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Abstract

The advancements in generative models and the real-world attack of machine-
generated text(MGT) create a demand for more robust detection methods. The
existing MGT detection methods for adversarial environments primarily consist
of manually designed statistical-based methods and fine-tuned classifier-based
approaches. Statistical-based methods extract intrinsic features but suffer from
rigid decision boundaries vulnerable to adaptive attacks, while fine-tuned classifiers
achieve outstanding performance at the cost of overfitting to superficial textual
feature. We argue that the key to detection in current adversarial environments
lies in how to extract intrinsic invariant features and ensure that the classifier
possesses dynamic adaptability. In that case, we propose OSTAR, a novel MGT
detection framework designed for adversarial environments which composed of a
statistical enhanced classifier and a Multi-Faceted Contrastive Learning(MFCL). In
the classifier aspect, our Multi-Dimensional Statistical Profiling (MDSP) module
extracts intrinsic difference between human and machine texts, complementing
classifiers with useful stable features. In the model optimization aspect, the MFCL
strategy enhances robustness by contrasting feature variations before and after
text attacks, jointly optimizing statistical feature mapping and baseline pre-trained
models. Experimental results on three public datasets under various adversarial
scenarios demonstrate that our framework outperforms existing MGT detection
methods, achieving state-of-the-art performance and robust against attacks.The
code is available at https://github.com/BUPT-SN/OSTAR.

1 Introduction

With the remarkable and rapid progress in Large Language Models (LLMs) [, 2], the quality of
machine-generated text has gradually achieved a level that is increasingly comparable to human-
authored content. However, the widespread proliferation of such text substantially risks amplifying
the dissemination of unreliable or misleading information and diminishing [3\ |4, |5] the creative
motivation of human authors. As clearly shown in Figure 1(a), which illustrates a real-world detection
scenario, MGT texts are often attacked to evade detection, critically challenging the robustness of
existing detection methods [6}[7,8]]. Therefore, developing reliable detection methods that can robustly
distinguish MGT from human-authored content has become a crucial task in societal research.

As shown in Figure 1(b1) and Figure 1(b2), the current MGT detection methods for adversarial
environments can be categorized into two approaches: statistical-based methods and classifier-based
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Figure 1: The real-world MGT detection task explanation and the difference between OSTAR and
previous detection methods.

methods. While statistical-based methods[9, |10} [11]] demonstrate strong zero-shot generalizability
across LLMs through intrinsic features (e.g., n-gram distributions, syntactic anomalies), their de-
tection performance is constrained by predefined static thresholds that fail to dynamically adapt
to distribution shifts in textual feature patterns under adversarial attacks like lexical substitution
or style transfer, leading to significant accuracy degradation. The classifier-based methods[ 12} [13]
rely on pre-trained models (e.g., BERT[[14])) to extract deep semantic features through loss function
optimization. Although achieving high accuracy on specific datasets, the learned feature representa-
tions carry overfitting risks: models tend to capture superficial correlation patterns in training data
(e.g., domain-specific sentence structures) rather than the intrinsic differences between human and
machine-generated texts. This results in unstable feature representations, leading to a sharp decline
in detection performance when distributional discrepancies exist between testing and training data.
Collectively, these limitations highlight critical gaps in existing detection paradigms: statistical meth-
ods lack adaptation to attacks, classifier-based approaches struggle to capture the intrinsic invariant
feature differences between human and machine texts under adversarial attacks.

Given the limitations of current methods in addressing textual attack, single-category detection
methods now struggle to achieve high-precision MGT detection in adversarial environments. Our ob-
servations reveal that classifier-based methods often demonstrate superior performance on individual
datasets, yet exhibit significant performance degradation when confronted with attacked texts. In
contrast, although statistics-based detection methods show relatively weaker baseline metrics, certain
textual feature statistics (such as Lexical Diversity and Readability) maintain relatively stable devia-
tions between attacked and original texts. This characteristic could serve as an effective mechanism
to enhance the robustness of classifier-based methods when operating in adversarial environments.
The classifier-based methods can compensate for the shortcomings of statistical methods in feature
dynamic adaptation caused by rigid thresholds, as they are capable of developing classification
abilities tailored to specific datasets through loss function optimization.

Based on the respective limitations and potential complementarity of the statistical-based methods
and classifier-based methods, this paper proposes the Optimized Statistical Text-classifier with
Adversarial Resistance (OSTAR) framework shown in Figure 1(b3). To improve the stability of detec-
tion, we design the Statistically Enhanced Classifier, which captures the intrinsic text statistical fea-
tures thereby enhancing classifier performance. Specifically, we manually design Multi-Dimensional
Statistics Profiling(MDSP) to extract and analyze statistical features of texts. These analyzed statis-
tical features are then concatenated with the CLS embeddings generated by pre-trained models to
form an enhanced classifier. To enable dynamic feature adaptation in adversarial environments, we
categorize attacks into Perturbation and Paraphrases based on whether machine rewriting is involved,
distinguishing them by their impact on text characteristics. Guided by this perspective, we design
Multi-Feature Contrastive Learning (MFCL). This categorization effectively differentiates attack
types by their intrinsic properties, and MFCL significantly enhances the robustness of our method in



adversarial scenarios. Extensive experiments across several datasets and adversarial environments
consistently demonstrate that our proposed method outperforms previous approaches, establishing
new state-of-the-art performance.

The main contributions of our work are as follows:

* We propose a novel MGT detection framework, OSTAR, which captures the intrinsic
differences between machine-generated text and human-authored text and enables dynamic
adaptation of detection. To our knowledge, this is the first work to utilize statistical features
to guide classifier-based method, enhancing its robustness in adversarial environments.

* We manually designed the MDSP for intrinsic textual characteristics, which effectively
captures intrinsic, relatively stable textual multi-dimensional statistical features across
diverse scenarios. This mechanism provides a solid foundation for classifier-based methods.

* We categorize attacks into perturbations and paraphrases based on the intrinsic characteristics
of their impacts, and design MFCL to comprehensively capture the manifold adversarial
effects on text from multiple perspectives, significantly enhancing the overall robustness of
our method.

* Through extensive evaluations on three public datasets under diverse adversarial scenarios,
OSTAR achieves superior performance and robustness compared to state-of-the-art MGT
detection methods.

2 Related Work

2.1 Machine-generated Text Detection

With the rapid development of LLMs, machine-generated texts, also known as Al-generated
texts or Deepfake texts, have made it increasingly difficult for people to distinguish them from
human-authored texts [[15)]. Nowadays, common detection methods can be categorized into three
types:watermark-based [[16], statistics-based and classifier-based. The watermark-based methods
achieve detection of machine-generated text by embedding subtle watermark during the text gen-
eration phase and subsequently detecting the presence of watermarks in the generated content
[L7, 118 (194 120L 211 22]]. Statistics-based methods often focus on identifying the inherent character-
istic differences between human-authored and machine-generated texts by establishing thresholds
for differentiation, demonstrating applicability across various models[10} 23| 24, 25 [11]]. For ex-
ample, Eduard[25]] proposed distinguishing human and machine texts by analyzing differences in
the intrinsic dimensionality of their generated embeddings, achieving stable detection performance
across multiple cross-domain and cross-model scenarios. Classifier-based methods can be viewed as
a binary classification task, where the detector is typically trained on datasets generated by the target
LLM to achieve high-performance detection for the target generative model[26, 27, 28 |29, 130]]. For
example, SimpleAI[29]] fine-tunes RoOBERTa, removes biased training data for better generalization,
and adds sentence-level data to capture local features. Current MGT detection methods excel on
clean data but falter against adversarial attacks. Howerver, many studies[31} I8 132, 33|16l 134] have
indicated that current MGT detectors exhibit vulnerabilities in real-world detection scenarios, facing
challenges to their robustness when subjected to various attacks and adversarial paraphrasing from
other pre-trained models. Therefore, maintaining detection robustness in adversarial environments
remains a major challenge in current MGT detection tasks.

2.2 Contrastive Learning

Currently, in the field of natural language processing, contrastive learning methods can effectively
enhance the robustness of frameworks against adversarial attacks[35] 36, 37} 138},130} 39} 127, |40]. For
example, PairCFR[37] enhances the generalization performance of natural language processing tasks
when handling counterfactually augmented data by promoting global feature alignment through con-
trastive learning; DeTeCtive[38]] boosts MGT detection generalization through multi-level contrastive
learning that identifies cross-sample author style gaps under out-of-distribution task; CoCol[30]
tackles sparse training data via contrastive learning, achieving superior performance with minimal
training datasets; PESCO[39] addresses the cold-start problem in Zero-Shot text classification by
dynamically optimizing document-label matching through a self-training loop of contrastive learning.



(c . . 1\
Adversarial Data Preparation(a) Statistically Enhanced Classifier(b)

Sequential Statistical
Feature Analysis (W)

\Enhanced
Classifier(C))

Perturbated
Machine Text
i

Paraphrased
Machine Text
A

]

Dependency  Syntax

Length of
Dependency

Lexical

S, ble
1 FKGL
// H (2 > !
Calculate
|
| S )
V[ Embed Semantic
S
>
|
I

MiniLM|—p 7 of
' Embeddings
i

sisjeuy q-

e 1X0 1 dJepIpue)

y
Perturbated Paraphrased|
Human Text \Human Text
(—p Negative ™" » Positive

—> Para.-Con  —» Pert-Con |
\[:l Human label [___] Machine Iabelllj

________________________________________

Figure 2: An overview of our OSTAR framework. (a) Adversarial data generation and contrastive
learning pair construction (b) Enhancing classifier performance via MDSP (c) Performing contrastive
learning and computing loss through MFCL

Existing research demonstrates that contrastive learning exhibits broad applicability and effectively
enhances model performance in natural language processing, particularly for MGT classification.

3 OSTAR: Framework and Algorithms

We start this section by giving an overview the framework of OSTAR. Then, we detail the specific
methods for each step in Sections 3.1 to 3.3. Finally, we will summarize the entire training process
into an algorithmic procedure in Section 3.4.

Abstract Methodology As shown in Figure 2, during the training stage, our OSTAR consists of
three parts as follows:

* Part a (Adversarial Data Preparation): Prior to training, we pre-process the original
dataset O to construct the contrastive pairs. Specifically, we apply Perturbation Source Pert,,
to generate perturbation pairs and Paraphraser Para, to produce paraphrase pairs.

» Part b (Statistically Enhanced Classifier): During the initial stage of the training phase,
statistical feature extraction performed on each sentence using Statistical Feature Extraction
S,. Once the S, has processed the entire text, Sequential Statistical Feature Analysis W,
will analyze the intrinsic statistical feature with a sliding windows of length [ and the 4-D
Analysis method. Then, the outputs of W are projected and concatenated with the C LS
token from Pre-Trained Model (RoBERTa is used in this paper) Ey for Enhanced Classifier
C to classity.

* Part ¢ (Multi-Faceted Contrast Learning): In MFCL, perturbation contrastive learning and
paraphrase triplet contrastive learning are designed for adversarial environments, optimized
with updating 7 and ~y.

3.1 Adversarial Data Preparation

In terms of adversarial data preparation, as shown in Figure 2(a), we categorize training texts into
two types: original human-authored and original machine-generated texts, and texts that may be
encountered during detection (divided into Perturbation and Paraphrase). This design is based on the
rationale that paraphrases often lead to changes in text ownership, such as transforming text from
being generated by LLM to being written by Para,, or converting human-written text into machine-
generated content. In contrast, perturbations do not involve ownership alteration but can affect
text recognition accuracy. Therefore, we preprocessed the training set by Pert,, and Para,, then
assigning positive and negative sample pairs according to Figure 2(a), and dynamically constructing
the dataset in each epoch.



3.2 Statistically Enhanced Classifier

The Statistically Enhanced Classifier is composed of Multi-Dimensional Statistical Profiling in section
3.2.1 and the Enhanced Classifier with a Pre-Trained Model in section 3.2.2.

3.2.1 Multi-Dimensional Statistical Profiling (MDSP)

As shown in Figure 2(b), MDSP consists of two components: Statistical Feature Extraction and
Sequential Statistical Feature Analysis.

Statistical Feature Extraction(S,) With the increasingly powerful generative capabilities, relying
solely on surface-level statistical features of text has become insufficient for robust MGT detection.
While machine-generated texts exhibit certain statistical similarity with human-authored texts in
surface patterns, they still demonstrate discernible differences in intrinsic statistical characteristics
such as variations in sentence complexity, lexical diversity shifts, and semantic coherence dynamics
within a document.

In this paper, we focus on extracting statistical features from three dimensions—syntactic, lexical, and
semantic—by quantifying metrics such as the maximum dependency distance per sentence (syntax),
the Flesch-Kincaid Grade Level (lexical complexity), and the variance across dimensions in semantic
embedding projections (semantic coherence), thereby capturing multi-level discriminative patterns
between human-authored and machine-generated texts, the three-dimensional features extraction can
be formally formulated as follows:

n—1
D(s) = I{leasxhead( ), ]:FK( ), 1— —— Zcos €;,€it1) (1
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where, s represents a single sentence in an article, ¢ denotes the tokens in sentence s, head(t) is the
head index of token ¢, max head(-) represents Maximum dependency distance in parse tree, Fgx ()
is the Standard Flesch-Kincaid Grade Level formula, {e, ..., e, } denotes the sentence embeddings
from MiniLM, cos(+) is inter-sentence cosine similarities.

Sequential Statistical Feature Analysis(1V,.)) When performing statistical feature analysis, we
employ a sliding window of length [ with a step size ¢ to segment the text. For each feature dimension
d € {Syntax, Lexical, Semantic}, we design a 4-D Analysis module to analyze the statical feature
and use a 4D-feature vector F; € R* to store the outputs, aggregating four key measures: mean
value (uq), standard deviation (o), autocorrelation coefficient (pg), and range (R4). The process is
formally formulated as follows:

(k) _
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R = max(W*) — min(W*)

where TW* denotes the sequential statistical features of k-th sliding window, % represents the statistical
feature of a sentence within the window W*.

For an input text sequence S = {s1, Sa, ..., 8, } With n sentences, we compute window-based statistics
across three linguistic dimensions (syntax, lexical, semantic) as follows:

T = b | > oWk | er®? (3)
de{Syn,Lex,Sem} W"GW (@)
where, T € R'? denotes Raw temporal feature vector formed by concatenating window statistics
across three dimensions, ¢(W*) denotes the k-th sliding window for i®), c®) p(B) R*®) Wy, )y =
{ I/V(1 LRREE, W(’;’Z)} represents the Sliding windows for dimension d.



Algorithm 1 OSTAR train process

Require: Original dataset O = (7, M), Perturbation Source Pert,,, Paraphraser Para,
Ensure: Trained parameters 7 (Analyzer), v (Classifier), 8(Pre-Trained Model)
1: Frozen Components:

2: Sy, Parag, Perty
3: Trainable: W.,C,,, Ey
4: Adversarial Data Preparation:
5: Generate Opers < Perty(O) > Perturbation pairs
6: Generate Opyrq Para,(0O) > Paraphrase pairs
7: Build D + OUORrUOy
8: for epoch = 1to N do
o: for batch (x, T pert, Tpara) ~ D do
10: Statistical Feature Extraction:
11: for each sentence s; in x do
12: Extract ®(s;) = [maxdep(s;), Frr(s:),1 — =5 > cos(e;, ei11)]
13: end for
14: Sequential Statistical Feature Analysis:
15: Apply sliding window (I = 3, step=1) on ® sequence
16: Compute window 4-D stats: T = LS [, 0y, pr, Ry
17: Project: TH® = tanh(W, T + b,)
18: Statistical Enhance:
19: hy = Eg(x)ICMS] > RoBERTa
20: fz = concat(h,, TH™) > 832-dim
21: Multi-Faceted Learning:
22: Compute Para-contrast loss: Lpy, < log el)/,i;ﬁ
23: Compute Pert-contrast loss: Lpey < 8475, !
24: Parameter Update:
25: 7,70 =V ((1 = X) - Leg + (A1 - Lpara + A2 - Lpert))
26: end for
27: end for

28: return 7%, v*, 0*

3.2.2 Enhanced Classifier(C.,)

The output T'§" of Multi-Dimensional Statistical Profiling is used to enhance classifier-based method
by projection, the formula is as follows:

Tgoj = tanh(W,; - T% + b;) € R®  where W, € R64*12 4)

where, T € R54 represents the projected features after nonlinear transformation, W, € R64%12
denotes the learnable projection matrix mapping raw features to latent space, tanh(-) is the hyperbolic
tangent activation function constraining values to [-1, 1].

Then the Ey encodes the input text S, and the resultant 768-dimensional C'LS embedding from the
last layer is concatenated with the projected statistical features for classification.

3.3 Multi-Faceted Contrast Learning(MFCL)

MFCL can be divided to Paraphrase Contrastive Learning(Para-contrast) and Perturbation Contrastive
Learning(Pert-contrast). In Para-contrast, anchors are defined as H (original human write text) and
M (original machine generate text), where the positive and negative samples vary based on the anchor
type: when the anchor is H, positive samples consist of other original human texts while negative
samples are H,,,,,, whereas for machine-generated anchors (M), positive samples are My, and
negative samples include any human H. In Pert-contrast, only positive samples—corresponding to
adversarially attacked versions of the specified text (ﬁ pert OF Mpert) are utilized. The Multi-Faceted



Contrast can be formulated as follows:

M S1 /T
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where, p € P(i) and n € N (i) denote the positive and negative sample sets for anchor 4, S;;, and
Sin are similarity scores between anchor ¢ and its positive/negative samples, scaled by temperature 7
to sharpen or soften the contrastive probability distribution; .A(%) is adversarially perturbed sample
sets, S;q denotes the is the similarity scores between anchor and perturbed samples, weighted by
attack impact ratio (3;, and scaled by regularization coefficient 7, A\; and Ao denote the weighting
coefficients for Lp,, (paraphrase loss) and Lp., (perturbation loss), respectively.

The total loss function is composed of the Cross-Entropy Lcg loss and Lygcr, formulated as:
Lioal = (1 = A) - Lcg + A - LvreL (6)

where \ are weighting coefficients.

3.4 OSTAR Algorithm

The overall training process of OSTAR is summarized in Algorithm 1. For a given text, OSTAR
extracts its statistical features as supplementary information and concatenates them with embed-
dings generated by a pre-trained model. These representations are then aligned with Multi-Faceted
Contrastive pairs to enhance the model’s robustness against attacks.

4 Experiments

4.1 Experiment Setup

Datasets and Real-world Attacks In this study, we employed three widely-used and moderately
challenging datasets: CheckGPT[41], HC3[29], and a cross-domain dataset generated by GLM-130B
from the DeepFake[33]]. CheckGPT comprises 900,000 multi-domain samples (e.g.news, reviews
and articles) generated by ChatGPT[1] using diverse prompts. HC3 is composed of question-answer
pairs, where each question includes at least one human-written response and one machine-generated
response, focusing on open-ended questions across domains such as finance and medicine. DeepFake
contains cross-domain texts generated by various LLMs. To capture real-world MGT diversity,
we employ GLM-130B[42]] as the representative dataset. Adversarial attacks are categorized into
perturbation and paraphrase attacks. For perturbation, the specific 9 perturbations adopted are as
follows. For the paraphrase, we employ DIPPER[6] to modify the text. More detailed dataset
construction is shown in appendix C.

¢ Character-level Perturbations:

— Space Insertion: Introduce extraneous whitespace within words (e.g., “hel,_lo0”)

— Punctuation Removal: Delete commas, periods, etc. (e.g., “Hello, world!” — “Hello
world”)

— Initial Character Case Alteration: Randomize capitalization of word-initial letters (e.g.,
“apple’, H “Apple9’)
— Word Merging: Concatenate adjacent words (e.g., “new_york” — “newyork™)
* Word-level Perturbations:
— Keyboard Typos: Simulate typographical errors via adjacent key substitutions (e.g.,
“house” — “hjuse”)

— Character WordCase: Randomly alter the case of letters within words (e.g., “example”
— “ExAmPIE”)

— Spelling Errors: Insert phonetically plausible misspellings (e.g., “because” — “becuz”)

— Adverb Insertion: Add semantically redundant adverbs within sentences (e.g., “He ran
quickly” — “He ran extremely quickly”)



Table 1: Detection performance comparison under original datasets. The best-performing data under
each metric has been bolded. Due to dataset balancing, the values of accuracy, recall, and F1 score
will be relatively close when the model is well-trained and the architecture is stable.

Methods \ DeepFake \ CheckGPT \ HC3 \

| ACC Recall Fl | ACC Recall FI | ACC Recall Fl |
GPT-2 87.29 90.58 88.04 | 81.92 83.01 80.74 | 90.86 90.75 89.41
RoBERTa | 91.68 91.57 91.66 | 88.77 87.82 88.78 | 9432 9431 94.32
CoCo 88.03 89.59 87.58 | 84.55 8490 8597 | 98.42 99.31 98.50

RADAR 5549 5549 58.05 | 63.04 63.26 63.01 | 89.57 89.57 90.39
Watermark | 86.21  90.45 8891 | 75.69 97.06 72.26 | 94.88 9475 95.13
Binoculars | 78.22 8241 7639 | 86.90 89.74 87.12 | 9244 95.13 91.95
PECOLA | 86.29 86.19 86.29 | 84.58 8496 84.51 | 99.23 99.25 99.24
OSTAR 91.94 9238 9236 | 90.37 90.12 90.23 | 99.55 99.78 99.55

— Adverb Append: Attach an additional adverb at the end of sentences (e.g., “The task is
done.” — “The task is done. perfectly”)

¢ Sentence-level Perturbations:

— Sentence Reversal: Invert word order (e.g., “This is a test.” — “Test a is this.”)
— Sentence Repetition: Duplicate clauses/phrases (e.g., “I agree. I agree.”)

Evaluation Metric To ensure a comprehensive and systematic evaluation of our work, we adopted
widely recognized metrics for binary classification task —Accuracy (ACC), Recall, and F1-score
(F1)—to evaluate model performance.

Comparison Methods We compare our method with classifier-based state-of-the-art MGT de-
tectors, including: GPT-2 [43] and RoBERTa [44]] fine-tuned as binary classifiers (124M/110M
parameters); CoCo [30] employing contrastive learning with coherence graphs; RADAR [26] us-
ing adversarial paraphrases for robustness; Binoculars [11] leveraging cross-model probability
divergence for zero-shot detection; the watermark-based method Watermark [20]] for reference.
Statistic-based methods are excluded due to limited adversarial robustness; PECOLA [22] enhancing
robustness via core-term perturbation.

To ensure experimental fairness, we utilized data-augmented datasets for training all classifier-based
contrastive methods, with the exception of RADAR (whose code was unavailable, necessitating
the use of their open-source model). For non-trainable approaches — including statistical-based
methods (e.g., Binoculars) and watermark-based techniques (e.g., Watermark) — no training phase
was implemented, as their detection mechanisms rely on pre-defined heuristics rather than learnable
parameters. All experiments strictly adhered to the original implementations’ default training
configurations. For methods requiring specialized data preprocessing pipelines (e.g., CoCo), we
faithfully executed their prescribed preprocessing steps as outlined in their respective methodologies.

4.2 Performance Evaluation

Evaluation on Original Datasets The detection evaluation on the original dataset is shown in
Table 1. OSTAR achieved average Acc, Recall and F1 of 93.95%, 94.09%, and 94.04% across the
three datasets, outperforming the fine-tuned RoBERTa baseline by average improvements of 2.81%
(ACC), 2.85% (Recall), and 2.97% (F1). Moreover, compared to state-of-the-art methods on the
MGT detection task, OSTAR attained at least 1.32%, 1.42%, and 1.05% enhancements in ACC,
Recall, and F1, respectively, while achieving the best performance across all three datasets. These
results demonstrate that our method outperforms the baseline approaches in average detection quality
under non-attack scenarios.

Furthermore, as evidenced in Table 1, the incorporation of statistical feature analysis in our method
consistently enhances the detection performance of the baseline ROBERTa model across all three
datasets, empirically validating the efficacy of our feature analysis approach. Notably, the DeepFake
dataset poses the greatest challenge for all models. We attribute this to the fact that GLM-130B—used
to generate DeepFake texts—represents a model not adequately considered by conventional pre-



Table 2: Detection performance of OSTAR and the baselines on datasets with attack. We adopt F1-
score as the evaluation metric when facing attack, where we categorize attack into Perturbation(Pert.)
and paraphrases(Para.). The best-performing data under each metric has been highlighted in bold.

Methods \ DeepFake \ CheckGPT \ HC3 \
| Ori. Pert. Para. | Ori. Pert. Para. | Ori. Attack Para. |
GPT-2 88.04 7423 73.41 | 80.74 70.58 72.56 | 89.41 82.72 81.63
RoBERTa 90.12 77.10 79.00 | 88.78 80.62 81.59 | 94.32 90.27 90.95
CoCo 87.58 69.54 7695 | 8597 70.38 74.58 | 98.50 90.09 90.98

RADAR 58.05 4854 47.11 | 63.01 6021 67.42 | 49.78 47.52 5847
Watermark | 88.91 66.35 47.01 | 7226 55.16 50.07 | 95.13  69.05 68.16
Binculars 76.39 4542 51.23 | 87.12 5232 5454 | 9195 7234 78.68
PECOLA | 86.29 78.13 60.08 | 84.51 62.64 60.71 | 9835 65.09 68.82
OSTAR 92.36 81.27 81.46 | 90.23 8448 86.04 | 99.55 9572 97.52

Table 3: Results of the ablation study on DeepFake dataset with adversarial attacks . We selected
Accuracy and F1-score for evaluating, with the best-performing results highlighted in bold.

Model Orginal Pert. Para.
ACC F1 ACC F1 ACC F1
OSTAR (Plain) 90.34 90.12 81.10 77.10 82.61 79.00
OSTAR (Feature Extract) 90.72 90.58 81.67 77.08 82.97 79.27
OSTAR (Feature Extract+Analysis) 92.17 92.87 82.51 80.25 83.88 80.17
OSTAR 9194 9236 8434 81.27 84.75 81.46

trained frameworks, thereby requiring re-adaptation to its unique text generation patterns. Our method
achieves significant improvements on GLM-130B, demonstrating that the statistical feature analysis
approach we proposed serves as a universal feature analysis method for MGT.

Evaluation on Attacked Datasets The ability of detection methods to maintain robustness across
diverse attack types constitutes a fundamental research problem, as this capability directly determines
their practical applicability in real-world environments. The changes in the model’s F1-score across
the three datasets under these two types of attacks serve as the robustness measure for our method.
As shown in Table 2, our proposed OSTAR framework achieves state-of-the-art F1-scores across
all 9 experimental scenarios, which encompass three diverse public datasets (CheckGPT, HC3, and
DeepFake) under three distinct conditions (original, perturbation-attacked, and paraphrase-attacked
environments). Under adversarial perturbations, OSTAR exhibits a maximum F1 degradation of only
11.09% on the challenging DeepFake-Perturbation subset, significantly outperforming the statistical
method Binoculars, which suffers a 30.97% degradation—this stark contrast underscores the inherent
limitations of relying solely on static statistical thresholds for real-world robustness. Moreover, with
an average F1 degradation of 6.30% against combined perturbation and paraphrase attacks across
all datasets, OSTAR surpasses even the most robust baseline model, ROBERTa (which shows 8.49%
degradation), thereby highlighting our framework’s superior adversarial resilience. Furthermore,
OSTAR achieves an average F1 improvement of 4.43% over the ROBERTa baseline, with a maximum
gain of 5.5% observed on the HC3 dataset under adversarial attacks—these results collectively
demonstrate substantial robustness enhancement and validate the effectiveness of our approach in
practical settings.

4.3 Ablation Study

To better validate the necessity of each module in our model, we conducted ablation studies on Deep-
Fake dataset. The reason why we chose the Deepfake dataset as it showed the sharpest performance
drop under adversarial environments, best demonstrating our method’s robustness in adversarial
scenarios. The ablation study structure designed as follows:

OSTAR (Plain) removes the entire Statistical Feature component, retaining only the RoOBERTa part.
During model training, it also eliminates MFCL while keeping solely the CE loss.
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Figure 3: The MDSP performance on three datasets. The vertical axis shows the average absolute
difference in MDSP statistical features between human and machine texts across three datasets,
demonstrating MDSP’s distinct discrimination capability.

OSTAR (Feature Extract) retains the three-dimensional feature extraction component but bypasses
analysis processing of these features. Instead, it directly applies global average pooling and projects
the results to corresponding dimensions for concatenation with ROBERTa’s embeddings. The final
classification is performed using a linear classification head with CE loss.

OSTAR (Feature Extract+Analysis) incorporates the complete Statistical Enhancement component
but excludes Multi-Faceted Contrastive Learning during training.

Table 3 shows that both Statistical Enhancement and Multi-Faceted Contrast Learning significantly
boost the model’s detection performance and adversarial robustness. Our OSTAR achieves optimal
performance when facing perturbations and paraphrases attacks. Under these attacks, the ACC drops
by 7.60% (perturbation) and 7.19% (paraphrases), while F1-score declines by 11.09% and 10.90%
respectively — significantly smaller degradation compared to models without MFCL, demonstrating
the necessity of our method. The progressive performance improvements from OSTAR (Plain) —
OSTAR (Feature Extract) — OSTAR (Feature Extract+Analysis) validate the effectiveness of MDSP.
Notably, using only feature extraction yields marginal gains and even degrades performance under
perturbations, likely due to redundant features overlapping with CLS embeddings from pretrained
models. While OSTAR with MFCL shows slightly lower performance on the original dataset
compared to non-MFCL counterparts (attributed to MFCL training exclusively on attacked data,
reducing fidelity to original distributions), this degradation remains within acceptable range (0.23%
in acc and 0.51% in F1).

4.4 Statistical Feature Evaluation

As demonstrated in Figure 3, our statistical text analysis method, evaluated on three public
datasets(HC3, CheckGPT, DeepFake), reveals an average discrepancy of 30.95% between MGT
and human-authored texts, proving its significant discriminative power for MGT detection. Ex-
tended analysis of our MDSP framework shows in Appendix A. This suite of stable and quantifiable
intrinsic statistical features effectively uncovers systematic biases in the linguistic patterns of machine-
generated texts. It serves as a critical anchor point for the OSTAR framework, enhancing detection
robustness in adversarial environments by compensating for the tendency of pure neural network
features to deviate under attacks.

5 Conclusion

In this paper, we propose OSTAR, a robust MGT detection framework that synergizes the intrinsic
invariant feature extraction capability of statistics-based methods with the dynamic adaptability of
classifier-based approaches. Specifically, we design the MDSP module to manually extract and
analyze statistical features across multiple intrinsic dimensions, enhancing classification through
feature fusion. To address adversarial environments, we categorize attacks into Perturbation and Para-
phrase based on their impact mechanisms, and accordingly develop MFCL to improve robustness by
disentangling adversarial effects through multi-perspective feature alignment. Extensive experiments
across three public datasets with 9 kinds of perturbations and a paraphraser, validate the effectiveness
of OSTAR and demonstrate its robustness under various attacks.
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A Statistical Feature Evaluation

To further verify that the features extracted using MDSP maintain a certain level of stability compared
to the original text after being subjected to perturbations and paraphrases, we employed kernel density
estimation (KDE) plots to evaluate each statistical feature.

A.1 Variations in the Syntax Features Extracted by MDSP
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Figure 1: Variations in the Syntax features extracted by MDSP on human texts
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Figure 2: Variations in the Syntax features extracted by MDSP on machine texts

As revealed by the KDE plots, texts subjected to perturbation attacks (e.g., sentence repetition) exhibit
substantial divergence from original human texts in the syntactic statistical features extracted by
MDSP. This discrepancy likely stems from how repetitive patterns disrupt syntactic regularity, yet
they maintain sufficient similarity for discriminative feature learning. In contrast, paraphrased texts
demonstrate minimal syntactic deviation from original human-authored content, which may hinder
classification accuracy and thus necessitates more sophisticated classifier learning to capture subtle
discriminative patterns.

A.2 Variations in the Lexical Features Extracted by MDSP
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Figure 3: Variations in the Lexical features extracted by MDSP on human texts
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Figure 4: Variations in the Lexical features extracted by MDSP on machine texts

At the lexical level, the three text categories (original, perturbed, and paraphrased) exhibit the
closest similarity in auto-corrected (Autocorr) feature representations, which significantly aids in
distinguishing perturbation-attacked texts. In contrast, paraphrased texts show minimal divergence
across four lexical complexity metrics (e.g., type-token ratio, entropy), yet this subtle variation retains
discriminative relevance for identifying machine-generated paraphrased content.

A.3 Variations in the Semantic Features Extracted by MDSP
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Figure 5: Variations in the Semantic features extracted by MDSP on human texts
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Figure 6: Variations in the Semantic features extracted by MDSP on machine texts

At the semantic level, paraphrased human texts exhibit significant deviations from original human
texts across four key metrics (e.g., semantic coherence, entity consistency), which effectively enhances
their discriminability. In contrast, paraphrased machine-generated texts maintain close statistical
alignment with original machine texts in terms of mean values, standard deviations (STD), and value
ranges, thereby enabling robust identification of machine-generated paraphrased content.

B Limitations

Our method achieves generalized detection against various pre-seen attacks in the training set,
but struggles to maintain robustness when confronted with unforeseen attacks such as multiple
paraphrases, combined attacks, etc. Another limitation is that the sliding window approach for
statistical feature analysis imposes requirements on text length (e.g., short single-sentence passages
cannot support effective statistical feature extraction).



C Detailed Construction of Dataset

For the three datasets, we constructed both original and adversarially attacked versions. The detailed
composition of our original datasets is presented in Table 4, while the configuration of the attacked
datasets (generated via perturbation/paraphrases attacks) is summarized in Table 5. The two-tuple
(human, machine) in the table represents the number of human texts and the number of Al texts.
The symbol "x " in Table 5 indicates that nine distinct adversarial perturbation methods (shown in
appendix E) were applied to each original sample, resulting in a tenfold expansion of the dataset
size. To mitigate computational overhead caused by this exponential growth, we selected part of each
dataset to include 500 human-authored and 500 machine-generated samples for balanced training and
testing.

Table 4: Dataset composition during the Evaluation on Original Datasets experiment.

Dataset Train Test Valid
CheckGPT (2000, 2000) (1921, 2078) (2500, 2500)
HC3 (5000, 5000) (5000, 5000) (2000, 2000)

DeepFake (2000, 2000) (2000, 2000) (2000, 1000)

Table 5: Perturbation Methods and Their Intensities

Attack Name Intensity Explanation

Space Insertion 5-10 spaces | Inserts 5-10 spaces randomly in text

Punctuation Removal | Single char Removes last punctuation character from text

Initial Character Case | 10% Randomly alter 10% of word initial characters

Alteration

Word Merging 20% Randomly merge 20% of adjacent words

Keyboard Typos 10% Generates typos in 10% characters using adjacent keys

Character WordCase 20% Randomly changes case for 20% of words

Spelling Errors 3 Introduces 3 spelling errors in each sentence

Adverb Append 1 Appends one adverb to each sentence

Sentence Reversal 10% Reverses text segments using 3-word pivots in 10% sen-
tence groups

Sentence Repetition 3 Selects 3 sentences to repeat

Table 6 shows the detailed composition of the attacked datasets used in the Evaluation on Attacked

Datasets experiment, where the "x" symbol indicates the multiplication factor applied to the original
sample counts due to adversarial attacks.

Table 6: Dataset composition during the Evaluation on Attacked Datasets experiment.

Data Split
Train Test Valid

Perturbation  (500%10,500%x10) (500x10,500%x10) (200x10,200x 10)
Paraphrase (500x2,500x2) (500x2,500x2) (200x2,200x2)

Attack Type

D Training Details

Our implementation uses ROBERTa as the base pretrained model. Identical attack procedures were
applied to both training and test sets. For the MDSP, we set length [ = 3. The contrastive learning
component employs a weight of 0.02 and temperature coefficient of 0.05. Training utilizes the Adam
optimizer with learning rate 1 x 10> and adam epsilon of 1 x 10~%. Our model was trained on an
NVIDIA RTX 3090 GPU, requiring approximately 17GB of VRAM with a batch size of 4, making it
feasible to implement under most laboratory conditions.



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions and performance of our OSTAR to utilizing statistical
features to guide classifier-based detection methods and MFCL optimizing strategy, are
reflected in the Introduction and Abstract sections.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, this paper discuss the limitations in Appendix B.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

15



Answer: [NA]

Justification: This paper does not include theoretical results, we validate our method by
experimental results.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully disclose all the information needed to reproduce the main experimetal
results of the paper.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will provide open access to the data and code once the paper is accepted.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We specify all the training and test details in Section 4.1 and Appendix
C,D.EF.
Guidelines:
* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

17


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide sufficient information on the computer resources in Appendix F.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and our research was conducted
with that in every respect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The societal impacts of our work are discussed in introduction
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

18


https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We will release the model.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly credited it.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The code and models will be well documented.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments and research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: The LLM is used only for writing
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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