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Abstract. This work focuses on developing a self-supervised method
of pretraining on biomedical images. The pretrained models are then
fine-tuned on a small labelled dataset. We show, that using contrastive
learning along with an equivariance loss and a loss, designed by us to
maximise the features’ information, we manage to improve quality in
comparison to a fully-supervised baseline. Our method of pretraining
achieves an average dice score of 0.86, reducing the baseline error by
20%.
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1 Introduction

The biomedical datasets with labelled image are very limited due to high com-
plexity of the process of labelling these images. This gives way to the idea of
self-supervised pretraining on unlabelled images. We propose to force the learned
features, corresponding to a voxel in the human body, to reflect it’s anatomical
location. This would guarantee high quality on the task of organ segmentation,
which is the task at hand. To achieve said quality, we propose a compound,
three-part loss, which would force the features to behave similarly to such a
general anatomical system of coordinates.

2 Method

2.1 Preprocessing

In this section we will describe our preprocessing strategy. The transformations
are as follows.
1. A mask of all voxels with intensities, greater than −500HU is generated.
2. The image is cropped to the smallest box, containing the mask, generated

in the previous step.
3. The image is resized (via interpolation) to shape (192, 192, 192).
4. If necessary, the axes are flipped, so that the resulting image has canonical

orientation.
5. The intensities are clipped to the window (−200, 300), the HU interval in

which most soft tissues reside.
6. Finally, the intensities are scaled to the range (−1, 1)
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2.2 Proposed Method

Our key contribution lies in the self-supervised pretraining on the large unlabeled
part of our dataset. The pretraining method utilises three losses, each accom-
plishing a different objective. We use the notation fenc to depict the encoding
part of our network, and X for the preprocessed input image.

Pretraining: Decoding Loss Firstly, we want to ensure that the encoded
features contain the information about the intensity of the original voxel. For
that purpose we use the decoding head: two 1x1 convolutions, applied to the
output features. We minimise the mean squared error between the output of our
decoding head fdec and our original image X:

Ldec = MSE(fdec(fenc(X)), X) =
1

N

∑
i,j,k

(fdec(fenc(X))[i, j, k]−X[i, j, k])2

Pretraining: Discriminativeness loss We also aim to be able to guess the
location of a voxel by it’s features. Thus, we add a loss which forces the model to
predict distinct features, such that voxels, located far apart from each other, have
different representations. After getting the features of each voxel, we randomly
sample a small subset of anchor voxels IA and a large subset of leaf voxels IL and
compute the pairwise distance in feature space (negative inner product) between
the anchors and the leaves D:

D[iA, iL] = −⟨X[iA] ·X[iL]⟩; iA ∈ IA, iL ∈ IL

Next, for each anchor iA, we compute the indices of the voxels which are far
enough from it, F (iA). Typically, we considered voxels to be far enough from
each other if the euclidean distance between them was ≥ 10mm, so F (iA) can
be computed as the following (we use ∥·∥mm to denote the physical distance in
milimeters between voxels):

F (iA) = {i ∈ IL : ∥i− iA∥mm ≥ 10}

Finally, we apply the following activation function:

Ld =
∑

iA∈IA

∑
iL∈F (iA)

relu(M−D[iA, iL]) (1)

Here, M , margin, is a hyperpameter, we set it to −0.9 in our experiments. Such
a loss forces the model to cluster features of close voxels together. The higher M
is, the less is the amount of possible feature vectors, located from each other at
a distance, greater than M . For example, if our feature space is a 3D sphere and
M = 0, then there are at most 8 vectors {vi}8i=1, which all satisfy the inequality
(vi, vj) ≥ M (all of such vectors are either perpendicular to each other, or facing
in opposite directions from each other).
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Pretraining: Equivariance loss Finally, we also demand the equivariance
property from our model. Although this accomplishes more or less the same
task as our decoder, we decided to include this loss, as it is easily learned by
the model. One of many strenghts of convolutional networks is that the object’s
representation is independent of it’s location in the image, which implies equiv-
ariance, at least in relation to shifts. In addition to shifts, we also train our
neural network to be equivariant in relation to zooming and rotation. The loss
is the negative inner product between a randomly rotated, scaled and shifted
representation of the original image, and the representation of the transformed
image. In other words, if we denote T as our random affine transformation, X
as our image, and f as our neural network, the loss is as follows:

Le = −⟨T (f(X)) · f(T (X))⟩ (2)

Finetuning We fine-tune with a compound loss function, which is the sum-
mation between Dice loss and cross entropy loss. This kind of loss function has
proven to be effective in biomedical image segmenation [4].

Architecture We use a two-part architecture, consisting of a large, feature-
extracting backbone and a small head. The backbone is a simple 3D U-Net. The
head consists of two 1x1 convolutions, which we apply to the output features
of the backbone. Figure 1 illustrates the applied 3D U-Net [6]. The number of
channels the head outputs determines the dimensionality of our feature space in
the case of pretraining, whereas in the case of fine-tuning it must be equal to the
number of classes, thus when transferring weights from the pretraining model
to the fine-tuning model, we transfer only the weights of the backbone U-Net,
while the head is re-initialized with fresh random weights.

2.3 Post-processing

The fine-tuning predictions are passed through a sigmoid function, thus scaling
to a (0, 1) range. Then, for each voxel: if all of the resulting logits are less than
.5, we deduce that voxel to be outside of any organs, which interest us in this
task. Otherwise, that voxel is labelled with the index of the largest logit value
in it’s predicted vector.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE2022 dataset is curated from more than 20 medical groups under
the license permission, including MSD [7], KiTS [2,3], AbdomenCT-1K [5], and
TCIA [1]. The training set includes 50 labelled CT scans with pancreas disease
and 2000 unlabelled CT scans with liver, kidney, spleen, or pancreas diseases.
The validation set includes 50 CT scans with liver, kidney, spleen, or pancreas
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diseases. The testing set includes 200 CT scans where 100 cases has liver, kidney,
spleen, or pancreas diseases and the other 100 cases has uterine corpus endome-
trial, urothelial bladder, stomach, sarcomas, or ovarian diseases. All the CT scans
only have image information and the center information is not available.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
under CPU utilization-time curve. All measures will be used to compute the
ranking. Moreover, the GPU memory consumption has a 2 GB tolerance.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

Windows/Ubuntu version Ubuntu 18.04.5 LTS
CPU Intel(R) Core(TM) i9-7900X CPU@3.30GHz
RAM 16×4GB; 2.67MT/s
GPU (number and type) Four NVIDIA V100 16G
CUDA version 11.0
Programming language Python 3.9
Deep learning framework Pytorch (Torch 1.10, torchvision 0.2.2)
Specific dependencies
(Optional) Link to code

Training protocols We used no data augmentation, passing the whole 192 ×
192 × 192 image to the model without random cropping. The equivariance loss
requires a random affine transform. We randomly sampled two of three axes,
and applied a random transform in the corresponding plane. For the transform,
we used a combination of a random scale in the range (1, 1.5), a random shift in
the range (−0.1, 0.1) on each of the selected axes, and a random rotation in the
range (−30◦, 30◦) in the selected plane.

When fine-tuning, we randomly divide the 50 labeled samples into 5 folds.
One of the five resulting subsets is used for validation the others are used for
training. We use early stopping to stop our model from overfitting on the small
dataset of labelled samples: when the loss on the validation set does not decrease
for three epochs, the training stops. This results in the training being cut short
after 18-22 epochs, depending on the chosen fold.
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Table 2. Training protocols.

Network initialization default PyTorch initialization
Batch size 1
Total epochs 50
Optimizer Adam
Initial learning rate (lr) 0.0004

Training time 15.5 hours
Number of model parameters 33.0M3

Table 3. Training protocols for the fine-tuning model (if using two-stage framework).

Network initialization default PyTorch initialization
Batch size 1
Total epochs 50/Early stopping
Optimizer Adam
Initial learning rate (lr) 0.001

Training time 1-2 hours
Number of model parameters 33.0M4

4 Results and discussion

4.1 Evaluation on the validation set

The self-supervised pretraining on unlabelled cases provided an improvement
in comparison to a model, trained in a supervised fashion. The model works
very well on clearly visible organs, which can be visually separated from their
surroundings. Such organs include the liver, kidneys, the aorta and some others.
Less visible organs, such as the duodenum (see Figure 2), the pancreas (see
Figure 3), the left adrenal gland proved to be more complicated for our method,
which is to be expected. But, according to Table 4, there are some isolated cases,
in which highly-visible organs have lower quality. This is due to anomalies, as can
be seen on Figure 4. The average dice score after pretraining on the validation
set is 0.87, which is a rather big improvement from the baseline average dice
score (0.84).
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Table 4. Segmentation results

Liver RK Spleen Pancreas Aorta IVC RAG LAG GB Esophagus Stomach Duodenum LK

0 0.98 0.96 0.97 0.80 0.93 0.90 0.88 0.86 0.86 0.82 0.95 0.68 0.96
1 0.98 0.97 0.98 0.78 0.96 0.92 0.74 0.75 0.93 0.85 0.95 0.71 0.97
2 0.97 0.97 0.98 0.85 0.95 0.93 0.93 0.88 0.69 0.88 0.93 0.81 0.96
3 0.98 0.97 0.96 0.75 0.96 0.85 0.91 0.90 0.91 0.80 0.84 0.63 0.98
4 0.98 0.96 0.98 0.78 0.95 0.89 0.89 0.81 0.93 0.77 0.93 0.79 0.89
5 0.96 0.98 0.97 0.80 0.94 0.80 0.50 0.78 0.80 0.87 0.88 0.84 0.97
6 0.97 0.51 0.98 0.80 0.96 0.87 0.88 0.78 0.94 0.78 0.94 0.80 0.97
7 0.98 0.96 0.97 0.52 0.92 0.90 0.75 0.87 0.90 0.89 0.95 0.57 0.89
8 0.98 0.97 0.98 0.79 0.94 0.91 0.83 0.84 0.93 0.81 0.91 0.78 0.98
9 0.97 0.93 0.98 0.59 0.95 0.92 0.83 0.63 0.91 0.88 0.92 0.59 0.40
mean 0.98 0.92 0.97 0.75 0.95 0.89 0.81 0.81 0.88 0.83 0.92 0.72 0.90
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Fig. 2. A slice and the corresponding duodenum mask.

4.2 Validation results

Here are some segmentation maps on the validation set: subsection 4.2, Fig-
ure 4.2, Figure 4.2, Figure 4.2, Figure 4.2. As instructed, all segmentation maps
are presented in a window, centered at 40HU, with a width of 400HU.

4.3 Results on final testing set

The results on the testing set can be seen in Table 5, they are worse than the
results on the validation set, probably due to a slightly skewed distribution.

4.4 Limitation and future work

Our method shows great promise. Nevertheless, it can be modified in many ways.
These include, but are not limited to the following.
– Adding preprocessing. This could help with artifacts that are visible on some

predicted masks (see Figure 10).
– This method could be improved by predicting several neighbouring image

voxels by the MLP head, instead of a single voxel. This should help store
information on the surrounding voxels in pretrained features, forcing our
model to learn better features.

5 Conclusion

Contrastive self-supervised pretraining helps improve quality of the resulting
fine-tuned network. This means, that our pretraining method forces the backbone
to learn informative features, which, at least in part, carry information on human
organs.
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Fig. 3. A slice and the corresponding pancreas mask

Fig. 4. An anomaly in the left kidney, image FLARE22_Tr_0045
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Fig. 5. Segmentation results on case 1
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Fig. 6. Segmentation results on case 10
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Fig. 7. Segmentation results on case 16
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Fig. 8. Segmentation results on case 30
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Fig. 9. Segmentation results on case 50
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Table 5. Testing results

Name Mean STD
Liver_DSC 0.89 0.09
RK_DSC 0.84 0.21
Spleen_DSC 0.85 0.19
Pancreas_DSC 0.53 0.18
Aorta_DSC 0.81 0.12
IVC_DSC 0.73 0.12
RAG_DSC 0.02 0.04
LAG_DSC 0.01 0.1
Gallbladder_DSC 0.14 0.17
Esophagus_DSC 0.53 0.21
Stomach_DSC 0.66 0.2
Duodenum_DSC 0.47 0.19
LK_DSC 0.81 0.22
Liver_NSD 0.78 0.17
RK_NSD 0.81 0.23
Spleen_NSD 0.83 0.22
Pancreas_NSD 0.61 0.17
Aorta_NSD 0.77 0.16
IVC_NSD 0.65 0.13
RAG_NSD 0.09 0.09
LAG_NSD 0.01 0.1
Gallbladder_NSD 0.16 0.17
Esophagus_NSD 0.65 0.22
Stomach_NSD 0.59 0.21
Duodenum_NSD 0.73 0.19
LK_NSD 0.76 0.24

Fig. 10. Artifacts on predictions


