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Abstract

Large language models (LLMs) excel in tasks001
that require complex linguistic abilities, such as002
reference disambiguation and metaphor recog-003
nition/generation. Although LLMs possess004
impressive capabilities, their internal mecha-005
nisms for processing and representing linguis-006
tic knowledge remain largely opaque. Previous007
work on linguistic mechanisms has been lim-008
ited by coarse granularity, insufficient causal009
analysis, and a narrow focus. In this study,010
we present a systematic and comprehensive011
causal investigation using sparse auto-encoders012
(SAEs). We extract a wide range of linguis-013
tic features from six dimensions: phonetics,014
phonology, morphology, syntax, semantics, and015
pragmatics. We extract, evaluate, and inter-016
vene on these features by constructing minimal017
contrast datasets and counterfactual sentence018
datasets. We introduce two indices—Feature019
Representation Confidence (FRC) and Feature020
Intervention Confidence (FIC)—to measure the021
ability of linguistic features to capture and con-022
trol linguistic phenomena. Our results reveal in-023
herent representations of linguistic knowledge024
in LLMs and demonstrate the potential for con-025
trolling model outputs. This work provides026
strong evidence that LLMs possess genuine lin-027
guistic knowledge and lays the foundation for028
more interpretable and controllable language029
modeling in future research.030

1 Introduction031

Large language models (LLMs) exhibit excellent032

performance in solving tasks that require differ-033

ent levels of linguistic competence, such as depen-034

dency parsing (Lin et al., 2022; Roy et al., 2023),035

reference disambiguation (Iyer et al., 2023) and036

metaphor interpretation (Wachowiak and Gromann,037

2023; Yerukola et al., 2024; Tian et al., 2024).038

While their linguistic capabilities are largely at-039

tributed to the emergence of abilities from large-040

scale pre-training and model size (Manning et al.,041

Figure 1: After a sentence is input into the model, its
hidden states are encoded by the SAE into a sparse
feature distribution. Across multiple layers, we can
identify base vectors that are significantly activated and
associated with the sentence’s linguistic features.

2020; Allen-Zhu and Li, 2023; Mahowald et al., 042

2024), the underlying mechanisms by which LLMs 043

process these linguistic structures remain under- 044

explored (Saba, 2023). Thus, we aim to interpret 045

the linguistic mechanisms of LLMs by addressing 046

the following question: Can we identify minimal 047

components within LLMs that are responsible for 048

distinct linguistic processing capabilities? 049

Previous attempts at interpreting the linguistic 050

mechanisms of LLMs usually involve instructing 051

them with expert-designed prompts, aiming to ex- 052

plain how these models generate particular out- 053

puts. (Yin and Neubig, 2022). Nevertheless, such 054

behavior-based methods do not provide model- 055

structure-level mechanism interpretation. Most re- 056

cent works turn to establish the connection between 057

specific linguistic capabilities of LLMs and their 058

interior structure, such as hidden states (Katz and 059

Belinkov, 2023), attention heads (Wu et al., 2020), 060

and activated neurons (Sajjad et al., 2022; Huang 061

et al., 2023). However, these approaches mostly 062

1



suffer from the following challenges:063

Coarse Interpretation Granularity. Linguistic064

mechanism interpretation aims to find the atomic065

linguistic structure in LLMs. However, even neu-066

rons are the most fine-grained native components067

of LLMs, they are observed to be activated by068

multiple different conditions, a phenomena that069

are termed as poly-semanticity (Yan et al., 2024).070

Thus, it is necessary to extract more fine-grained071

structures from LLMs to interpret their linguistic072

mechanism.073

Insufficient Causal Analysis. Current linguis-074

tic mechanism interpretations successfully identify075

relevant inner structure of LLMs, with activation076

patching (Hanna et al., 2024; Nanda et al., 2023)077

as the most typical methodology. However, it is078

still challenging to verify causal relationships be-079

tween linguistic abilities and corresponding inter-080

nal structures, which is a prerequisite for effectively081

steering model behavior through interventions on082

corresponding mechanisms.083

To address these challenges, we propose to084

utilize sparse auto-encoder (SAE) for interpret-085

ing linguistic mechanisms of LLMs, a framework086

dubbed SAELING. SAE learns a projection ma-087

trix which decomposes the hidden states of LLMs088

into an extremely high-dimensional feature space089

with sparse activation constraint, where each di-090

mension is expected to represent a single mean-091

ing, as Figure 1 shows. Building on this, SAEL-092

ING comprises two components: (1) SAELING093

designs sparse feature analysis for un-interpreted094

features that are extracted by SAE, which provides095

a fine-grained linguistic mechanism interpretation096

for LLMs; (2) SAELING proposes to manipulate097

the LLMs via intervening on the features with de-098

sired interpretation, which verifies the causal re-099

lationship between the features and their interpre-100

tations. It also potentially paves way to steer the101

linguistic behavior of LLMs.102

In particular, we first establishes a hierarchical103

linguistic framework with annotated corpora. The104

framework classifies the linguistic features into six105

categories, including phonetics, phonology, mor-106

phology, syntax, semantics, and pragmatics. These107

linguistic features are wildly observed linguistic108

abilities, thus guarantee the feasibility to interpret109

their mechanisms. To interpret sparse features in110

SAEs, we construct minimal pairs and counterfac-111

tual sentences for each sentence in our dataset. We112

also introduce a causal analysis method that inter-113

venes on specific linguistic features via the SAE114

and uses an LLM as a judge to assess the interven- 115

tion effect. Furthermore, we present two causal- 116

ity evaluation metrics: the Feature Representation 117

Confidence (FRC) score and Feature Intervention 118

Confidence (FIC) score, which measure a feature’s 119

ability to identify the corresponding linguistic phe- 120

nomenon in the input and its ability to regulate the 121

model output to generate the phenomenon, respec- 122

tively. 123

We conduct a series of experiments on Llama- 124

3.1-8B (Grattafiori et al., 2024). Our experiment 125

results show that SAELING effectively identifies 126

key features for linguistic competence. SAELING 127

also provides a robust way to steer LLMs by inter- 128

vening on the found linguistic features. 129

2 Related Works 130

Linguistic mechanism interpretation has been a 131

ever-chasing goal since the emergence of LLMs. 132

We review linguistic capability evaluation for 133

LLMs and corresponding mechanistic interpreta- 134

tion works. We will also introduce the basic con- 135

cepts for sparse auto-encoder. 136

Linguistic Features in LLMs. LLMs are shown 137

to be equipped with diverse linguistic features. 138

Morphological studies find inflectional and deriva- 139

tional phenomena along with word-formation pro- 140

cesses in LLMs (Rambelli et al., 2024; Weiss- 141

weiler et al., 2023). Syntactic evaluations include 142

canonical constructions, e.g., genitives and object- 143

complement structures (Gauthier et al., 2020; 144

Zhang et al., 2023; Arora et al., 2024), and cross- 145

linguistic tests (Mueller et al., 2020). Seman- 146

tic investigations address metaphor comprehen- 147

sion (Tian et al., 2024; Wachowiak and Gromann, 148

2023; Stowe et al., 2021; He et al., 2022; Liu et al., 149

2022), deep semantic analysis (Chen et al., 2024), 150

and output consistency (Raj et al., 2023). Prag- 151

matic benchmarks examine the interpretation of 152

contextual cues (Sileo et al., 2022; Wu et al., 2024). 153

Linguistic Mechanism Interpretation. LLMs 154

excel in most of the above tasks, which spurs grow- 155

ing interest in explaining their linguistic capabil- 156

ities. At the behavioral explanation level, meth- 157

ods include feature attribution, contrastive expla- 158

nation (Yin and Neubig, 2022), surrogate model 159

explanation, and self-explanation. At the hidden- 160

layer explanation level, approaches comprise anal- 161

yses of attention heads (Wu et al., 2020), probing 162

tasks (Hahn and Baroni, 2019; Arora et al., 2024; 163

He et al., 2022), and correlation studies (Liu et al., 164
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2024) of hidden-layer activation patterns. At the165

neuron explanation level, research has primarily fo-166

cused on analyzing the activations of linguistically167

relevant neurons (Tang et al., 2024).168

Sparse Auto-encoder. Recent work has em-169

ployed sparse auto-encoders (SAEs) to interpret170

the hidden-layer activations of large language mod-171

els by decomposing them into a large set of concept172

features (Gao et al., 2024). These concept features173

exhibit mono-semanticity and hold considerable174

interpretability potential (Huben et al., 2024). In175

particular, an SAE maps the hidden states f ∈ Rd176

in LLMs into the feature space with sparse activa-177

tions:178

f = SparseConstraint (Weh+ be) ,179

where the SAE is parameterized by We ∈180

R(r×d)×d,be ∈ R(r×d). r is the expansion ratio,181

defined as the factor by which the hidden state182

dimension is expanded. Commonly used sparse183

constraint include TopK (Gao et al., 2024) and Ju-184

peReLU (Rajamanoharan et al., 2024) functions.185

As each dimension of the sparse activation in f cor-186

responds to a base vector in We, this paper uses187

base vector to denote features extracted by SAE.188

3 Methodology189

SAELING consists of three key components. (1) A190

hierarchical linguistic structure with supporting cor-191

pora for linguistic mechanism analysis; (2) Linguis-192

tic feature analysis for interpreting SAE extracted193

features; and (3) Linguistic feature intervention for194

causal analysis and LLM steering.195

3.1 Linguistic Structure196

Hierarchical Linguistic Structure. To system-197

atically interpret the language capabilities of large198

models, we adopt a six level structure based on199

theoretical linguistics (Fromkin et al., 2017): pho-200

netics, phonology, morphology, syntax, semantics,201

and pragmatics. The structure follows a logical202

progression from the external, physical realization203

of sound to the internal, contextual understanding204

of meaning. Each linguistic capability contains205

several concrete linguistic features, e.g., semantics206

level includes metaphor, simile, etc. We provide207

the exact definition for each linguistic capability in208

Appendix A.1209

Dataset Construction. The sparse feature acti-210

vation distribution of SAE is closely related to the211

conditions under which their corresponding linguis- 212

tic features hold in linguistic knowledge. To find 213

the linguistic features and evaluate its dominance, 214

we propose a method to construct the dataset and 215

analyze feature activation frequencies. 216

For each linguistic feature, we first construct a 217

set of sentences that significantly align with the 218

desired feature. The feature activation represent- 219

ing this linguistic feature in SAE’s hidden space 220

will be significantly activated on these sentences. 221

However, this is not enough to accurately identify 222

them, as there are some background noise vectors 223

that are activated on all sentences in the dataset and 224

interfere with our judgment. We need to include a 225

control group without the feature in the constructed 226

sentences. 227

We introduce two types of control groups: min- 228

imal pairs and counterfactual sentences. Minimal 229

pairs are constructed by changing only the part of a 230

sentence that corresponds to a particular linguistic 231

feature, while keeping all other parts unchanged. 232

However, this approach often results in syntacti- 233

cally incorrect sentences. 234

To overcome this limitation, we also construct 235

fully grammatically correct control groups, called 236

counterfactual sentences, which differ from the 237

original sentence only in terms of its linguistic fea- 238

tures. Detailed dataset construction procedures are 239

provided in Appendix A.2. 240

3.2 Feature Analysis 241

We propose a causal probability approach to eval- 242

uate the relationship between extracted linguistic 243

features and their activation on sentences contain- 244

ing those features. 245

For a given feature x, we define two key probabil- 246

ities. The Probability of Necessity (PN) quantifies 247

how necessary the feature is for the activation of a 248

corresponding base vector, while the Probability of 249

Sufficiency (PS) measures the likelihood that intro- 250

ducing the feature triggers activation. These prob- 251

abilities are then combined into a Feature Repre- 252

sentation Confidence (FRC) score, which assesses 253

both the representational capacity of the SAE latent 254

space and the discriminative ability of the feature to 255

identify the corresponding linguistic phenomenon. 256

During feature analysis, we calculate the FRS 257

on both the minimal contrast dataset and the coun- 258

terfactual dataset, then average the results. This 259

average more accurately reflects the ability of the 260

base vectors to represent the linguistic features. 261

Detailed definitions and calculation methods are 262
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Figure 2: The overall framework of SAELING. We propose a large-model linguistic mechanism framework
encompassing six dimensions and select classical features from these dimensions for experimentation. The
experimental workflow is as follows: (1) Construct minimal contrast and counterfactual datasets; (2) Extract features
and evaluate their relevance by analyzing the activation values of base vectors on the datasets; (3) Intervene in the
model output by modifying activation values and assess causality using an LLM as a judge.

provided in Appendix D.1.263

3.3 Feature Intervention264

When we modify the values of SAE’s activation265

during forward propagation, we expect that such266

targeted interventions will influence the model’s be-267

havior. However, our experiments show that alter-268

ing only a small subset of features may not signifi-269

cantly impact the output—likely because linguistic270

phenomena are represented by multiple features271

across various layers. To assess the true impact of272

these interventions, we use a large language model273

as a judge. For each linguistic feature, we conduct274

both ablation and enhancement experiments. In the275

ablation experiment, we set the target feature’s acti-276

vation to 0, and in the enhancement experiment, we277

set it to 10. In both cases, we also perform baseline278

experiments by randomly selecting 25 base vectors279

from the same layer.280

For brevity, we denote the interventions as fol-281

lows: let ITabl denote the targeted ablation interven-282

tion, IBabl the baseline ablation intervention, ITenh283

the targeted enhancement intervention, and IBenh284

the baseline enhancement intervention.285

Let P T
abl and PB

abl denote the success probabili-286

ties (i.e., the probability that the intended change287

in the linguistic phenomenon is observed) for the288

targeted and baseline ablation experiments. The289

normalized ablation effect is then defined as290

Eabl = P T
abl − PB

abl

=
P (Y = 0 | ITabl)− P (Y = 0 | IBabl)

P (Y = 0 | ITabl)
.

291

Similarly, let P T
enh and PB

enh be the success proba-292

bilities for the targeted and baseline enhancement 293

experiments, with Y = 1 indicating the presence 294

of the phenomenon. The normalized enhancement 295

effect is given by 296

Eenh = P T
enh − PB

enh

=
P (Y = 1 | ITenh)− P (Y = 1 | IBenh)

1− P (Y = 1 | IBenh)
.

297

Finally, we define the Feature Intervention Con- 298

fidence (FIC) score as the harmonic mean of the 299

normalized ablation and enhancement effects: 300

FIC =
2Eabl Eenh

Eabl + Eenh
. 301

When calculating FIC, if one or both of the E val- 302

ues are negative, we incorporate a penalty coeffi- 303

cient w to reflect the weakened or lost causality 304

in such cases. This FIC score provides a balanced 305

measure of how effectively targeted interventions, 306

as opposed to random ones, influence the model’s 307

output with respect to specific linguistic features. 308

The details for FIC are shown in Appendix D.2. 309

4 Experiments 310

4.1 Experiment Setup 311

Model. We conduct experiments on Llama-3.1- 312

8B (Grattafiori et al., 2024). For SAEs, we use 313

OpenSAE (THU-KEG, 2025) and its released 314

checkpoints on 32 layers of Llama-3.1-8B. 315

Dataset. For feature analysis, we select 18 canon- 316

ical linguistic phenomena from the renowned text- 317

book An Introduction to Language (Fromkin et al., 318

2017) as experimental features. The selected 319
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Feature ID M-Pairs C-Fact FRC
PS PN PS PN

Phonetics
Sibilant 7L230243 100.0 100.0 100.0 100.0 100.0
Vowel 7L82620 100.0 100.0 100.0 100.0 100.0

Phonology
Stress 9L156767 100.0 100.0 100.0 100.0 100.0

Morphology
Past-Tense 8L4016 100.0 100.0 100.0 100.0 100.0
Agentive Suffix 12L199760 100.0 95.0 100.0 92.5 96.9
Plural Noun 12L160227 100.0 97.5 100.0 100.0 99.4

Syntax
Intransitive Verb 17L63597 / / 92.5 97.5 94.9
Transitive Verb 17L174515 / / 100.0 90.0 94.7
Linking Verb 18L61112 / / 90.0 95.0 92.4
Inverse 21L17802 / / 100.0 100.0 100.0
Genitive 20L259762 100.0 100.0 100.0 100.0 100.0

Semantics
Causality 22L223621 100.0 100.0 100.0 100.0 100.0
Adversativity 24L7721 87.5 100.0 87.5 100.0 93.3
Progression 25L60962 100.0 100.0 100.0 100.0 100.0
Metaphor 26L253776 68.8 100.0 68.8 88.8 81.6
Simile 26L75327 95.0 96.3 86.3 91.3 92.2

Pragmatics
Discourse Marker 27L173147 92.5 92.5 92.5 92.5 92.5
Politeness 31L578 / / 100.0 96.3 98.1

Table 1: Feature analysis results. Probability of Ne-
cessity (PN) and Probability of Sufficiency (PS) of
the extracted linguistic features (Feature, layer, ID) on
Minimal-Pair and Counter-Factual datasets, and Feature
Representation Confidence (FRC) for each feature.

linguistic features include: Phonetics/Phonology:320

vowels, fricatives, and stress; Morphology: noun321

pluralization and past tense formation (inflec-322

tional), and agentive suffixes (derivational); Syn-323

tax: verb valency (transitive/intransitive), inver-324

sion, subject-copula-predicate constructions, and325

object-complement structures; Semantics: simile,326

metaphor, contrast, sequence, and causality; Prag-327

matics: politeness expressions.328

We construct sentences that significantly contain329

18 selected linguistic features, called SAELING-330

DATA. Additionally, we create minimal pairs and331

counterfactual datasets for these sentences, called332

SAELING-DATA-MN and SAELING-DATA-CF.333

4.2 Main Results334

The main experiments to verify that SAELING335

finds linguistic features in the SAE space and inter-336

vening on these features is effective.337

4.2.1 Feature Extraction and Analysis338

We input the sentences from SAELING-DATA into339

Llama-3.1-8B and pass the neuron activation distri-340

butions after batch normalization through the cor-341

responding SAE layers. We then encode the activa-342

tion distributions of base vectors at each token in 343

each sentence. The ratio of sentences activated by 344

each base vector is calculated. These base vectors 345

are ranked by this ratio, and their activation is tested 346

on SAELING-DATA-MN and SAELING-DATA- 347

CF. Base vectors that are significantly activated in 348

SAELING-DATA but almost inactive in Datasets 349

SAELING-DATA-MN and SAELING-DATA-CF 350

are selected as potential base vectors for each lin- 351

guistic feature. The detailed process mode of fea- 352

ture extraction can be found in Appendix B.1. 353

For each linguistic feature’s potential base vec- 354

tors, we compute their activation in SAELING- 355

DATA, SAELING-DATA-MN, and SAELING- 356

DATA-CF. Using the method described earlier, we 357

calculate the sufficiency and necessity probabili- 358

ties for each base vector in the minimal pairs and 359

counterfactual datasets, and ultimately compute the 360

FRC score for each feature. 361

Table 1 shows the activation indices of a rep- 362

resentative base vector for each linguistic feature. 363

Due to the varying significance of linguistic fea- 364

tures across different sentences, activations corre- 365

sponding to the base vectors may be lost during 366

the sparse forward propagation process of the SAE, 367

particularly in the TopK activation function mode. 368

We consider a base vector to be strongly related 369

to a linguistic feature if its sufficiency probabil- 370

ity exceeds 0.9. For necessity probability, as ex- 371

isting SAEs still exhibit slightly poly-semanticity 372

issues (Olah, 2024), there are still a small amount 373

of low activation for base vectors in positions that 374

do not correspond to the linguistic features. We as- 375

sume these low activations do not affect the quality 376

of the base vector’s representation of the linguistic 377

feature, as we discussed in Appendix B.4. 378

Overall, the base vectors extracted for features 379

across various linguistic levels show strong corre- 380

lations. The high quality of phonetic and phono- 381

logical features indicates that the model contains 382

accurate IPA-related knowledge. The performance 383

of the single feature for metaphor is suboptimal, 384

suggesting that the representation and processing of 385

metaphors may involve more complex mechanisms. 386

Furthermore, FRC values for features in other di- 387

mensions mainly exceed 0.9, demonstrating that 388

the selected typical linguistic features consistently 389

yield highly correlated base vectors. 390

4.2.2 Feature Intervention 391

We select 5 representative ones for intervention 392

experiments. The intervention method involves 393
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Feature ID Enhance Ablate FIC
exp ctr exp ctr

Morphology
Past-Tense 8L4016 12.0 4.0 48.0 44.0 8.3

Syntax
Linking Verb 18L61112 52.0 24.0 48.0 40.0 22.9

Semantics
Causality 22L53236 32.0 20.0 40.0 36.0 12.0
Simile 26L75327 72.0 52.0 48.0 52.0 6.9

Pragmatics
Politeness 31L578 60.0 32.0 44.0 20.0 46.9

Table 2: Feature intervention results. The success rates
of the extracted linguistic features (Feature, layer, ID) in
the enhancement and ablation experiments, along with
the final computed FIC score.

modifying the activation values of specific base394

vectors (by index) on a designated SAE layer dur-395

ing forward propagation. We perform two types396

of intervention: feature enhancement and ablation.397

With identical input tokens, we set the activation398

value to 10 for enhancement and 0 for ablation.399

We then compare the generated outputs with those400

from the unmodified SAE model, focusing on the401

prominence of the target linguistic features.402

We find that intervening on a single linguistic fea-403

ture in one layer does not produce effects that are404

easily distinguishable by human evaluators. There-405

fore, we use an LLM (GPT-4o) as a judge (Zheng406

et al., 2023) to assess the prominence of these fea-407

tures in the outputs. For each feature, we con-408

duct 50 experiments and calculate the probabilities409

of successful enhancement and ablation, i.e., in-410

creased and decreased feature prominence, respec-411

tively.412

In addition, we randomly select 50 base vector413

indices from the intervention layer and conduct414

enhancement and ablation experiments under the415

same conditions as a control. The success rates in416

the control group are not around 0.5; typically, the417

enhancement success rate is below 0.5 while the418

ablation success rate is above 0.5. This discrep-419

ancy may stem from the intervention affecting the420

model’s output quality, thereby interfering with the421

proxy LLM’s judgment.422

We compute the efficacy of the selected base423

vectors in both experiments and calculate the FIC424

value and show the results in Table 2. Our results425

show that enhancement experiments yield signifi-426

cantly better effects than ablation experiments, with427

Figure 3: Combined intervention results. Two figures
separately present the enhancement and ablation exper-
iment outcomes for the simile and politeness features
at layer 26. In these experiments, multiple base vectors
corresponding to each feature were jointly intervened.

all features demonstrating marked enhancement ef- 428

fects. In the ablation experiments, the politeness 429

feature shows relatively good performance, while 430

other features are less affected; the simile feature 431

does not yield the desired ablation effect. This may 432

be because multiple features in the model control 433

the same linguistic phenomenon. Enhancement 434

interventions have a larger impact on the model, 435

whereas ablation of a single feature may be com- 436

pensated by other features, leading to suboptimal 437

ablation outcomes. Overall, all 5 features exhibit 438

clear causality in the intervention experiments. 439

4.3 Analysis 440

We further conduct analytical experiments to ex- 441

plore the property of SAELING. 442

4.3.1 Combined Intervention 443

We find that some layers contain multiple base vec- 444

tors associated with the same linguistic feature. We 445

can intervene on these base vectors simultaneously 446

to achieve a stronger effect. 447

We select two linguistic features—simile and 448

politeness—from layer 26. Each feature has four 449

highly related base vectors in this layer. We in- 450

crease the number of intervened features from one 451

to four. In each experiment, we randomly chose 452

the specified number of base vectors from the four. 453

We used GPT-4o to assess the prominence of the 454

targeted linguistic feature in the generated outputs. 455

For each feature, we conducted 200 enhancement 456

experiments and 200 ablation experiments. We 457

also perform control experiments in layer 26 by 458

randomly selecting a set number of base vectors to 459

intervene. 460

Figure 3 shows the results for combined inter- 461

vention. The results indicate that, as the number 462

of intervened base vectors increases, both the di- 463

rectional intervention and the background control 464
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Figure 4: Activation value distributions of deep seman-
tic corresponding features at layer 6 and 15 for reference
ambiguity and metaphor example sentences.

experiments exhibit the same trend: the success465

rate of enhancement experiments decreases, while466

that of ablation experiments increases. Increasing467

the number of interventions further affects the qual-468

ity of the generated text, thereby leading to the469

observed trend. Moreover, the intervention effect470

of the feature does not change significantly with471

an increased number of intervened base vectors,472

indicating that, after excluding background influ-473

ences, combined interventions on multiple features474

in the same layer yield only limited improvement475

in intervention efficacy.476

4.3.2 Deep Semantics Processing477

Deep semantics refers to the underlying meaning478

structures that extend beyond surface-level syntax479

and lexical definitions. It captures implicit relation-480

ships and conceptual associations within language.481

We conduct experiments to show that SAE482

Reference and metaphor exemplify deep seman-483

tics by utilizing cognitive mappings and contextual484

dependencies to convey meaning beyond explicit485

expression. We conduct experiments on reference486

and metaphor at the sixth and fifteenth layers re-487

spectively. From the results shown on Figure 4, we488

observe the following:489

Reference. In the reference sentence, at the 6th490

layer, pronouns do not activate the base vectors491

corresponding to their referents. At the 15th layer,492

pronouns start to activate the correct base vectors493

(apple) for their referents, effectively resolving ref-494

erence ambiguity in contexts where multiple possi-495

Figure 5: Activation value distributions of deep seman-
tic corresponding features in the 6th and 15th layers for
anaphoric and metaphor example sentences.

ble referents exist. This indicates that as we move 496

deeper into the layers, pronouns generate their deep 497

semantics and disambiguate possible referents. 498

Metaphor. In the metaphor sentence, our exper- 499

imental statements contain only the vehicle (fire) 500

and not the tenor (sun). In the 6th layer, the base 501

vector corresponding to the vehicle is activated, 502

while the base vector for the tenor remains inactive. 503

In the 15th layer, the activation of the vehicle’s base 504

vector decreases, while the base vector for the tenor 505

becomes activated. This suggests that as the model 506

moves to deeper layers, the vehicle maps to the 507

target domain and generates the deep semantics of 508

the tenor, even without the tenor in the context. 509

4.3.3 Cross-layer Activations 510

In different layers of the model, we identify dis- 511

tinct base vectors that are activated by the same 512

linguistic feature. To validate this phenomenon, we 513

select a standard base vector from a given layer for 514

each linguistic feature and apply the corresponding 515

SAE to other layers of Llama-3.1-8B. Encoding the 516

hidden states of these layers with the cross-layer 517

SAE, using the same dataset, reveals that in most 518

layers the base vector with the same index as the 519

standard one shows a similar activation pattern on 520

the tokens. 521

This approach provides an effective tool for 522

observing the cross-layer activation of linguistic 523

features. Figure 5 displays 8 linguistic features. 524

For each feature, the average maximum activation 525

curve and the reciprocal rank curve (used to assess 526

the relative importance of the base vector on the 527

dataset) of the standard base vector are shown for 528

different layers. The distributions indicate that: (1) 529

Linguistic features are widely activated across lay- 530

ers, with only some features failing to activate in 531

the early or late layers; (2) Features that do not 532

activate in the early layers are mostly semantic, 533
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Figure 6: Distribution of average maximum activation
values and reciprocal ranks (i.e., the reciprocal of the
base vector ranking) for seven typical linguistic features
across layers in the dataset.

while those that do not activate in the later lay-534

ers are mainly syntactic, possibly reflecting the535

model’s functional division across layers; (3) Acti-536

vation curves typically follow a “rise–plateau–fall”537

pattern, whereas the reciprocal rank curves often538

exhibit several sharp peaks. This suggests that each539

linguistic operation has its own active processing540

range within the model, although its relative impor-541

tance may vary across layers.542

We further examine the cross-layer activation543

pattern at the sentence level using the metaphor544

feature as an example in Figure 6. We select the545

standard metaphor feature from layer 26 and ana-546

lyze its activation distribution in layers 2, 5, 10, 14,547

19, 24, and 29. In both example sentences, layers 2548

and 29 show no token activations, suggesting that549

the model’s initial and final layers may not process550

metaphors. Layers 5, 10, and 14 appear to be in-551

volved in preliminary metaphor processing: in the552

first sentence, the feature intermittently activated553

the token following the cue word “like”; in the554

second sentence, the feature first activated a fixed555

structure (“as as”), then activated the second “as”556

and the subsequent token. Around layer 19, the557

activation extends to the cue word and the entire558

vehicle, while around layer 24, the activation re-559

cedes back to the cue word. These results indicate560

more complex internal mechanisms for metaphor561

processing and demonstrate that SAE-based feature562

extraction is a valuable tool for further exploring563

the model’s internal linguistic mechanisms.564

# Intervene Model Output

1

Default The wind blows snow into my eyes as I trudge through the
blizzard.

Enhance As the cold descends, I feel the weight of my breath in my
throat. It’s an icy haze.

Ablate The winter sky was cold. The ice was hard under his boots.

2

Default Love is the burning passion of a summer night.

Enhance I feel like butterflies are in my stomach. My heart is
beating faster than normal.

Ablate The more you write, the more time and love you will have.

Table 3: Case study for intervention under two condi-
tions. Case #1 shows the result when the simile feature
is absent from the prompt. Case #2 shows the result
when the simile feature is present in the prompt. We
highlight spans with simile in the sentences.

4.3.4 Case Study for Intervention 565

We conduct manual case study on the generated 566

contents after intervening on one identified simile- 567

related base vector. We show cases in Table 3. 568

In Case #1, the prompt is “Generate a sentence 569

describing winter”, which does not explicitly in- 570

clude the target linguistic feature. We find that 571

after enhancing the simile-related base vector, the 572

LLM turns to use simile. We can also find that the 573

descriptive and imagistic quality of the default out- 574

put is stronger than in the ablation results, which 575

indicate that the simile-related base vector is also 576

responsible for vividness. 577

Case #2 uses the prompt “Generate a sentence 578

using a simile to describe love”, with explicit re- 579

quirement for using simile to generate the sentence. 580

When the simile-related base vector is ablated, the 581

LLMs turn to use straightforward descriptions with- 582

out using similes. Meanwhile, when enhancing the 583

simile-related base vector, the LLMs continue to 584

generate sentences with simile. We show more 585

intervention cases in Appendix C.1. 586

5 Conclusion 587

This work addresses two key challenges in inter- 588

preting linguistic mechanisms in LLMs: coarse 589

interpretation granularity and insufficient causal 590

analysis. We introduce SAELING, which uses 591

sparse autoencoders (SAE) for fine-grained fea- 592

ture extraction, overcoming poly-semanticity in 593

traditional methods. SAELING also verifies causal 594

relationships by intervening on features, enabling 595

more precise control over model behavior. Our 596

approach reveals that LLMs encode structured lin- 597

guistic knowledge and offers a robust framework 598

for steering their outputs. 599
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6 Limitations600

Our work has several limitations in terms of dataset601

size, number of features, intervention effects, and602

cross-layer analysis. Regarding datasets, each fea-603

ture in our study is constructed with approximately604

160 sentences. In the future, the dataset can be605

further expanded to serve as a benchmark for eval-606

uating the language mechanism interpretability of607

the SAE framework. Concerning the number of608

selected features, we choose 18 representative lin-609

guistic features from various theoretical linguis-610

tic dimensions. This selection sufficiently demon-611

strates the effectiveness of our method across differ-612

ent linguistic levels; however, to construct a com-613

plete and comprehensive language mechanism sys-614

tem, our approach can be extended to extract a615

larger number of linguistic features. Achieving this616

extension will require further work or the devel-617

opment of automated feature extraction methods.618

In terms of intervention effects, our experiments619

show statistically significant effects for linguistic620

feature interventions, yet the effect and stability621

of each case are still inferior to fine-tuning meth-622

ods. This issue calls for further research and refine-623

ment of SAE-based intervention methods. Finally,624

regarding cross-layer analysis, our experiments625

illustrate the cross-layer mechanism of linguistic626

features, revealing the potential of our method to627

explain how large language models process and628

transmit linguistic information across layers. How-629

ever, we do not conduct large-scale experiments630

and inductive analyses in this area, which repre-631

sents an extension of our method that remains to632

be explored in future work.633

7 Ethical Considerations634

This section discusses the ethical considerations635

and broader impact of this work:636

Potential Risks: There is a potential risk that un-637

derstanding the linguistic mechanisms of the model638

could provide guidance for embedding malicious639

information into the model’s internal structure. To640

address this, we will fully open-source our method641

to enable the community to quickly develop coun-642

termeasures in the event of such attacks.643

Intellectual Property: The models used, Llama-644

3.1-8B, and the SAE framework OpenSAE, are645

both open-source and intended for scientific re-646

search use, in accordance with their respective647

open-source licenses.648

Data Privacy: All data used in this research has 649

been manually reviewed to ensure it does not con- 650

tain any personal or private information. 651

Intended Use: SAELING is intended to be used 652

as a method for analyzing the mechanisms of large 653

language models. 654

Documentation of Artifacts: The artifacts, in- 655

cluding datasets and model implementations, are 656

comprehensively documented with respect to their 657

domains, languages, and linguistic phenomena to 658

ensure transparency and reproducibility. 659

AI Assistants in Research or Writing: We em- 660

ploy GitHub Copilot for code development assis- 661

tance and use GPT-4 for refining and polishing the 662

language in our writing. 663
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A Dataset Construction924

A.1 Linguistic Structure Definition925

1. Phonetics examines the physical production926

and acoustic properties of speech sounds.927

2. Phonology investigates the abstract sound sys-928

tems and patterns in a language.929

3. Morphology focuses on the internal structure930

of words.931

4. Syntax deals with sentence structure and the932

rules governing the arrangement of words into933

phrases and clauses.934

5. Semantics explores the meaning of words and935

sentences at a literal or denotational level.936

6. Pragmatics considers how context influences937

meaning, covering phenomena like implica-938

ture, presupposition, and speech acts.939

A.2 Construction Process940

When constructing the dataset, we first manually941

create 5–10 Chinese and English sentences that942

strongly exhibit the target linguistic feature, along943

with 5–10 counterfactual sentences. Next, we use944

GPT-o1 to generate the remaining portion of the945

dataset, which includes 80 feature-consistent Chi-946

nese and English sentences and 80 counterfactual947

sentences. Minimal pairs are constructed by man-948

ually modifying each feature-consistent sentence.949

After dataset construction, all sentences are manu-950

ally reviewed and corrected.951

A.3 Construction Examples952

We present three examples from morphology, syn-953

tax, and semantics.954

Plural Noun – Minimal Pairs: Directly change955

the plural form to singular, disregarding grammar.956

The books on the shelf are all about history.957

The book on the shelf are all about history.958

She bought several flowers to decorate the house.959

She bought several flower to decorate the house.960

Plural Noun – Counterfactual Sentence: Main-961

tain grammatical correctness while removing the962

plural form.963

The books on the shelf are all about history.964

The book on the shelf is all about history.965

She bought several flowers to decorate the house. 966

She bought a flower to decorate the house. 967

Genitive – Minimal Pair: Remove “of” while 968

keeping the rest unchanged. 969

The roof of the house was damaged in the storm. 970

The roof the house was damaged in the storm. 971

The color of the sky changed at sunset. 972

The color the sky changed at sunset. 973

Genitive – Counterfactual Sentence: Retain “of” 974

but use a non-genitive context. 975

The roof of the house was damaged in the storm. 976

She is afraid of spiders. 977

The color of the sky changed at sunset. 978

He ran out of time. 979

Contrast – Minimal Pair: Remove the contrast 980

marker, disregarding grammar. 981

I wanted to go out, but it was raining. 982

I wanted to go out, it was raining. 983

She was very tired, yet she kept working. 984

She was very tired, she kept working. 985

Contrast – Counterfactual Sentence: Change 986

the meaning by altering the logical relation in the 987

second clause to a continuation. 988

I wanted to go out, but it was raining. 989

I wanted to go out, then I grabbed an umbrella. 990

She was very tired, yet she kept working. 991

She was very tired, then she took a short nap. 992

A.4 Special Cases for Minimal Pairs 993

In cases involving transitive verbs, intransitive 994

verbs, linking verbs, and preposed verbs in inver- 995

sion, direct deletion results in sentences that lose 996

their predicate meaning and cannot convey a com- 997

plete semantic unit. In such cases, examining acti- 998

vations is meaningless, and minimal contrast pair 999

datasets are not constructed for these features. In 1000

the polite speech dataset, the minimal contrast pairs 1001

obtained by removing the politeness marker are 1002

identical to the counterfactual sentences converted 1003

to non-polite sentences; hence, the two datasets are 1004

the same. 1005

B Feature Extraction 1006

When extracting features using datasets, we em- 1007

ployed the following techniques to improve effi- 1008

ciency and accuracy: 1009
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Modes Simile Metaphor Politeness
T-Freq 99 92 37
T-Freq-NN 66 59 26
S-Freq 29 87 12
S-Freq-NN 13 50 6
S-Act 1135 1257 115
S-Act-NN 1121 1242 111

Table 4: Ranking results of different analysis modes:
Token Frequency, Token Frequency without noise, Sen-
tence Frequency, Sentence Frequency without noise,
Sum Activation, Sum Activation without noise.

B.1 Extraction Modes1010

We tested the following three analysis modes dur-1011

ing feature extraction on the artificially constructed1012

dataset:1013

Token-Frequency: The total activation fre-1014

quency of the basis vector across all tokens in the1015

artificial dataset, sorted in descending order.1016

Sentence-Frequency: The percentage of sen-1017

tences in the artificial dataset where the basis vector1018

is activated, sorted in descending order.1019

Sum-Activation: The total activation value of1020

the basis vector across all tokens in the artificial1021

dataset, sorted in descending order.1022

We build a background dataset with diverse syn-1023

tactic and semantic patterns. We extract basis vec-1024

tors that frequently activate across all patterns; their1025

meanings are irrelevant and treated as background1026

noise. They can be removed in our experiments.1027

We test the analysis modes on the three lin-1028

guistic features—simile, metaphor, and polite-1029

ness—identified at layer 26. And we extract 421030

background noise basis vectors at layer 26.1031

To evaluate the efficiency of the three analysis1032

modes—token-frequency, sentence-frequency, and1033

sum-activation—we examine the ranking of target1034

basis vectors in the extracted vectors under each1035

analysis mode. We compare the results both with1036

and without the removal of background noise. The1037

results are presented in Table 4. Based on exper-1038

imental results, performing frequency analysis at1039

the sentence level and removing background noise1040

is most efficient, as it minimizes the impact of1041

irrelevant or outlier activations on the analysis out-1042

comes.1043

B.2 “20-mix-2” Dataset for Extraction1044

We first built a dataset composed entirely of sen-1045

tences highly related to the target linguistic fea-1046

ture. Although directly analyzing sentence-level 1047

activation frequencies and sorting the results is fea- 1048

sible, we adopted a more efficient method by insert- 1049

ing 1–2 counterfactual sentences into the dataset. 1050

During frequency analysis, we focus on sentences 1051

where the counterfactuals show no activation. In 1052

such cases, the target feature typically ranks among 1053

the top five, greatly enhancing search efficiency. 1054

B.3 Multilingual Dataset 1055

A base vector with robust representational capacity 1056

should activate in response to relevant sentences 1057

in multiple languages. We observed that many fea- 1058

tures activate only in one language, which is unde- 1059

sirable. Therefore, we constructed the “20-mix-2” 1060

dataset with a 1:1 ratio of English to Chinese sen- 1061

tences, ensuring that the extracted features possess 1062

cross-linguistic representational ability. 1063

B.4 Weak Activations 1064

In feature extraction, we observe that some fea- 1065

tures exhibit weak activation at “interference po- 1066

sitions” where the target linguistic feature is not 1067

expected. These weak activations occur at positions 1068

that either match the cue words of the target fea- 1069

ture, share similar morphology with the cue words, 1070

or belong to the same linguistic phenomenon cate- 1071

gory. The weak activations gradually diminish with 1072

increasing layer number until they vanish. This 1073

indicates that such weak activations are intermedi- 1074

ate by-products of the model’s internal processing 1075

rather than being determined by the inherent con- 1076

nection strength between the base vector and the 1077

feature. Therefore, we exclude these weak activa- 1078

tions (activations below one-fifth of the maximum 1079

activation value) when calculating the necessity 1080

probability of a base vector on the dataset. We 1081

present examples from morphology, syntax, and 1082

semantics as follows: 1083

For the agentive suffix feature (12L248164), con- 1084

sider the following sentences: 1085

(a) The journalist interviewed the mayor about the 1086

new policy. The “journalist” token has an activa- 1087

tion value of 0.968. 1088

(b) The newspaper published an article about the 1089

new policy. The “newspaper” token has an activa- 1090

tion value of 0.197. 1091

For the intransitive verb feature (17L63597), 1092

consider the sentences: 1093

(a) She traveled to the supermarket. The “traveled” 1094

token has an activation value of 1.368. 1095

(b) She drove the car to the supermarket. The 1096
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Condition Politeness Linking Verb

Enhancement Can I textbfplease have your email
address?

The room should textbfbe large and
well lit. It should textbfbe airy and
bright and airy.

Default May I have your phone number? Sure, my ideal room has good venti-
lation and textbfis spacious.

Ablation OK, what is your name? I can provide you with a list of the
ideal characteristics that make up a
perfect room.

Condition Past-Tense

Enhancement "I was textbfasked for the story. "
I having me textbfhad a “one the: ”
textbftold. They: textbftold:

Default I’m not a story, I’m a bot.

Ablation Well, I don’t actually have one, and
I’m not really sure I’m able to either.

Table 5: Typical outputs from the enhancement, abla-
tion, and default experiments for the politeness, linking
verb, and past-tense features.

“drove” token has an activation value of 0.362.1097

For the simile feature (26L75327), consider the1098

sentences:1099

(a) Her eyes sparkled like stars in the night sky. The1100

“like” token exhibits an activation value of 3.288.1101

(b) He looks like his father. The “like” token has1102

an activation value of 0.557.1103

In these examples, the activations in the (b) sen-1104

tences are weak and are not considered during fea-1105

ture extraction and evaluation. The presence of1106

weak activation suggests that the model initially1107

activates a broad range of potential semantics and1108

then, during deeper processing, emphasizes the1109

correct, contextually appropriate semantics. This1110

observation warrants further investigation.1111

C Intervention Experiment Details1112

C.1 Intervention Cases1113

We present additional typical cases from other in-1114

tervention experiments at the Table 5. The prompts1115

used for the three experimental groups are as fol-1116

lows: Politeness: “User: Sir, I want to make an1117

order offline. Assistant:”. Linking Verb: “User:1118

Sir, tell me something about your ideal room. As-1119

sistant:”. Past-Tense: “User: Sir, tell me a story1120

about you. Assistant:”.1121

During manual analysis, both the enhancement1122

and ablation results show clear effects of amplifica-1123

tion or suppression of the target linguistic features.1124

Specifically, when intervening with the past tense1125

feature in the 8th layer, the enhancement signifi-1126

cantly impacts the coherence of the model’s output1127

language. Yet, in the discontinuous output text, the1128

frequency of the morphological past-tense feature1129

still increases dramatically.1130

C.2 LLM as a Judge 1131

In our feature intervention and combination inter- 1132

vention experiments, we used an LLM as a judge 1133

to assess the significance of linguistic features in 1134

generated texts. Feature significance is defined 1135

based on the frequency, accuracy, and contextual 1136

appropriateness of the target feature, as well as its 1137

contribution to overall meaning or rhetorical effect. 1138

The prompt structure is as follows: 1139

Please compare the following two texts 1140

based on {feature}. 1141

- Text A: "{text_a}" - Text B: "{text_b}" 1142

Here, text_a and text_b are generated texts 1143

truncated to 100 tokens. 1144

In the intervention experiments, each feature is 1145

defined as follows: 1146

Politeness Significance Refers to the degree to 1147

which politeness strategies are salient, effective, 1148

and contextually integrated. This definition en- 1149

compasses frequency, pragmatic depth, and social 1150

impact in shaping interpersonal rapport, mitigating 1151

face threats, and reinforcing cooperative intent. 1152

Past Tense Verb Significance Refers to the de- 1153

gree to which past tense verbs are salient, accurate, 1154

and contextually integrated. It includes frequency, 1155

morphological consistency, and the rhetorical or 1156

narrative impact on establishing a coherent sense 1157

of time and providing historical context. 1158

Causality Significance Refers to the degree to 1159

which cause-and-effect relationships are clearly 1160

indicated, logically structured, and contextually 1161

coherent. This includes the frequency and preci- 1162

sion of causal connectives (e.g., because, therefore, 1163

thus) and the depth of reasoning to explain how 1164

conditions lead to outcomes. 1165

Linking Verb Structure Significance Refers to 1166

the degree to which linking verbs (e.g., be, become, 1167

seem, appear) are salient, accurate, and contex- 1168

tually integrated. It emphasizes frequency, mor- 1169

phological correctness, semantic clarity, and ef- 1170

fectiveness in conveying states, characteristics, or 1171

identities. 1172

Simile Significance Refers to the degree to 1173

which similes (e.g., comparisons using like or as) 1174

are salient, creative, and contextually integrated. 1175

This definition encompasses frequency, imagery 1176

richness, and the rhetorical impact on clarity, vivid- 1177

ness, and reader engagement. 1178
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D Metric Calculation1179

D.1 Feature Representation Confidence1180

(FRC)1181

In our feature analysis experiments, we introduce1182

two key causal probabilities that serve as the basis1183

for computing the Feature Representation Confi-1184

dence (FRC).1185

The first measure, the Probability of1186

Necessity (PN), is defined as PN =1187
P (Y=1|do(X=1))−P (Y=1|do(X=0))

P (Y=1|do(X=1)) . This met-1188

ric quantifies the extent to which the presence1189

of a linguistic feature is necessary for the1190

activation of a corresponding base vector.1191

Here, P (Y = 1 | do(X = 1)) represents1192

the probability that the base vector is acti-1193

vated when the feature is present, whereas1194

P (Y = 1 | do(X = 0)) indicates the probability1195

of activation when the feature is deliberately1196

suppressed via intervention. The numerator,1197

P (Y = 1 | do(X = 1))−P (Y = 1 | do(X = 0)),1198

captures the net increase in activation due to the1199

feature, and dividing by P (Y = 1 | do(X = 1))1200

normalizes this increase relative to the activation1201

when the feature is present.1202

Similarly, the second measure, the Probabil-1203

ity of Sufficiency (PS) is expressed as PS =1204
P (Y=1|do(X=1))−P (Y=1|do(X=0))

1−P (Y=1|do(X=0)) . PS measures the1205

likelihood that the introduction of the feature is suf-1206

ficient to trigger the activation of the base vector. In1207

this formulation, the denominator 1− P (Y = 1 |1208

do(X = 0)) represents the maximum possible in-1209

crease in activation probability (i.e., the probability1210

that the base vector is not activated in the absence1211

of the feature). Thus, PS reflects the proportion1212

of this potential increase that is realized when the1213

feature is present.1214

Finally, the Feature Representation Confidence1215

(FRC) is computed as the harmonic mean of PN1216

and PS: FRC = 2PN PS
PN+PS . The harmonic mean is1217

chosen because it ensures that FRC remains low1218

if either PN or PS is low, thereby providing a bal-1219

anced measure that only yields a high score when1220

both necessity and sufficiency are strong. This ap-1221

proach allows us to robustly quantify the ability of1222

the SAE latent space’s base vectors to represent the1223

targeted linguistic features.1224

D.2 Feature Intervention Confidence (FIC)1225

In our methodology, the Feature Intervention Con-1226

fidence (FIC) score is computed as the harmonic1227

mean of the normalized ablation effect Eabl and1228

the normalized enhancement effect Eenh: 1229

FIC =
2Eabl Eenh

Eabl + Eenh
. 1230

This formulation ensures that FIC is high only 1231

when both the ablation and enhancement interven- 1232

tions yield strong effects. 1233

In practice, however, it is possible that one or 1234

both of these effects are negative, indicating that 1235

an intervention produces an effect opposite to the 1236

intended direction. Moreover, even if only one 1237

effect is significant while the other is near zero, the 1238

feature may still exhibit causal influence. Simply 1239

setting an effect that is near zero or negative to 0 1240

would result in an FIC score of 0, which does not 1241

adequately capture the underlying causality. 1242

To address this, we introduce a penalty coeffi- 1243

cient w to adjust for negative or near-zero effects. 1244

Specifically, we define the penalized effect E′ for 1245

each intervention as follows: 1246

E′ =

{
E, if E ≥ 0,

w · |E|, if E < 0.
1247

Here, w is empirically set to 0.5. Thus, if one of the 1248

normalized effects (either Eabl or Eenh) is negative, 1249

we compute its penalized value as 0.5 times its 1250

absolute value rather than setting it directly to 0. 1251

This approach ensures that even when one of the 1252

effects is weak or slightly negative, the FIC score 1253

does not vanish entirely, preserving the indication 1254

of causality. 1255

Accordingly, the FIC score is then computed as: 1256

FIC =
2E′

abl E
′
enh

E′
abl + E′

enh

. 1257

In our experiments (see Table2), only the 1258

metaphor feature shows a slightly negative abla- 1259

tion effect, while the enhancement and ablation 1260

effects for the other features are positive. The in- 1261

troduction of the penalty coefficient w effectively 1262

moderates the impact of the negative effect for the 1263

metaphor feature, resulting in a more balanced and 1264

meaningful FIC score. 1265

This penalty mechanism is crucial because even 1266

when only one of the interventions (ablation or 1267

enhancement) shows a significant effect, it still 1268

provides evidence of the feature’s causal role. By 1269

incorporating w, we ensure that such cases are not 1270

misrepresented by an FIC score of 0, thus offering a 1271

more robust measure of the overall causal strength. 1272
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E Implementation Details1273

We used 8 A100 GPUs with 80GB of memory for1274

the experiments. While the exact GPU hours for1275

each experiment were not precisely recorded, the1276

total GPU usage did not exceed one hour. The sys-1277

tem was set up with CUDA 12.4, Triton 3.0.0, and1278

Ubuntu 22.04. For the Llama model, we employed1279

the Hugging Face implementation of transformers,1280

and for SAE model, we used the OpenSAE imple-1281

mentation1 and set the hyperparameter k to 128 for1282

TopK activation.1283

1https://github.com/THU-KEG/OpenSAE
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