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ABSTRACT

Large Language Models such as GPT are able to recall factual information about
the world that they have learnt during training. This information must be stored
in the model weights yet there is much we do not know about exactly what in-
formation is stored, where it is located and how it is retrieved. In this paper, we
test and develop existing theories about information storage and retrieval through
the example of bracketed sentences. We show that, in the case of recognizing
brackets, where a model must learn during training to associate matching opening
and closing brackets, very early multi-layer perceptron (MLP) layers in the source
position are responsible for this association. This supports existing work on the
importance of MLP layers as key-value memory stores (Meng et al., 2023) and a
potential hierarchy of roles within transformers, whereby early layers are respon-
sible for storing and retrieving lower level information compared to more abstract
information which is stored in later layers (Geva et al., 2021).

1 INTRODUCTION

Transformer-based language models (Vaswani et al., 2017; Brown et al., 2020), have demonstrated
impressive natural language understanding, but their inner workings remain largely opaque. Gaining
insight into these models is challenging due to their complex, densely connected architecture and
high-dimensional feature space. As these models are already deployed in important real-world ap-
plications (Zhang et al., 2022), understanding and anticipating their behavior is critical. Some argue
interpretability is key for the safe deployment of advanced ML systems (Hendrycks et al., 2022).
The emerging field of mechanistic interpretability aims to reverse engineer model computation
into human-understandable components (Elhage et al., 2021; Meng et al., 2023). By uncovering
underlying mechanisms, we can better predict out-of-distribution behaviors (Foote et al., 2023; Mu
& Andreas, 2020), identify errors (Nixon et al., 2020), understand emergent behaviors (Nanda et al.,
2023; Wortsman et al., 2019), and more.

In this work, we use circuit analysis (Räuker et al., 2023) to mechanistically understand how GPT-2,
a generative large language model, performs a simple linguistic task: identifying closing brackets.
We identify a subgraph of the model responsible for this behavior. To discover the circuit, we employ
activation patching (Meng et al., 2023), a method that iteratively traces the contributions of indi-
vidual components of the model to the final output distribution. We supplement this with embedding
projections, attention analysis, and linear probes to understand the role of each component.

Among the various tasks that LLMs are capable of, we focus on understanding the simple process of
how they identify and match closing brackets, as it provides a tangible insight into their underlying
mechanisms in detecting long-range dependencies. The proposed circuit (Figure 1) consists of early
MLP layers in the source (opening bracket) position that are responsible for retrieval of the matching
token pair and attention heads in early layers which are responsible for moving this information to
the final position. Our analysis demonstrates that LLMs, such as GPT2, store information in their
MLP layers and that low-level linguistic information, such as bracket associations and word pairings,
are stored in very early layers. This is consistent with the findings of Geva et al. (2021) who propose
that progressive MLP layers are responsible for storing increasingly complex information. Contrary
to Geva et al. (2021) and Meng et al. (2023), in the case of brackets, we identify a single MLP layer
rather than a range of layers that is responsible for this behavior. We also observe that the key and
value vectors representing different vectors do not have a privileged basis and so do not align with
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the model’s natural basis, as implied by Geva et al. (2021). An additional finding is that the residual
output directly after this MLP layer cannot be used to directly predict the correct token, indicating
that the retrieved information lies initially in a dormant direction and is only later activated.
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Figure 1: The matching closed bracket token is stored in the first MLP layer in the source position.
The vector representing the closed bracket, despite the presence of the ReLU, does not align with a
dimension of the model. The vector retrieved from this layer is highly specific to a particular bracket
and patching in the average vector for a specific bracket type is enough to predict the corresponding
output bracket regardless of the open bracket in the original input. The resulting residual activation
cannot be used to directly predict a closed bracket, indicating that the retrieved information lies
”dormant” within the model until activated by later MLP layers in the target position.

2 BACKGROUND

We experiment with N -layer transformer models with a vocabulary size V . The model takes an input
sequence x = x1, . . . , xp where each xi ∈ {1, . . . , V }. Tokens are mapped to de-dimensional em-
beddings by selecting the xi-th column of E ∈ Rde×V , the embedding matrix. Each de-dimensional
embedding then passes through N layers, consisting of multi-head attention and MLP blocks.

Every transformer layer contains a residual connection, so models can be viewed as having a
residual “stream” that each block reads from and writes to (Elhage et al., 2021). In the multi-
head attention block, the de dimension embedding gets split into nhead streams of dimension
dhead = de/nhead. Attention distributions are computed independently for each head via the ex-

pression softmax
(

QK⊤
√
dhead

)
V , where Q,K, V ∈ Rde×dhead . The MLP block applies two linear

transformations separated by a non-linearity (ReLU) independently across sequence positions. Af-
ter the N layers, the final linear layer U ∈ RV×de projects the residual stream representations to
vocabulary space to get logits. The residual stream is important because information is read from
and written to a single vector space across layers. Projecting activations to vocabulary space can
elicit emergent behavior (Belrose et al., 2023). This technique contributes to an understanding of
when information is learned within the network.

We analyze how information flows through the transformer architecture using activation patching in
a similar way to Meng et al. (2023). We use it in the context of brackets and simple word pairings
as opposed to more abstract factual associations. This technique makes targeted edits to network
activations during the forward pass and observes the effect on output logits. These edits involve re-
placing specific activations, for example the output of a specific MLP layer in a particular sequence
position, with corrupted values. This could involve adding noise to the existing activations or replac-
ing them entirely with different values, either averaged values across many different inputs or taken
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Figure 2: Relative difference in closed bracket output probability when patching the MLP output of a
specific layer at a given position compared to the original prompt with an open bracket in the second
position. The top row shows positive patching where the input is a random sequence and values are
patched from activations saved from the original prompt. The bottom row shows negative patching,
where the input is the original sequence and values are patched from a previous run involving a
random sequence. Each column represents a different bracket type.

from a previous forward pass using a different prompt. During one forward pass, multiple edits
can be made in different locations to investigate how combinations of components operate within
the network. The difference in output logits with and without model edits provides information
about how those specific components of the network contribute to the task. We describe activation
patching in more detail in §3.
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Figure 3: Negative patching of common single token pairs. The color represents the change in
probability of predicting the second token after negative patching relative to the original prompt
containing the first token. The vertical axis represents results for patching specific MLP outputs in
the source position with the activation from an equivalent run with a random sequence token. The
horizontal axis represents different token pairings, sorted by relative effect of the the first MLP layer.
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3 METHODOLOGY

We focus on bracket completion task as it represents a direct symbolic dependency that must be
learned during training. The model needs to track opening and closing brackets across arbitrary dis-
tances, requiring properly handling state information. Bracketing naturally decomposes into state
tracking, memory lookup, and contextual cues, enabling analysis of how these mechanisms com-
pose. It relies on both prompt context and learned knowledge, elucidating their interplay. The
self-contained structure of brackets makes the full circuit tractable to study as an example of han-
dling linguistic dependencies. Brackets form a “shallow” syntactic pattern likely using early model
layers, contrasting factual knowledge in later layers.

Take for example the sentence fragment John gave the bottle (containing milk. As a self-contained
linguistic structure, bracketing provides a tractable phenomenon to study the emergence of long-
range dependencies between tokens within transformers. We propose bracket completion involves
three key processes:

1. State: is the current position inside or outside a bracketed sequence? Information from the
opening bracket position must be transferred to the closed bracket position so that the model
can understand that it is currently within a bracketed sequence. How is this information
transferred and processed within the network?

2. Memory: what is the appropriate closing token to go with the opening bracket? The model
must store information about the closed bracket symbol within the model weights. Where
is this information stored? How is it retrieved using information about the source token?

3. Context: has the phrase reached a point where the close bracket is needed? To accurately
predict a close bracket, the model must combine information about the current phrase and
whether it has reached a conclusion. How do these different bits of contextual information
get combined?

This toy problem is similar to Indirect Object Identification (Wang et al., 2022) in that it is composed
of multiple sub-tasks that must interact correctly together to perform the overall task. We believe
that more examples explaining circuits of this complexity will be helpful in laying the foundation
for exploring more advanced model behaviours. We do not offer a complete explanation of the
process and instead focus on the second point: where information matching pairs of brackets is
stored and how this information is retrieved. We therefore only study the influence of a single open
bracket token and do not present findings concerning bracket completeness and the effect of a closing
bracket on subsequent bracket prediction probability (point 1). We average across multiple random
sequences to remove the contribution of broader context to the bracket prediction task (point 3).

To reduce complexity and isolate important behaviour, we focused on short sequences (n = 5)
of random tokens. We found longer sequences to display broadly similar behavior but needlessly
increase the complexity of analysis by providing alternative paths through which information can
flow forward through the network from early to late positions. We found indirect attention, the flow
of information from source to target position across multiple layers via intermediate positions, to be
very prevalent and made it difficult to analyse the precise role of individual attention layers. As a
result, we found it helpful and more tractable to keep sequences short.

We investigate four separate types of brackets: round “(”, ”)”, square “[”, “]”, curly “{”, “}” and
angular “<”, “>”. Experiments were carried out on GPT2-small and, where stated, GPT2-XL1.
Unless stated otherwise, the open bracket token2 is located at the second position (zero indexed) and
we observe the probability of outputting a closed bracket token in the fourth position. The indices for
tokens at all other positions were selected randomly from a uniform distribution in the range 256 to
5256 in order to choose common tokens but not single bytes. Unless otherwise stated, probabilities
are the result of averaging 100 different randomly sampled input sequences. We use random tokens
in order to isolate the effect of the open bracket and reduce the noise caused by other meaningful

1The model weights were downloaded from HuggingFace via the TransformerLens library. GPT2-small
consists of 12 layers (85M parameters) and GPT2-XL consists of 48 layers (1.5B parameters).

2The GPT2 tokenizer uses byte pair encoding and there are multiple tokens that represent open and closed
brackets. We uniformly sample between each type for the opening bracket and sum the probabilities of each
closing bracket. Full details of which tokens were included are included in B
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signals in the case of logical sequences. We tested our findings separately on a selection of hand
crafted sentences to check that the effects discovered do generalise to meaningful sentences.
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Figure 4: Source and target MLP ablation for round brackets. Two initial forward passes are com-
pleted, one with a baseline random sequence and another with the same sequence but an opening
bracket in the source position. The baseline and bracketed activations for these respective forward
passes are saved and used for negative and positive patching in the following runs. The left plot
starts with the random sequence as input and applies positive patching of the bracketed activations
at a specific MLP layer in the source position (y-axis) and repatching of the baseline activations in
subsequent MLP layers of the source position, followed by negative patching of the original baseline
activations at a specific MLP layer in the target position (x-axis). The right plot shows the inverse
of this: starting with the bracketed sequence and applying negative patching in the source position
(with repatching of the true activations in subsequent source MLP layers) and positive patching in
the target position. Sequence length is 4 with the open bracket in the position 3.

Patching Our main tool to test the role of the different layers in predicting token dependencies
is patching. This tool, formalised by Wang et al. (2022), works by running the neural network in
two modes. The first mode is a vanilla one, running the input prompt as usual, and then calculating
the logit probabilities of the next token prediction. For example, running the prompt “Bill Gates
founded” and testing the logit for the token “Microsoft”. In addition, the circuit is also run in
“corrupt mode”, in which internal representations of the model run on a new prompt are replaced
by representations from another run on a different prompt. For example, for the prompt “Steve Jobs
founded”, we might replace the internal representations of some layer at the position of the token
“founded” with some internal representations from the Bill Gates prompt, and then continue to run
the model as usual. Patching is done only on part of the representations - a complete patching, where
all layers and positions are replaced, will lead to an identical run as the original prompt.

Within the realm of patching, there are two primary modes - negative and positive patching, some-
times referred to as direct and indirect effects (Pearl, 2001). Negative patching involves selectively
corrupting certain portions of the internal representation. Essentially, this introduces “noise” or
“disturbances” into the model’s internal inference process. By observing how the model’s output
changes in response to this perturbation, one can glean insights into which parts of the representa-
tion are crucial for a given output. If a model’s output drastically changes after a particular patch,
it suggests that the patched section was integral to the original output. For instance, consider the
prompt “The sun rises in the”. A model might predict “east” as the next token. Now, if we neg-
atively patch the representation associated with the word “rises”, and the model suddenly predicts
“west”, it indicates that the perturbed representation was crucial in guiding the original prediction.

Positive patching is the opposite of negative patching. Instead of corrupting or disturbing a portion
of the representation, positive patching involves enhancing or reinforcing certain aspects. This is
achieved by borrowing and overlaying representations from related prompts. If the model’s output
becomes more confident or shifts in a particular direction following a positive patch, it suggests that
the overlaid representation carries significant contextual information related to the output. As an
example, let’s take the two prompts “Bill Gates founded” and “Steve Jobs founded”. If we overlay
the representations from “Bill Gates” onto the prompt related to Steve Jobs, and the model suddenly
becomes more confident in predicting “Microsoft”, it shows that the overlaid representation was
influential in making that prediction.
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Whilst these two methods are mechanically identical, except for switching around the sequences,
they tell us something different about the contribution of a specific part of the network: positive
patching identifies if a subgraph of a network is sufficient for performing a particular task whereas
negative patching identifies if the same subgraph is necessary for performing that task.

4 RESULTS

We turn next to describe the main results of our study. We find that the retrieval of the matching
bracket token is carried out in the first layer in the source position (§4.1). The information retrieved
from this layer is specific for a given bracket type but cannot be directly interpreted as the correct
token (§4.2).

4.1 EARLY MLP LAYERS ARE NECESSARY FOR ACCURATE BRACKET PREDICTION
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Figure 5: The left hand plot is a similar experiment to the one shown in the left hand plot of Figure
4. But with attention blocks in the target position patched rather than MLP blocks. The other two
plots start with a randomised baseline sequence but apply positive patching to the output of the first
MLP layer in the source position. They measure the relative probability compared to the original
bracketed sequence when applying negative patching to a set of attention layer outputs in the final
position. The central plot shows the effect of patching all attention layers less than or equal to the
current layer and the right plot shows the effect of patching all layers greater than the current layer.

Figure 2 shows that, in GPT2-small, the first MLP layer in the source position is critical for the
accurate prediction of closed brackets, for all four bracket types. It is noticeable that, across all
layers and positions, it is the only MLP layer which causes any significant increase in output bracket
probability. In the case of negative patching, the final layers in the target position lead to an increase
in output probability, indicating that these layers normally have a moderating effect.

There are a number of possible hypotheses for the role of the first MLP layer:

• It is important for all predictions and performs some, as yet unkown, general algorithmic task
which is not specific for memory retrieval or the brackets task in particular.

• The matching token is retrieved from this MLP layer but the information for different types of
bracket are stored in different parts of the layer and are retrieved independently.

• Its role is specific for paired token retrieval more generally, perhaps making the network aware
that it needs to retrieve a matching token, but that the matching token is retrieved later in the
network from other MLP layer(s).

Further investigation shows brackets are not the only token pairs which show a high dependency on
the first MLP layer. The extent of this effect varies, as shown in Figure 3, but is consistent across a
wide range of prompts. We take a variety of single token pairs that commonly appear together (e.g.
sunrise and sunset) and perform negative patching to observe which MLP layers lead to a significant
decrease in probability of outputting the matching token in the target position. Once again, for the
vast majority of cases, it is the first layer in the source position which shows strong dependence and
there are very few cases where any other MLP layers strongly inhibit the output.
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It is not the case that the first layer is essential for all language tasks, as evidenced by the few cases
in Figure 3 that do not rely on the first MLP (e.g. star and sky), but more generally by other, more
complex pattern matching tasks (see Figure 8 and related work e.g. Meng et al. 2023) which tend to
rely heavily on later layers.

One hypothesis for the importance of the first MLP layer is simply that it’s the first layer and there-
fore has the largest downstream effects. To eliminate this as a possibility, the experiment described
in Figure 2 was repeated but with the following modifications: (1) The original output of each sub-
sequent layer is patched back into the residual layer so that it is only the direct effect of a specific
MLP layer that can alter the information transferred to the final position, rather than any downstream
effect is has on MLP layers in the same position. (2) Reducing the sequence length so that the open
bracket directly preceeds the final position. This ensures that attention can only take place directly
from final position to source position and excludes any composition through intermediate positions.
(2) Patching attention and MLP layers in the final position. This tests the possibility that there are
layers early in the network that are important in the final position for processing information from
the source token and that this is why the first MLP layer in the source position is so important.

The results of this are shown in Figure 4 and confirm that the first MLP layer is important because
of the computation it is able to perform rather than its location right at the start of the network.
Even with repatching of subsequent MLP layers in the source position, the first MLP layer leads to a
large increase in closed bracket probability. It is only later MLP layers in the target position that are
important, which therefore do not rely on information being transferred to the target position early
on in the network.

These experiments were repeated again but attention blocks rather than MLP blocks were patched
in the final position (Figure 5). Here, early layer are of more importance than later layers. Notably,
if the target position cannot attend to the source position during the first 3 attention layers, the
probability of outputting a closed bracket token drops by a factor of ten. Whatever information is
extracted from the first MLP layer in the source position is largely transferred to the target position
via the first few attention layers in the network, even though it is much later MLP layers in the final
position that appear to be responsible for processing this information.

A clear difference between our work and Meng et al. (2023) is that we find the very first MLP layers
of GPT to be important for memory retrieval rather than early to mid layers. In §A we conclude that
this is not due to prompt length and is likely due to the more foundational nature of the information
being retrieved (Geva et al. 2021; ).
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Figure 6: Activation swapping. Average MLP output activations were created by averaging across
100 samples for each bracket type and MLP layer. The top row shows the relative difference in prob-
ability of the original closed bracket token when patching an MLP layer with the average activation
of another bracket type. The bottom row shows the same but for the probability of predicting the
closed bracket that matches the incoming activation used to patch the MLP layer. Only layers 1 - 3
are shown here but the remaining 9 layers are very similar to layers 2 and 3.

4.2 INFORMATION RETRIEVED IS SPECIFIC BUT DORMANT

Language models can only store information they have learnt during training in their weights. In the
case of brackets, knowledge of which closed bracket token is paired with which open bracket token
is something that must be learnt during training and therefore stored in model weights. It has been
shown in the previous section that there is only one critical layer (the first MLP layer in the source
position) that this could feasibly apply to. This is the case for all types of brackets and also many
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common word-based token pairings. This poses two possible hypotheses: (1) The matching token
for all of these pairings is stored in different directions within this MLP layer. (2) The first MLP
layer performs some other generic task, e.g. potentially indicating the general “importance” of the
current position for future positions to subsequently attend to. The matching token is then stored
elsewhere in a distributed fashion without being located in a specific layer.

Building on the concept of MLP layers as Key/Value memory retrieval systems (Geva et al., 2021),
the final activation from the MLP block that is added to the residual stream can be thought of as a
value vector representing the retrieved fact. Averaging the value vectors in the source position across
a batch of sequences with the same open bracket token, we obtain an “average” value vector. The
effect of replacing activations with the averaged activation from another token can then be measured
in order to ascertain if they have the same functionality.

Figure 6 shows that the average activation vectors for each bracket type are highly uncorrelated.
Swapping the first layer MLP output for the averaged activation from another bracket type dra-
matically reduces the probability of outputting the original bracket token and leads to a very high
probability of outputting the new closing bracket token. This is the same for all bracket types. It is
extremely noticeable that the first layer is the only layer which this applies to and swapping averaged
activations into other layers does nothing to increase the probability of outputting the new closed
bracket symbol and has an inconsistent effect on the original bracket probability.

It is worth noting that the output of the first MLP layer itself cannot be thought of as directly rep-
resenting the matching closed bracket. It is increasingly clear that the vector added to the residual
stream is crucial for predicting the closed bracket and, in some sense, must surely represent it.
However, directly passing the residual stream activation after the first MLP layer through the fi-
nal unembedding (as in LogitLens (Nostalgebraist, 2020)) does not lead to a significant increase in
closed bracket prediction when the first MLP is corrupted with the bracketed activation. Indeed, it
is only in much later layers (in both the source and target position) that the first MLP layer makes a
significant difference (Figure 7).
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Figure 7: Starting with a randomized baseline sequence, the first MLP output in the source position
is positively patched with the activation from a previous run with an open bracket. The residual
activations at all points in the source (left) and target (right) positions are then mapped directly to
logits by passing those activations directly the final layer norm and unembedding layer. We plot the
probability difference of the correct closing bracket with and without patching the first MLP output.

5 RELATED WORK

There has been growing interest in mechanistically interpreting the inner workings of large language
models like GPT. Prior work has explored techniques for analyzing how information flows through
transformer networks. Räuker et al. (2023) propose circuit analysis to trace model computations
into human-understandable components. They argue that decomposing model behavior into causal
pathways can enhance interpretability. Our work similarly aims to elucidate mechanisms via circuit
analysis on a concrete linguistic task.
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Attention layers have received significant focus as a more interpretable component of transformers
(Elhage et al., 2021). Geva et al. (2021) specifically highlight the potential of MLP layers as memory
storage, framing them as key-value systems. Building on this, Meng et al. (2023) demonstrate
editing MLP weights after training to alter factual associations stored in layers 6-9 of GPT-2 XL.
We find factual recall utilizes different layers than our bracket task.

Wang et al. (2022) introduce activation patching to study emergence within transformer models.
Meng et al. (2023) expand patching as a diagnostic technique to trace model computations. We adopt
patching to identify components integral to bracket completion. Relatedly, Wang et al. (2022) trace
indirect object resolution via patching attention pathways. Our analysis traces a distinct linguistic
phenomenon. Belrose et al. (2023) show projecting intermediate activations to vocabulary space can
reveal when information is learned within transformers.

We find bracket retrieval arises in early layers, but only later directly influencing predictions. This
aligns with findings on redundant operations (McGrath et al., 2023; Pires et al., 2023) and dormant
representations (Bolukbasi et al., 2021).

Overall, our work contributes additional evidence toward a hierarchical understanding of transformer
learning (Geva et al., 2021), with early layers capturing shallow dependencies, like brackets, before
later composition of deeper factual knowledge. Analyzing simple linguistic circuits clarifies base
mechanisms enabling more complex behaviors.

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

Our analysis provides evidence that very early MLP layers in GPT-2 are responsible for storing
and retrieving low-level linguistic dependencies like paired brackets. The first MLP layer contains
distinct representations for different bracket types that can be swapped to alter predictions. This
aligns with the theory that MLP layers form key-value storage systems. However, the ”values” do
not directly yield the matching token, suggesting the relevant representation may initially be dormant
before later layer activation.

The prominence of early layers differs from factual knowledge tracing where middle layers are
critical. This likely reflects meaningful differences between shallow linguistic versus deeper factual
knowledge within transformers. Our findings support the hierarchical hypothesis which shows early
layers capture shallow syntactic patterns before later composition of more complex representations.

In this paper we analyzed a syntactic dependency in a small model. It will be important to extend
analysis to more complex structures and different models. Future work should trace additional
pathways like tracking state information across layers and other examples such as nested brackets.

We believe exploring other local dependencies like quotes could reveal commonalities to be an in-
teresting immediate future direction. Developing a more precise delineation between “shallow” and
“deep” linguistic patterns learned across layers would strengthen theoretical hierarchical accounts.

7 REPRODUCIBILITY STATEMENT

To ensure our work is reproducible, we provide the full source code in the supplementary materials,
as well as all necessary data and parameters and instructions to reproduce our experimental results.
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A ADDITIONAL RESULTS: EARLY VS MID MLP LAYER IMPORTANCE

5 10

0

0.1

0.2

0.3

0.4

0.5

5 10

0.05

0.1

0.15

0.2

0.25

5 10

0.05

0.1

0.15

0.2

0.25

5 10
0

0.1

0.2

0.3

0.4

Prompt length
3
4
5
6
7
8
9
10
11

Layer Layer

Layer Layer

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty

Figure 8: Patching with and without repatching. Clockwise from top left: negative patching with
no repatching, negative patching with repatching, positive patching with repatching and positive
patching with no repatching. Starting with a randomized initial prompt (positive patching) or the
true prompt (negative patching) and then replacing the output of a specific MLP activation in the
final prompt position with the activation from the alternative prompt. With repatching, all other
MLP output activations in the same position are repatched with the original activations to mitigate
indirect effects. Each line represents the average across all samples of a given prompt length. In the
case of positive patching, the probability is measured relative to the baseline prompt, in the case of
negative patching it is the probability relative to the correct prompt but subtracted from 1.

One striking difference between these results and previous explorations of factual recall in trans-
former MLP layers is the importance here of the very first layer. In Meng et al. (2023) it is middle
layer MLP blocks which are responsible for storing factual associations. One obvious point of dif-
ference is that GPT2-small has far fewer layers (12) than GPT2-XL (48) but the difference is notable
even when taking this into account.

We hypothesised that this could be a result of prompt length. In the case of a bracket, which can
be represented with a single token, there is no need for composition between tokens across multiple
positions in the prompt in order to form a key vector representing their combination. This composi-
tion likely takes place over numerous layers and so the network may learn to store associated values
in later MLP layers as a result.
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We tested this using the 1000 factual prompts used by Meng et al. (2023) for causal tracing. In order
to remove any examples which the model definitely does not know, we accept only prompts where
the probability of outputting the first token in the target is above a given threshold value set to 0.05.
We also remove any prompts for which there are fewer than 10 examples of the same prompt length.

We analyze only the MLP outputs in the final prompt position (e.g. in “The Eiffel Tower is located
in”, the final prompt position would be the token “Tower”) as Meng et al. (2023) show this position
is the most important. We carried out experiments on both GPT2-small (individual layers, 493 ex-
amples) and GPT-XL (10 layer sliding window, 1063 examples). We report results for both positive
and negative patching. For each of these cases, we examine results with and without repatching of
subsequent MLP layers in the same position. Repatching reduces indirect effects and does not allow
the patched MLP layers to alter the output probability by affecting other later MLP layers.

In Figure 8, we observe a similar pattern to Meng et al. (2023) in that early to mid layers in the
final prompt position are of greatest importance and that late layers have almost no impact on out-
put probability. We report that only in the case of negative patching without repatching is there a
significant correlation between prompt length and average layer importance. However, this pattern
is a result of very high dependence on early layers in the case of short prompts rather than the peak
in importance of middle layers shifting slightly earlier. We therefore conclude that there is no clear
correlation between prompt length and the location of important MLP layers within the network.

Instead, it is very likely the case that the difference in location of information storage is due to the
type of information stored. In the case of more complex factual associations (Meng et al., 2023),
information is stored in later MLP layers, whereas lower level linguistic features, such as brackets
and simple word associations are stored in very early layers (Geva et al., 2021).

B MORE EXPERIMENTAL DETAILS

The GPT2 tokenizer uses byte pair encoding and there are multiple tokens that represent open and
closed brackets. We isolate all instances of each bracket that occur within the first 3000 tokens:

• Round brackets: open: ‘(’, ‘ (’, closed: ‘)’, ‘).’, ‘),’, ‘ )’, ‘);’, ‘.)’, ‘):’
• Square brackets: open: ‘[’, ‘ [’, closed: ‘]’, ‘ ]’
• Curly brackets: open: ‘{’, ‘ {’, closed: ‘}’, ‘ }’
• Angular brackets: open: ‘<’, ‘ <’, closed: ‘>’, ‘ >’

We uniformly sample between each type for the opening bracket and sum the probabilities of each
closing bracket.

C PSEUDOCODE
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Algorithm 1 Symbolic Sequence Predictions with Activation Patching

1: Initialization:
2: Load LLM model (e.g., GPT) ▷ Initialize model
3: Define bracket pairs ▷ Set bracket pairs

Step 1:

Bracket Identification
4: for each token in the sentence do
5: if token is an opening bracket then
6: Mark position and type ▷ Tag open brackets
7: end if
8: end for

Step 2:

Activation Patching
9: Cache activations ▷ Store activations

10: Get logit indices for responses ▷ Identify response tokens
11: Extract uncorrupted log probs ▷ Get true log probabilities
12: Patch residual stream ▷ Apply positive patching
13: Obtain corrupted logits with hooks ▷ Apply negative patching
14: Extract corrupted log probs ▷ Get corrupted log probabilities

Step 3:

Contextual Information
15: for each token in the sentence do
16: if context suggests bracket end then
17: Predict matching closing bracket ▷ Match open-close brackets
18: end if
19: end for

Step 4:

Finalize Predictions
20: for each token in the sentence do
21: if unmatched opening bracket then
22: Insert predicted closing bracket ▷ Close open brackets
23: end if
24: end for

Step 5:

Output
25: Return bracket-paired sentence ▷ Final output
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