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ABSTRACT

Modular neural architectures demonstrate superior generalization performance.
Existing modular neural networks are generally explicit. Their modular archi-
tectures are pre-defined with individual modules expected to implement distinct
functions. Conversely, recent works reveal that there exist implicit modularity
in standard pre-trained transformers, namely Emergent Modularity. They indi-
cate that such modular structures exhibit during the early pre-training phase and
are totally spontaneous. However, most pre-trained transformers are still treated
as monolithic models in the pre-train-and-fine-tune paradigm with their modular
natures underutilized. In this work, we explore whether and how leveraging emer-
gent modularity during fin-tuning could bring better generalization. We showcase
that standard pre-trained transformers could be fine-tuned as their sparse Mixture-
of-Expert (MoEs) counterparts without introducing any extra parameters. Such
MoEs is derived from the emergent modularity and is referred to emergent MoE
(EMoE). Extensive experiments (we tune 1785 models) on vision and language
downstream tasks and models (22M to 1.5B) demonstrate that fine-tuning EMoE
effectively improves in-domain and out-of-domain generalization compared with
vanilla fine-tuning. Our analysis shows that EMoE could mitigate negative trans-
fer during fine-tuning. Further ablations suggest that EMoE is robust to various
configurations and can scale up to very large language models (e.g., Llama-30B).

1 INTRODUCTION

Modularity attracts considerable attention from the artificial intelligence community (Auda &
Kamel, 1999). Neural networks with modular designs, termed Modular Neural Networks (MNN),
have exhibited a wide range of advantages, including adaptation (Shen et al., 2023b),data effi-
ciency (Bengio et al., 2020), and better generalization abilities (Goyal & Bengio, 2020; Weiss et al.,
2022),. Typical MNNs are usually explicitly modular. Their modular structure is pre-defined and
they are expected to achieve a divide-and-conquer solution for the given task. For example, An-
dreas et al. (2016) design separate visual and language functional modules and jointly train them to
solve visual question-answering tasks. Among various MNNs, Mixture-of-Experts (MoEs) employ
a conditional computation strategy where different submodules - so-called experts - are expected to
be activated by different types of inputs. MoEs see substantial success in various domains (Shen
et al., 2023a; Chen et al., 2023b; Mustafa et al., 2022; Bao et al., 2022) in the era of large-scale
transformers, and therefore becomes a widespread modular neural architecture.

Apart from explicit MNN, Csordás et al. (2021); Agarwala et al. (2021) study whether standard neu-
ral networks become implicitly modular after training and discover spontaneously emerged modular
structure in small-scale CNNs and LSTMs. For more complicated large-scale pre-trained trans-
formers, initial observations (Zhang et al., 2022b; Li et al., 2022) reveal notable sparse activation
patterns within the Feed-Forward Networks (FFNs). Specifically, they find that in T5-Base (Raffel
et al., 2020) and ViT-B16, only 3.0% and 6.3% neurons are activated during one forward process.
However, sparsity does not imply modularity. Sparsely activated FFNs neurons do not ensure to have
remarkable functional division. Therefore, Zhang et al. (2023) further utilize handpicked seman-
tic and knowledge-intensive tasks to probe the nature of neurons in FFNs. They observe a strong
correlation between activation and specific tasks, further discovering clear function-based neuron
grouping of the model and summarizing such phenomenon as Emergent Modularity (EM).
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However, pre-trained transformers are generally treated as monolithic models in the current standard
pre-train-and-fine-tune paradigm. We wonder whether their EM and the potential improvements
brought by EM are ignored. In this work, we narrow it down to the following specific question:
whether introducing EM could be conducive to models’ downstream generalization ability. We thus
employ a method from (Zhang et al., 2022b) to derive the Emergent MoE (EMoE) based on the EM
of original pre-trained transformer. We compare the fine-tuning performance of EMoE and the orig-
inal model to answer our research question. We validate our conclusions in a wide range of configu-
rations: (1) tasks from various modalities: vision tasks (Gulrajani & Lopez-Paz, 2021)and language
tasks (Wang et al., 2019b; Yang et al., 2023); (2) different pre-trained transformers: ViT (Dosovit-
skiy et al., 2021), BERT (Devlin et al., 2019), and GPT2 (Radford et al., 2019), ranging from 22M to
1.5B parameters. (3) different evaluation settings: in-domain (ID) evaluation and OOD evaluation;
(4) different fine-tuning methods: full fine-tuning and LoRA tuning (Hu et al., 2022).

Our experimental results are summarized in Figure 1. We find that fine-tuning EMoE achieves
better generalization performance than vanilla fine-tuning and competitive performance with one
strong baseline GMoE (Li et al., 2023). The improved downstream performance is also observed
when being applied to multi-task learning and very large language models. Our analysis indicates
that the reason for improvements is that EMoE could deactivate neurons with negative transfer
effects during fine-tuning. Meanwhile, our ablation studies indicate the EMoE’s insensitivity to
various hyper-parameter configurations. We hope our practice and research discoveries can serve as
an example attempt towards further utilizing the EM of pre-trained transformers.
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Figure 1: EMoE achieves stronger ID and OOD performances compared with baselines in both full-fine-
tuning (Left, average accuracy) and LoRA tuning settings (Hu et al., 2022) (Right, average accuracy for ID and
Friedman rank (Friedman, 1940) for OOD). Results are summarized from Section 4.

2 RELATED WORK

Leveraging modular designing into neural networks has various advantages, including interpretabil-
ity (Pfeiffer et al., 2023), scalability (Chowdhery et al., 2022), multi-task learning abilities (Chen
et al., 2023a), and OOD generalization abilities (Goyal et al., 2021; Li et al., 2023). MoEs (Szy-
manski & Lemmon, 1993) is currently a standard framework for developing modular neural net-
works (Shen et al., 2023b; Shazeer et al., 2017; Fedus et al., 2022; Zhang et al., 2022a). Despite
explicit modular neural nets, Hod et al. (2021); Csordás et al. (2021) explore emergent modular
structures in CNNs and LSTMs. Some recent works (Zhang et al., 2022b; Li et al., 2022) focus
on the sparsity of more complicated pre-trained transformers. Based on their observations, Zhang
et al. (2023) recently explore modularity in pre-trained transformer FFNs by employing handpicked
semantic and knowledge-intensive tasks to probe the modular nature of pre-trained transformers.

Works most related to our work are those that utilize off-the-shelf pre-trained models to construct
MoEs. For example, GMoE (Li et al., 2023) and Upcycling (Komatsuzaki et al., 2023) copy the
FFNs from a trained transformer model to form the MoEs architecture. Their modular structure is
introduced by replicating existing FFNs modules, leaving EM within pre-trained FFNs unexplored.
We choose GMoE as one of our baselines. MoEfication (Zhang et al., 2022b) explores the EM within
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the model. They seek to improve the inference efficiency by replacing the original FFNs layer with
MoEs. MoEfication utilizes sparse activations to reduce inference overhead within FFNs and does
not touch on how EM influences the training stage. Although more sophisticated methods could be
developed, we adopt one simple method in the ablation studies of MoEfication paper (Zhang et al.,
2022a) to externalize EM from the original model: clustering-based expert construction and avg-k
gating. We empirically find that such a simple method can validate the improvements brought by
EM and answer our research questions. We thus leave more elaborated methods for future works.
Please refer to the Appendix A.2 for a detailed comparison of EMoE with related works.

3 METHODOLOGY

3.1 PRELIMINARIES

Transformer Feed-Forward Networks are Key-Value Memories. The FFNs layer in the trans-
former block typically includes weights K ∈ Rh×d, V ∈ Rd×h, where h is embedding size and d
is the dimension of the hidden layer (usually d = 4h), and a non-linear activation function σ(·). For
an input x ∈ Rh, the output y ∈ Rh can be calculated as follows:

y = FFN(x;K,V) = σ(x ·K) ·V. (1)

More precisely, for each column K:,i and row Vi,:, Equation 1 can be rewritten as:

y = σ(x ·K) ·V =

h∑
i=1

σ(x ·K:,i) ·Vi,: (2)

We follow Lample et al. (2019); Geva et al. (2021; 2022) regarding each column in K as a key vector
and each row in V as the value vector, the output of an FFNs network can be viewed as a weighted
sum of value vectors based on the activation scores σ(x·K). Viewing FFNs as collections of smaller
units facilitates understanding of the structure within FFNs and the method 3.2 to decompose FFNs.

Mixture-of-Experts In transformers, MoEs is often implemented by replacing the original FFNs
with a group of parallel FFNs and introducing a gating module. Supposing there are N experts:
{FFNn(·;Kn,Vn)|n ∈ [1, N ]}, the gating module g(· ;G, k), defined with its parameters G and
an integer k, is to map input x to a score distribution of experts g(x; G, k) ∈ RN . Typically, g
is implemented with a simple linear layer followed by a softmax function and a Top-k function.
Given an input x ∈ Rh, let yn = FFNn(x;Kn,Vn) be the output of the n-th expert, and then the
output y ∈ Rh of can also be summarized as the weighted sum of the output from all experts:

y =
∑
n∈N

gn(x;G, k) FFNn(x;Kn,Vn) =
∑
n∈N

gn(x;G, k)yn, (3)

When k for Top-K is smaller than N , only a subgroup of experts is involved in the computation.

3.2 EMERGENT MIXTURE-OF-EXPERT

As our research goals mainly focus on how EM influences fone-tuning stage, a preferred approach
to externalize EM into explicit MoEs models should not introduce additional parameters, training,
and data, which may result in impractical or undesired biases. In this work, we adopt a method in
ablation study of the MoEfication paper Zhang et al. (2022b). As illustrated in Figure 2, the method
contains two steps: (1) clustering-based expert construction and (2) avg-k gating. It is simple and
fulfills our needs, as demonstrated in our experiments.

Clustering-based Experts Construction. Since key-value pairs with similar key vectors tend to be
co-activated, we split them into separate experts according to their key vectors. Specifically, given
a trained FFNs layer FFN(·;K,V), we perform constrained clustering (Malinen & Fränti, 2014) to
partition all key vectors K into N experts on average, so each group contains d

N key-value pairs.
Denoting the indices of keys in the i-th group as Ei ⊂ [d], for ∀j ∈ Ei, we extract key-value
pair (K:,j ,Vj,:) to form the i-th expert FFN(·;Ki,Vi), as depicted in Figure 2(b). After that, the
computation of each expert proceeds as Equation 1.

Avg-k Gating. Given an input x and N experts, a qualified gate for EMoE should route the input x to
the experts who contribute most to the model’s output. We construct the gating module by averaging
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Figure 2: (a) Existing literatures (Geva et al., 2021; 2022) suggest that the FFNs in transformers can be viewed
as key-value memories. They regarded the input as a query, the first layer as keys, and the second as values.
Given an input, keys are sparsely activated (marked in red). Most of the values don’t impact the output. (2) The
FFNs block can be partitioned into experts by clustering keys. (3) Afterward, experts’ keys averages are used
as the gating weights. The inner product between x and gating weights are used to select experts.

each expert’s keys. The gating function is usually implemented by a single layer G ∈ Rh×N , in the
avg-k gating’s case, the weights in i-th column G:,i can be calculated as follows:

G:,i = Avg(Ki, dim=0). (4)

And then the corresponding gating score for i-th expert is:

gi(x;G, k) =

{
1 if i ∈ Top-K(x ·G; k, dim=1)
0 else

(5)

where Top-K(·; k, dim) return indices of k largest element of the given input along a given dimen-
sion. Using 0,1 score, avg-k gating reduces the weights’ influence in Equation 3). Notably, observe:

x ·G:,i = x ·Avg(Ki, dim = 0) = x · N
d

∑
j∈Ei

Ki
:,j =

N

d

∑
j

aj . (6)

A larger value of gating score gi implies more activated keys within the corresponding expert. Con-
sequently, the expert could potentially contribute more to the output y for input x. During down-
stream tuning, gating weights are updated along with the FFNs parameters using Equation 4.

3.3 DISCUSSION

Though adopting a method from MoEfication (Zhang et al., 2022b), this work has a distinct moti-
vation, leading to different model configurations and testing scenarios. MoEfication is motivated by
the observation that FFNs layers in pre-trained transformers are sparsely activated (many neurons
are unused for inputs). It splits FFNs into a sparse MoE, aiming to reduce the computational cost.
MoEfication focuses on precise expert construction and gating to preserve performances while im-
proving inference efficiency. In sharp contrast, EMoE wants to externalize the emergent modular
nature of the pre-trained transformers so that the experts are sparsely updated and further encour-
aged to achieve distinct specializations. So, we decompose FFN into sparse MoE before fine-tuning
on downstream tasks. Though similar methods are applied, EMoE provides a different view about
what we can benefit from emergent modularity, and this is what we want to share with the commu-
nity with this work. As one of our most related works, GMoE (Li et al., 2023) introduces MoEs by
copying the trained FFNs. They further demonstrate that introducing MoEs in every two layers leads
to significant degradation. Accordingly, we only introduce EMoEs in certain layers since efficiency
isn’t our primary concern. We also conduct ablation studies about MoEfying every two layers and
get consistent results; more details are in Appendix A.5.2 Table 19.

4 EXPERIMENTS

Experimental Configurations We evaluate EMoE on vision and language tasks. All experiments
are repeated 3 times independently. We present the average in the main section, while full results
are in Appendix A.5.1. Detail settings can be found in each experiment part. Tasks and mod-
els: In vision tasks, we employ ViT-Small (22M) and ViT-Base (86M) on 4 datasets from the Do-
mainbed (Gulrajani & Lopez-Paz, 2021) for benchmarking vision OOD performance. In language
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tasks, we employ GLUE (Wang et al., 2019b) and GLUE-X (Yang et al., 2023) for benchmarking
language ID and OOD performance. We evaluate EMoE with a wide range of pre-trained language
models, including BERT-Base/Large (110M/340M), and GPT2-Small/XL (124M/1.5B). For more
details about datasets and evaluation metrics, please refer to the Appendix A.3. Hyper-parameters:
those unrelated to MoEs, like the learning rate, remain consistent with the baselines. For others,
guided by Li et al. (2023), we explore MoEs layers in {last two even layers, last one even layer}.
Comparable hyper-parameter searches are conducted for both GMoE and EMoE for the number of
experts N and top-k. In vision tasks, as highlighted by (Gulrajani & Lopez-Paz, 2021), the hyper-
parameter search has a profound impact on outcomes. Consequently, we search with a relatively
large scope: for GMoE, N is searched within {4, 6, 8}, and top-k within {2, 3, 4}; for EMoE, N
is sought within {6, 12, 24}, and top-k within {2, 4, 8}. For Languag tasks, GMoE explores N
within {4, 8} and top-k within {1, 2}. For EMoE, N is fixed at 64, with top-k explored within {16,
32}. Our ablation study indicates that while hyper-parameter search yields superior performance,
adhering to a top-k/N = 0.5 for EMoE consistently brings improvement over dense counterparts.

Baselines On Domainbed, our baselines include (1) vanilla ViT, as it is a strong OOD baseline under
fair configurations suggested by Gulrajani & Lopez-Paz (2021). (2) GMoE (Li et al., 2023), which
is the latest state-of-the-art. GMoE constructs MoEs by replicating FFNs from the two-to-last and
fourth-to-last transformer blocks of a pre-trained ViT and therefore is the most relevant to EMoE.
For language tasks, besides vanilla backbone and GMoE, we implement (3) noisy tuning (Wu et al.,
2022), which also improves adaptation for free by adding uniform distribution noise proportional to
the standard deviation of the pre-trained weights before tuning. (4) EMoE-learn, an ablation method,
where the gating function is learned (same as GMoE) during fine-tuning instead of employing avg-k
gating. This helps us better understand the effect of avg-k gating.

4.1 FULL FINE-TUNING PERFORMANCE

Table 1: Overall OOD performances with 3 selection criteria. All the reported results are obtained following
the Domainbed codebase. The best result is highlighted in bold. In cases where results are the same, the best
result is determined by the smallest standard deviation. EMoE demonstrates comparable results to GMoE.

Results with ViT-small (22M) backbone

Algorithm PACS VLCS Office Terra Avg

Train-validation selection criterion

ViT 86.9 79.7 73.0 44.0 70.90
GMoE 87.7 79.6 73.1 45.4 71.45
EMoE-learn 87.2 79.6 72.5 46.1 71.35
EMoE 87.8 79.5 73.1 45.9 71.58

Leave-one-domain-out selection criterion

ViT 86.1 79.7 73.3 45.0 71.03
GMoE 86.5 80.5 73.1 45.3 71.35
EMoE-learn 86.8 79.6 72.6 45.8 71.20
EMoE 86.8 80.6 73.3 46.1 71.70

Test-domain selection criterion

ViT 86.5 78.2 73.1 44.0 70.45
GMoE 87.2 79.0 73.4 45.3 71.23
EMoE-learn 87.4 79.1 72.8 45.4 71.18
EMoE 87.6 79.0 73.3 45.5 71.35

Results with ViT-base (86M) backbone

Algorithm PACS VLCS Office Terra Avg

Train-validation selection criterion

ViT 89.1 80.7 77.2 47.3 73.58
GMoE 90.0 80.4 77.0 49.2 74.15
EMoE-learn 89.8 80.6 76.5 48.7 73.90
EMoE 89.4 80.7 77.3 48.5 73.98

Leave-one-domain-out selection criterion

ViT 88.9 80.8 77.5 46.1 73.33
GMoE 89.3 81.0 76.7 50.1 74.28
EMoE-learn 89.3 81.2 76.5 50.5 74.38
EMoE 89.6 81.6 77.4 50.0 74.65

Test-domain selection criterion

ViT 88.8 79.0 77.2 46.7 72.93
GMoE 89.7 79.0 77.0 48.8 73.63
EMoE-learn 89.7 79.7 76.6 48.7 73.68
EMoE 89.7 79.7 77.5 48.8 73.93

We test the EMoE’s OOD performance on Domainbed. Domainbed provides comprehensive
vision OOD evaluations (one result is aggregated with 30 experiments), and the outcomes vary
marginally. Moreover, Gulrajani & Lopez-Paz (2021) indicates that vanilla full fine-tuning with
fair hyper-parameter search is a strong baseline compared with specifically designed methods like
Invariant Risk Minimization (Arjovsky et al., 2019). More dataset details are in appendix A.3.1.
According to Table 1: (1) Overall, EMoE outperforms ViT and GMoE (except ViT-base Train-
validation setting, upper right). (2) Compared with EMoE, EMoE-learn incorporates a learned gate.
While it surpasses avg-k gating in certain scenarios (ViT-small Terra Train-validation), it can also
lead to a performance drop compared with vanilla ViT. Its overall performance is lower than EMoE.
(3) In tasks where the dense model is strong (like Office), EMoE performs better than other MoEs
methods. One possible reason is that the avg-k gating reduces the influence of gating weights
(gn(x;G; k) in Equation 3), making it more like the dense model in such scenarios.
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Table 2: ID performance on GLUE tasks with different backbones and algorithms. All the reported results
are obtained from 3 independent experiments. The average accuracy (Avg) is reported along with the relative
improvement compared to the baseline. The best result is highlighted in bold.

Backbone Algorithm MRPC CoLA RTE STSB SST2 Avg

BERT
Base

baseline 88.45 60.67 68.95 87.87 91.97 79.582
noisy tuning 88.43 61.79 71.36 88.27 92.32 80.43(+0.85)
GMoE 88.63 61.25 70.28 88.63 92.28 80.21(+0.63)
EMoE-learn 89.05 62.46 70.40 88.47 92.58 80.59(+1.01)
EMoE 89.45 61.55 69.68 88.71 92.89 80.46(+0.87)

BERT
Large

baseline 89.82 65.41 74.89 89.87 93.50 82.70
noisy tuning 90.42 64.75 73.41 90.05 93.65 82.46(-0.24)
GMoE 91.24 64.90 74.24 90.00 93.58 82.79(+0.09)
EMoE-learn 90.57 65.51 74.72 90.22 93.73 82.95(+0.25)
EMoE 90.74 65.79 76.17 90.31 93.58 83.32(+0.62)

GPT2
Small

baseline 84.46 47.07 67.15 86.29 92.13 75.42
noisy tuning 84.15 46.16 67.51 86.09 92.13 75.21(-0.21)
GMoE 85.07 47.77 67.51 86.57 92.35 75.85(+0.43)
EMoE-learn 85.73 47.24 67.99 86.66 92.35 75.99(+0.57)
EMoE 85.40 48.00 68.95 86.64 92.70 76.34(+0.92)

We evaluate EMoE’s ID performance on 5 GLUE tasks. According to Table 2: (1) On aver-
age, EMoE and EMoE-learn outperform other baselines. (2) Among the two methods that do not
introduce additional parameters, EMoE significantly outperforms noisy tuning. (3) EMoE provides
stable improvements over baselines across different settings, demonstrating its generality.

4.2 LORA-TUNING PERFORMANCE

Table 3: ID and OOD performance of EMoE and baseline models. All the reported results are obtained from
3 independent experiments. OOD Metrics (averaged over 14 OOD tasks, lower is better) provide additional
information for out-of-distribution generalization. The best result is highlighted in bold.

Algorithm MRPC CoLA RTE STSB SST2 QNLI QQP MNLI ID-Avg OOD

BERT-Large (340M Parameters)

LoRA 89.97 63.40 72.92 90.51 93.16 92.20 87.21 85.40 84.35 4.86
Block 89.34 62.10 71.96 90.39 93.35 92.04 88.45 86.20 84.23(-0.12) 4.95
GMoE 89.45 63.80 72.56 90.29 93.85 92.32 87.99 85.92 84.52(+0.18) 4.04
EMoE-block 89.77 63.25 71.60 90.31 93.69 92.09 88.08 86.21 84.38(+0.03) 5.89
EMoE-learn 89.87 64.00 71.36 90.48 93.65 92.40 87.55 85.62 84.37(+0.02) 4.66
EMoE 90.85 65.33 75.21 90.43 93.50 92.23 87.74 85.43 85.09(+0.74) 4.37

GPT2-XL (1.5B Parameters)

LoRA 86.83 60.88 78.70 89.07 95.18 91.84 87.41 86.93 84.61 5.61
Block 86.59 61.18 79.78 89.08 95.45 91.88 87.71 86.95 84.83(+0.22) 5.13
GMoE 87.02 62.81 79.78 89.21 95.41 92.18 89.10 87.17 85.34(+0.73) 4.33
EMoE-block 87.86 62.88 80.05 89.18 95.49 92.10 89.69 86.87 85.52(+0.91) 5.71
EMoE-learn 87.93 61.50 79.90 89.48 95.18 92.33 89.71 87.00 85.38(+0.77) 4.40
EMoE 87.75 62.27 80.02 89.37 95.41 92.10 89.58 87.06 85.45(+0.84) 3.88

With the increasing scale of pre-trained models, parameter-efficient tuning (Houlsby et al., 2019)
gets popular. Observing weaker results with LoRA-tuned ViT-Large on Domainbed compared to
ViT-Base, we omit LoRA tuning on Domainbed. GLUE-X (Yang et al., 2023) is a recently intro-
duced OOD dataset for the GLUE benchmark. Therefore, we assess EMoE’s ID performance on
GLUE and OOD performance on GLUE-X with the standard LoRA tuning. Notably, LoRA weights
are only added in attention, with all other weights frozen. Therefore, the only difference between
EMoE and its dense counterpart is FFNs activation. For the OOD metric, we follow GLUE-X (Yang
et al., 2023) and employ the Friedman rank (Friedman, 1940) rankf = 1

n

∑n
i=1 ranki. For each

method under the same backbone, ranki is produced based on the best result and the average result
for each dataset. For the 13 OOD tasks used in GLUE-X, each method generates 26 ranki values.
The OOD results presented in Table 3 represent the mean of all these ranki values. The original
results of each task can be found in the Appendix A.5.1. For algorithm configurations, since GMoE
copies the FFNs of the pre-trained model to form the MoEs, it is meaningless if the MoEs parameters
aren’t tuned. Thus, in Table 3, we conduct experiments with LoRA tuning for GMoE and also tune
the transformer block where the original FFNs is replaced. For comparison, we also (1) LoRA-tune
dense model and fine-tune the transformer block at the corresponding layer (denoted “Block”); (2)
LoRA-tune EMoE with the transformed block also updated (denoted “EMoE-block”).
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According to Table 3, EMoE continues to enhance the downstream performance in LoRA tuning:
(1) EMoE demonstrates significant enhancements compared to LoRA and doesn’t introduce addi-
tional trainable parameters or procedures. Notably, EMoE achieves comparable results with GMoE
on BERT-large and outperforms it on GPT2-XL. (2) When the blocks are tuned, EMoE also brings
improvements (EMoE-block vs. Block) (3) Consistent with the full-finetuning findings, EMoE ex-
hibits higher stability than EMoE-learn and delivers superior overall results. (4) Besides vision,
MoEs also improve OOD performance in language tasks (GMoE vs. Block, EMoE vs. LoRA).

5 ANALYSIS

5.1 HOW DOES EMOE IMPROVE FINE-TUNING PERFORMANCE?
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Figure 3: Left: ID and OOD results compared with LoRA for validating EMoE’s training & inference effects.
Right: sparse activated training results with different expert selections.

EMoE achieves notable improvements in both ID and OOD scenarios. However, it is non-trivial
that simply transforming the pre-trained FFNs into MoEs before fine-tuning can yield such benefits
(especially in LoRA tuning where the MoEs part is not updated). Therefore, we investigate the
reasons behind the enhanced fine-tuning performance. To decouple the impact of updating expert
parameters, we focus on LoRA tuning. We use BERT-Large as the backbone model.

EMoE benefits LoRA weights learning instead of influencing inference. EMoE and dense model
only differ in FFNs activations. Such difference might (1) directly impact outputs during testing and
(2) influence the parameter updating during training. In light of this, we propose two variants and
compare them with vanilla LoRA tuning and LoRA tuning with EMoE: (a) LoRA2EMoE: Using
LoRA to fine-tune the original model and split it into its MoEs counterpart. If the test results better
the vanilla LoRA-tuning, we can infer that the sparse activation has an impact on model inference.
(b) EMoE2LoRA: Using LoRA to fine-tune an EMoE model and merge experts back into their orig-
inal FFNs netowrk. If no changes occur, it implies that the primary reason why EMoE brings better
generalization is that it affect the parameter updating of fine-tuning stage. According to Figure 3 left,
doing sparse activation during testing does not contribute to better generalization. (LoRA2EMoE).
Furthermore, when merging LoRA-tuned EMoE blocks back into the original FFNs, the perfor-
mance remains significantly better than the vanilla LoRA tuning (EMoE2LoRA vs. LoRA) and is
almost identical to EMoE. Please refer to Appendix A.5 Table 16 for full results.

EMoE masks neurons with negative transfer impacts. The only difference between EMoE and
vanilla LoRA tuning is EMoE blocks some activated neurons during training by Top-k expert selec-
tion. Based on these, we hypothesize that EMoE’s effects stem from preventing negative knowledge
transfer from blocked neurons. Therefore, we investigate whether there are such negative transfers.
Specifically, we study the following expert selection variants: (1) Bottom-k: select k = 16 experts
who get the lowest scores; (2) Not-top-k: select experts who are not among the top-k experts. These
variants are evaluated across 6 tasks from GLUE. The averaged outcomes are in Figure 3 Right. Full
results can be found in Appendix A.5 Table 17. LoRA tuning results with “Bottom-k” and “Not-top-
k” expert selections are worse than vanilla LoRA tuning. One may attribute this drop to the reduced
number of employed neurons. To further assess this, we compare “Top-k” with “Bottom-k”, where
an equal number of neurons are used. Notably, “Bottom-k” significantly lags behind “Top-k”. This
further corroborates that masked neurons have negative transfer effects.
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Weight-Clustered Activation Patterns

Figure 4: Left: Activations of neurons in FFNs a pre-trained ViT (Dosovitskiy et al., 2021). Right: By
clustering the keys in the FFNs and rearranging the action values accordingly, modular activation patterns of
neurons emerge. These co-activated patterns correspond to the modular structure within pre-trained FFNs.
With appropriate partitioning, we can transform dense networks into modular networks.

5.2 ABLATION STUDIES

Table 4: Clustering-based and ran-
dom expert constructing results

Top-k Bottom-K

Cluster +0.92 -0.48
Random -0.11 -0.34

Expert Constructing Methods Figure 4 demonstrates that
clustering can decompose modular components within the
dense model. To provide further evidence that the EMoE’s im-
provements stem from leveraging modular features rather than
just sparse activation, we compare the results of (1) clustering-
based expert construction and (2) random construction within
the same setting of Section 5.1. The relative changes in aver-
aged outcomes compared to the dense baseline are shown in
Table 4, while full results can be found in the appendix A.5, Table 17. It’s noteworthy that while
cluster top-k exhibits a significant improvement over dense, random top-k is conversely worse than
dense baseline. This suggests that random construction can negatively impact gating. Moreover,
when selecting weights with negative transfer under bottom-k selections, it’s observed that cluster
bottom-k also achieves lower results. In summary, clustering-based methods can externalize im-
plicit modularity within the dense model. Within suitable frameworks like MoEs, such modularity
can facilitate downstream tuning.
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Figure 5: Results of 3 tasks for different experts splittings and expert select fractions (top-k / number of
experts). ‘e=16’ and ‘e=32’ mean splitting FFNs into 16 and 32 experts, respectively.

Expert Constructing Configurations Beyond the settings detailed in the main results section,
which are based on N = 64 experts and top-k ∈ {16, 32, 48}, we also present specific scenar-
ios where N ∈ {16, 32}, and top-k varies within {2, 4, 8, 16} in Figure 5. Notably, in each of
these settings, (1) EMoE consistently surpasses the dense model, illustrating its insensitivity to
hyper-parameters. (2) On average, avg-k gating exhibits superior performance than learned gat-
ing. Though learned gating (EMoE-learn) outperforms avg-k gating in a few specific settings (Fig-
ure 5 (b) and (e)). This is consistent with the earlier results in Section 4. Regarding how many
EMoE layers should be introduced, our findings align with those discovered in GMoE, indicating
that only a limited number of layers can be converted into the EMoE layer. If excessive EMoE
layers are introduced, performance deteriorates. Taking GPT2-XL (48 layers) as an example, when
introducing EMoE every 2 layers in the latter half, the performance averaged across 5 GLUE tasks
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Figure 6: Expert selections during training with distinct gating functions (avg-k vs. learned) and expert
types (modules from dense vs. repetitions of dense). The vertical axis illustrates training steps (top-down
arrangement signifies begin-end); the horizontal axis represents expert selection frequency within 1K steps
(deeper color implies a higher frequency). (a), (b) and (c) correspond to EMoE, EMoE-learn, and GMoE.

(79.36) matches that of the dense model (78.87). But when adopting EMoR every 2-layer for the
entire model, the performance lags slightly behind that of the dense model (78.17) but surpasses
EMoE-learn (75.87). For additional configurations, please refer to the appendix A.5.2 Table 19.

How Expert Selection Changes During Training To further understand avg-k gating and learned
gating, we visualize expert selections of GPT2-XL during fine-tuning on 6 tasks with 16 experts. In
Figure 6, we showcase the results for the largest dataset QNLI among them. Full results are available
in the appendix A.6. Our observations are: (1) Both avg-k gating and learned gating converge, as
indicated by the lower halves of the plots. (2) avg-k gating is more stable than learned gating
(Figure 6 a vs. b). This might mitigate data inefficiency from gating inconsistencies across different
stages of training (Zuo et al., 2022). (3) EMoE, with its heterogeneous experts, exhibits better load
balancing than GMoE (Figure 6 b vs. c). In GMoE, all experts share identical initialization, whereas
in EMoE, the experts are derived from FFNs with implicit modularity. This also suggests a good
initialization can facilitate MoEs learning similar to EvoMoE (Nie et al., 2021).
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Figure 7: Average performance of EMoE
with different proportions of training data.

Performance Across Different Training set Volumes.
Previous research has indicated that modular architectures
offer improved data efficiency (Bengio et al., 2020). There-
fore, we conducted experiments with GPT2-XL on six tasks
using varying proportions of original training data, and the
results for all tasks are presented in Figure 7. It can be
observed that EMoE consistently outperforms the dense
across different data factions. EMoE achieves superior
results even when using less than 20% of the data. On
SST2, only using 50% data, EMoE shows comparable per-
formance to the dense. More details can be found in the
Appendix A.5.2 Table 20. This further underscores the ben-
efits of incorporating modular structures.

6 CONCLUSION, LIMITATIONS AND FUTURE WORKS

Conclusion: In this work, we validate that exploiting the emergent modular structures in dense pre-
trained transformers improves downstream task ID and OOD performances. One possible reason
is the modular structure can alleviate negative transfer effects presented in the pre-trained model.
We hope our findings could deepen the understanding of neural networks’ modularity, further help-
ing the community develop more sophisticated modular neural architectures and utilizing existing
pre-trained models. Limitations: Our primary objective was to investigate the utility of EM, and
thus, we predominantly adopted the techniques from MoEfication for decomposition. We encourage
further research to propose improved algorithms for harnessing EM. Our research findings have not
been validated on more challenging tasks (e.g., Mathematical Reasoning (Imani et al., 2023)). While
our analysis was primarily conducted on models with a maximum parameter count of 1.5B, we vali-
date the scaling up ability of EMoE to Llama-30B. Future works: Subsequent research could delve
into better methods for modular decomposition and investigate the modularity in foundation mod-
els. Benefiting from EMoE’s ability to avoid negative transfer, future researchers can also exploit
the emergent modularity in settings such as multi-task learning and continual learning. Moreover, it
is observed that modularity structures emergent and remain stable after approximately one-fourth of
the pre-training phase (Li et al., 2022; Zhang et al., 2023). Future investigations could investigate
leveraging the modularity of dense models during the pre-training process.
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7 REPRODUCIBILITY

In the Experiment Configuration section 4, we first introduce the additional configurations intro-
duced by EMoE relative to the Dense Model, as well as the baseline settings. Subsequently, we
provide high-level experiment settings for each experimental group (Domainbed at 4.1, full fine-
tuning GLUE tasks at section 4.1, LoRA tuning at 4.2). In Appendix A.3, we provide detailed
information on the datasets used, the codebase, and the evaluation metrics. We also outline more
general configurations, such as learning rates and batch sizes for the respective tasks. Beyond the
main paper, we include the original code for the experiments and log files for certain experimen-
tal results in the supplementary materials. Each section of code includes a README.md file that
explains the experimental settings required to replicate the results.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENT RESULTS

A.1.1 MULT-TASKS SETTING

Table 5: T5-base ID performances. All tasks are from SuperGLUE so we omit the prefix ”Super-
GLUE” for each tasks.

Experts (N) topk (k) boolq cb wic wsc.fixed rte copa test avg

Baseline 82.14 85.71 65.83 34.62 74.10 52.00 65.73
8 2 80.67 89.29 65.52 36.54 79.86 56.00 67.98
16 4 81.16 89.29 68.34 51.92 74.10 44.00 68.14
32 8 80.12 78.57 70.85 63.46 82.73 64.00 73.29
32 16 81.04 75.00 72.41 57.69 78.42 54.00 69.76

In our analysis 5.1, we have identified that the improvement brought by EMoE is likely associated
with mitigating negative transfer. Inspired by this, we choose a multi-task learning setting where
negative transfer might be more pronounced. We adopt the codebase1 from ATTEMPT (Asai et al.,
2022). For the in-domain (ID) scenario, we follow the settings outlined in ATTEMPT and select six
tasks from the Super-GLUE benchmark (Wang et al., 2019a). For the out-of-domain (OOD) sce-
nario, we take two larger natural language inference (NLI) datasets MNLI and QNLI, from GLUE

1https://github.com/AkariAsai/ATTEMPT
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Table 6: T5-base OOD performances. ’SG’ refers to ’SuperGLUE’.

Experts (N) topk (k) mnli qnli wnli rte SG-rte SG-cb OOD avg

Baseline 86.2 92.42 50.00 61.87 62.59 32.14 51.65
8 2 86.27 92.18 50.00 64.03 62.59 32.14 52.19
16 2 86.44 92.59 52.78 64.03 56.83 39.29 53.23
32 8 86.56 92.49 58.33 64.03 61.87 28.57 53.20

as our ID training data. We subsequently conducted direct testing on four additional NLI datasets
from different domains. All hyperparameters unrelated to MoEs are kept consistent with the base-
line, and we have listed the MoEs-related hyperparameters in the result table. Our observations are
as follows:
1. EMoE exhibits a substantial improvement compared to the baseline. In the in-domain (ID) set-
ting, the highest improvement reached 7.56, even considering the average performance across the six
tasks. In the out-of-domain (OOD) setting, the highest average OOD result across the four datasets
improved by 1.58.
2. Across various settings of N and K, EMoE consistently outperforms the vanilla fone-tuning.
Within the hyperparameter search space specified in our paper, EMoE consistently improves at least
2 points over the baseline in the in-domain (ID) setting. This emphasizes the effectiveness of EMoE
and EMoE’s robustness to the explored hyperparameter range.

A.1.2 INSTRUCTION-TUNING LLMS SETTING

Table 7: Instruction full-tuned Llama2-7B’s MMLU scores. Times are wall-clock computation
times. The term ’times’ in the subsequent tables refers to the same concept. ’w/o’ refers to ’without’.

Experts (N) topk (k) MMLU score times (s) FLOPS (1016)

w/o tuning - 46.79 - -
full tuning - 46.5 4988 8.97

64 16 48.08 5036 9.12
64 32 47.44 5041 9.24

Table 8: Instruction LoRA-tuned Llama2-7B’s MMLU scores.

Experts (N) topk (k) MMLU score times (s) FLOPS (1017)

w/o tuning - - - -
LoRA-tuning - 46.96 1396 6.92

64 16 47.58 1545 7.03
64 32 47.37 1521 7.13

To further prove that the main conclusion EMoE still holds for larger LLM, we use the Alpaca
dataset to instruction-tune the Llama series models (Touvron et al., 2023) and evaluate it on the
MMLU benchmark (Hendrycks et al., 2021). We have observed the following:
1. Across model sizes of 7B, 13B, and 30B, as well as settings such as full-finetuning and Lora
tuning, EMoE consistently yields improvements relative to the baseline.
2. The choice of K and N proportions remains applicable even in larger-scale models. While vari-
ations may be in different settings, they consistently outperform the baseline. This suggests that
although additional hyperparameters are introduced, they do not lead to usability challenges.

A.2 COMPARISON BETWEEN EMOE, MOEFICATION AND GMOE

Having observed that FFN layers in pre-trained Transformers are sparsely activated (many neurons
are unused for inputs), MoEfication splits transforms FFNs into a sparse MoE, aiming to approx-
imate the functionality of the original FFNs to reduce the computational cost, further improving
inference efficiency. Besides, the GMoE makes multiple replicates of the original FFN layer and in-
troduces a learned gate to form a MoE architecture. They claim that such architecture could improve
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Table 9: Instruction LoRA-tuned Llama-30B’s MMLU scores.

Experts (N) topk (k) MMLU score times (s) FLOPS (1018)

w/o tuning - 51.5 - -
LoRA-tuning - 56.18 6943 2.25

256 128 57.11 6955 2.25
256 128 56.64 6974 2.24

Table 10: Comparison between EMoE, Moefication and GMoE

Aspect EMoE Moefication GMoE
Research Problem Exploit the emergent modu-

larity during fine-tuning pre-
trained transformers.

Approximate FFNs with
sparse MoE to improve
inference efficiency.

Validate the OOD improve-
ments brought by Sparse
MoE architectures.

Methods Split FFNs Split FFNs Copy of FFNs

Practicality No additional trainable pa-
rameters. Experts can be
recomposed into the dense
model so that models can
be deployed as a standard
model.

May need re-training on the
original task. May suffer
from inference latency ow-
ing to the specific imple-
mentation of MoE architec-
tures.

Additional trainable param-
eters are introduced. May
suffer from inference la-
tency owing to the specific
implementation of MoE ar-
chitecture.

Contributio Significant general improve-
ment without adding param-
eters and not depending on
the specific implementation.

Improved inference effi-
ciency (depending on the
specific implementation
of MoE), but performance
drop.

Significant OOD improve-
ment with additional param-
eters and specific implemen-
tation.

OOD performance from their theoretical perspective of algorithmic alignment framework. MoEfi-
cation and GMoE do not touch on how emergent modularity influences the training stage. The
table below illustrates a mdetailed comparison of these works. These differences are summarized in
Table 10.

A.3 DATASETS AND EVALUATION METRICS

A.3.1 DOMAINBED

Table 11: Used dataset information from Domainbed

Dataset PACS VLCS OfficeHome TerraInc
#Domains 4 4 4 4
Classes 7 5 65 10
Images 9,991 10,729 15,588 24,788

The four datasets (PACS (Li et al., 2017), VLCS (Fang et al., 2013), Office-Home (Venkateswara
et al., 2017), and Terra Incognita (Beery et al., 2018)) are selected from Domainbed. Each dataset
comprises 4 distinct domains(PACS: {art, cartoons, photos, sketches}, VLCS: {Caltech101, La-
belMe, SUN09, VOC2007}, Office-Home: {art,clipart, product, real}, and Terra Incognita: {L100,
L38, L48, L46}). One or two domains’ data are sequentially designated within a single training
for OOD evaluation. For example, when training on PACS, {art, cartoons} could be selected as ID
training data, while {photos, sketches} are designated for OOD testing. This configuration results
in C2

4 +C1
4 = 10 distinct training processes within each dataset. Suppose there are dtr ID domains,

“Train-validation” means selecting OOD test checkpoints based on ID accuracies from the valida-
tion subsets of all dtr ID domains; “Leave-one-domain-out” means leaving one selected ID domain
as a validation set, doing training on dtr − 1 domains; “Test-domain” means selection based on lim-
ited access to test domains and selection based on these results. The final results are aggregated with
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selection criteria provided by Domainbed2. As a result, even a variation of 0.1 in the benchmark
outcomes signifies a significant improvement.

In our experiments, all the hyper-parameters, like training steps, learning rates, and weight decay,
except those related to MoEs, strictly follow GMoE.

A.3.2 GLUE

Each task involves one to four OOD tasks from GLUE-X (Yang et al., 2023), resulting in 13 OOD
tasks in total. To illustrate, consider the Sentiment Analysis task: we first fine-tune models on
SST-2 from GLUE and report the validation results as ID performance, then use the test data from
IMDB (Maas et al., 2011), Yelp (Zhang et al., 2015), Amazon (Kaushik et al., 2020) and Flip-
kart (Vaghani & Thummar, 2023) from GLUE-X for OOD testing.

In the full fine-tuning, to ensure convergence and reduce randomness, we train all models 10 epochs
across 3 random seeds on each task. Each experiment does a hyper-parameter search on learning
rates on [2e-5, 3e-5, 5e-5] as suggested by BERT (Devlin et al., 2019). The training batch size is 32.
In the LoRA tuning, following LoRA (Hu et al., 2022) that tunes models with more epochs and larger
learning rates than standard full fine-tuning, all models are trained 20 epochs on small and medium
datasets and 5 epochs on large ones (like QNLI, MNLI, QQP). The learning rate is searched in [2e-4,
3e-4, 5e-4]. All methods are implemented with LoRA rank=8 and LoRA alpha=16. The training
batch size is 16 due to a larger model size. Other settings like max lengt following the codebase
from hugging face3. After training on GLUE, we directly test the selected models on GLUE-X with
the data from the official repo4.

Table 12: Language tasks and corresponding ID and OOD datasets.

Task ID-dataset size OOD-dataset size

Paraphrase
MRPC 4,076 Twitter 16,777

QQP 404,301 Twitter 16,777
MRPC 4,076

Linguistic Acceptability CoLA 9,594 Grammar Test 304,277

Textual Entailment RTE 2,768 SciTail 26,527
HANs 60,000

Textual Similarity STSB 7,128 SICK 9,840

Sentiment Analysis SST2 68,223

IMDB 50,000
Yelp 598,000
Amazon 4,000,000
Flipkart 205,041

Question Answering NLI QNLI 110,206 NewsQA 119,525

Natural Language Inference MNLI 412,313 SICK 9,840

A.4 COMPUTATION COST AND MEMORY USAGE

A.4.1 EXPERIMENTS WITH PUBLIC MOES LIBRARY

Theoretically, EMoE does not introduce additional parameters compared to its dense counterpart.
Although it adds computation in the gating portion within the MoEs layer, it omits a substantial
amount of computation within the FFNs layer. For instance, the computation in the gating portion is
of the order of h ×N , where h represents the model’s hidden size, and N is the number of experts.
In contrast, the complete computation in the FFNs layer is of the order of (h × h × 4h) × 2, and
sparse activations can reduce more than a quarter of this computation. Since N ≪ h, theoretically,

2https://github.com/facebookresearch/DomainBed
3https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification
4https://github.com/YangLinyi/GLUE-X
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using EMoE within a single block should accelerate the forward pass of the model. However, in real
deployment, we have observed that the hardware implementation of MoEs can result in EMoE being,
on average, approximately 10% slower than the dense model. Additionally, the memory usage is
also slightly higher, by less than 5%, compared to the dense model (16295MB v.s. 15865MB on
CoLA, LoRA tuning GPT2-XL).

Each individual experiment was conducted on a single NVIDIA 40G A100 GPU. The training times
for different tasks ranged from just over ten minutes (RTE) to more than ten hours (QQP).

A.4.2 EXPERIMENTS WITH SELF-IMPLEMENTATION

We further find that the increasing wall time and the GPU memory usage come from the public
library tutel we used to implement EMoE. We reimplement our method and observed that EMoE
does not require significant additional run time and memory usage. Specifically, we introduce an
alternative implementation approach in EMoE where hidden states are used to calculate gate scores
after computing the first layer. These scores mask the outputs of unselected experts, mimicking
the effect of MoEs. Though this theoretically increases FLOPS compared to traditional MoEs, in
practice, the speed is comparable to dense models, as demonstrated in Tables 7, 8 and 9.

A.5 TABULAR RESULTS

A.5.1 FULL TABLES IN FULL FINE-TUNING WITH STANDARD DEVIATION

In this section, we present the mean and variance of experiments conducted with three different
random seeds. The Domainbed results are demonstrated in Table 13, full fine-tuning results are in
Table 14, LoRA tuning results are in Table 15.

Table 13: Overall out-of-domain performances with different selection criteria. All the reported
results are obtained from three independent experiments conducted following the Domainbed code-
base. The best result is highlighted in bold.In cases where results are the same, the best result is
determined by the smallest standard deviation. EMoE demonstrates comparable results to GMoE.

Results with ViT-small backbone

Algorithm PACS VLCS OfficeHome TerraInc Avg
train-validation selection criterion

ViT 86.9±0.2 79.7±0.4 73.0±0.2 44.0±1.1 70.90
GMoE 87.7±0.2 79.6±0.4 73.1±0.3 45.4±0.3 71.45
EMoE-learn 87.2±0.4 79.6±0.2 72.5±0.2 46.1±0.4 71.35
EMoE 87.8±0.2 79.5±0.4 73.1±0.2 45.9±0.3 71.58

leave-one-domain-out selection criterion

ViT 86.1±0.6 79.7±0.4 73.3±0.1 45.0±0.5 71.03
GMoE 86.5±0.3 80.5±0.2 73.1±0.3 45.3±0.6 71.35
EMoE-learn 86.8±0.0 79.6±0.3 72.6±0.2 45.8±0.6 71.20
EMoE 86.8±0.1 80.6±0.4 73.3±0.2 46.1±0.6 71.70

test-domain selection criterion

ViT 86.5±0.4 78.2±0.4 73.1±0.2 44.0±0.5 70.45
GMoE 87.2±0.4 79.0±0.3 73.4±0.2 45.3±0.4 71.23
EMoE-learn 87.4±0.2 79.1±0.3 72.8±0.1 45.4±0.6 71.18
EMoE 87.6±0.5 79.0±0.2 73.3±0.0 45.5±0.1 71.35

Results with ViT-base backbone

Algorithm PACS VLCS OfficeHome TerraInc Avg
train-validation selection criterion

ViT 89.1±0.0 80.7±0.1 77.2±0.1 47.3±0.8 73.58
GMoE 90.0±0.3 80.4±0.6 77.0±0.1 49.2±1.1 74.15
EMoE-learn 89.8±0.2 80.6±0.2 76.5±0.1 48.7±0.5 73.90
EMoE 89.4±0.4 80.7±0.2 77.3±0.1 48.5±0.5 73.98

leave-one-domain-out selection criterion

ViT 88.9±0.4 80.8±0.3 77.5±0.1 46.1±0.6 73.33
GMoE 89.3±0.6 81.0±0.3 76.7±0.1 50.1±1.1 74.28
EMoE-learn 89.3±0.2 81.2±0.1 76.5±0.1 50.5±0.2 74.38
EMoE 89.6±0.2 81.6±0.2 77.4±0.1 50.0±1.1 74.65

test-domain selection criterion

ViT 88.8±0.7 79.0±0.5 77.2±0.0 46.7±0.4 72.93
GMoE 89.7±0.5 79.0±0.3 77.0±0.1 48.8±0.4 73.63
EMoE-learn 89.7±0.4 79.7±0.2 76.6±0.1 48.7±0.3 73.68
EMoE 89.7±0.4 79.7±0.2 77.5±0.1 48.8±0.6 73.93

A.5.2 FULL TABLES AND FIGURE DATA SOURCES IN ANALYSIS

In the Analysis section 5.1, for the sake of clarity, we have transformed tabular data into graphs or
retained only a subset of the results. The original and complete results corresponding to them are
presented in this section. Figure 3 is summarized from Table 16 and Table 17. The OOD results in
Table 3 are from 15. The ablation studies are from Table 19 and Table 20.

A.6 MORE VISUALIZATION RESULTS

In this part, we demonstrate more gating visualization results on SST-2, STSB, MRPC, and RTE in
Figure 8. These results are consistent with earlier findings: (1) Both avg-k gating and learned gating
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Table 14: Results on GLUE tasks with different backbones and algorithms. All the reported results
are obtained from 3 independent experiments. The average accuracy (avg) is reported along with
the relative improvement compared to the baseline. The best result is highlighted in bold.

Backbone Algorithm MRPC CoLA RTE STSB SST2 Avg

BERT-B

baseline 88.45±0.40 60.67±0.54 68.95±0.69 87.87±0.12 91.97±0.19 79.582
noisy tuning 88.43±0.12 61.79±0.16 71.36±0.17 88.27±0.94 92.32±0.25 80.43(+0.85)
GMoE 88.63±0.53 61.25±2.36 70.28±0.68 88.63±0.65 92.28±0.24 80.21(+0.63)
EMoE-learn 89.05±0.23 62.46±1.01 70.40±1.28 88.47±0.74 92.58±0.14 80.59(+1.01)
EMoE 89.45±0.36 61.55±0.67 69.68±1.02 88.71±0.50 92.89±0.19 80.46(+0.87)

BERT-L

baseline 89.82±1.30 65.41±0.47 74.89±1.39 89.87±0.28 93.50±0.24 82.70
noisy tuning 90.42±0.35 64.75±1.31 73.41±1.62 90.05±0.46 93.65±0.11 82.46(-0.24)
GMoE 91.24±0.25 64.90±1.26 74.24±1.04 90.00±0.64 93.58±0.25 82.79(+0.09)
EMoE-learn 90.57±0.43 65.51±0.32 74.72±2.13 90.22±0.49 93.73±0.35 82.95(+0.25)
EMoE 90.74±0.65 65.79±1.16 76.17±0.00 90.31±0.43 93.58±0.32 83.32(+0.62)

GPT2

baseline 84.46±0.51 47.07±1.60 67.15±0.51 86.29±0.29 92.13±0.30 75.42
noisy tuning 84.15±0.92 46.16±2.79 67.51±0.78 86.09±0.38 92.13±0.27 75.21(-0.21)
GMoE 85.07±0.45 47.77±3.20 67.51±0.51 86.57±0.29 92.35±0.35 75.85(+0.43)
EMoE-learn 85.73±0.09 47.24±1.48 67.99±0.17 86.66±0.32 92.35±0.38 75.99(+0.57)
EMoE 85.40±0.77 48.00±1.50 68.95±0.29 86.64±0.16 92.70±0.22 76.34(+0.92)

Table 15: Results on various algorithms with different models and tasks. All the reported results
are obtained from 3 independent experiments. OOD Metrics (averaged over 14 OOD tasks, lower
is better) provide additional information for out-of-distribution generalization. The best result is
highlighted in bold, and the second is marked with underline.

Algorithm MRPC CoLA RTE STSB SST2 QNLI QQP MNLI ID-Avg OOD

BERT-Large (340 Million Parameters) Results

LoRA 89.97±0.40 63.40±0.62 72.92±1.64 90.51±0.18 93.16±0.19 92.20 ±0.13 87.21±0.60 85.40±0.07 84.35 4.86
Block 89.34±0.84 62.10±0.91 71.96±1.68 90.39±0.14 93.35±0.43 92.04±0.16 88.45±0.07 86.20±0.10 84.23(-0.12) 4.95
Block+GMoE 89.45±0.72 63.80±0.71 72.56±0.29 90.29±0.07 93.85±0.11 92.32±0.14 87.99±0.06 85.92±0.13 84.52(+0.18) 4.04
Block+EMoE-learn 89.79±0.23 64.16±0.87 73.16±1.04 90.27±0.03 93.85±0.11 92.40±0.06 88.01±0.12 85.76±0.19 84.68(+0.33) 3.94
Block+EMoE 89.77±0.46 63.25±0.50 71.60±0.68 90.31±0.09 93.69±0.32 92.09±0.13 88.08±0.19 86.21±0.16 84.38(+0.03) 5.89
EMoE 90.85±0.61 65.33±0.40 75.21±1.62 90.43±0.06 93.50±0.33 92.23±0.10 87.74±0.10 85.43±0.10 85.09(+0.74) 4.37
EMoE+LN 90.47±0.33 64.39±0.31 73.41±1.04 90.54±0.03 93.00±0.16 92.31±0.05 88.79±0.17 85.50±0.10 84.80(+0.46) 4.53
EMoE-learn 89.87±0.50 64.00±0.57 71.36±1.39 90.48±0.10 93.65±0.33 92.40±0.11 87.55±0.14 85.62±0.23 84.37(+0.02) 4.66
EMoE-learn+LN 89.9±0.25 64.16±1.16 72.44±0.45 90.45±0.10 93.42±0.38 92.15±0.10 87.70±0.04 85.52±0.24 84.47(0.12) 4.28

GPT2-XL (1.5 Billion Parameters) Results

LoRA 86.83±0.87 60.88±2.54 78.70±0.59 89.07±0.11 95.18±0.28 91.84±0.09 87.41±1.74 86.93±0.15 84.61 5.61
Block 86.59±1.45 61.18±1.74 79.78±2.22 89.08±0.15 95.45±0.19 91.88±0.05 87.71±2.95 86.95±0.08 84.83(+0.22) 5.13
Block+GMoE 87.02±0.76 62.81±1.51 79.78±1.35 89.21±0.20 95.41±0.28 92.18±0.11 89.10±0.78 87.17±0.20 85.34(+0.73) 4.33
Block+EMoE-learn 87.31±1.23 62.24±1.51 79.54±0.17 89.33±0.11 95.30±0.09 92.20±0.09 88.59±1.68 87.06±0.18 85.20(+0.59) 4.05
Block+EMoE 87.86±0.98 62.88±0.54 80.05±0.29 89.18±0.25 95.49±0.39 92.10±0.15 89.69±0.15 86.87±0.11 85.52(+0.91) 5.71
EMoE 87.75±0.14 62.27±0.93 80.02±0.34 89.37±0.30 95.41±0.32 92.10±0.15 89.58±0.10 87.06±0.25 85.45(+0.84) 3.88
EMoE+LN 88.05±0.35 63.11±0.51 79.90±1.51 89.40±0.22 95.18±0.28 92.23±0.11 89.70±0.09 87.03±0.14 85.58(+0.97) 4.39
EMoE-learn 87.93±0.61 61.50±1.09 79.90±0.61 89.48±0.24 95.18±0.11 92.33±0.093 89.71±0.06 87.00±0.19 85.38(+0.77) 4.40
EMoE-learn+LN 87.04±1.11 62.64±0.84 79.78±0.59 89.50±0.22 95.30±0.50 92.31±0.19 89.43±0.35 87.00±0.12 85.38(+0.77) 3.67

converge, as indicated by the lower halves of the plots. (2) avg-k gating is more stable than learned
gating. This could mitigate data inefficiency resulting from inconsistencies in gating across different
stages of training (Zuo et al., 2022).
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Table 16: ID and OOD results of BERT-L for different settings. ”LoRA-to-EMoE” refers to con-
verting a model tuned using standard LoRA into EMoE for testing. On the other hand, ”EMoE-to-
LoRA” involves merging a tuned EMoE model back into a standard dense model during testing.

Algorithm CoLA Gram MRPC Twitter RTE Hans SciTail STSB Sick Avg
LoRA 60.89±2.55 41.77±1.62 86.83±0.87 75.42±2.71 78.70±1.02 60.37±1.31 77.36±0.73 89.22±0.13 78.48±0.33 72.12
LoRA-to-EMoE 61.31±2.14 41.99±1.56 86.83±0.91 75.15±3.02 78.58±0.95 60.39±1.32 77.24±0.68 89.23±0.13 78.53±0.35 72.14
EMoE 62.69±0.91 42.95±0.95 87.82±0.17 76.07±2.12 79.54±0.45 61.56±1.65 78.09±0.56 89.39±0.31 78.57±0.67 72.96
EMoE-to-LoRA 62.69±0.91 42.94±0.95 87.82±0.17 76.06±2.12 79.54±0.45 61.56±1.65 78.07±0.58 89.39±0.3 78.58±0.67 72.96

Table 17: ID results of BERT-L for different settings. ”Cluster-top” refers to EMoE utilizing avg-k
gating. ”Cluster-not-top” represents a scenario where, during gating, the top-k experts are removed.
Similarly, ”Cluster-bottom” involves selecting the bottom-k experts with the lowest scores during
gating. ”Random” denotes the approach of randomly selecting key values to construct experts. The
terms ”top,” ”not-top,” and ”bottom” have the same meanings as in the cluster situations.

Algorithm MRPC CoLA RTE STSB SST2 QNLI Avg
LoRA 89.97±0.40 63.40±0.62 72.92±1.64 90.51±0.18 93.16±0.19 92.20±0.13 83.69
Cluster-top 90.85±0.61 65.33±0.40 75.21±1.62 90.54±0.03 93.50±0.33 92.23±0.10 84.61(+0.92)
Cluster-not-top 89.61±0.76 63.21±0.44 72.56±1.28 90.31±0.07 93.12±0.34 92.14±0.18 83.49(-0.20)
Cluster-bottom 89.21±0.69 63.08±1.09 71.72±0.34 90.15±0.18 92.97±0.19 92.13±0.31 83.21(-0.48)
Random-top 89.88±0.75 63.26±0.39 72.56±1.06 90.33±0.05 93.35±0.00 92.14±0.20 83.59(-0.11)
Random-not-top 90.09±0.75 63.35±0.34 72.44±1.19 90.44±0.07 93.31±0.25 92.20±0.16 83.64(-0.05)
Random-bottom 89.47±0.23 63.17±0.98 71.96±0.74 90.30±0.23 93.11±0.25 92.10±0.11 83.35(-0.34)
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Table 18: Raw OOD performances across 13 tasks. Average results with standard deviation and
best results are reported separately. Due to the large deviation across seeds overall methods, we use
Friedman rank metrics (Friedman, 1940).
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Table 19: Results of different MoEs Configurations

Algorithm MRPC CoLA RTE STSB Avg
Dense 86.83±0.87 60.88±2.54 78.70±0.59 89.07±0.11 78.87
EMoE 88.05±0.35 63.11±0.21 80.02±0.34 89.37±0.24 80.14
EMoE-learn 87.93±0.61 62.87±0.71 79.90±0.61 89.40±0.08 80.03
EMoE-last-every2 87.27±0.47 61.60±0.63 79.18±0.17 89.38±0.24 79.36
EMoE-learn-learn-every2 87.26±0.21 61.82±1.10 78.46±1.22 89.31±0.15 79.21
EMoE-every2 86.78±0.34 59.21±0.79 77.38±1.04 89.31±0.06 78.17
EMoE-learn-every2 86.71±1.32 54.02±0.47 74.25±0.74 88.51±0.31 75.87

Table 20: Comparison of EMoE and Dense Results with Different Training Data Fraction

Data CoLA MRPC RTE STSB SST2 QNLI Average
Fraction EMoE Dense EMoE Dense EMoE Dense EMoE Dense EMoE Dense EMoE Dense Diff
1.0 62.27 60.88 87.75 86.83 80.02 78.70 89.37 89.07 95.41 95.18 92.10 91.84 0.74
0.9 61.58 60.01 87.52 86.49 79.87 77.85 89.18 89.07 95.41 95.16 92.05 91.94 0.85
0.8 60.89 59.28 86.58 86.35 79.22 76.77 88.98 88.99 95.34 95.06 91.94 91.83 0.78
0.7 59.29 58.25 86.10 85.56 77.98 76.77 87.95 87.95 95.41 95.06 92.04 91.74 0.57
0.6 58.91 57.93 85.61 84.76 76.29 75.45 86.70 86.17 95.26 95.03 91.83 91.54 0.62
0.5 55.18 53.89 84.91 84.76 76.53 75.21 85.63 85.59 95.19 94.91 91.23 91.12 0.53
0.3 50.17 50.29 82.80 82.59 73.52 72.44 80.23 79.08 94.82 94.72 90.45 90.26 0.44
0.1 46.47 45.54 78.17 77.85 63.05 63.17 62.33 60.81 94.49 94.38 88.39 88.32 0.47
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Figure 8: Expert selections during training with distinct gating functions (avg-k vs learned gate) and expert
types (modules from dense vs repetitions of dense). The vertical axis illustrates training steps, with top-down
arrangement signifying begin-end; the horizontal axis represents expert selection frequency within 1K steps.
(a), (b) and (c) correspond respectively to EMoE, EMoE-learn, and GMoE configurations. The subplots from
top to bottom are results for SST-2, STS-B, MRPC, and RTE.
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