
(2002) proposed the following optimization problem:

ĥ =argmin
h∈H

R̂µ1,T
(h)

s.t. R̂µ0(h) ≤ α +
ϵ0
2

(4.1)

where R̂µ0(h) =
1
n0
∑

Xi∼µ0

1{h(Xi)≠0} and R̂µ1,T
(h) = 1

nT
∑

Xi∼µ1,T

1{h(Xi)≠1}, and then derived

the convergence rate of excess error in terms of the number of samples and VC dimension of the
hypothesis class.

Neyman-Pearson classification in the setting of transfer finite-sample scenarios remains unexplored.
In this section, Our objective is to understand the fundamental limits of transfer outlier detection
in the finite-sample regime, where there are n0, nS , nT i.i.d. samples from µ0, µ1,S , µ1,T , under a
measure of discrepancy between source and target. We first define a discrepancy measure in transfer
outlier detection and then characterize the fundamental limits of the problem by deriving a minimax
lower bound in terms of the number of samples as well as the notion of discrepancy. Finally, we
show that this lower bound is achievable through an adaptive procedure which does not require the
prior knowledge of the discrepancy between source and target.

4.1 OUTLIER TRANSFER EXPONENT

In this section, we define an appropriate notion of outlier transfer distance between source and target
under a hypothesis class. Here we adapt the transfer exponent notion defined in Hanneke & Kpotufe
(2019) to a notion of discrepancy between source and target in Neyman-Pearson classification with
shared common distribution µ0.

Definition 4.1 (Outlier transfer exponent). Let S∗α ⊂ H denote the set of solutions of source (2.2).
Furthermore, let (µ0, µ1,S , α) and (µ0, µ1,T , α) denote the source and target problems, respec-
tively. We call ρ(r) > 0 outlier transfer exponent from (µ0, µ1,S , α) to (µ0, µ1,T , α) under H, if
there exist r,Cρ(r) > 0 such that

Cρ(r) ⋅max{0,Rµ1,S
(h) −Rµ1,S

(h∗S,α)} ≥max{0,Rµ1,T
(h) −Rµ1,T

(h∗S,α)}
ρ(r)

(4.2)

for all h ∈H with Rµ0(h) ≤ α + r, where h∗S,α = argmax
h∈S∗α

Rµ1,T
(h).

The following example shows that for a fixed target and for any arbitrary ρ ≥ 1, there exists a
source such that it shares the same optimal decision rule as the target and attains the outlier transfer
exponent ρ with coefficient Cρ = 1.

Example 4.2. Let µ0 ∼ N (−1,1), µ1,T ∼ Unif[0,1], p1,S = ρxρ−11{x∈[0,1]} for ρ ≥ 1 where p1,S is
the density of µ1,S w.r.t. Lebesgue measure. Furthermore, let α = µ0([0,1]) ,H = {1{t≤x≤1}(x) ∶ t ∈
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[−1,1]}, and r be small enough. Then, we have h∗T,α = h
∗
S,α = 1{0≤x≤1}. Moreover, for h = 1{t≤x≤1}

for t ≥ 0 we obtain

Rµ1,T
(h) −Rµ1,T

(h∗S,α) = t and Rµ1,S
(h) −Rµ1,S

(h∗S,α) = t
ρ.

Hence, the outlier transfer exponent is ρ and the coefficient Cρ is 1.

Following proposition shows the effect of r on the outlier transfer exponent ρ(r). In some cases, for
a small enough value of r, ρ(r) could be small, whereas for a large value of r, ρ(r) is infinite.

Proposition 4.2. There exist µ0, µ1,S , µ1,T ,H, α, r such that for any h ∈ H with Rµ0(h) ≤ α + r,
(4.2) holds for ρ(r) = 1 and there exists an h ∈H with Rµ0(h) > α+ r for which (4.2) does not hold
for any ρ <∞.

4.3 MINIMAX LOWER BOUND FOR OUTLIER TRANSFER LEARNING

Equipped with the notion of outlier transfer exponent, we characterize the fundamental limits of
transfer outlier detection by establishing a minimax lower bound. To achieve this objective, first we
need to specify the class of distributions for which the minimax lower bound is derived.

Definition 4.3 (Class of distributions). Fix a hypothesis class H with finite VC dimension dH. Let
FH(ρ,α,C,∆) denote the class of triplets of distributions (µ0, µ1,S , µ1,T ) for which α is achiev-
able according to Definition 3.4, E1,T (h∗S,α) ≤ ∆, and there exist ρ(r) ≤ ρ,Cρ(r) ≤ C for any
0 < r < 2α

dH
according to Definition 4.1.

Remark 4.4. Deriving a minimax lower bound for the class of distributions satisfying α achiev-
ability is a stronger result than for the class without necessarily satisfying that, as the former is
contained in the latter.

We also need to formalize the class of learners.

Definition 4.4. Let 0 ≤ ϵ0 < 1, 0 < δ0 < 1. We call ĥ an (ϵ0, δ0)-approximate α-learner if it maps
any three independent i.i.d. samples Sµ0 ∼ µ

n0

0 , Sµ1,S
∼ µnS

1,S , Sµ1,T
∼ µnT

1,T , to a function in

Hα+ϵ0(µ0) = {h ∈H ∶ Rµ0(h) ≤ α + ϵ0}

with probability at least 1 − δ0 w.r.t. Sµ0 , Sµ1,S
, Sµ1,T

.

Theorem 4.5 (Minimax lower bound). Fix a hypothesis class H with finite VC dimension dH ≥ 3.
Moreover, let α < 1

2
, ρ ≥ 1,∆ ≤ 1, and δ0 > 0. Furthermore, suppose that there are n0, nS , nT i.i.d.

samples from µ0, µ1,S , µ1,T , denoted by Sµ0 , Sµ1,S
, Sµ1,T

. Assume that there are sufficiently many
samples such that min{∆ + (dH

nS
)

1
2ρ , (dH

nT
)

1
2 } ≤ 2. Then, for any ( 2α

dH
, δ0)-approximate α-learner

ĥ, there exist (µ0, µ1,S , µ1,T ) ∈ FH(ρ,α,1,∆) and universal constants c, c′ such that

P
Sµ0

,Sµ1,S
,Sµ1,T

(E1,T (ĥ) > c ⋅min{∆ + (
dH
nS
)

1
2ρ , (

dH
nT
)

1
2 }) > c′. (4.3)

Remark 4.5. In Theorem 4.5, if (µ0, µ1,S , α) is equivalent to (µ0, µ1,T , α) under H (see Remark
3.3), then E1,T (h∗S,α) = 0 and the minimax lower bound reduces to c ⋅min{(dH

nS
)

1
2ρ , (dH

nT
)

1
2 }. In this

case, by only having access to unlimited source samples, achieving an arbitrary small target-excess
error is possible.

Remark 4.6. The outlier transfer exponent in the term (dH
nS
)

1
2ρ captures the relative effectiveness

of source samples in the target domain. If source and target share the same optimal decision rules,
and ρ = 1, source samples would be equally effective as target samples. However, even if the
source and target share the same optimal decision rules, source samples may result in poor transfer
performance when ρ is large.

Remark 4.7. In Theorem 4.5, the learner is allowed to output a classifier ĥ with a Type-I error that
slightly exceeds the pre-defined threshold α. However, in certain applications, it is imperative to
uphold the threshold without any exceeding. The minimax lower bound in Theorem 4.5, implies that
(4.3) holds even if the learner is only allowed to output a classifier ĥ from {h ∈ H ∶ Rµ0(h) ≤ α}
with probability 1 − δ0, i.e., (0, δ0)-approximate α-learner.
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4.8 ADAPTIVE RATE (UPPER BOUND)

In Section 4.3, we establish a minimax lower bound that can be attained by an oracle that effectively
disregards the least informative dataset from either the source or target. Let Ĥα+ϵ0(µ0) = {h ∈ H ∶

R̂µ0(h) ≤ α + ϵ0}, ĥT = argmin
h∈Ĥα+ϵ0/2(µ0)

R̂µ1,T
(h), and ĥS = argmin

h∈Ĥα+ϵ0/2(µ0)
R̂µ1,S

(h). Then we get

ĥS , ĥT ∈Hα+ϵ0(µ0), and

E1,T (ĥS) ≤ E1,T (h
∗
S,α) + (

dH
nS
)

1
2ρ and E1,T (ĥT ) ≤ (

dH
nT
)

1
2

with high probability. However, Deciding whether ĥS or ĥT achieves a smaller error requires the
knowledge of outlier transfer exponent and the target-excess error of the optimal source decision
rule, which are not available in practical scenarios.

In this section, we show that by using an adaptive procedure that takes source and target samples
as input and produces a hypothesis ĥ ∈ H without using any additional information such as prior
knowledge of the outlier transfer exponent, the minimax lower bound 4.3 is achievable. To accom-
plish this, we adapt the procedure introduced in Hanneke & Kpotufe (2019). Let δ > 0 and define

An =

√

128
dH logn + log(8/δ)

n
.

Consider the following procedure:

Define ĥ = ĥS if R̂µ1,T
(ĥS) − R̂µ1,T

(ĥT ) ≤ AnT
,

otherwise, define ĥ = ĥT (4.4)

Theorem 4.6. Let H be a hypothesis class with finite VC dimension dH ≥ 3. Further-
more, let (µ0, µ1,S , α) and (µ0, µ1,T , α) denote a source and a target problem. Suppose that
there are n0, nS , nT i.i.d. samples from µ0, µ1,S , µ1,T , respectively. Let δ0, δ > 0, ϵ0 =√

128dH logn0+log(8/δ0)
n0

. Moreover, suppose that there exist r ≥ ϵ0, Cρ(r), and ρ(r) according

to Definition 4.1. Let ĥ be the hypothesis returned by Procedure (4.4). Then, with probability at
least 1 − δ0, ĥ ∈Hα+ϵ0(µ0). Furthermore, with probability at least 1 − δ0 − 2δ we have

E1,T (ĥ) ≤min{E1,T (h
∗
S,α) +C ⋅A

1
ρ(r)
nS ,C ⋅AnT

} (4.5)

where C ∈ (0,∞) is a constant depending on r,Cρ(r), ρ(r).

Proof. Consider the intersection of the following events which happens with probability at least
1−δ0−2δ (Devroye et al., 2013): 1) {sup

h∈H
∣Rµ0(h)−R̂µ0(h)∣ ≤

ϵ0
2
}, 2) {sup

h∈H
∣Rµ1,S

(h)−R̂µ1,S
(h)∣ ≤

AnS

2
}, and 3) {sup

h∈H
∣Rµ1,T

(h)− R̂µ1,T
(h)∣ ≤

AnT

2
}. Since h∗S,α ∈ Ĥα+ϵ0/2(µ0), we get R̂µ1,S

(ĥS) ≤

R̂µ1,S
(h∗S,α). Therefore, we obtain

Rµ1,S
(ĥS) −Rµ1,S

(h∗S,α) ≤ [Rµ1,S
(ĥS) − R̂µ1,S

(ĥS)] + [R̂µ1,S
(h∗S,α) −Rµ1,S

(h∗S,α)] ≤ AnS
.

Furthermore, we have Rµ0(ĥS) ≤ α + r, which implies that

Rµ1,T
(ĥS) −Rµ1,T

(h∗S,α) ≤ c ⋅A
1

ρ(r)
nS .

Hence,

Rµ1,T
(ĥS) −Rµ1,T

(h∗T,α) = Rµ1T
(ĥS) −Rµ1,T

(h∗S,α) +Rµ1,T
(h∗S,α) −Rµ1,T

(h∗T,α)

≤ E1,T (h
∗
S,α) + c ⋅A

1
ρ(r)
nS . (4.6)
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Now if Rµ1,T
(ĥS) ≤ Rµ1,T

(ĥT ), we get

R̂µ1,T
(ĥS) − R̂µ1,T

(ĥT ) ≤ R̂µ1,T
(ĥS) −Rµ1,T

(ĥS) +Rµ1,T
(ĥT ) − R̂µ1,T

(ĥT ) ≤ AnT

which shows that the constraint in Procedure (4.4) holds, implying that ĥ = ĥS and the upper bound
(4.6) holds for Rµ1,T

(ĥ) −Rµ1,T
(h∗T,α). On the other hand, if Rµ1,T

(ĥS) > Rµ1,T
(ĥT ), then

Rµ1,T
(ĥT ) −Rµ1,T

(h∗T,α) < Rµ1,T
(ĥS) −Rµ1,T

(h∗T,α).

So, regardless of whether ĥ = ĥS or ĥ = ĥT , the upper bound (4.6) holds for Rµ1,T
(ĥ) −

Rµ1,T
(h∗T,α). Moreover, Since ĥ satisfies the constraint in Procedure (4.4), we get

Rµ1,T
(ĥ) −Rµ1,T

(h∗T,α) = Rµ1,T
(ĥ) −Rµ1,T

(ĥT ) +Rµ1,T
(ĥT ) −Rµ1,T

(h∗T,α) ≤ 3ϵT

which completes the proof.

5 OVERVIEW OF PROOF OF THEOREM 4.5 (MINIMAX LOWER BOUND)
We follow Tysbakov’s method (Tsybakov, 2009) for derivng the minimax lower bound.
Theorem 5.1. Tsybakov (2009) Assume that M ≥ 2 and the function dist(⋅, ⋅) is a semi-metric.
Furthermore, suppose that {Πθj}θj∈Θ is a family of distributions indexed over a parameter space,
Θ, and Θ contains elements θ0, θ1, ..., θM such that:

(i) dist(θi, θj) ≥ 2s > 0, ∀ 0 ≤ i < j ≤M

(ii) Πj ≪ Π0, ∀ j = 1, ...,M, and 1
M ∑

M
j=1Dkl(Πj ∣Π0) ≤ γ logM with 0 < γ < 1/8 and

Πj = Πθj , j = 0,1, ...,M and Dkl denotes the KL-divergence.

Then, we have inf
θ̂

sup
θ∈Θ

Πθ(dist(θ̂, θ) ≥ s) ≥
√
M

1+√M
(1 − 2γ −

√
2γ

logM
).

We also utilize the following proposition for constructing a packing of the parameter space.
Proposition 5.2. (Gilbert-Varshamov bound) Let d ≥ 8. Then there exists a subset {σ0, ..., σM} of
{−1,+1}d such that σ0 = (1,1, ...,1),

dist(σj , σk) ≥
d

8
, ∀ 0 ≤ j < k ≤M and M ≥ 2d/8,

where dist(σ,σ′) = card(i ∈ [m] ∶ σ(i) ≠ σ′(i)) is the Hamming distance.

First note that

min{∆ + (
dH
nS
)

1
2ρ , (

dH
nT
)

1
2 } ≤ 2 ⋅min{max{∆, (

dH
nS
)

1
2ρ }, (

dH
nT
)

1
2 }

= 2 ⋅max{min{(
dH
nS
)

1
2ρ , (

dH
nT
)

1
2 },min{∆, (

dH
nT
)

1
2 }}

So it suffices to show that the minimax lower bound is larger than both min{(dH
nS
)

1
2ρ , (dH

nT
)

1
2 } and

min{∆, (dH
nT
)

1
2 }. We divide the proof into three parts:

• Minimax lower bound is larger than min{(dH
nS
)

1
2ρ , (dH

nT
)

1
2 } for dH ≥ 17 (see Section C.1).

• Minimax lower bound is larger than min{(dH
nS
)

1
2ρ , (dH

nT
)

1
2 } for 16 ≥ dH ≥ 3 (see Section

C.2).

• Minimax lower bound is larger than min{∆, (dH
nT
)

1
2 } (see Section C.3).

In each part, Following Theorem 5.1, we construct a family of pairs of source and target distributions
that belong to the class FH. To accomplish this, we pick some points from the domain X shattered
by the hypothesis class H and then define appropriate distributions on these points. Additionally,
this family of distributions is indexed by {−1,+1}dH , which can be treated as a metric space using
the Hamming distance. To meet the requirement of condition (i) in Theorem 5.1, it is necessary for
these indices to be well-separated, a condition that can be satisfied through utilizing Proposition 5.2.
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A APPENDIX A (EQUIVALENCE OF POPULATION PROBLEMS)

We begin by stating Neyman-Pearson lemma (Lehmann & Lehmann, 1986) for deterministic tests.
In the following, a classifier h ∶ X → {0,1} aims at classifying H0 ∶ µ0 against the alternative
H1 ∶ µ1. In the context of hypothesis testing, h is called a deterministic test. Moreover, Rµ0(h) and
1 −Rµ1(h) are called size and power, respectively.
Theorem A.1 (Neyman-Pearson Lemma (Lehmann & Lehmann, 1986)). Let µ0 and µ1 be proba-
bility distributions possessing densities p0 and p1 respectively with respect to a dominating measure
ν.

(i) Sufficient condition for an optimal solution of the optimization problem (2.1). Let h be a classifier
for H0 ∶ µ0 against the alternative H1 ∶ µ1 such that for a constant λ the followings hold

Rµ0(h) = α (A.1)
and

h(x) = {
1 when p1(x) ≥ λp0(x)

0 when p1(x) < λp0(x)
(A.2)

Then h is an optimal solution of (2.1).

(ii) Necessary condition for an optimal solution of the optimization problem (2.1). Suppose that
there exist a classifier h and a constant λ such that (A.1) and (A.2) hold. Then, any solution of (2.1),
denoted by h∗, satisfies the following a.s. ν

h∗(x) = {
1 when p1(x) > λp0(x)

0 when p1(x) < λp0(x)
(A.3)

h∗ also satisfies Rµ0(h
∗) = α unless there exists a classifier h′ with Rµ0(h

′) < α and Rµ1(h
′) = 0.

Remark A.1. To obtain a solution of the optimization problem (2.2 ) in the source (or (2.3) in the
target) it suffices to take the level set LS

λ (LT
λ′ in the target) whose measure under µ0 is α, and then

define a classifier h as h = 1LS
λ

in the source (h = 1LT
λ′

in the target). Obviously, the classifier h

satisfies (A.1) and (A.2), and therefore it is an optimal solution.
Proposition A.2. Suppose that there exist a classifier h with h ≡ 1 on {x ∶ p0(x) = 0} a.s. ν and a
constant λ such that (A.1) and (A.2) hold for h. Then any solution of (2.1), denoted by h∗, such that
h∗ ≡ 1 on {x ∶ p0(x) = 0} a.s. ν and Rµ0(h

∗) = α satisfies (A.2) a.s. ν.

Proof. Let S1 = {x ∶ h
∗(x) = h(x)}, S2 = {x ∶ h

∗(x) ≠ h(x), p1(x) ≠ λp0(x)}, S3 = {x ∶
h∗(x) ≠ h(x), p1(x) = λp0(x)}. By Neyman-Pearson Lemma part (ii), we know that ν(S2) = 0.
Moreover, we have

α = ∫ h∗p0dν

= ∫
S1

h∗p0dν + ∫
S2

h∗p0dν + ∫
S3

h∗p0dν

Since ν(S2) = 0, we conclude that ∫S2
h∗p0dν = 0. Furthermore, on S3 we have h ≡ 1 and h ≠ h∗.

So h∗ ≡ 0 on S3 and ∫S3
h∗p0dν = 0. Hence,

α = ∫
S1

h∗p0dν = ∫
S1

hp0dν

On the other hand, we have

α = ∫ hp0dν = ∫
S1

hp0dν + ∫
S2

hp0dν + ∫
S3

hp0dν

= α + ∫
S3

hp0dν

Therefore, ∫S3
hp0dν = ∫S3

p0dν = 0, because h ≡ 1 on S3. We claim that ν(S3) = 0. By contradic-
tion assume that ν(S3) > 0. First we show that p0 is positive on S3 a.s. ν. The reason is that on S3

we have h ≡ 1 and h ≠ h∗. In addition, for x satisfying p0(x) = 0, we have h(x) = h∗(x) = 1 a.s. ν.
Therefore, p0 must be positive on S3 a.s. ν. However, we have ∫S3

p0dν = 0 which cannot be true
since ν(S3) > 0 and p0 > 0 a.s. ν on S3. Hence, we conclude that ν(S3) = 0. Finally, we obtain that
ν(S2 ∪ S3) = 0, where S2 ∪ S3 = {x ∶ h

∗(x) ≠ h(x)}.
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Remark A.2. Proposition A.2 implies that LS(α) in Definition 3.5 is unique a.s. ν.

Now we are ready to prove Proposition 3.6 in Section 3, which characterizes equivalent source and
target. First we show the following technical lemma.

Lemma A.3. Suppose that α is achievable. If α < 1, then (2.2) cannot have any other solution h
with Rµ0(h) < α and Rµ1,S

(h) = 0.

Proof of Lemma A.3. By contradiction, suppose that there exists an optimal solution h1 of (2.2) with
Rµ0(h1) < α and Rµ1,S

(h1) = 0. Furthermore, let h = 1LS(α). Since both h and h1 are optimal
solutions of (2.2), we have Rµ1,S

(h) = Rµ1,S
(h1) = 0. By Neyman-Pearson Lemma part (ii), we

know that h1 = h on {x ∶ p0(x) ≠ λp1,S(x)} a.s. ν. Let us define the sets S1 = {x ∶ h1(x) ≠ h(x)}
and S2 = {x ∶ p0(x) = λp1,S(x)}. Then we have S1 ⊂ S2 a.s. ν. Since h ≡ 1 on S2, we must
have h1 ≡ 0 on S1 a.s. ν. From Rµ1,S

(h) = Rµ1,S
(h1) = 0 we conclude that µ1,S(S1) = 0 and

from Rµ0(h1) < Rµ0(h) = α we conclude that µ0(S1) > 0. Let S′1 = {x ∈ S1 ∶ p0(x) > 0}. Hence
µ0(S

′
1) > 0 and ν(S′1) > 0. Then, let us define the set A = {x ∶ x ∈ S′1, p1,S(x) = 0}. We have

µ1,S(S
′
1) = ∫

S′1

p1,Sdν = ∫
S′1/A

p1,Sdν = 0.

Since p1S > 0 on S1/A, we conclude that ν(S′1/A) = 0 which implies that ν(A) > 0. On A, p1,S ≡ 0
and p0 > 0 and h ≡ 1 a.s. ν. Hence, we should have λ = 0 which implies that µ0(L

S(α)) = 1.
However, we assumed that α < 1.

Proof of Proposition 3.6. (Sufficiency) Suppose that LS(α) ∈ {LT
λ }λ≥0 a.s. ν. Due to Neyman-

Pearson Lemma part (i), 1LS(α) is an optimal solution of (2.2). Let hS ∈ U∗ be any arbitrary
optimal solution of (2.2). First we consider the case that Rµ1,S

(hS) > 0 (or the power of hS in the
source problem is less than 1). By Neyman-Pearson Lemma part (ii) we have Rµ0(h

S) = α. Then
by Proposition A.2, hS = 1LS(α) a.s. ν. We claim that hS is an optimal solution of (2.3). Since
LS(α) ∈ {LT

λ }λ≥0, there exists LT
λ′ such that LS(α) = LT

λ′ a.s. ν. Hence, µ0(L
T
λ′) = α and 1LT

λ′
is

an optimal solution of (2.3). Furthermore, hS = 1LS(α) = 1LT
λ′

a.s. ν which implies that hS is an
optimal solution of (2.3).

If Rµ1,S
(hS) = 0 and Rµ0(h

S) = α, it would be similar to the previous case. Furthermore, by
Lemma A.3, we cannot have a solution hS with Rµ1,S

(hS) = 0 and Rµ0(h
S) < α.

(Necessity) Suppose that any optimal solution of (2.2) is also an optimal solution of (2.3). Since
1LS(α) is an optimal solution of (2.2), we conclude that it is also an optimal solution of (2.3). Since
Rµ0(1LS(α)) = α, by Proposition A.2 and α achievability, 1LT (α) = 1LS(α) a.s. ν. Therefore,
LS(α) = LT (α) a.s. ν and LS(α) ∈ {LT

λ }λ≥0 a.s. ν.

A.3 EXAMPLE CORRESPONDING TO FIG 3

Example A.4. Let ν be the Lebesgue measure, α = 1
16

, and U be all the measurable 0-1 functions
on R. Furthermore, let µ1,S ∼ Unif[1,2], µ1,T ∼ Unif[ 4

3
, 8
3
], and

p0(x) = {
x
4
+ 1

2
−2 ≤ x ≤ 0

−x
4
+ 1

2
0 < x ≤ 2

Then, we have LS(α) = LT (α) = (−∞,−2] ∪ [ 3
2
,+∞). Consider the hypothesis h = 1{x∈[ 32 ,2]}

which is a solution in the source but not in the target. However, source is equivalent to target under
U∗.
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B APPENDIX B (OUTLIER TRANSFER EXPONENT)

B.1 PROOF OF PROPOSITION 4.2

Proof. Let µ0 ∼ N (0,1), µ1,S ∼ U[0,1], µ1,T ∼ A1 ⋅ U[t1,2t0 − 1] + A2 ⋅ U[2t0 − 1,1] where
A2 > A1 > 0, t1 > 0, 12 < t0 < 1, 2t0 − 1 > t1 and A1(2t0 − t1 − 1) + A2(2 − 2t0) = 1. Moreover,
H = {1{x∈[a,1]∪[b,t0]}(x) ∶ t0 ≤ a ≤ 1, t1 ≤ b ≤ t0}. Let α = µ0([t0,1]) and r < µ0([2t0 −
1, t0]) − α. Clearly by Neyman-Pearson Lemma the unique source and target optimal solutions are
h∗S,α = h

∗
T,α = 1{t0≤x≤1}. Then for any h with Rµ0(h) ≤ α + r, h is of the form h = 1{x∈[a,1]∪[b,t0]}

for some a ∈ [t0,1] and b ∈ [2t0 − 1, t0]. Hence, Rµ1,S
(h) − Rµ1,S

(h∗S,α) = a + b − 2t0 and
Rµ1,T

(h) −Rµ1,T
(h∗S,α) = A2(a + b − 2t0) which implies that ρ(r) = 1. However, if we take h =

1{2t0−1−ϵ≤x≤t0}(x) for small enough 0 < ϵ < (1−t0)(A2−A1)
A1

, which violates the condition Rµ0(h) ≤
α + r, (4.2) does not hold for any ρ <∞.

C APPENDIX C: PROOF OF THEOREM 4.5 (LOWER BOUND)

C.1 MINIMAX LOWER BOUND IS LARGER THAN min{(dH
nS
)

1
2ρ , (dH

nT
)

1
2 } FOR dH ≥ 17

Let d = dH − 1 and dH be odd (If dH is even then define d = dH − 2). Then pick dH points
S = {x0, x1,1, ..., x1, d2

, x2,1, ..., x2, d2
} from X shattered by H (if dH is even then we pick dH − 1

points). Moreover, let H̃ be the projection of H onto the set S with the constraint that all h ∈ H̃
classify x0 as 0.

Next we construct a distribution µ0 and a family of pairs of distributions (µσ
1,S , µ

σ
1,T ) indexed by

σ ∈ {−1,+1}
d
2 . In the following, we fix ϵ = c1 ⋅min{(dH

nS
)

1
2ρ , (dH

nT
)

1
2 } for a constant c1 < 1 to be

determined.

Distribution µ0: We define µ0 on S as follows:

µ0(x1,i) = µ0(x2,i) =
2α

d
for i = 1, ...,

d

2

and µ0(x0) = 1 − 2α.

Distribution µσ
1,T : We define µσ

1,T on S as follows:

µσ
1,T (x1,i) =

1

d
+ (σi/2) ⋅

ϵ

d
for i = 1, ...,

d

2

µσ
1,T (x2,i) =

1

d
− (σi/2) ⋅

ϵ

d
for i = 1, ...,

d

2

and µσ
1T
(x0) = 0.

Distribution µσ
1,S : We define µσ

1,S on S as follows:

µσ
1,S(x1,i) =

1

d
+ (σi/2) ⋅

ϵρ

d
for i = 1, ...,

d

2

µσ
1,S(x2,i) =

1

d
− (σi/2) ⋅

ϵρ

d
for i = 1, ...,

d

2

and µσ
1S
(x0) = 0.

Verifying the transfer distance condition. For any σ ∈ {−1,+1}
d
2 , let hσ ∈ H̃ be the minimizer of

Rµσ
1,S

and Rµσ
1,T

with type-I error w.r.t. µ0 at most α. Then hσ satisfies the following:

hσ(x1,i) = 1 − hσ(x2,i) = {
1 if σi = 1

0 otherwise
for i = 1, ...,

d

2

14
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For any ĥ ∈ H̃ with α − 2α
d
< µ0(ĥ) < α +

2α
d

, we have

µ1,T (hσ = 1) − µ1,T (ĥ = 1) =
k

d
⋅ ϵ

µ1,S(hσ = 1) − µ1,S(ĥ = 1) =
k

d
⋅ ϵρ

for some non-negative integer k ≤ d
2

. So the outlier transfer exponent is ρ with Cρ = 1. The condition
is also satisfied for ĥ ∈ H̃ with µ0(ĥ) ≤ α −

2α
d

. In this case we have

µ1T (hσ = 1) − µ1T (ĥ = 1) =
k1
d
+
k2ϵ

2d

µ1S(hσ = 1) − µ1S(ĥ = 1) =
k1
d
+
k2ϵ

ρ

2d

for some integers k1 ≤ d
2

and k2 ≤ d. Using inequality (a+ b)ρ ≤ 2ρ−1(aρ + bρ) the condition can be
easily verified.

Reduction to a packing. Any classifier ĥ ∶ S → {0,1} can be reduced to a binary sequence in
the domain {−1,+1}d. We can first map ĥ to (ĥ(x1,1), ĥ(x1,2), ..., ĥ(x1, d2

), ĥ(x2,1), ..., ĥ(x2, d2
))

and then convert any element 0 to −1. We choose the Hamming distance as the distance required in
Theorem 5.1. By applying Proposition 5.2 we can get a subset Σ of {−1,+1}

d
2 with ∣Σ∣ =M ≥ 2d/16

such that the hamming distance of any two σ,σ′ ∈ Σ is at least d/16. Any σ,σ′ ∈ Σ can be mapped
to binary sequences in the domain {+1,−1}d by replicating and negating, i.e., (σ,−σ), (σ′,−σ′) ∈
{+1,−1}d and the hamming distance of resulting sequences in the domain {+1,−1}d is at least d/8.
Then for any ĥ ∈ H̃with µ0(ĥ = 1) < α+

2α
d

and σ ∈ Σ, if the hamming distance of the corresponding
binary sequence of ĥ and σ in the domain {+1,−1}d is at least d/8 then we have

µ1,T (hσ = 1) − µ1,T (ĥ = 1) ≥
d

8
⋅
ϵ

d
=
ϵ

8

In particular, for any σ,σ′ ∈ Σ we have

µ1,T (hσ = 1) − µ1,T (hσ′ = 1) ≥
d

8
⋅
ϵ

d
=
ϵ

8

KL divergence bound. Define Πσ = (µ
σ
1,S)

nS × (µσ
1,T )

nT . For any σ,σ′ ∈ Σ, our aim is to bound
the KL divergence of Πσ,Πσ′ . We have

Dkl(Πσ ∣Πσ′) = nS ⋅Dkl(µ
σ
1,S ∣µ

σ′

1,S) + nT ⋅Dkl(µ
σ
1,T ∣µ

σ′

1,T )

The distribution µσ
1,S can be expressed as Pσ

X × P
σ
Y ∣X where Pσ

X is a uniform distribution over the
set {1,2, ..., d

2
} and Pσ

Y ∣X=i is a Bernoulli distribution with parameter 1
2
+ 1

2
⋅ (σi/2) ⋅ ϵ

ρ. Hence we
get

Dkl(µ
σ
1,S ∣µ

σ′

1,S) =

d
2

∑
i=1

1

d/2
⋅Dkl(Ber(

1

2
+
1

2
⋅ (σi/2) ⋅ ϵ

ρ
)∣Ber(

1

2
+
1

2
⋅ (σ′i/2) ⋅ ϵ

ρ
))

≤ c0 ⋅
1

4
⋅ ϵ2ρ

≤
1

4
c0c

2ρ
1 ⋅

dH
nS

≤ c0c
2ρ
1 ⋅

d

nS
(C.1)

for some numerical constant c0. Using the same argument we can obtainDkl(µ
σ
1,T ∣µ

σ′

1,T ) ≤ c0c
2
1 ⋅

d
nT

.
Hence we get

Dkl(Πσ ∣Πσ′) ≤ 2c0c1d.

15
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Then, for sufficiently small c1 we get Dkl(Πσ ∣Πσ′) ≤
1
8
logM which satisfies condition (ii) in

Proposition 5.1.

Therefore, for any learner that outputs a hypothesis ĥ from {h ∈H ∶ µ0(h) ≤ α+
2α
dH
} with probabil-

ity 1 − δ0, there exist (µ0, µ1,S , µ1,T ) ∈ FH(ρ,α,1,∆) such that condition on ĥ ∈ {h ∈H ∶ µ0(h) ≤
α + 2α

dH
} we have

P
Sµ0

,Sµ1,S
,Sµ1,T

(E1,T (ĥ) > c ⋅min{∆ + (
dH
nS
)

1
2ρ , (

dH
nT
)

1
2 }) ≥ c′

which implies that the unconditional probability is as follows

P
Sµ0

,Sµ1,S
,Sµ1,T

(E1,T (ĥ) > c ⋅min{∆ + (
dH
nS
)

1
2ρ , (

dH
nT
)

1
2 }) ≥ (1 − δ0)c

′
≥ c′′

C.2 MINIMAX LOWER BOUND IS LARGER THAN min{(dH
nS
)

1
2ρ , (dH

nT
)

1
2 } FOR 16 ≥ dH ≥ 3

Pick three points S = {x0, x1, x2} from X shattered by H. Then we construct a distribution µ0 and
two pairs of distributions (µk

1,S , µ
k
1,T ) for k = −1,1. Also fix ϵ = c1 ⋅min{( 1

nS
)

1
2ρ , ( 1

nT
)

1
2 } for a

constant c1 < 1 to be determined.

Distribution µ0: We define µ0 on S as follows:

µ0(x0) = 1 − 2α, µ0(x1) = µ0(x2) = α

Distribution µk
1,T : We define µk

1,T on S as follows:

µk
1,T (x0) = 0, µk

1,T (x1) =
1

2
+
k

2
⋅ ϵ, µk

1,T (x2) =
1

2
−
k

2
⋅ ϵ

Distribution µk
1,S : We define µk

1,S on S as follows:

µk
1,S(x0) = 0, µk

1,S(x1) =
1

2
+
k

2
⋅ ϵρ, µk

1,S(x2) =
1

2
−
k

2
⋅ ϵρ

Let Πk = (µ
k
1,S)

nS×(µk
1,T )

nT for k = −1,1. Then using the same argument we getDkl(Π−1∣Π1) ≤ c
where c is a numerical constant. Furthermore, let hk be the optimal solution with type-I error at most
α for the distributions (µ0, µ

k
1,S) and (µ0, µ

k
1,T ). It is easy to see that Rµk

1,T
(h−k)−Rµk

1,T
(hk) = ϵ.

Using Le Cam’s method we get that for any ĥ chosen from Hα = {h ∈ H ∶ µ0(h) ≤ α +
2α
3
} there

exist (µ0, µ1,S , µ1,T ) ∈ FH(ρ,α,1,0) such that

P
Sµ0

,Sµ1,S
,Sµ1,T

(E1,T (ĥ) > c ⋅min{(
1

nS
)

1
2ρ , (

1

nT
)

1
2 }) ≥ c′

Since dH ≤ 16 we conclude that

P
Sµ0

,Sµ1,S
,Sµ1,T

(E1,T (ĥ) > c ⋅min{(
dH
nS
)

1
2ρ , (

dH
nT
)

1
2 }) ≥ c′

for some numerical constants c, c′.

C.3 MINIMAX LOWER BOUND IS LARGER THAN min{∆, (dH
nT
)

1
2 }

We only show it for the case where dH ≥ 17. The other case follows the same idea as in Section C.2.

We follow the same idea as in the previous part. Let ϵ = c1 ⋅min{∆, (dH
nT
)

1
2 } and pick the same set

S from X shattered byH construct the distributions on S as follows:

16
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Distribution µ0: We define µ0 on S as follows:

µ0(x1,i) = µ0(x2,i) =
2α

d
for i = 1, ...,

d

2

and µ0(x0) = 1 − 2α.

Distribution µσ
1,T : We define µσ

1,T on S as follows:

µσ
1,T (x1,i) =

1

d
+ (σi/2) ⋅

ϵ

d
for i = 1, ...,

d

2

µσ
1,T (x2,i) =

1

d
− (σi/2) ⋅

ϵ

d
for i = 1, ...,

d

2

and µσ
1,T (x0) = 0.

Distribution µσ
1,S : We define µσ

1,S on S as follows:

µσ
1,S(x1,i) =

1

d
+ (1/2) ⋅

ϵρ

d
for i = 1, ...,

d

2

µσ
1,S(x2,i) =

1

d
− (1/2) ⋅

ϵρ

d
for i = 1, ...,

d

2

and µσ
1,S(x0) = 0.

Note that unlike previous part, all the distributions µσ
1S

are the same for different σ’s.

Verifying E1,T (h∗S,α) ≤∆. For every pair of (µσ
1,S , µ

σ
1,T ) we have

E1,T (h
∗
S,α) ≤

d

2
⋅
ϵ

d
≤∆

verifying the transfer distance condition and reducing to a packing parts follow the same idea. We
just bound the corresponding kL-divergence.

KL divergence bound. Define Πσ = (µ
σ
1,S)

nS × (µσ
1,T )

nT . We have

Dkl(Πσ ∣Πσ′) = nS ⋅Dkl(µ
σ
1,S ∣µ

σ′

1S
) + nT ⋅Dkl(µ

σ
1,T ∣µ

σ′

1,T )

Since source distributions are the same, the first term is zero. Following the same argument we get

Dkl(µ
σ
1,T ∣µ

σ′

1,T ) ≤ c0ϵ
2
≤ c0c1

d

nT

where c0 is the same numerical constant used in (C.1). Then for sufficiently small c1 we get
Dkl(Πσ ∣Πσ′) ≤

1
8
logM which satisfies condition (ii) in Proposition 5.1.
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