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Abstract

We seek to survey the spatial awareness capabilities of Large Language Models (LLMs),
as well as related tasks/benchmarks that measure their performance in embodied reason-
ing/planning.

1 Introduction

The emergence of Large Language Models (LLMs) has revolutionized artificial intelligence, demonstrating
remarkable proficiency across diverse tasks, from natural language understanding to code generation and
scientific reasoning. Initially confined to processing textual data, these models have rapidly evolved to
integrate multimodal capabilities, enabling them to handle images, audio, and even video. As they continue
to expand their reach, a critical challenge arises: Can LLMs effectively interpret, understand, and navigate
three-dimensional (3D) environments?

Spatial reasoning is fundamental to many real-world applications, including robotics, autonomous navigation,
augmented reality, and geospatial analysis. Unlike text, which follows a linear structure, spatial information is
inherently multidimensional, requiring models to process relationships between objects, depth, orientation,
and movement. While LLMs can describe spatial concepts linguistically, their training primarily relies
on textual data, limiting their ability to develop an intrinsic understanding of physical space, geometry,
and embodied experience. This survey aims to examine the current capabilities, limitations, and potential
solutions for enabling LLMs to reason about 3D space, investigating the spatial awareness of LLMs and their
mechanisms for spatial reasoning.

1.1 Motivation

Understanding how Large Language Models (LLMs) conceptualize space is crucial for optimizing their appli-
cation across various domains. By identifying their weaknesses in spatial reasoning — such as difficulties with
3D navigation, object permanence, and relative positioning — we can enhance their performance through
additional training, multimodal learning, or specialized reasoning modules. At the same time, recognizing
their strengths, such as their ability to infer spatial relationships from linguistic cues or generate structured
navigation plans, allows us to frame problems in ways that align with their capabilities.

Beyond spatial reasoning, this principle extends to broader emergent abilities in LLMs, including logical
inference, commonsense reasoning, and adaptability to novel tasks. For example, while LLMs exhibit strong
performance in abstract reasoning tasks, they struggle with tasks requiring grounded perception or real-world
interaction.

Additionally, a comprehensive understanding of LLMs’ cognitive architecture — not just in space but in
temporal reasoning, social awareness in multi-agent environment, and embodied cognition — will be key to
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unlocking their full potential in domains ranging from robotics to augmented reality, scientific discovery, and
autonomous systems.

2 Spatial Understanding

First, we will cover existing works that explore spatial understanding in LLMs.

2.1 Text-Only Understanding

Text-only understanding has become less popular with the advent of multimodal LLMs that are able to
incorporate other modalities like images or videos. However, it provides a solid foundation for understanding
what spatial relations can be acquired by LLMs during their extensive text-only pretraining processes.

At first, it may not be clear how only training on text can produce a model that understands modalities
outside of it. However, existing work has shown that models are able to learn colors, cardinal directions, and
state tracking to varying degrees of success Patel & Pavlick (2022); Abdou et al. (2021). Liu et al. (2022) even
show that some degree of commonsense understanding of relative sizes and relations is available to language-
only models. Yamada et al. (2024) explore this idea for navigating a 2D grid through word problem style
QA. In their setup, they measure the performance of GPT and Llama on various types of grids. They find
that models perform best on square grids, which they hypothesize is because of the prevalence of similar
structures in tables, charts, graphs, and other human artefacts. For paths arranged around a ring or on a
triangular grid, Llama 2 performance worse than random chance at correctly identifying vertices, and for
paths arranged on a hexagonal grid, both GPT4 and Llama 2 perform worse than random chance. The
performance of both models trails behind human performance by a significant margin.

Furthermore, they explore whether spatial information is better utilized by these models when presented
in one cohesive global description or piece by piece as if the agent is acquiring the new information as it
travels the grid. They find that the models perform better when the information is provided locally instead
of globally. They perform several other experiments including varying the ordering of coordinates in the
textual representation of the grid to see if it affects understanding (a standard row-by-row approach is most
effective), an error analysis of incorrect answers (which shows that mistakes are often physically near the
correct answer on the grid or temporally near the correct answer in the textual representation, suggesting
limitations of the textual representation), and a code based approach to explore code as another possible
representation (but it underperforms a purely textual representation). From this, we can establish that
LLMs have some base level of spatial understanding that allows them to "visualize" simple 2D grids.

Similar to Yamada et al. (2024) initial work on "navigating" tree-like structures, Momennejad et al. (2023)
evaluate cognitive maps, which are abstract representations of a task. For example, when navigating a
maze or a set of rooms, a cognitive map would represent each possible location or room as a node and the
adjacent locations or next rooms as joined by edge. They consider a variety of underlying task structures
and evaulate the performance of 8 different LLMs on instructions that include finding a shortcut through the
given map, choosing the next location to maximize the reward, or drawing the map from the given textual
description. They found that all LLMs struggled with the presented tasks, though they sometimes succeeded
on sparse graphs or smaller graphs. Generally, the models hallucinated edges between desirable nodes, took
suboptimal paths through the graphs, or got stuck in loops. This suggests that rather than generalizing
and understanding the general graph structure, they are succeeding through memorization, simple setups,
or possible data contamination in their training.

Mirzaee et al. (2021) suggest a task less restricted to a grid or graph. The task verbally describes simple
images of arranged shapes and asks the model to answer questions about their relative locations and sizes.
However, they do not evaluate on LLMs. Preliminary exploration by the authors of this survey suggest that
the most recent LLMs may be more than capable of spatially reasoning over tasks like Mirzaee et al. (2021);
Yamada et al. (2024).
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2.2 Multimodal LLM Understanding

While these text-only models are capable of some degree of spatial awareness, it seems clear that achieving
more complex and realistic spatial understanding necessitates integrating another modality. In line with
earlier exploration, VQA is often the preferred means of evaluating this ability . A variety of such benchmarks
have been proposed Malinowski & Fritz (2015); Andreas et al. (2017); Johnson et al. (2016).

Datasets Azuma et al. (2022) focus on answering questions about scenes with full color photorealistic 3D
scans. The answer to the natural language question is both a textual response and a bounding box in the
scan information. On the other hand, Majumdar et al. (2024) present OpenEQA specifically for foundation
models, integrating full color images with depth information and camera pose, as well as open scenes and
open vocabulary evaluated by an LLM judge. To make the task more realistic and practical than simply
answering questions about where an object is, they include aspects such as episodic memory that require
reasoning over multiple images in a history. They find that even the highest scoring GPT-4V based models
fall far short of human performance on these tasks.

Cheng et al. (2024) explore a similar setup for SpatialRGPT but focus on constructing scene graphs of 2D
images to answer questions on, which allows for questions that cover both 2D and 3D images and explore
depth perception. They include templatic questions that expect the model to understand the size of specific
objects or the relative size and positions of multiple objects, as well as more complex questions that test the
same concepts over more varied language. These Llama generated questions also ask the model to estimate
the size and depth information in different units (such as the time required to traverse a distance rather than
the distance itself or the number of people that can sit in space rather than the square footage), requiring
some amount of reasoning about space. SpatialVLM

Chen et al. (2024) create a similar dataset, but at a larger scale that does not require human annotation.
They labels their questions types as qualitative and quantitative, but the differences aligns fairly well with
SpatialRGPT’s broad categories of relative questions vs object specific ones. They do, however, create more
complex "chain-of-thought" questions such as asking if 3 objects roughly form an equilateral triangle with
their positions.

Q-Spatial Bench is another spatial reasoning/understanding dataset created by Liao et al. (2024) that takes
the opposite approach. Rather than generating answers or evaluating with an LLM, they opt for a completely
manual dataset focusing specific on object dimensions and relative distances. Li et al. (2024a) frame the
problem of spatial understanding a task better suited to a top-down view and still find that VLMs perform
far behind humans.

Training on Datasets The proposed model in ScanQA ( Azuma et al. (2022)) is a standard highly engi-
neered modular setup that prevailed before the advent of LLMs: it involves separate language and vision
embeddings, a transformer layer, and 3 separate classifiers (two for the answer components and one for the
question). Unlike the modular networks of Andreas et al. (2017) or the approach of ScanQA, approaches
for LLMs tend to focus on supplementing the main LLM training with additional fine-tuning examples and
trusting the LLM base to handle most of the processing after some initial visual step. SpatialRGPT Cheng
et al. (2024) propose a frozen visual model that produces visual encodings and a trainable features extractor
that operates over image regions to create embeddings for both the image and depth modalities, both of
which simply plug into a trainable LLM. A model trained on this data outperforms other models, but no
comparison to human answers is provided. Still, the model is able to reason over the complex question in
the selected qualitative examples. Chen et al. (2024) also take this approach, using a ViT to process their
images, before passing in embeddings and natural language to an LLM to process.

Hong et al. (2023) use the 3D pointcloud information instead of images as they offer more comprehensive
views of the environment and the objects within it. Using 2D VLMs to label information in the environment
and 3D feature extractors, they train various LLMs capable of reasoning over pointcloud information. By
doing so, they improve performance on datasets like ScanQA. From qualitative results it seems that the
model is capable of understanding the scene composition and some degree of relative descriptions.
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2.3 Using LLM Spatial Understanding

We will also briefly explore methods that are used to improve LLMs grasps of space beyond simply fine-
tuning on a spatial dataset. Ma et al. (2024) present SpatialPIN, which utilizes prompting to create text
descriptions of images that help the model understand various aspects of an image. For example, and LLM
can be prompted to describe a 2D image by listing the objects and locations and these additional text
descriptions can be used to help the model create better segementation masks for each object. This can
be repeated with other ways of breaking up an image (e.g. depth) to produce a cohesive 3D representation
of the image. Zhao et al. (2023) use scene graphs while Gu et al. (2023) utilize concept graphs created by
foundation model outputs to determine the relations between objects and potential uses/interactions with
specific objects.

2.4 What do Models Understand?

Early VQA datasets focused on relatively simple questions like object recognition or relative placements of
objects in 2D images. From the discussed datasets, we can see that the trend is now towards more complex
setups. Rather than just 2D images, VQA is evaluated over depth information, scene graphs, camera poses,
and even sets of images that can act separately or as still frames of a memory. Now that LLMs can be used
to write less templatic questions, we see complex automated questions being created as well. With LLMs as
judges, we also observe the evaluation of answers being given to LLMs to evaluate, reducing the burden of
formatting information in a certain way. Finally, we also see that the question types have expanded. More
and more datasets are exploring information grounded in the real-life qualities of the images, e.g. object
dimensions and distances. The expectation now, after models seems to be able to locate and identify objects
and some relative traits, is that models should be able to extract real world measurements from images
accurately.

Liao et al. (2024) explore a zero-shot prompting setup for evaluating model understanding on their Q-Spatial
Bench dataset. They found that some GPT-based models could accurately estimate the sizes of objects by
using reference objects (nearby objects with dimensions that are predictable through commonsense/world
knowledge ) and then comparing the size of this reference object with the target. They found that doing so
correlated with high accuracy and, thus, created a prompt that encouraged models to use existing objects as
references, founding that even in a zero-shot setting that it dramatically improved model performance across
various models. The question remains, however, if this truly indicates spatial understanding. Measurement
based questions are easier to evaluate and thus automate evaluation for, but when we consider the use of
reference objects and the reasoning done by the model, it’s possible that what the model really understands
is how large objects are supposed to be.

Liu et al. (2023) do a more thorough analysis of relative spatial relations and model behavior when predicting
them from images. They consider if models are able to understand proximity, direction and orientation, and
other potential relations. Their analysis provides insight into which relations are vague by nature and lead
to human annotator disagreement (e.g. closeness is often subjective for human annotators and therefore may
not be clear for LLMs) and also show results on VLMs. These results show that models struggle with many
possible relations, e.g. orientations of objects are particularly difficult for models to grasp.

Fu et al. (2024) explore similar concepts of multimodal model understanding , posing tasks that are simple
for humans but difficult for current leading VLMs because they do not use language as an intermediary step.
They found that replacing images with dense text captions for existing VQA tasks still allowed for high
model performance, suggesting that much of the prowess was coming from the language reasoning side of
the model rather than understanding the visual modality. They propose a different styles of questions that
require reasoning over multiple viewpoints, lighting conditions, or times, differentiating between real and
generated images, evaluating potential bounding boxes, filling in missing image regions, counting objects,
finding similar objects across different images, or choosing the most similar images in a set. They found
that for these tasks most LLMs did barely better than random chance and even the strongest performing
GPT based models only answer correctly around half of the time, trailing far behind humans who are almost
always correct on such tasks. They also note that for some models, performance improves with a dense
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caption as opposed to an image, possibly suggesting the the methods of integrating images into LLMs do
not properly convey all the necessary information.

Overall, there is certainly more focus on understanding the spatial awareness of LLMs with visual compo-
nents, which follows from their inherently more spatially grounded nature. However, the types of tasks that
are explored for both settings are fairly similar in that they require understanding spatial relations between
existing objects or moving around an environment. There seems to be a larger focus for text models to see
what spatial information the model has acquired during pre-training whereas for many VLMs the expecta-
tion is to further fine-tune them to achieve better spatial reasoning. We feel that complementing both of
these avenues of research by considering how text-only models might better understand spatial information
and what pre-trained spatial understanding models with visual components have would lead to interest-
ing insights. One potential future direction might be to experiment with new probing methods/measuring
activations across neurons with LLMs.

Still, from the results of these papers and the applications of various models, it seems clear that LLMs, both
with and without textual information, have some amount of comprehension of space, though it seems to be
somewhat brittle and not as well internally represented as human perceptions of space. Furthermore, it may
be possible that the advances we see in the area are due more to correlations in the training datasets than
true reasoning over a spatial modality.

3 Games

Outside of well-defined Visual QA tasks, it can be difficult to create settings to effectively probe the spatial
abilities of LLMs. One potential avenue that is both readily available and easy to label is games. Many
games have a spatial element and thus approaches to solve them may lend insight into how to formulate
certain spatial relations effectively for LLM understanding.

3.1 Chess

Chess is an area where we have seen fairly strong performance from LLMs, such as ChessGPT Feng et al.
(2023) which seems to receive ELO scores on par with an average strong chess player. Notably, models
like ChessGPT have high accuracies of converting between chess notation systems, which might indicate
some understanding of the physical chessboard. Furthermore, ChessGPT can often predict moves that lead
to checkmate, which might suggest mastery of both movement restrictions and some understanding of the
physical positions of the pieces. More recent works, such as Zhang et al. (2025)’s ChessLLM, show even
stronger scores across more varied tasks (e.g. predicting the best move for any game stage instead of just
checkmate in one), by training on full games. Srivastava et al. (2023) explore chess data in their large multi-
task dataset. They find that before models accurately predict checkmate in one move, they learn to produce
valid/legal moves. While the latter is not necessarily a prerequisite for the former, a model that performs
well in the former likely understands the rules and may understand the physical space of the board in some
abstract sense. Further, analysis of the moves predicted by models show that a majority of moves are valid
and occupy expected spaces, but some involve moving incorrectly for that particular piece or ignore pieces
that are in the path of travel, essentially blocking the move. So, whatever understanding the models do have
of space, it is far from perfect or equivalent to an image in a human mind.

Chess, thus provides us with two interesting potentials for LLM spatial awareness. Firstly, existing work
with LLMs and VLMs may be extended into this domain as a means of understanding how the model is
conceptualizing the game. We may explore VQA style queries over text-image pairs or text-only descriptions
to provide insight into how the model is representing the game internally and if that includes a spatial
component. Or, models created to solve chess games might give us some insight on how to set up grid-
like structures to effectively convey space or movement restrictions to models. While much of their strong
performances is likely due to these models learning the rules of chess within a narrow notational space,
it might be interesting to refer to smaller grids with chess notations that combine numbers and letters to
represent the pieces and locations rather than a standard 2D Cartesian plane. Using setups similar to this
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that foundation models are likely already familiar with or as a potential source of augmenting an existing
dataset may help familiarize the model with physical space.

3.2 ARC-AGI

The ARC-AGI (Chollet (2019))tasks presents another interesting way to set up physical spaces for an LLM.
The tasks in this competition require deducing patterns in pairs of grids and then applying that pattern to
a final unpaired grid to produce a the final answer. These patterns may range from moving shapes across
the grid to augmenting or completing shapes or changing their colors. The grids are generally represented
with pure text meant to resemble the actual grid. That is, a 3x3 grid with a long red rectangular block at
the top and a small blue square in the bottom right corner may be represented as:

R R R
* * *
* * B

This might be a valid alternate to purely text based descriptions of grids, such as were seen in Yamada et al.
(2024) or code based representations that are becoming more common. It would be interesting to compare
such a representation to these existing ones, especially as humans may struggle to follow such a structure
when it represents a 3D space, but structures that humans find to be adequate representations of 3D space
are not always the easiest for models to parse.

4 Minecraft: A Practical Application

While large language models (LLMs) have shown impressive capabilities in abstract reasoning and symbolic
manipulation, their ability to understand and operate within physical space—particularly in open-ended,
partially observable environments—remains limited and poorly understood. To investigate this gap, we turn
to Minecraft, a richly structured 3D environment where spatial understanding is not optional but essential.
Tasks such as locating resources, navigating terrain, or constructing multi-block structures require agents
to reason over egocentric observations, maintain spatial memory, and translate abstract instructions into
grounded actions.

What makes Minecraft especially valuable for studying spatial reasoning in LLM-based agents is its com-
bination of embodiment, language, and compositionality. Unlike synthetic spatial benchmarks with static
layouts or tightly scoped tasks, Minecraft provides a dynamic, first-person world with a high degree of spatial
and temporal complexity. Its native action space mirrors real-world interactions—turning, placing, crafting,
traversing—while its use of natural language as a control modality enables the study of how spatial concepts
are represented, grounded, and acted upon by language-driven agents. Prior work has explored a wide spec-
trum of agent architectures in this setting, ranging from low-level behavioral cloning models trained on human
demonstrations (e.g., MineRLGuss et al. (2019), Steve-1Lifshitz et al. (2024)) to hierarchical agents that in-
tegrate LLM-based planning or goal generation (e.g., VoyagerWang et al. (2023), DECKARDNottingham
et al. (2023), OdysseyLiu et al. (2024)). These systems offer a natural scaffold for probing how well LLMs can
perceive spatial layouts, track relative positions, and reason over object configurations and environmental
constraints.

In this section, we use Minecraft as a lens to examine the spatial capacities of LLM-based agents. Rather
than presenting an exhaustive survey of methods, we focus on how spatial understanding emerges or fails to
emerge across different stages of the agent pipeline: from interpreting spatial instructions to planning over
spatially dependent goals, and maintaining consistent spatial memory during execution.

4.1 How Spatial Reasoning Manifests in Minecraft Agents

Spatial Goal Understanding A core strategy across recent work is to embed spatial goal understanding
within a latent goal space, a modality-agnostic intermediate representation that links natural language
instructions, visual observations, and action plans. For instance, Steve-1 Lifshitz et al. (2024) extends
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the Video Pre-Training model with a latent variable zgoal
T , derived from a MineCLIP-encoded trajectory

segment Fan et al. (2022), to condition low-level action policies on high-level textual intent. This latent goal
embedding is injected into the ResNet-based visual encoder and subsequently passed to a Transformer-XL
policy head, enabling goal-aware action generation. Here, goal understanding is implicitly captured through
contrastive alignment between text and behavior over pre-collected gameplay videos, grounding spatial terms
like “build,” “place,” or “navigate” in actual Minecraft trajectories.

However, this approach inherits the limitations of fixed-length embeddings and limited expressivity of the
CLIP-based space. MineDreamer Zhou et al. (2024) pushes this further by leveraging a goal imagination
module to predict future visual states (subgoal images) from current observations and textual instructions.
It introduces learnable [GOAL] tokens into the LLM vocabulary and uses a Goal Q-Former transformer to
produce a latent representation of the imagined future state. This latent is then fused with the agent’s
visual encoder output and passed through a latent diffusion model to synthesize visual representations of
the goal. The result is a more grounded form of goal understanding—rather than encoding “build a house”
as a vector, the agent generates a visual blueprint of what the house should look like, enhancing spatial
consistency during planning and control.

Another compelling direction is the use of reference video as goal specification. The GROOT Cai et al.
(2023) framework explores aligning natural language or video instructions with a learned goal space derived
from gameplay demonstrations. While the original model used video clips as input to the encoder, a later
variant replaces this with a fine-tuned text encoder (e.g., BERT), optimized through behavior cloning to
match the pre-trained goal space. This creates a shared semantic space between video-based demonstrations
and text instructions, allowing agents to execute unseen textual commands by mapping them onto known
goal trajectories. Spatial goals such as “mine wood” or “build snow golem” are thus represented as latent
codes that inform policy decoding. Building on this paradigm, GROOT-2Cai et al. (2024) further enhances
spatial goal representation through a variational autoencoder (VAE) that encodes latent intentions from
reference videos. This allows the agent to generalize from specific demonstrations to broader spatial goals,
such as digging toward hidden resources or navigating toward unobserved landmarks. While latent spaces
provide flexibility, they are also subject to ambiguities in alignment, particularly when the spatial referents
are underspecified. GROOT-2 addresses this by leveraging a behavior tokenizer that discretizes trajectory
segments into behavior tokens compatible with LLM reasoning, enabling fine-grained spatial control through
language-conditioned latent variables

An important aspect that emerges across these works is the gap between abstract language and spatially
grounded execution. Language instructions rarely specify absolute coordinates or detailed spatial plans;
instead, they rely on qualitative terms (“near the tree”, “on top of the house”) or relational concepts (“next
to”, “behind”, “to the left”). Bridging this gap requires agents to reason over partial observations, lever-
age spatial priors, and maintain a representation of unseen or occluded regions. OmniJarvis Wang et al.
(2024) takes steps in this direction by tokenizing behaviors into discrete embeddings aligned with vision
and language, enabling chain-of-thought-style planning over spatial actions. ROCKET-2Cai et al. (2025a),
introduces a human-friendly goal specification method where users specify targets via segmentation masks
from their own (third-person) perspective, which the agent must then align with its own egocentric view.

Spatial Planning and Navigation Beyond recognizing spatial goals, agents operating in Minecraft must
reason over sequences of actions that unfold across space and time. Spatial planning and navigation in
this context involve breaking down long-horizon tasks into subgoals, identifying spatial dependencies among
them, and executing them under egocentric constraints. As Minecraft environments are vast, partially
observable, and continuously changing, successful agents must not only interpret the structure of the task
but dynamically adjust to failures and new spatial observations during execution.

A representative example of structured spatial planning is Plan4MCYuan et al. (2023). This framework
constructs a skill graph using an LLM, which encodes dependencies between atomic “skills” like find tree,
craft planks, or mine cobblestone. Each skill node in the graph encodes its requirements, outputs, and
spatial dependencies (e.g., needing to be near a crafting table). For a given target goal (like crafting a
stone pickaxe), Plan4MC performs a backward search over this graph to generate a valid execution plan.
The result is a directed acyclic graph (DAG) of interdependent skills—each mapping to spatial actions the
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agent must perform (e.g., finding a tree before reaching a furnace). This architecture allows the agent to
adaptively generate skill sequences based on available resources and locations, translating high-level task
structure into concrete navigation and manipulation plans. Plan4MC’s approach is complemented by its
hierarchical control system. A high-level planner decomposes tasks into subgoals via skill graphs, while a
low-level controller executes each skill. Notably, navigation skills (e.g., "find sheep") are learned via PPO or
DQN with intrinsic rewards for exploring new spatial locations.

A more memory-integrated planning framework is seen in Optimus-1Li et al. (2024b), which augments LLM-
based planning with an episodic reflection loop. The planner, called the Knowledge-Guided Planner, uses
an LLM conditioned on visual observations to generate a subgoal sequence. Unlike prior work which plans
in a vacuum, Optimus-1 explicitly incorporates current environmental observations and history to generate
context-sensitive plans. Importantly, an Experience-Driven Reflector module monitors plan execution and
triggers re-planning if a subgoal fails—e.g., if a fish cannot be found in a nearby cave, the agent may re-plan
to "leave the cave and find a river." Here, spatial planning is not a one-shot operation but a feedback loop
sensitive to dynamic context, embodying a more realistic model of navigation.

A related architecture is seen in MrSteve Park et al. (2025), which builds on VPT (Video Pre-Training)
by adding a goal-conditioned navigation head. Rather than training end-to-end, MrSteve separates goal
encoding (via coordinates of current and target location) from image encoding and injects the goal signal late
into the policy network. This architectural choice is driven by empirical findings that early fusion of spatial
goals with visual embeddings degrades performance in complex terrains (e.g., mountains, rivers). With
LoRA-based fine-tuning and a custom reward function based on distance reduction, MrSteve’s navigation
policy exhibits robust behavior across difficult spatial layouts. The agent is explicitly rewarded for minimizing
Euclidean distance to the goal and is considered successful if it stops within 3 blocks of the target. In this
setup, spatial planning is treated as continuous online adaptation rather than discrete symbolic planning.

Other systems rely on LLMs not only for subgoal sequencing but also for code generation. Voyager Wang
et al. (2023), for example, takes a radically different approach by treating the entire planning process as
language-level code synthesis. The agent uses GPT-4 to write, modify, and execute code to achieve spatially
grounded goals such as exploring, building, or mining. The agent maintains a skill library and generates new
skills as Python code based on its current state and past experience. It leverages a reward function based
on discovery (e.g., new items or biomes found) and continues to expand its plan based on state changes.
Spatial planning here is entirely symbolic: the LLM reasons over spatial state described in text (e.g., “no
trees nearby”) and produces spatially grounded programs such as “walk north until you find trees.” Although
this removes the need for learned navigation policies, it introduces brittleness due to the reliance on textual
descriptions and the assumption of a stable code interface.

Spatial Memory and Temporal Continuity Spatial reasoning in embodied agents is rarely a one-shot
computation. Unlike static benchmarks, Minecraft requires agents to persist in the environment over long
periods, encountering spatially distributed cues, deferred goals, and incomplete observations. To succeed
in such settings, agents must retain a memory of what they have seen, where it occurred, and when it
happened. This introduces a crucial but underexplored dimension of spatial reasoning: temporal continuity
and episodic spatial memory.

The need for such capabilities becomes especially clear in sequential, multi-stage tasks, where the location of
one object might become relevant only minutes after it was first seen. Traditional low-level controllers like
Steve-1 rely on a short-term Transformer-based memory (e.g., Transformer-XL with 128-step recurrence),
which covers only a few seconds of interaction and lacks the capacity for long-term spatial recall. Conse-
quently, Steve-1 often resorts to repeated exploration when it fails to retain information about previously
seen resources or landmarks. This is a fundamental limitation for spatial reasoning: the agent cannot reason
about previously observed spatial relations or plan using prior knowledge of the world’s structure. To ad-
dress this, MrSteve Park et al. (2025) introduces a hierarchical episodic memory module called Place Event
Memory (PEM). PEM is structured around the "what-where-when" paradigm: it encodes visual events (e.g.,
seeing a cow), their spatial location, and the time of occurrence. During execution, the agent queries PEM
to retrieve spatial memories relevant to the current task—e.g., “Where did I last see a cow?” or “Was there
water nearby earlier?” If a relevant memory is found, the agent switches to an “execution mode,” using a
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goal-conditioned navigator to reach the memorized location. If not, it defaults to an “exploration mode”
to gather new data. This strategic modulation between memory recall and exploration reflects a cognitive
model of spatial intelligence: not just perceiving space, but remembering and reusing it for future decisions.

Another approach to spatial memory appears in AdamYu & Lu (2024), which constructs and updates a causal
graph of world interactions through a memory-enabled controller module. While not an episodic memory
system in the classic sense, Adam’s memory pool stores intermediate task trajectories, inventory states,
and interaction outcomes, enabling the agent to infer persistent structural relations between actions and
spatial outcomes. For example, it can learn that a crafting table is causally upstream of acquiring a wooden
pickaxe, or that a furnace must be placed near coal for optimal smelting. Although Adam’s causal memory
is more symbolic than spatial, it supports the construction of a technology tree—a topological representation
of Minecraft’s action-space—which is itself a form of spatial abstraction grounded in temporal logic. This
allows Adam to generalize and recompose previously learned subgraphs in novel contexts, demonstrating a
unique blend of spatial persistence and causal reasoning

Temporal grounding also plays a critical role in visual perception. In ROCKET-1 Cai et al. (2025b), a
novel visual-temporal context prompting strategy is employed to bind past visual frames to present action
decisions. ROCKET-1 leverages SAM-based object segmentation to highlight objects of interest across time
and trains a transformer policy to link these object trajectories to current goals.

4.2 Reflections: What Minecraft Teaches Us About LLMs and Space

Minecraft offers a uniquely revealing lens into the spatial reasoning capabilities of large language models
(LLMs), precisely because it demands continual spatial awareness across long-horizon, open-ended tasks.
Across recent agent designs, we see consistent patterns of failure and success that echo broader questions in
LLM spatial understanding.

1) Most notably, LLM-based agents struggle with reference frame consistency. Spatial language like “to
the left of the tree” or “build behind the house” is easy to produce but difficult to ground when agents
operate from an egocentric perspective without persistent spatial anchoring. 2) Another challenge involves
grounding abstract spatial language into concrete geometry. Instructions such as “build a wall” or “place
the furnace inside” encode high-level spatial intent, but require agents to translate that into precise object
configurations. 3) LLMs lack spatial memory over long horizons. In dynamic environments like Minecraft,
relevant spatial information—such as the location of a previously seen landmark—may occur minutes before
it becomes actionable.

However, several trends highlight how these limitations can be partially addressed. Visual grounding, through
subgoal images or VLMs, improves geometric fidelity and object localization. Models like MineDreamer Zhou
et al. (2024) and OmniJarvisWang et al. (2024) demonstrate that aligning language with visual targets leads
to more coherent spatial behavior. By addressing challenges in Minecraft, it paves the way to applications
of embodied AI in the real world.

5 Discussion and Future Directions

Overall, we have seen that even text-only foundation models have some concepts of spatial relations and can
simulate small interactions with their internal representations, though more complex or unique environments
pose immediate and currently insurmountable challenges. We find that once a visual modality is introduced,
LLMs are able to reason much better over simple spatial tasks like relative object positions, but they struggle
to incorporate more complex aspects of space such as multiple viewpoints, strange perspectives, or individual
object orientations. While there are many datasets aiming to evaluate these qualities, the general approach
to improving VLM understanding of space is simply fine-tuning on those datasets, as opposed to architectural
additions.

We have also considered some text-based games as a potentially related domain where the success of models
might have useful lessons on spatial representations for LLMs or present a new avenue to explore how models
might internally represent space. Perhaps, models do not conform to the human expectation of these games

9
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as inherently spatial and reason about them in some other manner, or perhaps, they simply learn to optimize
the game without considering the game environment.

Finally, we explore Minecraft as a strong test ground for many of these approaches to simulate the real
world. From this we can learn the weaknesses of current models and trial stronger methods.

We would like to expand our coverage of this problem by incorporating more papers evaluating LLM per-
formance on tasks that include spatial awareness, exploring methods that claim to improve performance on
such tasks, and including analyses of LLM behavior on spatial awareness (e.g. probing).
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