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ABSTRACT

While augmenting Multimodal Large Language Models (MLLMs) with tools is a
promising direction, current approaches face critical limitations. They often rely
on single, atomic tools, failing to address the challenges of multi-turn planning,
and they do not equip models with the ability to select effective tool combinations
for complex tasks. To overcome these limitations, we introduce AdaReasoner, a
framework that teaches models to perform dynamic tool orchestration for itera-
tive visual reasoning. Our paradigm is designed to support a broad spectrum of
tools, including computationally intensive, expert-model-based services. It fea-
tures a comprehensive design that includes a new data curation methodology and
a tailored Tool GRPO algorithm to optimize multi-turn tool-calling trajectories,
which yields state-of-the-art models that achieve substantial gains over their base-
lines (+38.7% average on 7B) and reach near-perfect accuracy on challenging
benchmarks like VSP (97.6%). This performance rivals or even surpasses leading
proprietary models such as GPT-5 and Claude Sonnet 4, demonstrating that our
approach can effectively overcome scale-based limitations by augmenting smaller
models with powerful tool-use capabilities. Critically, we find that AdaReasoner
develops emergent, self-adaptive behaviors: it learns to autonomously adopt bene-
ficial tools, discard irrelevant ones, and modulate its usage frequency. This ability
to curate its own optimal problem-solving strategies represents a significant step
toward building more robust, scalable, and reliable reasoning agents.

1 INTRODUCTION

Multimodal LLMs have made steady progress on vision–language tasks, but a core challenge in
multimodal reasoning remains. The problem lies in two areas: fine-grained perception and multi-
step reasoning. On tasks such as visual spotting (Shu et al., 2025; Zhang et al., 2025a), models can
often locate a relevant region but fail to capture the key details inside it. Without this evidence, their
language skills become ungrounded and default to semantic priors, leading to “guided guessing”:
outputs that sound plausible but are brittle and detached from the image. The weakness is not in
language generation itself, but in perception – the lack of iterative probing and refinement of visual
understanding. Addressing this requires a shift from passive recognition toward structured reasoning
and active manipulation of visual elements (Qi et al., 2024; Li et al., 2025a).

A promising direction for addressing this limitation is dynamic multimodal interaction (Lin et al.,
2025), where the model iteratively refines visual states and reduce hallucinations. This aligns with
the Extended Mind Theory (Clark & Chalmers, 1998), which views external tools as integral to
cognition. For visual reasoning, tools should not be static add-ons, but as active supports for manip-
ulating and refining visual representations. Early SFT- and prompt-based methods (Ma et al., 2024;
Hu et al., 2024) explored the use of multiple pre-defined tools, but typically relied on scripted invo-
cation rather than active planning. More recent RL-based efforts, such as DeepEyes (Zheng et al.,
2025) and Pixel-Reasoner (Su et al., 2025b), enhanced perception through cropping-based search,
yet restricted themselves to single-tool trajectories. Across both lines of work, what remains missing
is the ability to plan, adaptively select, and coordinate tools –recognizing that deciding which tools
to use, when to use them, and how to combine them is itself a critical form of multimodal reasoning.

We present AdaReasoner, a tool-aware reasoning agent that addresses the limitations of prior
single-tool or scripted tool-use approaches. To bootstrap this learning, we introduce a new data
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Visual Spatial Planning

Point Draw

Hmm... Which tool helps me 
think better this time?

GUI-QA

OCRCrop

AStar

Figure 1: AdaReasoner adaptively selects the necessary tools to solve complex reasoning tasks. The
model demonstrates the ability to acquire new tools, discard ineffective ones, and dynamically adjust
the frequency of tool usage during both training and inference time within different tasks.

curation pipeline that generates complex, multi-turn trajectories, explicitly modeling reflection and
backtracking. This initial policy is then refined using our adaptive reinforcement learning paradigm,
which is tailored to optimize these multi-turn, tool-planning strategies. We have also curated a
high-quality dataset of multi-turn tool-use trajectories that incorporates a variety of sophisticated
operations. AdaReasoner learns to adaptively plan and combine tools in multi-turn settings through
cold-start and RL, following an iterative process of observing, manipulating, verifying, and reflect-
ing. Our toolset supports both manipulation tools (e.g., DRAWLINE, INSERTIMAGE) and perception
tools (e.g., POINT, OCR). It spans lightweight offline utilities as well as advanced model-based ser-
vices. As illustrated in Figure 1, this design allows AdaReasoner to not only extract and check visual
evidence but also actively transform it, yielding deeper multimodal reasoning.

Through adaptive tool interaction, AdaReasoner achieves substantial and stable gains across diverse
benchmarks, with the 7B model improving by +38.7% on average and reaching near-perfect ac-
curacy on tasks such as Visual Spatial Planning (97.6% vs. 52.0% baseline). It also surpasses
proprietary systems, outperforming Claude Sonnet 4 on VSP (97.6% vs. 56.3%) and GPT-5 on
Jigsaw (96.6% vs. 80.1%). Beyond accuracy, AdaReasoner demonstrates how tools shape reason-
ing: perception tools help models to see, manipulation tools help models to verify, and planning
tools help models to calculate. Crucially, as shown in Figure 1, AdaReasoner exhibits self-adaptive
tool-use behaviors. It learns to select effective tools, discard irrelevant ones, and regulate their use
according to task demands and feedback, revealing strong flexibility and generalization. This ad-
dresses the long-standing question of which tools should be included and how models should learn
to use them, suggesting that with proper training, MLLMs can autonomously curate tool-use strate-
gies from a broad candidate set and extend their visual reasoning capacity in a goal-directed manner.
In summary, our main contributions are as follows:

• We propose a comprehensive method for developing tool-augmented models, built upon three
core innovations: a data curation method for multi-turn tool planning, an adaptive RL framework
for multi-turn tool interaction, and a versatile tool suite supporting both lightweight tools and
compute-heavy services.

• Based on our method, we introduce AdaReasoner, a new family of state-of-the-art models
for complex tool planning, which develops emergent, self-adaptive behaviors, learning to au-
tonomously adopt beneficial tools, discard irrelevant ones, and modulate its usage frequency.

• Our AdaReasoner achieves significant gains over their base counterparts and delivers performance
that is competitive with, or superior to, leading proprietary models like GPT-5 and Claude Sonnet 4
on structured-reasoning tasks. This establishes that our methodology can elevate smaller, open-
source models to the state-of-the-art.
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2 RELATED WORK

2.1 REINFORCEMENT LEARNING FOR MULTIMODAL REASONING

The recent success of DeepSeek-R1 (Guo et al., 2025), which demonstrated that rule-based Group
Relative Policy Optimization (GRPO) can effectively induce strong reasoning behaviors in LLMs,
has spurred a wave of research aimed at replicating this paradigm in the multimodal domain. Several
studies have successfully extended this approach, with Zhou et al. (2025) reproducing the emergent
“aha” moment in MLLM reasoning, R1-OneVision (Yang et al., 2025a) introducing a cross-modal
formalization pipeline, and works like Feng et al. (2025) and Li et al. (2025b) improving temporal
reasoning in videos. A collection of other strong works have also leveraged R1-style methods to
achieve impressive results in general MLLM reasoning (Huang et al., 2025; Shen et al., 2025; Lu
et al., 2025). However, a key limitation of the R1-style, rule-based reward structure is that it primar-
ily targets the reasoning process and does not directly improve the model’s underlying perceptual
abilities. Since accurate perception is the foundation for sound reasoning, error accumulation from
faulty perception can still lead to hallucinations and degrade performance. AdaReasoner directly
addresses this shortcoming. By leveraging the precise perceptual capabilities of external expert
models and specialized tools, our framework ensures a high-fidelity understanding of the visual
input, thereby improving the reliability of the entire reasoning pipeline.

2.2 TOOL-AUGMENTED MULTIMODAL REASONING

There is a growing interest in enhancing MLLMs with sophisticated tool-use capabilities. Early
efforts focused on foundational aspects such as infrastructure and data. LLaVA-Plus (Liu et al.,
2024a), for example, introduced a dedicated tool server to provide services for MLLMs. On the data
front, CogCoM (Qi et al., 2024) identified six key manipulation strategies and trained models on syn-
thetic Chain-of-Manipulation (CoM) data, while TACO (Liu et al., 2024b) contributed a large-scale
dataset of reasoning traces derived from 15 visual tools. Subsequent research has explored different
paradigms for tool interaction. One prominent line of work enhances visual reasoning by training
models to generate code (Zhang et al., 2025b; Zhao et al.). While powerful, these code-based envi-
ronments are ill-suited for integrating computationally intensive capabilities, such as invoking large
expert models. Another line of research leverages simpler, atomic visual tools like zoom-in func-
tions to augment model perception (Wang et al., 2025; Zheng et al., 2025; Su et al., 2025a; Zhu et al.,
2025b; Su et al., 2025c). However, these approaches typically focus on single-step actions and have
not explored the more complex challenges of multi-turn planning or dynamic tool composition. Our
work, AdaReasoner, is designed to bridge these gaps, providing a framework that enables models to
perform multi-turn planning and reasoning while adaptively selecting from a diverse suite of tools.

3 METHOD

3.1 PRELIMINARY

Problem Formulation As shown in figure 2, we formalize tool-augmented multimodal reasoning
as a sequential decision-making process. An MLLM represented as a policy πθ parameterized by
weights θ, is tasked with solving a problem by generating a reasoning trajectory τ . The policy is
equipped with access to a predefined set of visual tools T = {t1, . . . , tn}.
A trajectory τ is a sequence of state-action-observation tuples that represent the model’s step-by-step
reasoning process:

τ = {(s0, a0, o0), (s1, a1, o1), . . . , (sT , aT , oT )} (1)

Here, st denotes the problem state, at ∈ T is a tool-calling action encapsulated by special tokens,
and ot is the resulting observation from the tool’s execution. Each action at induces a transition
from state st to st+1 based on the new information in ot:

s0
a0−→ s1

a1−→ s2
a2−→ . . .

aT−−→ sT+1 (2)

Visual Tools Our AdaReasoner framework is built upon a diverse and powerful suite of visual
tools, which it executes and integrates directly into the reasoning process. This toolset is inten-
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Figure 2: An overview of our AdaReasoner framework. The process consists of two stages: (a)
a Cold Start phase, where the trajectory is specially designed for multi-turn reasoning, and (c) a
Tool GRPO phase, where the policy is refined via reinforcement learning guided by our adaptive,
multi-turn reward. The central Tool Server (b) manages a diverse suite of both lightweight and
compute-heavy tools, enabling all interactions throughout the pipeline.

tionally designed to cover three core reasoning functions: perception (e.g., POINT, OCR), ma-
nipulation (e.g., DRAWLINE, INSERTIMAGE), and calculation (e.g., ASTAR). Furthermore, this
suite seamlessly integrates both lightweight, offline tools for immediate execution and computation-
ally intensive, expert-model-based online tools. These foundational capabilities are summarized in
Table 1, with detailed specifications for each tool provided in Appendix B.1.

3.2 HIGH-QUALITY TRAJECTORY DATA CURATION

As illustrated in Figure 2a, our data curation follows a unified, three-stage process designed to
generate high-fidelity, human-like reasoning trajectories.

Abstract Trajectory Design First, for each task, we manually design an abstract, optimal problem-
solving blueprint. For example, the VSP trajectory follows a perception-planning-verification logic,
Jigsaw mimics an iterative trial-and-error process, and GUIQA involves a focus-then-extract strat-
egy. However, to ensure the model develops true robustness beyond simply following these ”perfect”
paths, we deliberately incorporate two critical types of complex scenarios:

• Reflection and Backtracking: We include trajectories designed to encourage a process of trial
and verification. These feature explicit self-correction steps where the model must reflect on a
sub-optimal outcome and backtrack, teaching it to actively validate its own hypotheses and learn
from intermediate failures.

• Explicit Tool Failure: To prevent over-reliance on external tools, we introduce cases where tools
fail or return erroneous results. In these scenarios, after recognizing that a tool is not providing
a useful output, the trajectory prompts the model to fall back on its own intrinsic capabilities to
generate a ”best-effort” answer, ensuring it develops a resilient, dual-strategy approach.

Tool Calling supplements Subsequently, we ground these abstract blueprints by programmatically
executing the tool calls to populate them with concrete, real-world inputs and outputs.

CoT Data Generation Finally, we leverage a powerful LLM to generate the corresponding Chain-
of-Thought (CoT) reasoning that connects each step. This process yields a final dataset of rich, tool-
augmented trajectories that teach the model not just what tools to call, but why and how to reason
between them. Details for our trajectory data curation can be found in Appendix B.2.
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Table 1: Visual tools integrated within AdaReasoner. We illustrate their arguments, outputs, and
core functions description. More detailed descriptions of our tools are presented in Appendix B.1.

Tool Description Arguments Tool Output
POINT Point to a target object Image + Description Point coordinates
DRAW2DPATH Draw a path using directional commands Image + Start + Directions Image with a line
ASTAR∗ Use A* to find the shortest obstacle-free path Start + Goal + Obstacle Shortest path
DETECTBLACKAREA Detect pure black areas in an image Image Bounding boxes of black areas
INSERTIMAGE Insert image into base at bounding box position Image + Coordinates + Insert Combined image
OCR Extracts and localizes text from the image Image Text with their bounding box
CROP Crop a region and augment it Image + Coordinates Cropped Image

3.3 MULTI-TURN TOOL GRPO

To train our model for complex multi-turn tool-planning scenarios, we extend the GRPO framework
to effectively handle multi-turn tool-calling reasoning trajectories. Concretely, we use Multi-turn
Reward Accumulation and Adaptive Tool Reward to ensure the efficacy of the RL procedure.

Multi-turn Reward Accumulation Our total reward, Rtotal is formulated as Rtotal = Rformat · (λtool ·
Rtool + λacc ·Racc), with each component adapted for multi-turn trajectories τ = {τ0, . . . , τT }.
• Format Reward Rformat =

∏n
i=1Rformat(τi) Correct formatting is mandatory at every step.

Therefore, the overall format reward for a trajectory is set to 1 if and only if every individual step
within it is correctly formatted. A single format error at any turn results in Rformat = 0, nullifying
the entire reward for the trajectory. This enforces strict adherence to the reasoning structure.

• Tool Reward The overall tool reward is the average of the fine-grained scores from all tool-
calling turns (from τ0 to τT−1). It is calculated as Rtool = 1

T

∑T−1
t=0 Rtool(τt). Each individual

tool call, Rtool(τt), is evaluated using a hierarchical score of 0-4 based on four criteria (Structure,
Name, Parameter Name, and Parameter Content).

• Accuracy Reward This reward is granted only based on the final turn, τT . If the final answer is
correct, Racc = 1; otherwise, it is 0.

Adaptive Reward for Encouraging Tool Use. To guide the model to use tools as a reliable aid
when uncertain, we introduce an adaptive reward mechanism with an asymmetric incentive struc-
ture, where the reward calculation is contingent on the final answer’s correctness. Correct trajec-
tories automatically receive the maximum possible reward (8 points), irrespective of whether tools
were used, thereby rewarding efficient solutions (including forgoing tools when unnecessary). Con-
versely, for incorrect trajectories, the reward is calculated component-wise. This creates a powerful
safety net that trajectories with proper tool use can still earn partial credit (up to 4 points), while
those that forgo tools and guess incorrectly are heavily penalized with zero reward. This design
teaches the model that while direct answers are optimal when confident, a structured, tool-assisted
process is the superior strategy when facing uncertainty. (See Appendix B.4 for details).

4 EXPERIMENT

4.1 EXPERIMENT SETTING

Models Our core experiments are conducted on the Qwen2.5-VL-3B-Instruct and Qwen2.5-VL-
7B-Instruct models (Bai et al., 2025). These models are selected as our primary testbeds due to their
strong open-source performance in visual understanding, allowing us to effectively demonstrate the
impact and scalability of our proposed methods across different model sizes.

Baselines We benchmark our approach against a comprehensive set of baselines. (1) SOTA Pro-
prietary Models: GPT-5-20250807 (OpenAI, 2025), Claude-sonnet-4-20250514 (Anthropic, 2025),
and Gemini-2.5-flash (Comanici et al., 2025) (2) Competitive Open-Source MLLMs: Qwen-2.5-
VL-32/72B-Instruct (Bai et al., 2025) and InternVL-3-78B (Zhu et al., 2025a). (3) Direct SFT: We
take base models supervisedly finetuned on the training set of each task as a strong baseline (Yang
et al., 2025b). (4) Direct GRPO: Following prior work (Zhou et al., 2025), we apply rule-based
GRPO to the base models to enhance their reasoning ability, serving as another strong baseline.

Tasks Our approach is evaluated across three diverse tasks designed to probe distinct facets of
multimodal reasoning: Visual Spatial Planning, for multi-step planning and perception, evaluated

5
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Table 2: Our main results on VSPO, VSP, Jigsaw, BLINK-J, GUIChat, and WebMMU benchmarks.
TC, TG means Tool Cold Start and Tool GRPO, respectively. The best performance is highlighted
in bold, while the second-best performance is indicated with an underline.

Model VSPO VSP Jigsaw BLINK-J GUIChat WebMMU
Nav Verify Overall Nav Verify Overall Avg. Act. Compre. Rea.

Qwen 2.5 VL 32B 7.56 53.12 28.56 24.33 45.40 33.91 59.50 64.67 85.21 71.27 85.98 68.65 61.82
Qwen 2.5 VL 72B 17.22 52.34 33.41 28.00 52.40 39.09 70.10 71.33 88.01 77.10 91.06 74.59 68.14
InternVL3 78B 7.22 52.60 28.14 21.67 51.20 35.09 52.80 60.00 79.83 62.47 71.34 73.27 51.25
GPT 5 26.89 42.86 34.25 48.17 64.60 55.64 80.10 73.33 71.41 62.13 80.49 68.65 45.96
Gemini 2.5 flash 15.44 68.96 40.12 34.50 76.40 53.55 67.20 65.33 83.05 69.31 66.26 73.93 69.46
Claude 4 sonnet 37.56 67.92 51.56 48.17 66.00 56.27 58.60 65.33 93.14 71.61 83.54 77.23 60.50

Qwen2.5 VL 3B 5.67 50.91 26.53 7.50 49.80 26.73 39.80 48.67 45.11 45.39 55.89 51.82 34.95
+ Direct SFT 27.42 49.66 38.15 34.50 44.00 38.82 42.60 53.33 55.51 46.54 61.38 54.46 32.31
+ Direct GRPO 2.78 50.00 24.55 18.33 50.00 32.73 42.70 52.67 52.49 48.44 56.30 51.49 41.41
+ Our TC 14.67 84.81 47.01 23.33 84.40 51.09 66.00 70.00 45.32 35.03 44.72 42.24 24.82
+ Our TG 11.22 50.00 29.10 22.67 50.00 35.09 43.00 47.33 89.60 58.88 72.15 62.05 47.87
+ Our TC + TG 73.00 98.44 84.73 92.17 97.80 94.73 94.80 88.67 85.45 63.48 81.71 57.43 53.01
∆ +67.33 +47.53 +58.20 +84.67 +48.00 +68.00 +55.00 +40.00 +40.34 +18.09 +25.82 +5.61 +18.06

Qwen2.5 VL 7B 9.84 50.85 29.62 14.17 52.60 31.64 45.70 52.67 59.46 62.67 77.03 69.64 49.19
+ Direct SFT 33.68 51.30 42.18 42.67 51.40 46.64 86.40 88.00 62.68 55.62 65.65 63.70 44.79
+ Direct GRPO 10.33 49.48 28.38 12.50 51.40 30.18 64.90 80.00 67.67 70.19 83.54 69.31 60.94
+ Our TC 31.58 94.01 61.69 41.00 93.60 64.91 84.20 83.33 61.85 51.63 64.63 54.13 41.12
+ Our TG 65.89 52.47 59.70 88.17 55.20 73.18 72.30 80.67 92.52 72.97 88.62 66.34 64.61
+ Our TC + TG 73.44 98.70 85.09 96.33 99.20 97.64 96.60 96.00 88.57 68.16 82.32 67.33 58.30
∆ +63.60 +47.85 +55.47 +82.17 +46.60 +66.00 +50.90 +43.33 +29.11 +5.49 +5.29 -2.31 +9.11

on our custom out-of-distribution benchmark (VSPO) and the standard VSP benchmark (Wu et al.,
2024). Jigsaw, for visual compositionality, evaluated on our Jigsaw-COCO dataset and the Jigsaw
subset from BLINK (Fu et al., 2024) and GUIQA, for fine-grained GUI understanding, evaluated
on GUIChat (Chen et al., 2024) and WebQA from the WebMMU benchmark (Awal et al., 2025).
Detailed settings and implementation details for all tasks are provided in Appendix C.1.

4.2 MAIN RESULTS

Avg. Upper Boundary: 96.2%

Claude Sonnet 4: 56.3%
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Figure 3: Overcoming scale-based lim-
itations with tool augmentation. On the
VSP task, our tools boost the perfor-
mance of both 3B and 7B models, ele-
vating them from disparate baselines to
a near-uniform high performance.

AdaReasoner could bring stable improvements

As shown in Table 2, our AdaReasoner framework con-
sistently and dramatically improves the performance of
base models, demonstrating an average gain of +38.66%
on the 7B model. This tool-augmented approach trans-
forms tasks like VSP from a near-random baseline
(∼52%) to near-perfect execution (97.64%). This per-
formance significantly surpasses traditional optimization
methods such as task-specific SFT (46.64%) and Direct
GRPO (30.18%). Furthermore, AdaReasoner enables
our 7B model to achieve state-of-the-art results that are
competitive with, and in structured-reasoning domains,
superior to the best proprietary models. For instance, on
VSP and Jigsaw, our model outperforms Claude Sonnet 4
(97.64% vs. 56.27%) and GPT-5 (96.60% vs. 80.10%)
respectively. This confirms that AdaReasoner is a highly
effective strategy for unlocking advanced reasoning capa-
bilities in open-source models.

AdaReasoner could help overcome scale-based limitations Furthermore, our results reveal
that tool augmentation can redefine the performance ceiling of MLLMs by overcoming scale-based
limitations. As illustrated in Figure 3, while the baseline performance of 3B and 7B models is dis-
parate and low, our tool-augmented versions both achieve near-perfect accuracy (94.7% and 97.6%).
This strongly indicates that the primary performance bottleneck has shifted from the model’s intrin-
sic scale to the extrinsic quality of the tools it wields. Consequently, this establishes a powerful
paradigm where even smaller, more efficient models can achieve state-of-the-art results, contingent
not on their size, but on the instruments they are equipped with.
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(b) POINT
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(c) DRAW2DPATH

Figure 4: Evolution of tool invocation frequencies for ASTAR, POINT, and DRAW2DPATH during
reinforcement learning. The model is optimized on VSP Verification (cool-colored curves) and VSP
Navigation (warm-colored curves) tasks.

4.3 TOOLS HELP MLLMS TO SEE, VERIFY AND PLAN

Our framework decomposes complex reasoning tasks into manageable steps, each resolved either by
the model itself or by a high-precision external tool. This design fundamentally shifts the problem-
solving burden: instead of requiring flawless internal reasoning, the model’s primary task becomes
effective tool planning. By delegating precise sub-tasks to reliable tools, the model is freed to focus
on its core competencies of judgment, synthesis, and integrating the resulting outputs.

Table 3: Comparison of start-point localization
accuracy between Molmo-7B-D (Deitke et al.,
2024) and the Qwen-VL series base models.

Model Accuracy

Qwen 2.5 VL 3B Instruct 2.47
Qwen 2.5 VL 7B Instruct 47.01
Qwen 2.5 VL 32B Instruct 6.54
Qwen 2.5 VL 72B Instruct 50.0
Our POINT Tool (Deitke et al., 2024) 100.0

Perception Tools Help MLLMs to See Our
framework leverages expert perception tools
to overcome the intrinsic perceptual limita-
tions of MLLMs. As shown in Table 3 and
4, in VSP-verification, our expert POINT tool
achieves perfect localization accuracy (100.0%
vs. ˜50.0% for baselines), and providing its co-
ordinate output as context boosts the down-
stream zero-shot reasoning performance by an
average of +18.79 points. This principle holds
even with imperfect tools: for the Jigsaw task,
our DETECTBLACKAREA tool provides a robust 72.6% accuracy, offering a significant perceptual
advantage that underscores the value of delegating these challenges to specialized tools.

Table 4: Impact of tool-augmented context on
zero-shot reasoning accuracy for VSP-Verify task.

Model VSP-Verify
Base /w Line /w Point

Qwen 2.5 VL 3B 50.91 57.92 (+7.01) 49.09 (-1.82)
Qwen 2.5 VL 7B 50.85 57.68 (+6.83) 57.87 (+7.02)
Qwen 2.5 VL 32B 53.12 61.31 (+8.19) 87.87 (+34.75)
Qwen 2.5 VL 72B 52.34 61.57 (+9.23) 87.53 (+35.19)

Manipulating Tools help MLLMs to verify
Our manipulating tools empower the model to
formulate and subsequently verify its own hy-
potheses. For example, in the VSP-Verify task,
we teach the model to call DRAW2DPATH to
explicitly draw a red line on the frozen lake
question picture. The problem is thus converted
to verifying whether the red line crosses the
blue ice holes. As shown in Table 4, even under
a zero-shot context-appending setting, the DRAWLINE does help improve the judge accuracy of the
model, yielding an average performance improvement of +7.82 points. Similarly in Jigsaw task

High-Quality Trajectory data help MLLMs to plan While augmenting context with tool out-
puts is effective for zero-shot reasoning, this strategy alone is insufficient for achieving optimal
performance. Tool-Cold-Start addresses this gap by explicitly teaching the model two foundational
capabilities: how to use tools correctly and how to recognize the patterns where they should be ap-
plied. As shown in Table 2, for the 7B models, adding the Tool-Cold-Start phase before Tool-GRPO
yields a massive performance improvement of +24.93 points on VSP and +19.82 points on Jigsaw
compared to using Tool-GRPO alone. Besides this, the inclusion of reflection data during the Cold-
Start phase provides further benefits to the model’s reasoning. As shown in Table 5, when A* search
is disabled, training with reflection data yields a substantial improvement over the no-reflection
checkpoints (91.36 vs. 67.27).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Adaptability study on the VSP and VSPO tasks. Stage compares our full Tool Cold Start
(TC) + Tool GRPO (TG) pipeline against TC alone. Reflection indicates training with (X) or without
(7) reflection data. A* specifies tool availability: during Reinforcement Learning (RL), at Inference
(Inf), or unavailable (-). A* Statistics report calls per sample and success rate.

Stage Reflection A* VSP VSPO A* Statistics

Nav Verify Overall Nav Verify Overall CPS Succ Rate

TC + TG 7 RL 96.33 99.20 97.64 73.44 98.70 85.09 0.56 100.00
TC + TG X - 84.33 99.80 91.36 63.89 99.61 80.36 0.00 0.00
TC + TG X Inf 55.17 84.60 68.55 57.22 99.61 76.77 0.68 16.89
TC + TG 7 Inf 62.33 80.00 70.36 43.78 88.70 64.49 0.52 94.53
TC Only 7 - 41.00 93.60 64.91 31.58 94.01 61.69 0.00 0.00
TC + TG 7 - 44.83 94.20 67.27 27.67 94.81 58.62 0.00 0.00
TC Only 7 Inf 46.00 79.40 61.18 32.11 81.43 54.85 0.49 85.16

4.4 MLLMS CAN LEARN ADAPTIVE TOOL-USING

To investigate whether MLLMs can effectively learn to select tools and adaptively regulate their
usage frequency, we carried out a systematic study to build an adaptive tool planning model, which
is the main characteristic of our AdaReasoner.

MLLMs Can Use New Tools during Inference Time During inference, the model demonstrates a
remarkable ability to generalize, dynamically adapting its tool-use strategy to solve novel problems.
To probe this capability, we investigated whether the model could leverage a powerful new tool,
ASTAR, that was intentionally withheld during the Cold Start phase. As shown in Table 5, when
the A* tool is introduced solely at inference time (Inf), it provides a significant performance boost
to the relevant task. For our standard CS+GRPO model (without reflection), this elevates the VSP
navigation score from 44.83 (without A*) to 62.33. The A* Statistics corroborate this adaptive
behavior, showing a high invocation success rate of 94.53%, which indicates the model is not just
guessing but is correctly learning the tool’s syntax and purpose in a zero-shot setting. However, this
adaptability also reveals a critical challenge. The presence of the new A* tool, which is irrelevant
for the verification task, acts as a distractor and degrades performance. For the same model, the
Verify score drops from 94.20 to 80.00 when the tool is made available. Notably, models trained
with Reflection data appear to develop a more rigid policy, as they fail to effectively incorporate the
new tool, leading to a significant performance decrease in navigation.

Learning to Adopt and Master Beneficial Tools through RL To increase the stability of the
adaptive tool calling, we utilize RL for teaching the model to not just use a new tool, but to master
its application context. We start from the same SFT checkpoint that has never been exposed to the
A* tool. We then introduce A* as an available option during our tool GRPO procedure. The results,
shown in Figure 4 and Table 5, are compelling. The key findings are as follows.

• Learning to Adopt Beneficial Tools As illustrated in Figure 4a, for the Path Navigation task
(warm-colored curves), the model’s invocation frequency for ASTAR progressively increases, sta-
bilizing at a high rate of over 1.0 call per sample. This upward trajectory indicates that the model,
guided by task-completion rewards, correctly identifies ASTAR as a highly beneficial tool for
pathfinding and actively incorporates it into its problem-solving strategy. As a result, this mastery
translates to a dramatic performance increase, with the VSP navigation score soaring to 96.33,
which achieves the best performance.

• Learning to Discard Irrelevant Tools Second, and just as critically, the model learns to discard
the tool when it is irrelevant. Figure 4a (cool-colored curves) shows the inverse trend for the Veri-
fication task. The model initially explores using the A* tool but, receiving no reward for doing so,
gradually learns to suppress its usage, with the invocation frequency decaying towards zero. This
adaptive pruning prevents the negative interference observed in the zero-shot inference scenario,
allowing the Verification performance to remain at a near-perfect 99.20. Similar phenomena can
be found in the GUIQA task as well, where the crop tool is discarded by the model under pure
Tool-GRPO settings. This demonstrates that the model learns to suppress the usage of irrelevant
tools, avoiding the potential interference or inefficiency they might introduce.
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<think>The first step is to locate
the start point I will use the
`Point` tool.</think>
<tool_call> Point </tool_call>

<think>After located the start
point, I need to locate the
target...  </think>
<tool_call> Point </tool_call>

<think>After located the start
point and target, I need to locate
the ice holes ... </think>
<tool_call> Point </tool_call>

<think>I will call Astar to find the
correct path... </think>
<tool_call> Astar </tool_call>

<think>I will call Draw2DPath to
verify the path </think>
<tool_call> Draw2DPath </tool_call>

<think>Based on observations through tools, I can confirm
that the path is correct </think>
<response> 
\boxed{L,D,L,D,D,L,L,L,L,U,U,U}
</response>

Path:
LDLD...

Q: Please guide a player from the
start to the goal. 

GPT 5: \boxed{D,D,D,D,D,L
,L,L,L,U,U,U,U}

Ours:

<think>I will use the
`DetectBlackArea` tool to find the
bounding box of this missing
region </think>
<tool_call> DetectBlackArea
</tool_call>

<think>I will now attempt to insert
the first candidate image... </think>
<tool_call> InsertImage </tool_call>

<think>I have now inserted both images into the missing
region. Upon visual inspection of the resulting images,
neither insertion perfectly resolves the jigsaw puzzle,
as the tool's output ... However, I must still determine
the most suitable option based on visual evidence ...
`img_2` (Option A) provides a more plausible and natural
completion of the original image.</think>
<response> 
Based on my visual inspection, the best fit is option A.
\boxed{A}  </response>

BBOX:
[210, 136,
426, 284]

Q: which one is the missing part? 

A. B.

<think>does not align seamlessly
... I will now attempt to insert
`img_3` (Option B) into ..</think>
<tool_call> InsertImage </tool_call>

Ours:

<think> I can see a distinct
section on the page that features
a book cover and a prominent
green button... To accurately
describe how a user would
access this, I should focus on
this specific area of the page..
</think>
<tool_call> Crop </tool_call>

<think>I have successfully used the OCR tool on the
cropped imae. The button is situated directly beneath the
book's title and description, making it a direct and intuitive
way for a user to access the purchasing interface.</think>
<response> 
 To access this buying option, a user would likely need to
be logged in ...  Once logged in, the user would click on
the "Buy Now" button ...  </response>

Q: How can the user access the
buying option from the webpage?

<think>To understand how a user
would access this buying option, I
need to analyze the text ... Now, I
will use the OCR tool...</think>
<tool_call> OCR </tool_call>

{'label': 'Buy',
'label':'Now'}

GPT5: \boxed{Click the green
“Buy Now >>” button. You can

use either of the two on the
page:- Top button: [560, 214,

654, 248]

(a) VSP-Navigation (b) Jigsaw (b) GUIQA

Ours:

Figure 5: Our AdaReasoner-7B demonstrates advanced capabilities for multi-turn, tool-assisted rea-
soning and reflection, enabling it to achieve performance that is on par with, or even superior to,
state-of-the-art closed-source models.

• Learning to Modulate Tool-Use Frequency Beyond the binary choice of adopting or discarding
a tool, the model exhibits a more nuanced capability: dynamically modulating the invocation
frequency of continuously useful tools to find an optimal balance. This is evident in the usage
patterns of Point and DRAW2DPATH (Figures 4b and 4c. For instance, in Figure 4b, the model
learns that the Point tool is significantly more critical for navigation, maintaining a high and
stable call frequency (∼ 3.2 calls/sample), while keeping its usage minimal for verification (∼ 1.0
call/sample). Similarly, for DRAW2DPATH, the model converges towards a moderate and stable
invocation frequency for both tasks after an initial period of exploration. This behavior suggests
that the tool-aware GRPO procedure enables the model to self-correct and fine-tune its tool-use
strategy, converging on task-specific, efficient invocation patterns.

5 ABLATION STUDY

We systematically adjust λtool and λacc to evaluate their influence on learning dynamics and final
performance. Specifically, we train the model on the same VSP task data for 100 RL steps un-
der different reward-weight settings, monitor the training curves to ensure convergence, and then
evaluate each checkpoint’s performance. The results are summarized in the table 6.

Table 6: Ablation on reward-weight configura-
tions for VSP and VSPO.

λtool : λacc VSP (%) VSPO (%)

Nav Verify Overall Nav Verify Overall

0:1 51.83 95.00 71.45 41.78 75.58 57.37
1:2 49.50 95.80 70.55 36.44 94.29 63.11
1:1 64.00 96.40 78.73 48.56 96.23 70.54
2:1 90.33 96.80 93.27 70.33 96.36 82.34

As shown in table 6, the model’s performance
consistently improves as the ratio λtool : λacc
increases. This indicates that larger tool re-
wards not only accelerate convergence during
RL training but also lead to significantly better
final performance. These results validate that
our tool-reward design is effective and plays a
crucial role in helping the model learn tool call-
ing more efficiently and robustly.

6 QUALITIVE RESULTS

Our qualitative analysis is shown in Figure 5, which reveals that AdaReasoner-7B’s superior per-
formance stems from its robust, process-oriented methodology, in contrast to the brittle, monolithic
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approach of baselines like GPT-5. This methodology manifests in three key capabilities. First, it per-
forms multi-turn tool planning and reasoning, breaking down complex tasks like VSP-Navigation
into a logical sequence of perception, planning, and verification. Second, it exhibits reflection,
as seen in the Jigsaw task, where it actively evaluates imperfect tool outputs (“neither insertion per-
fectly resolves...”) and adjusts its strategy from simple trial-and-error to a more nuanced comparative
judgment. Finally, it demonstrates synergistic tool use; in GUIQA, it strategically combines Crop
and OCR, using the former to create an ideal, unambiguous input for the latter, enabling focused
and accurate information extraction.

7 CONCLUSION

We introduced AdaReasoner, a training framework combining Tool-SFT and RL that teaches models
not just to use tools, but to compose them in a dynamic, task-aware manner. Our experiments show
that this approach leads to state-of-the-art performance and, more importantly, endows models with
adaptive capabilities they learn to adopt, discard, and modulate tool use as needed. Our central
finding is that by effectively leveraging tools, the primary barrier to performance shifts from the
model’s inherent scale to the tool’s external accuracy. This paradigm enables smaller models to
achieve performance previously attainable only by larger models.

8 ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics. Our work aims to enhance the reasoning capa-
bilities of MLLMs through tool use, and we are committed to scientific transparency by detailing
our methodology and planning to release our training and evaluation framework to encourage repro-
ducibility. We acknowledge the potential for dual-use, as more capable agents could be misused.
The outputs of AdaReasoner may reflect biases from its base models and the tools it uses. All data
used is either procedurally generated or from public benchmarks, with no private user data collected.
We believe the benefits of enabling smaller models to perform complex reasoning and advancing the
understanding of agentic AI are significant, and we encourage continued research into the safety and
alignment of such systems.

9 REPRODUCIBILITY STATEMENT

Detailed descriptions of our methodology, covering both the Tool Cold Start and Tool GRPO stages,
are provided in Appendix B. In addition, comprehensive experimental settings, including all hyper-
parameters, are documented in Section 4.1 and further elaborated in Appendix C.3. To ensure full
reproducibility and to allow others to build upon our work, we will publicly release our complete
source code—covering the entire framework for data curation, training, and evaluation—along with
all custom-generated data upon publication.
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A USE OF LARGE LANGUAGE MODELS

In adherence to the ICLR policy on the use of Large Language Models (LLMs), we explicitly state
that LLMs were not used to generate any of the core ideas, methodologies, or experimental results
presented in this paper. The conceptualization of the AdaReasoner framework, the design of the
training pipeline, and the analysis of the results were conducted entirely by the human authors. We
did, however, utilize LLM-based tools (such as Google’s Gemini) for tasks related to improving the
manuscript’s language, clarity, and grammatical correctness, akin to using a spelling or grammar
checker. All final text was reviewed and edited by the authors to ensure it accurately reflects our
original contributions and findings.

B METHOD DETAILS

B.1 BASIC SETTINGS

We first formalize multimodal reasoning with tools as an agentic planning process, enabling a sys-
tematic description of how models decompose and solve complex tasks.

Problem Formulation The VLMs with tool-using capacity can be denoted as πθ parametrized
with model weights θ. For initialization, πθ is augmented with access to a pool of tools T =
{t1, t2, · · · , tn}, which contains n available tools. Specifically, considering the task description g
and original input x = {text, image} as the initial state s0. Beyond this, the planning framework
is further specified by three essential components: State st: Represents the current status of the
problem. The initial state s0 corresponds to the original problem, while intermediate states are steps
that involve reasoning purely within the text given the observation until a special token triggers for
action. Action at: Signifies a one-step tool-calling action, encapsulated by the special symbols
<tool call> and </tool call>. The action leads to a transition to a new state by incorpo-
rating the tool’s outcomes. Thought τi: A one-step thought is a combination of the one-step state,
action, and the observation received after executing the tool. The observation is encapsulated within
<response> and </response>. This formulation naturally encapsulates the process of decom-
posing a complex problem into multiple sub-tasks, each accompanied by their respective outcomes.

A typical Tool-Integrated Reasoning trajectory τ involves multiple tool invocations over several
reasoning steps, which can be represented as a sequence of thoughts:

τ = {τ0, τ1, τ2, . . . , τT }

where each single-step thought is defined as τi = {si, ai, oi}, and the sequence proceeds as follows:

s0
a0−→ s1

a1−→ s2
a2−→ . . .

aT−−→ sT+1

To enable the model to autonomously generate reasoning traces and tool calls, we utilize a system
prompt as shown in C.2 during rollout. The Tool List placeholder denotes the tool set T , which
contains all tools available for invocation.

Tool Definition and Usage This section provides a detailed description of the visual tools inte-
grated within our AdaReasoner framework. For each tool, we outline its core functionality, input
arguments, output format, and its specific role in addressing the challenges of our evaluation tasks.

• POINT

– Functionality: A perceptual tool designed for precise object localization. Given an image
and a natural language description of a target (e.g., ”the start point,” ”the blue chest”), it
returns the pixel coordinates (x, y) of the object’s center.

– Role in VSP: This tool is fundamental for grounding the model in the spatial environment. In
both Navigation and Verification, it is the first step to accurately identify the locations of the
start, goal, and hazardous ice holes, converting the visual grid into a structured representation
that can be used for planning.

• DRAW2DPATH

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

– Functionality: A visualization and verification tool. It takes a starting coordinate and a
sequence of directional commands (e.g., [‘U’, ‘U’, ‘R’]) and overlays the corresponding path
onto the input image.

– Role in VSP: This tool externalizes the model’s internal plan into a visual artifact. In Ver-
ification, it renders the given path for the model to judge. In Navigation, it serves as a final
check, allowing the model to visually confirm that its generated path is correct and safe before
outputting the final answer.

• ASTAR

– Functionality: A classic planning algorithm encapsulated as a tool. It computes the shortest
obstacle-free path between a start and a goal coordinate, given the locations of obstacles.

– Role in VSP: This tool offloads the complex pathfinding computation. After the POINT tool
identifies all key locations, ASTAR can be invoked to generate an optimal, logically sound
path, freeing the MLLM to focus on higher-level task management and verification.

• DETECTBLACKAREA

– Functionality: A specialized perception tool for the Jigsaw task. It analyzes an image and
returns the bounding box coordinates of any completely black, rectangular regions, which
correspond to the missing puzzle piece.

– Role in Jigsaw: This tool provides a deterministic way to identify the ”problem space.” It is
the critical first step in the solution trajectory, telling the model precisely where the candidate
patches need to be inserted.

• INSERTIMAGE

– Functionality: A visual manipulation tool. It takes a base image, a patch image, and a set
of coordinates, and returns a new image where the patch has been inserted at the specified
location.

– Role in Jigsaw: This tool enables iterative hypothesis testing. The model uses it to physically
place each candidate patch into the missing slot identified by DETECTBLACKAREA. The
resulting composite image is then fed back to the model, allowing it to visually assess the
quality of the fit.

• CROP

– Functionality: An attentional tool. It takes an image and bounding box coordinates and
returns a new, smaller image containing only the specified region.

– Role in GuiQA: This tool mimics the human ability to focus on a specific part of a dense
interface. By cropping a region of interest (e.g., a button or a text block), the model can
reduce noise and ambiguity, creating a cleaner input for subsequent analysis by other tools
or by the model itself.

• OCR
– Functionality: An information extraction tool. It performs Optical Character Recognition

on an input image, returning all detected text along with its corresponding bounding box
coordinates.

– Role in GuiQA: This tool grounds the model’s understanding in the literal text present in
the GUI. It is often used synergistically with CROP. After isolating a key UI element, the
model can use OCR to reliably read its label (e.g., “Buy Now”), preventing the visual-only
hallucinations common in MLLMs.

B.2 HIGH-QUALITY COLD START TRAJECTORY DATA CURATION

For our structured reasoning tasks, we developed customized data generation and trajectory creation
pipelines to ensure high quality and diversity. Some detailed data samples are shown in appendix
B.3

VSP The VSP benchmark environments were procedurally generated using the Gymnasium
framework. To ensure variety, we systematically controlled the distribution of start points, end
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User: You are a maze solver. Your
goal is to guide a player from the
start to the goal on a grid map
while avoiding holes. 
You can use the following tools to
help you finish this task: 
{Point}, {DrawPath}

Assistant: <think> I need to identify the starting point of the
maze. I will use the `Point` tool to locate the coordinates of
the Elf on the provided image.</think>
<tool_call>{"name": "Point", "parameters": {"image": "img_1",
"description": "Elf"}}</tool_call>

User: 
{"tool_response_from": "Point",
"status": "success",
"points": [{"x": 352.0, "y": 160.0}],
"image_dimensions_pixels":
{"width": 512,"height": 512},
"error_code": 0}

User: 
{"tool_response_from": "Point",
"status": "success",
"points": [{"x": 416.0, "y": 352.0}],
"image_dimensions_pixels":
{"width":512, "height":512},
"error_code": 0}

Assistant: <think>Now that I have successfully located the
Elf, my next step is to find the destination. I will use the Point
again to identify the coordinates of the Gift.</think>
<tool_call>{"name": "Point", "parameters": {"image": "img_1",
"description": "Gift"}}</tool_call>

Assistant: <think>I have successfully identified the starting
point (Elf) and the destination (Gift). The crucial next step is
to locate all the "Ice Holes" on the map, which represent
obstacles that must be avoided.</think>
<tool_call>{"name": "Point", "parameters": {"image": "img_1",
"description": "Ice Holes"}}</tool_call>

Assistant: I have successfully identified the Elf, the Gift ,
and all the Ice Holes. My goal is to find a path from the Elf to
the Gift, avoiding all ice holes. Given the grid structure and
the relative positions, I'll test the path 'R,D,R,D,R,D,R,D' as a
first attempt to see if it reaches the goal safely. I need to
visualize this path to confirm its validity.</think>
<tool_call>{"name": "Draw2DPath","parameters": {"image":
"img_1","start_point": [352.0,160.0],"directions":
"R,D,R,D,R,D,R,D","pixel_coordinate": true}}</tool_call>

User: 
{"tool_response_from":
"Draw2DPath",
"status": "success",
"messages": "Path drawn
successfully."
"error_code": 0}
<image>

Assistant: The Draw2DPath tool has returned an image
showing the path 'R,D,R,D,R,D,R,D'. Upon reviewing the
drawn path, I can clearly see that it does not reach the
destination (Gift) and potentially crosses over an ice
hole or gets stuck. I need to re-evaluate the maze……I will
try the sequence 'L,U,L,L,L,D,D,D,D,R,R,D,R,R,U,R'. This
path attempts to navigate around the clusters of ice holes
and find a clear passage.</think>
<tool_call>{"name": "Draw2DPath","parameters": {"image":
"img_1","start_point": [352.0,160.0],"directions":
"L,U,L,L,L,D,D,D,D,R,R,D,R,R,U,R",……}}</tool_call>

User: 
{"tool_response_from":
"Draw2DPath",
"status": "success",
"messages": "Path drawn
successfully."
"error_code": 0}
<image>

Assistant: The Draw2DPath tool has successfully drawn the
new path. Upon visual inspection of the image, the drawn
path clearly starts at the Elf's position, safely navigates
through the open ice, avoids all the identified ice holes,
and successfully reaches the Gift. This path is correct and
achieves the objective of guiding the player from start to
finish while avoiding obstacles. I now have the final answer.
</think>
<response>\\boxed{L,U,L,L,L,D,D,D,D,R,R,D,R,R,U,R}
</response>

Step1: Determine the start

Step2: Determine the end

Step3: Determine the Holes

Step4: Verify Solution

Step5: Correct Solution and Verify

Step6: Analysis and Response

User: 
{"tool_response_from": "Point",
"status": "success",
"points": [{"x": 32.0, "y": 32.0}],
…………
"points": [{"x": 160.0, "y": 480.0}],
"image_dimensions_pixels":
{"width":512, "height":512},
"error_code": 0}

Figure 6: An example of a multi-turn cold-start trajectory for the VSP task.

points, and ice holes. We synthesized environments of sizes 4x4, 6x6, and 8x8 for the training set,
while reserving larger 5x5, 7x7, and 9x9 grids for testing. The SFT trajectories were designed to
mimic an optimal problem-solving process. For Navigation tasks, the trajectory consists of: (1)
invoking the Point tool to localize the start, end, and all ice holes; (2) performing textual reasoning
based on these coordinates; and (3) calling Draw2DPath for final verification. Crucially, we also
incorporated reflection and backtracking data derived from failure cases. For Verification tasks, the
trajectory involves: (1) using Point to locate the start, (2) employing Draw2DPath to render the
proposed path, and (3) prompting the model to judge if this path intersects any ice holes.

Jigsaw The Jigsaw dataset was constructed using images from the COCO 2017 training set. Each
instance was created by first dividing an image into a 3x3 grid. A 2x2 sub-grid was then selected as
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User: Given the first image with one part missing, can you tell
which one of the second, third or the fourth images is the missing
part (A or B or C) ?
You can use the following tools to help you finish this task: 
{AstartWithPixelCoordinate}, {Draw2DPath},
{TurnCoordinateIntoTextMap}, {DetectBlackArea},
{InsertImage}

A. B. C.
Step1: Identify Missing Region

Assistant: <think>The problem requires me to find the correct candidate image to fill the missing black
area in the main picture. My first step is to accurately identify the location of this missing region. I
will use the DetectBlackArea tool to find the bounding box coordinates of the black area in img_1.
</think>
<tool_call>{"name": "DetectBlackArea", "parameters": {"image": "img_1"}}</tool_call>

User: 
{"status": "success",
"bounding_boxes": ["[0, 142, 213, 284]"],
"message": "Found 1 black areas",
"error_code": 0,
"tool_response_from": "DetectBlackArea"}

Step1: Identify Missing Region
Assistant: <think>The problem requires me to find the correct candidate image to fill the missing black
area in the main picture. My first step is to accurately identify the location of this missing region. I
will use the DetectBlackArea tool to find the bounding box coordinates of the black area in img_1.
</think>
<tool_call>{"name": "DetectBlackArea", "parameters": {"image": "img_1"}}</tool_call>

Step1: Identify Missing Region
Assistant: <think>The problem requires me to find the correct candidate image to fill the missing black
area in the main picture. My first step is to accurately identify the location of this missing region. I
will use the DetectBlackArea tool to find the bounding box coordinates of the black area in img_1.
</think>
<tool_call>{"name": "DetectBlackArea", "parameters": {"image": "img_1"}}</tool_call>

Step2: Attempt Choice A
Assistant: <think>The DetectBlackArea tool has successfully identified the coordinates of the missing
region as [0, 142, 213, 284]. According to the problem trajectory, I need to insert each candidate image
into this region until the correct answer is found. I will start by inserting the second image (`img_2`),
corresponding to option A, into the detected black area to evaluate its fit.</think>
<tool_call>{"name": "InsertImage","parameters": {"base_image": "img_1","image_to_insert":
"img_2","coordinates": "[0, 142, 213, 284]"}}</tool_call>

User: 
{"status": "success",
"message": "Image inserted successfully",
"error_code": 0,
"tool_response_from": "InsertImage"}
<image>

Step3: Analyze and Attempt Choice C

Assistant: <think>I have inserted `img_2` (Option A) into the missing region. Upon reviewing the
resulting image, it's clear that `img_2` does not fit seamlessly; the water pattern and the boat's
structure do not align with the surrounding parts of the original image. Therefore, I will now
proceed to test the next option. And through analysis I feel that option C is more like the missing part, I
will try C first.</think>
<tool_call>{"name": "InsertImage","parameters": {"base_image": "img_1","image_to_insert":
"img_4","coordinates": "[0, 142, 213, 284]"}}</tool_call>

User: 
{"status": "success",
"message": "Image inserted successfully",
"error_code": 0,
"tool_response_from": "InsertImage"}
<image>

Step4: Analyze and Response

Assistant: <think>I have now inserted `img_4` (Option C) into the missing region. Observing the result,
`img_4` clearly provides a much better fit than `img_2`. The lines of the boat, the water, and the overall
context align perfectly, indicating a seamless integration with the original image. This confirms that
`img_4` is the correct missing piece.</think>\n\n
<response>After trying both options, I can see that option A doesn't fit well - the edges don't align
properly and the content doesn't flow naturally with the rest of the image.\n\nHowever, option C fits
perfectly into the missing region. The edges align seamlessly, and the content flows naturally when this
piece is inserted.\n\n\\boxed{C}</response>

Figure 7: An example of a multi-turn cold-start trajectory for the Jigsaw task. This trajectory show-
cases an iterative trial-and-error process. The agent first uses DETECTBLACKAREA to identify the
missing region. It then sequentially attempts to InsertImage with each candidate patch, analyzing
the visual result of each attempt before arriving at the correct solution.

User: You are a visual assistant
capable of solving visual
reasoning problems.
Question: Can I download the
thesis on 'Music in the Science
Classroom' from this webpage?
You can use the following tools to
help you finish this task: 
{Point}, {DrawPath}

Step1: Analyze and Crop
Assistant: <think>The user is asking whether a specific thesis, \"Music in the
Science Classroom,\" can be downloaded from the webpage. To answer this, I
need to find information on the page that indicates download availability, such
as a link or a download button. I can see the thesis title displayed prominently.
Below the \"McFadden, Tom\" author name, to the right of the thumbnail
image, there is a section providing citation details. Within this section, I
observe the phrase \"Permanent link to OUR Archive version:\" followed
by a URL. This phrase strongly suggests that the thesis is available for
retrieval and download. To confirm this, I need to focus on this specific area. I
have identified the coordinates of the \"Permanent link\" text as
[321,446,522,462].</think>
<tool_call>{"name": "Crop", "parameters": {"image": "img_1", "coordinates": "
[321,446,522,462]"}}</tool_call>

User: 
{"tool_response_from": "Crop",
"status": "success",
"message": "Image cropped successfully
using absolute coordinates.",
"image_dimensions_pixels": {"width":
201,"height": 32},
"error_code": 0}
<image>

Step2: OCR

Assistant: 
<think>I have successfully cropped the specific area containing the
"Permanent link to OUR Archive version:", creating `img_2`. Now, I need to
use OCR on this cropped image to extract the actual text of the link and
determine if it confirms the ability to download the thesis.</think>
<tool_call>{"name": "OCR", "parameters": {"image": "img_2"}}</tool_call>

User: 
{"tool_response_from": "OCR",
"status": "success",
"detections": [{"label": "http://hdl.handle.net/10523/4203","confidence":
0.96,"pixel_bbox": {"x_min": 0,"y_min": 10,"x_max": 200,"y_max": 23}}],
"image_dimensions_pixels": {"width": 201,"height": 32},
"error_code": 0}
<image>

Step3: Analyze and Response

Assistant: <think>The OCR tool successfully extracted the text
"http://hdl.handle.net/10523/4203" from the cropped image. This
confirms that there is a permanent link to the archive version of the
thesis available on the webpage. The presence of such a link indicates
that the thesis can be downloaded.</think>
<response>Yes, you can download the thesis on 'Music in the Science
Classroom' from this webpage. A permanent link
(http://hdl.handle.net/10523/4203) to the thesis is provided.</response

Figure 8: An example of a multi-turn cold-start trajectory for a GUI-QA task. This sample illustrates
a focus-then-extract strategy. The agent first uses the CROP tool to isolate a specific, relevant section
of the webpage. It then applies the OCR tool to this cropped, unambiguous input to perform precise
information extraction.

the base image, from which one patch (e.g., top-right) was removed to create the problem. The re-
moved patch served as the correct answer, while one of the remaining five patches from the original
3x3 grid was chosen as a distractor. The SFT trajectory instructs the model to: (1) call Detect-
BlackArea to identify the coordinates of the missing section, and (2) iteratively call InsertImage for
each candidate patch until the puzzle is solved. To enhance robustness and diversity, we introduced
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several key variations: (a) The order of patch insertion attempts was randomized to ensure a uniform
distribution of options. (b) Scenarios involving tool failures (e.g., detection errors) were included,
prompting the model to fall back on its intrinsic knowledge after several failed attempts. (c) A pro-
portion of samples were designed to be solvable directly by the model without tool use, encouraging
adaptive tool invocation.

GUIQA The process begins with 44k single-turn instances from the Guichat dataset. To identify
challenging cases that necessitate tool use, we first prompted a powerful vision-language model,
Qwen-VL-2.5-72B, to answer the questions. We retained only the instances where the model failed,
resulting in a subset of 7,100 ”hard” questions. Next, for these 7,100 instances, we rendered the
ground-truth answer coordinates as bounding boxes on the images. We then performed a manual vi-
sual inspection to ensure these boxes contained meaningful and relevant information, which filtered
the set down to 1,800 valid data points. To generate high-fidelity tool-use trajectories for these cases,
we provided the ground-truth answer and coordinates to gemini-2.5-flash, prompting it to produce
the chain-of-thought reasoning and tool invocation sequence required to solve the problem. Finally,
all generated trajectories were validated against our predefined format, and only those that strictly
conformed were retained. This final curation step yielded a high-quality dataset of 1,139 instances
for our cold-start training.

After defining the abstract trajectory structure for all tasks, we followed a unified, two-stage process
to create the final training data. First, we executed these trajectories programmatically to populate
them with real tool inputs and outputs. Subsequently, we leveraged Gemini 2.5 Flash to generate
the corresponding chain-of-thought (CoT) reasoning for each step. This process resulted in a final
dataset of high-fidelity, tool-augmented trajectories complete with explicit reasoning chains, ready
for our cold-start training.

B.3 DATA SAMPLES

To provide a more concrete understanding of our cold-start data, we present representative multi-turn
trajectory samples for each of our core tasks in Figures 6, 7, and 8. These examples are designed to
showcase the sophisticated, human-like reasoning patterns we aim to instill in the model during the
supervised fine-tuning phase.

The VSP sample (Figure 6) illustrates a methodical, multi-stage problem-solving process that in-
cludes perception, verification, and analysis. The Jigsaw sample (Figure 7) demonstrates an iterative
trial-and-error strategy, where the agent actively evaluates the outcome of each tool call. Finally, the
GUI-QA sample (Figure 8) highlights a synergistic tool-use pattern, where one tool (‘Crop’) is used
to create optimal conditions for another (‘OCR’). Across all examples, the interplay between the
model’s internal thoughts (‘<think>’), tool calls, and observations from the environment is clearly
demonstrated.

B.4 TOOL GRPO

Group Relative Policy Optimization (GRPO) is a reinforcement learning algorithm that evaluates
policy performance by directly comparing a group of candidate reasoning trajectories. The process
of Tool GRPO in AdaReasonerbegins with the initial state s0 = 〈g, text, image〉, for which the
policy πθ samples a set of N complete trajectories as candidate responses, {τ1, τ2, . . . , τN}. Each
trajectory is evaluated by a reward function, yielding rewards ri = R(τ i). GRPO then calculates
a group-relative advantage Ai for each trajectory by normalizing its reward against the statistics of
the entire group:

Ai =
ri −mean{r1, r2, . . . , rN}

std{r1, r2, . . . , rN}
. (3)

The policy is then updated to favor trajectories with higher relative advantages by maximizing a
clipped surrogate objective function. This objective is designed to ensure stable training by prevent-

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

ing excessively large policy updates. The full objective is:

JGRPO(θ) = Eq∼P (Q),{τ i}Gi=1∼πθold (·|q)[
G∑
i=1

|τ i|∑
j=1

1

G|τ i|
min
(
mi
jAi, clip

(
sij , 1− ε, 1 + ε

)
Ai

)
− β DKL

(
πθ
∥∥πref)] . (4)

Here, mi
j =

πθ(τ
i
j−si|si)

πθold (τ
i
j−si|si)

is the importance sampling ratio that measures the change between the
new policy πθ and the old policy πθold used to generate the samples. The Kullback-Leibler (KL)
divergence penalty, DKL(πθ||πref) regularizes the policy update by penalizing large deviations from
a reference policy πref.

Reward Design Our reward function is designed to evaluate both the structural syntax and the
semantic correctness of the model’s output. The total reward, Rtotal, is a composite score defined as:

Rtotal = Rformat × (Rtool +Raccuracy) (5)

Here, Rformat acts as a binary gate, ensuring that rewards for tool usage (Rtool) and final answer
accuracy (Raccuracy) are granted only if the output adheres to the required structure. This design
incentivizes the model to first master the correct syntax before optimizing for functional correctness.
The total reward score ranges from 0 to 8.

• Format Reward (Rformat) The format reward is a binary signal that assesses the structural in-
tegrity of the model’s output. It verifies that the generated response contains all required special
tokens in the correct order and follows predefined rules.

Rformat =

{
1 if the output format is valid
0 otherwise

(6)

If Rformat is 0, the total reward for the trajectory is nullified, creating a strong imperative for the
model to learn the required output structure.

• Tool Reward (Rtool) The tool reward provides a fine-grained evaluation of the tool-calling pro-
cess, with a score ranging from 0 to 4. We employ a hierarchical scoring system where each level
must be passed to proceed to the next.

1. Invocation Structure (Score 1): A score of 1 is awarded if the tool call is correctly encap-
sulated within the <tool call> and </tool call> tokens. If not, the score is 0, and no
further tool evaluation occurs.

2. Tool Name Validity (Score 2): If the structure is correct, we verify that the invoked tool
name exists in the set of available tools, T . If the name is valid, the score becomes 2.

3. Parameter Name Correctness (Score ∈ [2, 3]): If the tool name is valid, we assess the
parameter names. A partial score is awarded based on the proportion of correctly named
parameters. A perfect match yields a score of 3. The score is calculated as:

Rtool = 2 +
|paramscorrect name|
|paramstotal|

(7)

4. Parameter Content Validity (Score ∈ [3, 4]): Finally, if all parameter names are correct
(base score of 3), we evaluate the parameter values for semantic and contextual validity. The
final score is proportional to the number of correct values, reaching a maximum of 4.

Rtool = 3 +
|paramscorrect content|
|paramstotal|

(8)

• Accuracy Reward (Raccuracy) The accuracy reward evaluates the final outcome of the reasoning
process, providing a clear signal based on the correctness of the model’s final answer.

Raccuracy =

{
4 if the final answer is correct
0 otherwise

(9)

This multi-faceted reward structure guides the model toward not only achieving the correct final
answer but also mastering the intermediate steps of correct formatting and precise tool invocation.
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C EXPERIMENT DETAILS

C.1 TASK DEFINITION

We evaluate our approach across a diverse suite of three challenging tasks to validate whether our
approach can help enhance the reasoning ability.

Visual Spatial Planning We adopt the FrozenLake scenario (Towers et al., 2024) to evaluate mod-
els’ spatial planning and verification abilities. The navigation task requires the model to generate
a safe path from the start to the goal while avoiding holes, which demands accurate perception of
the grid map and robust sequential reasoning to plan multi-step trajectories. The verification task
instead focuses on state checking, determining whether a given location or a proposed path is safe,
which isolates the perception and reasoning components of the planning pipeline. Together, these
tasks expose two fundamental challenges for VLMs: (i) precise visual perception of spatial layouts
under varying map sizes, and (ii) reliable reasoning over action sequences to ensure safety and goal
completion.

Concretely, we evaluate models on two benchmarks. The first is FrozenLake-ood, a dataset we
construct to assess out-of-distribution generalization. During training, we use maps of sizes 4 × 4,
6× 6, and 8× 8, while reserving maps of sizes 3× 3, 5× 5, 7× 7, and 9× 9 for testing. This setup
not only probes the model’s ability to generalize to unseen spatial configurations but also examines
whether it truly learns to leverage tool usage for problem solving. The second is the original VSP
benchmark (Wu et al., 2024), where we adopt the navigation and verification tasks to further test
visual-spatial reasoning and state-checking capabilities under standardized settings.

Jigsaw The Jigsaw task (Noroozi & Favaro, 2016) evaluates a model’s ability to reconstruct holis-
tic understanding from fragmented visual inputs. Specifically, the model must infer the correct
spatial arrangement of shuffled image patches and reason about their part–whole relationships. This
requires fine-grained perception to capture local details, as well as global reasoning to integrate them
into a coherent whole. The key challenges lie in bridging local–global consistency and maintaining
semantic alignment across patches, making it a strong test of visual compositionality and structural
reasoning.

Concretely, we evaluate models on two benchmarks. The first is Jigsaw-COCO, where we construct
training and test splits based on the COCO train 2017 dataset (Lin et al., 2014). We extract the top-
left, top-right, and bottom-left patches of each image to form the training set, while reserving the
bottom-right patches for testing. This design allows us to probe the model’s out-of-distribution
generalization and examine whether it truly learns to invoke tool usage for solving the puzzle. The
second is the Jigsaw benchmark from BLINK (Fu et al., 2024), which provides a standardized
evaluation of fine-grained visual reasoning and compositional understanding under more challenging
and diverse settings.

GuiQA The GuiQA task is designed to evaluate a model’s sophisticated capabilities in fine-
grained visual understanding and critical information extraction from GUIs. In this task, a model
is provided with a GUI screenshot and an associated question, where the main difficulty lies in
precisely grounding UI elements on a dense layout, comprehending their functional roles, and per-
forming multi-step reasoning by integrating scattered information.

The evaluation is conducted on two distinct datasets. The first is the GuiChat (Chen et al., 2024),
which specifically probes the model’s capacity for interactive, dialogue-based comprehension of
webpage screenshots. Models are required to process complex queries related to visual information,
human-centric needs, world knowledge, and reasoning. The second is the WebQA from the Web-
MMU (Awal et al., 2025). It offers a structured evaluation across three distinct categories. Agentic
Action tests the ability to understand UI elements like buttons and menus in order to formulate the
necessary user actions, complete with precise spatial grounding. The next category, General Visual
Comprehension, assesses how well the model can extract and synthesize information from varied
page components, including text, images, and graphics. Finally, Multi-step Reasoning demands
complex inference, numerical calculations, and comparisons across different parts of the UI.
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Table 7: Tool Cold Start (SFT) Training Configuration and Hyperparameters.

Category Hyperparameter Value / Setting

Model

Base Model Qwen2.5-VL-7B-Instruct
Vision Tower Frozen True
MM Projector Frozen True
Finetuning Type Full
DeepSpeed Stage ZeRO-3

Dataset
Max Samples 332,649
Cutoff Length 35,536
Preprocessing Workers 64

Training

Batch Size per Device 1
Gradient Accumulation Steps 2
Effective Batch Size 2
Learning Rate 1e-5
Epochs 3
LR Scheduler cosine
Warmup Ratio 0.1
Mixed Precision bfloat16

Logging / IO Logging Steps 10
Checkpoint Save Steps 100

Evaluation
Train/Validation Split 90% / 10%
Eval Batch Size per Device 1
Eval Steps 100

C.2 PROMPTS

The system prompt used for guiding the tool-planning model is provided in Figure 9.

C.3 IMPLEMENTATION DETAILS

We developed Tool Factory, an end-to-end framework that orchestrates the entire lifecycle of our
tool-planning models, from data curation to evaluation. At the heart of this framework is the Tool
Server, a unified, MCP-like service that manages all available tools, from simple offline utilities to
compute-heavy online expert models.

C.3.1 DATA CURATION

During the data curation stage, we employ our Tool Curation Module, which leverages the Tool
Server to automatically generate high-quality cold-start trajectories. Specifically, we first design
abstract, optimal problem-solving blueprints for each task, consisting of a tool-call chain and chain-
of-thought (CoT) placeholders. We then prompt Gemini-2.5-Flash to fill these placeholders with
detailed CoT reasoning. Finally, the Tool Server executes the corresponding tool calls and integrates
the results into the dialogue, yielding a complete and coherent training instance.

C.3.2 TOOL COLD START STAGE

During the cold-start stage, these trajectories are used for full-parameter supervised fine-tuning, for
which we adopt the LLaMA Factory framework (Zheng et al., 2024). The key configurations and
hyperparameters are summarized in Table 7.

C.3.3 TOOL GRPO STAGE

Following SFT, the model is further refined in the Tool GRPO stage using ToolRL, our custom re-
inforcement learning framework inspired by Sheng et al. (2024); Zheng et al. (2025), which also
relies on the Tool Server for live tool interactions. Finally, for systematic performance assessment,
we developed TF-Eval, our dedicated evaluation framework. TF-Eval interacts with the Tool Server
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System Tool Prompt

You are a visual assistant capable of solving visual reasoning problems. You can rely on
your own capabilities or use external tools to assist in solving.
Available Tools In your response, you can use the following tools:
{Tool List}
Steps for Each Turn
1. Think: First, silently analyze the user’s request to understand the goal. This thinking
process should be enclosed in <think> and </think> tags.
2. Decide Action: Based on your thinking, decide on one of the following two actions:
- If you need to use a tool: Generate your tool call, enclosed between <tool call> and
</tool call> tags. Do not generate a <response> in this turn.
- If you have enough information to answer: Generate your final, user-facing an-
swer, enclosed between <response> and </response> tags. Do not generate a
<tool call> in this turn.
Output Format:
Your output must always begin with your thought process. After the <think> block, you
must provide either a <tool call> or a <response>, but never both in the same turn.
Case 1: Tool Use is Required
<think> Your thoughts and reasoning </think>
<tool call>
{“name”: “Tool name”, “parameters”: {“Parameter name”: “Parameter content”, “...”:
“...”}}
</tool call>
Case 2: Ready to Respond to the User
<think> Your thoughts and reasoning </think>
<response> Your final response </response>
Important Notes
1. You must always include the <think> field to outline your reasoning. Provide
one of <tool call> or <response>. You must not include both <tool call>
and <response> in the same turn because they are mutually exclusive. If tool usage
is required, you must instead include both <think> and <tool call>, and omit
<response> for that turn. If no further tool usage is required and ready to answer the
user’s question, you can then use <think> to summarize your reasoning and include
<response> with your final answer, and this indicates the ends of the conversation.
2. You can only invoke a single tool call at a time in the <tool call> fields. The tool
call should be a JSON object with a “name” field and a “parameters” field containing a
dictionary of parameters. If no parameters are needed, leave the ”parameters” field an
empty dictionary. All images have their coordinate origin at the top-left corner.
3. Some tools require image input. You do not need to generate or upload the actual image
data simply refer to an image using a placeholder in the form of “img n”. There may be
multiple images present in the dialogue. Besides the original image, additional images may
appear as a result of prior tool calls (e.g., edited images returned by visual editing tools).
You are free to select which image to use as input for the next tool. The index n in “img n”
refers to the image’s position in the dialogue history:
- The original image is always referred to as “img 1”.
- Each subsequent image, including those returned from tools, is assigned “img 2”, “img 3”,
and so on, in the order they appear in the dialogue.
For example:{“parameters”: {“image”: “img 1”, “other params”: “other values”}}
4. All image coordinates used must be in absolute pixel values, not relative or normalized
coordinates.
5. At the end, provide your final answer by placing it inside
boxed{}, and wrap the entire final output inside <response></response> tags.

Figure 9: Our system employs tool prompts to guide models in learning how to use tools effectively.
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Table 8: Key configurations and hyperparameters used in the Tool GRPO stage.

Category Hyperparameter Value / Setting

Data

Max Prompt Length 8192 tokens
Max Response Length 20480 tokens
Train Batch Size 32
Shuffle True
Filter Overlong Prompts True

Policy

Strategy FSDP
Gradient Checkpointing True
PPO Mini-batch Size 8
PPO Micro-batch Size / GPU 1
Max Token Len / GPU (PPO) 16384
Grad Clip 1.0
Clip Ratio (PPO) 0.2
PPO Epochs 1
Entropy Coeff 0.0
Use KL Loss False
Actor LR 1e-6
Weight Decay 0.01
FSDP Param Offload True
FSDP Optimizer Offload True
# Nodes / GPUs 1 node, 8 GPUs

Rollout

Engine vLLM
Temperature 1.0
Top-p 1.0
Top-k -1
# Samples per Prompt (n) 4
Dtype bfloat16
Tensor Model Parallel Size 2
Max # Batched Tokens 32768
GPU Memory Utilization 0.65
Enforce Eager False
Chunked Prefill False

Tool-Agent Max Turns per Episode 10

Critic

Strategy FSDP
LR 1e-5
Weight Decay 0.01
PPO Epochs 1
Grad Clip 1.0

Algorithm

Advantage Estimator GRPO
Gamma 1.0
Lambda 1.0
Use KL in Reward False
KL Coef 0.0
Norm Adv by Std in GRPO True

to benchmark our tool-planning models across a diverse suite of multimodal tasks. The key config-
urations and hyperparameters of Tool GRPO stage are summarized in Table 8.

D DISCUSSION

A central finding of our work concerns the dual role of the Tool-Cold-Start (SFT) phase,
which highlights a critical trade-off between imparting expert knowledge and preserving a model’s
exploratory freedom. Our results suggest that the decision to include a supervised pre-training stage
is not universally beneficial, but rather highly contingent on the nature of the task.

For complex, structured tasks with discernible optimal solutions, such as VSP and Jigsaw, the SFT
phase provides a decisive advantage. In these scenarios, discovering an effective tool-use trajec-
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tory from scratch is a non-trivial exploration problem for the model due to its inherent reasoning
or knowledge deficits. By exposing the model to high-quality, deterministic solution paths, the
Tool-Cold-Start phase effectively bootstraps the learning process, instilling a strong inductive
bias towards a correct strategy. The empirical results in Table 2 validate this unequivocally: for our
7B models, adding this SFT phase before Tool-GRPO yields a massive performance improvement
of +24.93 points on VSP and +19.82 points on Jigsaw compared to using Tool-GRPO alone.

Conversely, for open-ended and highly generalized domains like GUIQA, the limitations of this pre-
defined guidance become apparent. In such settings, the optimal tool-use strategy is often unknown
even to human designers, making any human-designed trajectory likely sub-optimal. We find that
a rigid SFT phase can inadvertently restrict the model’s exploratory freedom during subsequent RL
by creating a strong policy bias, which hinders the discovery of more effective, emergent strategies.
This effect is clearly observed in our results for the 7B model on the WebMMU benchmark, where
the standalone Tool-GRPO approach actually outperforms the combined pipeline (72.97 vs. 68.16).

This dichotomy suggests a key principle for training tool-augmented agents: while injecting expert
knowledge via SFT is a powerful method for tasks with well-defined solution spaces, a pure rein-
forcement learning approach like Tool-GRPO may be superior for more dynamic and general tasks
that benefit from unconstrained exploration.
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