
Compositional Reasoning with Transformers, RNNs,
and Chain of Thought

Gilad Yehudai
Courant Institute of Mathematical Sciences

New York University
gy2209@nyu.edu

Noah Amsel
Courant Institute of Mathematical Sciences

New York University
noah.amsel@nyu.edu

Joan Bruna
Courant Institute of Mathematical Sciences,

& Center for Data Science, New York University
Center for Computational Mathematics, Flatiron Institute

jb4496@nyu.edu

Abstract

It is well understood that different neural network architectures are suited to
different tasks, but is there always a single best architecture for a given task? We
compare the expressive power of transformers, RNNs, and transformers with chain
of thought tokens on a simple and natural class of tasks we term Compositional
Reasoning Questions (CRQ). This family captures multi-step problems with tree-
like compositional structure, such as evaluating Boolean formulas. We prove that
under standard hardness assumptions, none of these three architectures is capable
of solving CRQs unless some hyperparameter (depth, embedding dimension, and
number of chain of thought tokens, respectively) grows with the size of the input.
We then provide constructions for solving CRQs with each architecture. For
transformers, our construction uses depth that is logarithmic in the problem size.
For RNNs, logarithmic embedding dimension is necessary and sufficient, so long
as the inputs are provided in a certain order. For transformers with chain of thought,
our construction uses n CoT tokens for input size n. These results show that, while
CRQs are inherently hard, there are several different ways for language models to
overcome this hardness. Even for a single class of problems, each architecture has
strengths and weaknesses, and none is strictly better than the others.

1 Introduction

Large language models [Touvron et al., 2023, Anil et al., 2023, Achiam et al., 2023] are increasingly
used to perform logical reasoning and other problems that require algorithmic thinking. To understand
the power and limitations of these models, it is essential to determine what kinds of computational
problems they are capable of solving. To this end, a long line of theoretical work has studied the
expressive power of various language modeling architectures using simple tasks like copying strings,
recognizing formal languages, and determining if a graph is connected [Jelassi et al., 2024, Sanford
et al., 2024b, Strobl et al., 2024]. Such studies typically provide constructions or prove impossibility
results for a particular architecture or paradigm—such as recurrent neural networks, transformers,
and transformers with test-time scaling (“chain of thought”)—following the progress of the field.1

1In this paper, we consider transformers with and without chain of thought to be distinct architectures.
We also distinguish between “shallow” (constant number of layers compared to the input size) and “deep”
transformers. While these are all types of transformer, our results show that they are qualitatively very different.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Table 1: Comparison between our methods for solving CRQs on n nodes. Each architecture minimizes
one kind of resource at the expense of the others. For ease of comparison, we assume the depth of the
CRQ tree is log n. By parallel runtime, we mean the runtime using an unlimited number of parallel
processors.

Architecture Num. Parameters Runtime Parallel Runtime

Deep transformer (Section 4) O(L log2 n) O(Ln2 log n) O(L)
RNN (Section 5) [O(log n), O(n)]2 [O(n log n), O(n2)] O(n)
Chain of Thought (Section 6) O(log2 n) O(n2 log2 n) O(n)

In this paper, we take a broader view. We compare the abilities of several different language modeling
architectures to solve a class of problems that we call Compositional Reasoning Questions (CRQs).
While it is intuitive that each architecture has strengths and weaknesses, a rigorous understanding
of this phenomenon is incomplete. Theoretical comparisons between architectures often use tasks
that are selected to make one model look good. For instance, copying an arbitrarily long string
is impossible for an RNN with fixed memory, but easy for a transformer [Jelassi et al., 2024]. In
this work, we prove that the relationships between model classes can be much subtler and more
interesting. Our study of CRQs prove that there are unavoidable trade-offs between the architectures
we consider, even for a single problem. None of these architectures can solve CRQs without a strong
dependence on the size of the input. However, each architecture allows us to minimize the use of
some computational resource compared to the others (see Table 1). CRQs are simultaneously hard in
different ways for different architectures, but not intractable for any one of them. Thus, the CRQ task
provides a crisp and formal way to characterize the essential differences between these architectures.

Our motivation for defining and studying Compositional Reasoning Questions is as follows. Many
multi-step reasoning tasks share a common tree-like structure, meaning that they are hierarchical
compositions of smaller tasks. Consider the following examples:

• What is (6 + 2) · (4− 5)?
• Among all U.S. states, which one’s highest mountain has the lowest elevation?

To answer these questions, we must first solve several sub-tasks, like “What is 6 + 2?” and “What is
the elevation of the highest point in Hawaii?” While some of these sub-tasks can be solved in parallel,
the overall task cannot be solved without first gathering the answers to the sub-tasks. Furthermore,
sub-tasks may be nested hierarchically to form more complex tree structures, as in 5·(8−(9÷(2−1))).
Each sub-task corresponds to a non-leaf node of the tree, and the answer to the overall questions
corresponds to the root node. See Figure 1 for an example tree. The paradigmatic example of
compositional reasoning is Boolean formula evaluation, which is the problem of determining the
truth-value of an expression like (T ∨ F) ∧ (¬(F ∧ T)). This is a problem of fundamental importance
in basic logic and in complexity theory, where it is one of the key NC1-complete problems, but it has
been surprisingly understudied in prior work on LLM reasoning. Various other tasks studied in the
literature also share this hierarchical structure [Sinha et al., 2019, Feng et al., 2024]. Compositional
Reasoning Questions, which we define in Section 3.1, provide a simple and unified framework for
studying reasoning tasks that exhibit compositionality. In particular, we prove that the CRQ task
captures Boolean formula evaluation. Therefore, we believe that CRQs are of fundamental importance
as a yardstick for LLM reasoning.

We study the abilities of deep transformers, recurrent neural networks, and shallow transformers with
chain of thought to solve these problems. Our main contributions are as follows:

1. In Section 3.1, we present Compositional Reasoning Questions, a simple, formal framework
based on semantic similarity for studying LLM reasoning on arbitrary tree structures.

2. In Section 4, we prove that transformers with constant depth cannot solve arbitrary CRQs
(Theorem 4.3), but transformers with depth L can solve all CRQs of depth up to L (Theo-
rem 4.1).

3. In Section 5, we prove that RNNs with constant hidden dimension cannot solve arbitrary
CRQs (Theorem 5.5), but RNNs with O(log n) hidden dimension and constant depth can

2Depending on the ordering of the inputs, see more details in Section 5.

2

solve all CRQs of size n (Theorem 5.4). This ability depends on the inputs being arranged
in a particular order (Algorithm 1); if they are ordered adversarially, RNNs require O(n)
hidden dimension (Theorem 5.2).

4. In Section 6, we prove that transformers augmented with O(log n) CoT tokens cannot solve
CRQs of size n, but transformers augmented with O(n) CoT tokens can (Theorem 6.1).

Each of these results fills a gap in the literature; taken together, they demonstrate the fundamental
trade-offs between different models (Table 1). While deep transformers are highly parallelizable,
they require O(log n) depth in the worst case, so the model size must depend (albeit mildly) on the
problem size. Likewise, RNNs use little compute but must grow to handle larger problems, although
their success depends on the order of the inputs. Chain of thought allows a single, logarithmic-size
model to handle any CRQ, but it runs slowly and is not parallelizable. Overall, our work reveals a
rich complexity landscape for an important class of reasoning problems.

2 Related Work

[
1
1

]

[
1
0

]

[
7
6

] [
2
3

] [
4
6

]

[
0
−1

]

[
2
8

] [
3
4

]

[
7
6

] [
3
4

]

[
7
6

]

Figure 1: Example of a compositional reason-
ing question. Inside each node is the vector
corresponding to this node. Red lines indi-
cate the answer of each sub-question, given by
argmaxu∈C(v){xv,xu}, where C(v) are the chil-
dren of node v.

Expressive power of transformers. Our
work belongs to a large body of research study-
ing the representational capacity of transformers,
chain of thought prompting and RNNs. Trans-
formers with unbounded depth are known to be
universal approximators [Yun et al., 2019], and
can simulate Turing machines [Wei et al., 2022a,
Merrill and Sabharwal, 2023b] if their size can
grow with the sequence length. Looped trans-
formers, which repeat a fixed sequence of trans-
former layers a variable number of times depend-
ing on the length of the input, can implement
a simple but universal programming language
[Giannou et al., 2023]. Several works studied
the expressive power of shallow transformers
in solving certain representative tasks. Sanford
et al. [2024c] study problems like sparse aver-
aging and matching, Yehudai et al. [2024] study
counting, and Amsel et al. [2025] study nearest
neighbor. A long line of work [Hahn, 2020, Hao
et al., 2022, Merrill et al., 2022, Strobl et al.,
2024] has used circuit complexity classes to
characterize the power and limitations of transformers. Merrill and Sabharwal [2023c] show that
constant-depth transformers can only compute functions that are computable by Boolean circuits
in the complexity class TC0. We use this result to prove that they cannot solve CRQs either (Theo-
rem 4.3). Finally, Chen et al. [2024] study decoder-only transformers, in which each token can attend
only to the previous tokens in the sequence, and prove that L-layer decoders are strictly weaker than
L+ 1-layer decoders for the task of function composition.

Past work has also studied the expressive power of transformers with logarithmic-depth. [Sanford
et al., 2024a,b] focus on graph tasks, showing how the parallelism of transformers gives them an
advantage over other architectures. Liu et al. [2022] show the ability of logarithmic-depth transformers
to simulate finite automata, and Merrill and Sabharwal [2025] extend these results by weakening
their assumptions. We note that as implied by our Lemma 4.2, CRQs in general cannot be solved by
finite-state automata.

Power of RNNs An older line of research studied the capacities of recurrent networks, usually by
relating them to automata [Merrill, 2019, Korsky and Berwick, 2019, Merrill et al., 2020]. However,
they generally assume that the order of the inputs is fixed and that the size of the network is constant
in the size of the input. We study models whose hyperparameters (size, number of CoT tokens)
change with the problem size, and we study the effect of both benevolent and adversarial orderings of
the inputs.

3

Chain of Thought prompting. Chain of thought (CoT) [Reynolds and McDonell, 2021, Wei
et al., 2022b, Nye et al., 2021] is a method that enhances the ability of transformers to solve logical
reasoning tasks. Rather than producing the answer all at once, the model is allowed to autoregressively
generate a series of intermediate tokens to help it carry out each step in the solution. Li et al. [2024]
show that constant-depth transformers that generate T CoT tokens can simulate Boolean circuits of
size T . Merrill and Sabharwal [2023b] prove they can simulate O(T) steps of a Turing machine.

Most closely related to our work is that of Feng et al. [2024], which studies the power of chain of
thought in solving arithmetic problems. Like CRQs, arithmetic expressions correspond to tree of
subproblems and are solved by working up the tree. Unlike their work, in which the tree structure is
indicated by parentheses in the sequence, we encode the tree structure into the positional encodings of
the tokens. However, both problems are NC1-hard. Like Feng et al. [2024], we prove that our task is
solvable by a constant depth transformer using chain of thought, but not otherwise. However, there are
several differences: (i) We provide an explicit construction for solving CRQs using logarithmic depth
transformers without chain of thought. (ii) While their task is unsolvable by RNNs with a hidden
dimension of o(n/ log n), we provide an explicit construction of an RNN that solves CRQs using
only O(log n), but does not work for all orderings of the input. (iii) Our chain of thought solution
generates n tokens, while theirs requires Ω(n2) tokens. Such different conclusions emphasize the
importance of the input format; in particular our more favorable scalings hint at the importance
of leveraging prior information about the hierarchical structure. In Appendix F we generalize our
definition of CRQ to also capture arithmetic operations, as studied in Feng et al. [2024].

3 Problem Formulation and Preliminaries

Notation. We use bold letters for vectors, e.g. x,y. Let (x)i:j ∈ Rj−i+1 denote entries i through j
of x, and (x)−1 its last entry. For n ∈ N, [n] = {1, . . . , n}. Let T = (V,E) be a rooted tree with
root vr ∈ V . The depth of a node v ∈ V is the length of the unique path from v ∈ V to vr. The
depth of the tree is the largest depth of its nodes. The parent of a node v ∈ V is the node connected
to v on the path to the root and denoted by P(v). The children of v are the nodes whose parent is
v, and are denoted by C(v). The degree of a node is the number of its children. Thus, leaves have a
degree of 0. We say that a node u is a descendant of v if there is i such that P(i)(u) = v, where P(i)

is the parent function composed with itself i times. We also say in this case that v is an ancestor of u.

3.1 Compositional Reasoning Questions

We formally define the class of Compositional Reasoning Questions as follows:
Definition 3.1. A Compositional Reasoning Question (CRQ) is a rooted tree T = (V,E) with root
vr ∈ V , where each node in the tree v ∈ V is labeled by a vector xv ∈ Γd. Here Γ ⊂ R is some
finite vocabulary of constant size and d ∈ N.

The size of the CRQ is defined as |V |. The answer to the CRQ, denoted as A(vr), is defined
recursively: For a leaf u ∈ V we define A(u) = xu. For a non-leaf node v ∈ V we define:

A(v) = argmax
xu,u∈C(v)

⟨A(u),xv⟩ .

We refer to every node v ∈ V which is not a leaf as a sub-question.

In Appendix A.2, we prove that Boolean formula evaluation is a special case of CRQ. Intuitively, the
leaves represent Boolean literals (true and false), the sub-questions represent logical operations (and,
or, etc.), the tree topology encodes the order of operations, and the answer is the truth value of the
overall expression. Using vector representations is not only more general, but also makes for simple
constructions using language modeling architectures like attention.

In the above definition we assume that the CRQs are defined over some finite vocabulary Γ. We can
think of it as Γ = {0,±1, . . . ,±9} for simplicity, although any other vocabulary is allowed too.

CRQs are thus inherently hierarchical tasks, where the usual sequential structure is replaced by a
tree structure. Therefore, we will consider learning CRQs with models that can leverage this tree
structure. Each node v is embedded as the vector (xv, zv, zP(v), ℓ(v)), where xv is the label, zv is a
positional embedding, and ℓ(v) is the depth of v in the tree.

4

3.2 Transformers

We now provide a formal definition of the transformer architecture that will be used throughout
the paper. The input sequence is x1, . . . ,xn ∈ Rd. We concatenate Positional Encodings (PE)
e1, . . . , en ∈ Re to the inputs. The positional encodings cannot depend on the values of the
vectors xi, only on their positions (namely, on i). The input to the transformer is the sequence

x̃i =

(
xi

ei

)
∈ Rd+e. The transformer backbone contains alternating layers of hardmax, single-head

self-attention and feed forward networks with skip connections. For simplicity, we do not use layer
normalization or attention masking (though the lower bounds like Theorem 4.3 generally hold against
models that include them). Formally, let h(ℓ)

i denote the hidden embedding output after ℓ transformer
blocks corresponding to the ith input. Define:

h
(0)
i = x̃i (1)

h
(ℓ+1/2)
i = h

(ℓ)
i + Vℓ argmax

h∈{h(ℓ)
1 ,...,h

(ℓ)
n }

(
h⊤K⊤

ℓ Qℓh
(ℓ)
i

)
(2)

h
(ℓ+1)
i = MLPθℓ

(
h
(ℓ+1/2)
i

)
(3)

where Vℓ,Kℓ,Qℓ ∈ R(d+e)×(d+e) and θℓ are weight matrices and σ(·) is the ReLU function. Ties

in the argmax are broken arbitrarily. Finally, an unembedding layer yi =

(
Id ·
· ·

)
h
(L)
i discards

entries corresponding to the positional encoding. We consider yn to be the output of the model.
Following previous work [Merrill and Sabharwal, 2023a,c], we assume that the inputs, weights, and
intermediate representations of the network can all be represented using O(log n) bits of precision.
We use hardmax attention for ease of analysis, following previous works on the theory of transformers.
However, all our constructions can be extended to softmax. To do so, we would modify the statements
of Theorems 4.1 and 6.1 to say that our constructions approximate the target function up to arbitrary
error ϵ > 0 that is independent of n, rather than exactly expressing the target. The proofs would then
tune the temperature of the softmax function so that it is sufficiently close to hardmax to achieve
approximation error ϵ.

4 Depth in Transformers is Necessary and Sufficient

In this section we provide two complementary results about the power of transformers to solve CRQs.
We first show that deep transformers can solve any CRQ so long as the depth of the transformer is
at least the depth of the CRQ tree. We then prove a conditional lower bound showing that constant
depth transformers cannot solve all CRQs. Combining both results, we conclude that depth is both
necessary and sufficient for transformers to solve CRQs.

4.1 Deep transformers can solve CRQs

Theorem 4.1. For any L, n ∈ N there exists a transformer T with depth L − 1 and embedding
dimension O(d+ log(n)) that solves all CRQs with at most n nodes and depth at most L.

The proof appears in Appendix A.1. First, note that the depth of the transformer depends only on the
depth of the tree of the CRQ. This is one of the main strengths of transformers: parallelism. Namely,
the transformer is able to solve all the sub-questions in the tree of the same depth with just one layer.

We also emphasize that it is probably not possible to solve CRQs of size n with less than log(n)
precision. The reason is that a transformer without positional encoding is invariant to the order
of the tokens. However, the CRQ has an inherent structure, a tree, which without it it cannot be
solved. Thus, just to be able to provide even the simplest positional encoding which is numbering the
nodes of the tree from 1 until n requires O(log(n)) bits (cf. Merrill and Sabharwal [2023a]). Our
construction uses a more complex positional encoding that captures the tree structure while still using
only O(log(n)) bits.

We now give a short intuition for our construction. We first define a positional encoding vector for each
node that has four parts. For each non-leaf node v, we define an identifying vector zv ∈ {±1}O(log(n))

5

such that ⟨zv, zu⟩ ≪ ∥zv∥2 for any nodes u, v ∈ V . For leaf nodes, we let zv = 000O(log(n)). This is
the first part. The second part of node v’s positional encoding vector is the identifier of its parent,
zP(v). The third part is the depth of v in the tree. The fourth is an indicator variable that is 1 when the
depth is L−1, where L is the depth of the tree, and 0 otherwise. These four parts are all concatenated
to the value of the node xv .

We construct each layer of the transformer to be exactly the same. Using the positional encoding, we
construct the following attention pattern:

• Each non-leaf tokens that have depth smaller than L− 1 attends only to itself.
• Each non-leaf tokens that has depth L− 1 attends only to its children. Specifically, it attends

to the child child that answers its sub-question, one whose value vector has the largest
correlation with the non-leaf token.

• Leaf tokens can do as they like, as they will not be attended to in succeeding levels.

By constructing this attention pattern, all the sub-questions in layer L− 1 are solved simultaneously.
We then use the MLP to reorganize the tokens. We increase the counter of the depth of every token,
and update the indicator for nodes of depth L − 1. Nodes that in the previous iteration had depth
L− 1 are altered to resemble leaves, i.e. their zv vector is set to zero. For these nodes, we also set
their value vector xi to be the answer to their sub-question, as computing in the previous attention
layer. In the next attention layer, nodes previous in layer L− 1 will play the part of leaves and be
attended to by their parents, which were previously in layer L− 2. Applying this construction L− 1
times will compute the answer to the root, which is the answer to the CRQ.

4.2 Constant depth transformers cannot solve CRQs

We will now show that solving CRQs using a constant size transformer cannot be done, conditional
on the assumption that TC0 ̸= NC1. Our main result in this subsection is a reduction from Binary
Formula Evaluation Problem (BFEP), which is known to be NC1-complete (see Buss [1987]), to
solving CRQ.

Lemma 4.2. The CRQ problem over a finite alphabet is NC1-hard.

For a full proof, see Appendix A.2. The reduction is straightforward, and resembles the reduction
in Feng et al. [2024] from BFEP to arithmetic problems. The main idea is to define the vectors

t0 = t∧ =

(
0
1

)
and t1 = t∨ =

(
1
0

)
which correspond to 0 and 1 in Boolean formulas. Now note

that taking argmax of the dot product with t∧ corresponds to the ∧ operation, and the argmax of the
dot product with t∨ corresponds to the ∨ operation. The operation of ¬ is slightly more intricate and
defined in Figure 3. All the operations in the reduction can be done using TC0 circuits, which means
that the CRQ problem is NC1-hard.

It was shown in Merrill and Sabharwal [2023c] that transformers with constant depth, polynomial
size and logarithmic bit- precision (all w.r.t n) are in TC0. Thus, the following theorem follows
immediately from Lemma 4.2:

Theorem 4.3. Under the assumption that TC0 ̸= NC1, for any L ∈ N and polynomial P (x), there
exists n ∈ N such that no transformer with depth L, a number of parameters that is smaller than
P (n) and O(log(n)) bit-precision can solve all CRQs of size n.

Combining the two results of this section, we see that transformers have the power to solve the CRQ
problem for each layer efficiently, however the number of layers of the transformer depends on the
size of the tree. This dependence is also mandatory under the assumption that TC0 ̸= NC1. One
concrete example, which will be relevant in the next section, is a balanced binary tree with n nodes,
and log(n) depth. There exists a transformer that can solve all CRQs of this shape with log(n) layers,
but not with a constant number of layers. In the next sections we will provide alternative approaches
to solve this problem with different models using constant depth.

We note that arithmetic problems, as presented in Feng et al. [2024], can also be embedded as
certain generalized CRQs. This embedding is presented in Appendix F. Thus, both Theorem 4.1
and Theorem 4.3 can be applied to arithmetic problems, if they are presented in a tree structure. It

6

is in general possible to apply a preprocessing procedure using a depth O(log(n)) transformer to
turn an arithmetic problem presented in a sequential form, into a tree structure which captures the
order of arithmetic operations. Note that the above theorem readily extends to transformers with layer
normalization and attention masking, since it relies on a result for Merrill and Sabharwal [2023c] that
includes both elements.

5 Solution Using Shallow RNNs

In this section we will show that under certain assumptions, RNNs can solve CRQs. The proofs for
this section appear in Appendix C. We first define RNNs in the following way:
Definition 5.1. An RNN is a fully-connected neural network N : Rd+m → Rm. The inputs to the

RNN are x1, . . . ,xn ∈ Rd, and the RNN operates as N
((

xi

hi−1

))
= hi where h0, . . . ,hn ∈ Rm.

The hi’s are called the hidden states of the RNN. h0 is defined as part of the architecture, and
independent of the input data. The output of the RNN is hn

3.

Note that in contrast to transformers, RNNs are not invariant to changing the order of the inputs. The
reason is that the order in which the vectors x1, . . . ,xn are fed to the model is part of the input itself,
and not part of the architecture like positional encodings for transformers. We will show that the way
the nodes of the CRQs are ordered is crucial for having an efficient solution with RNNs.

5.1 The order of the nodes matters

Our next result shows that there are bad orderings which force RNNs to have large hidden dimension:
Theorem 5.2. Let T = (V,E) be a balanced binary tree of size n. There exists an ordering of the
nodes with the following property: Any RNN that reads the inputs in that order and solves all CRQs
defined on T must have a hidden state of size Ω(n) bits. That is, if the hidden state is in Rm and each
entry is represented by p bits, then p ·m = Ω(n).

The proof is given in Appendix C.1. Note that Theorem 5.2 doesn’t depend on the depth of the RNN.
Note that it is easy to construct an RNN with a hidden dimension of size O(n) that solves all CRQs.
The idea is just to encode all the nodes in the hidden state, which can be done if we have enough
memory, and then use a large enough neural network to solve the CRQ. Constructing such a neural
network is possible by the universal approximation property [Cybenko, 1989, Leshno et al., 1993].
Since the number of possible outputs is finite (because the alphabet is finite), we can approximate the
solution up to a small enough accuracy and then threshold over the output.

The proof of Theorem 5.2 uses a communication complexity argument. Specifically, we use a
reduction from the set disjointness problem (see Claim C.1 for a formal definition). We then construct
a communication protocol between two parties, where each one of them has knowledge of only half
of the inputs. When using the bad ordering of the nodes, this communication protocol forces the first
party to encode all of its inputs into the hidden state when passing it to the second party.

Feng et al. [2024] proved that a specific RNNs construction requires a hidden state of size Ω(n)
to solve arithmetic problems. Our results are stronger in that: (1) Our lower bound applies to any
possible construction, so long as the bad order is used, and (2) We next show that the Ω(n) memory
requirement can be alleviated by re-ordering the inputs.

5.2 Memory-rank sort

In this subsection, we restrict ourselves to CRQs with full binary trees for simplicity; that is, the
degree of each node is 0 or 2. In Appendix D, we extend the results from this section to non-binary
trees, but note that every CRQ can be converted into an equivalent CRQ with a binary tree and at
most twice as many notes (see Appendix D.1).

We will now introduce a sorting algorithm for trees that will allow us to solve any CRQs using an
RNN with a small hidden dimension. First, we to define the memory-rank of each node:

3It is often common to define two separate outputs of the RNN, the hidden state and the prediction. Here we
combine them for simplicity.

7

Definition 5.3 (Memory Rank). Let T = (V,E) be a rooted tree. The memory rank of a node v ∈ V
is defined recursively as: mr(v) = 0 if v is a leaf, and otherwise

mr(v) = max (amax, amin + 1)

where amax = max (mr(c1(v)),mr(c2(v)))
amin = min (mr(c1(v)),mr(c2(v)))

and c1(v) and c2(v) are the two children nodes of v. The memory rank of the tree mr(T) is defined
as the memory rank of its root.

Intuitively, the memory rank is the smallest possible stack size needed for a stack machine to solve the
CRQ if we are allowed to pick the order of the nodes. A stack machine is an automaton augmented
with a stack that it can uses as memory. It processes the inputs sequentially, optionally pushing and
popping a finite number of elements from its stack at each step and performing computations with the
resulting vectors. We should order the inputs according to a post-ordering depth-first search of the
CRQ, meaning that the position of a node in the ordering corresponds to when the depth first search
last visits it. This ordering akin to reverse Polish notation, which notates an arithmetic expression
like (2 + 3) ∗ 6 as the following sequence: 2 3 + 6 ∗. By ordering the inputs this way, we ensure that
whenever the automaton reads a non-leaf node, the top two elements on the stack are the solutions to
the CRQs defined by that node’s two children. It can simply pop them off, compute the solution to
the current node, and push the result back onto the stack to save it for later.

Even using a depth-first search ordering, the size of the stack used by this machine could grow as
large as n in the worst case. However, by ordering the children of each node carefully, we can reduce
the stack depth to only log n. To compute the CRQ corresponding to a given node v, we (1) solve for
one of its children, (2) save this result on the stack, then (3) solve for the second child. If we solve
c1(v) first, then the largest stack depth during the first stage is mr(c1(v)) and the largest stack depth
during the second stage is mr(c2(v)) + 1. The overall largest stack depth is the maximum of these
two. Thus, to use as little memory as possible, we should always start with the child whose memory
rank is larger. This sorting algorithm is defined formally in Algorithm 1. See Figure 2 for an example
of memory-rank sort of a tree. In Theorem 5.4, we will simulate this stack machine using a RNN
with hidden dimension of size mr(T).

5.3 Shallow RNNs can solve CRQs

We are now ready to present the main theorem of this section:
Theorem 5.4. For any n ∈ N there exists an RNN with 5 layers and hidden dimension O(d log(n))
that solves any CRQ with a binary tree, if the nodes are ordered by Algorithm 1

The proof is given in Appendix C.2. The main idea is to simulate a stack machine with the RNN. The
stack will contain the vectors xi that are needed for future calculations, and will have two possible
operations: (1) pop out vectors, and (2) push a vector. The stack will be transferred through the RNN
in the hidden state. We include the depth of each node in its positional embedding, which will help us
determine which of the two operations (push or pop) to use.

At each new input we check whether the last node in the stack has a larger depth by exactly 1. If it
doesn’t, then we insert v into the stack and move to the next input. If it does, then we pop out the
last two nodes from the stack, say u1 and u2, and calculate the inner products ⟨xv,xu1⟩ , ⟨xv,xu2⟩.
We insert back to the stack either xu1 or xu2 , whichever has a higher inner product, but with the
depth of the node v. All the above operations can be simulated using ReLU neural networks. The
memory-rank sort does the rest of the work, since it makes sure that if v is the current node to be
processed, the last two nodes in the stack must either be its children, or nodes with a smaller depth.
Doing this recursively over all the nodes will gradually solve the CRQ.

Note that in Theorem 4.1, we also needed the embedding dimension of the transformer to be
Ω(log(n)), but for a very different reason. There, the transformer is invariant to re-ordering of the
input tokens, and since the output does depend on the ordering (specifically, the structure of the tree)
we would need Ω(log(n)) bits just to label the tokens from 1 to n. For RNNs, the inputs are already
ordered, and we even defined a specific ordering algorithm that aligns with our task. The reason
that in Theorem 5.4 we need the size of the hidden dimension to be Ω(log(n)) is because in order to

8

solve CRQs, we need to store some of the inner calculations (i.e. answers to the sub-questions) while
we solve others. We emphasize that this hardness is not captured by the fact that solving CRQs is
NC1-hard. There are other NC1-hard problems that can be solved with a constant size RNN, such as
the word problem on S5 (see Definition 3.1 and Theorem 5.1 in Merrill et al. [2024]).

2

1

1

0 1

0 0

0

2

1

0 0

1

0 0

15

14 7

12 13 3 6

11 10 1 2 4 5

8 9

Figure 2: Memory-rank sorting of a tree. Each
node is labeled with its memory rank, which ranges
from 0 to 2 in this case. The number below each
node is its ordering according to Algorithm 1.
Note that we first traverse the right branch of the
tree, since the right child of the root has a higher
memory-rank than the left child.

Finally, note that the memory rank of any
tree with n nodes is bounded by log(n) (see
Lemma C.2). In fact, for a given tree structure
T , the hidden dimension of the RNN needed to
solve all CRQs with this structure is bounded
by O(d · mr(T)) using our construction. We
next prove that the memory-rank also provides
a lower bound on the required size of the hidden
dimension:
Theorem 5.5. Let n ∈ N, let T be a rooted tree
of size n with some ordering of the nodes from 1
to n. Suppose there exists an RNN that solves all
CRQs with a tree structure of T if the nodes are
provided in the given ordering. Then, the hidden
dimension of the RNN must have Ω(mr(T)) bits.
In particular, an RNN that solves all CRQs on
all trees of size n for a given ordering must have
a hidden dimension with Ω(log(n)) bits.

The proof is given in Appendix C.3. Combin-
ing Theorem 5.4 and Theorem 5.5, we see that
the memory-rank gives a complete characteriza-
tion of the memory needed to solve CRQs using
RNNs.

6 Solution Using Shallow
Transformers with Chain of Thought

In this section we show that adding the ability to produce chain of thought tokens can also help solve
CRQs using a constant depth transformers. We assume in this section that the nodes are ordered in
reverse BFS ordering. Namely, for a tree with n nodes and depth L, the nodes are numbered from
1 until n starting from the nodes at depth L, and going up until the root which is numbered n. Our
main result in this section is the following:
Theorem 6.1. There exists a 2-layer transformer that solves all the CRQs with trees containing n
nodes. The embedding dimension is O(d+ log(n)), the bit-precision of the transformer is O(log(n)),
and the number of chain-of-thought tokens generated is n.

The proof idea is to solve all the sub-questions of the CRQ from the bottom-up. Each generated CoT
token will be a solution to one of the sub-questions represented by a non-leaf node. Each node token
contains two sets of positional encoding. The first one represents the tree structure and is similar to
the positional encoding from Theorem 4.1. The second one encodes the position in the reverse BFS
ordering of the nodes. The role of this embedding is so that at each operation of the transformer,
the last token that was generated will attend to the next token in the reverse BFS order. This way,
all the sub-question in the same layer are solved one after the other, before moving on to the next
layer. The construction of the transformer itself contains 2-layers of self-attention. The first layer is
similar to a single layer of the construction from Theorem 4.1. Its role is to solve a single layer of
sub-questions. The second layer make sure that the last generated token can only attend to the next
token in the reverse BFS order, using the designated positional encodings.

Our work leaves open the question of whether a constant-depth transformer can solve CRQs by
generating o(n) CoT tokens. In Li et al. [2024] it was shown that transformers with constant depth
that generate O(log(n)) CoT tokens lie in TC0 (see also Theorem 4 of Merrill and Sabharwal
[2025]). By Lemma 4.2 we know that solving CRQs is NC1-hard. Thus, under the assumption that
TC0 ̸= NC1, we know that transformers need more than logarithmically many CoT tokens to solve

9

CRQs. However, the gap between Ω(log(n)) and our solution with O(n) CoT tokens is still open.
We also note that by Amiri et al. [2025], in the finite precision case, a lower bound of Ω(n) CoT
tokens for solving CRQs can be derived. Hence, in this case, our construction is asymptotically
optimal. In the log-precision case (which is the main setting of this paper), the question of whether
our construction is optimal remains open.

We now compare our result with the CoT solution from Feng et al. [2024] for arithmetic problems.
Both solutions use a transformer with O(1) layers and O(log(n)) bit precision. However, their
solution generated O(n2)4 CoT tokens, while ours generates only O(n) tokens. This is a significant
improvement, since for large sequences, a quadratic number of generated tokens can be infeasible
to generate during inference time. The reason for this improvement is that in our solution each
generated token solves exactly one sub-question, thus the number of tokens can be bounded by the
number of sub-questions. In the solution of Feng et al. [2024], each time one sub-problem is solved
(e.g. adding two numbers) the entire expression is rewritten. Thus, the number of tokens needed is
n+ (n− 1) + (n− 2) + · · · = O(n2). However, we use a different input format that encodes the
tree structure directly into the positional encodings, rather than processing the arithmetic expression
from left to right.

7 Discussion and Future Work

In this paper, we introduce the framework of compositional reasoning questions. We describe the
trade-offs inherent in solving CRQs with deep transformers, RNNs, and shallow transformers with
CoT. Our results indicate that although transformers are highly parallelizable, they must be deep
to be able to solve CRQs; in particular, the depth must scale with the depth of the CRQ tree. In
contrast, RNNs and CoT can solve CRQs with constant depth, but their operation is not parallelizable.
Transformers require quadratic computational cost, but RNNs can solve CRQs in nearly linear time.
Finally, transformers with CoT solve CRQs using a logarithmic number of parameters, while the
other models require the number of parameters to be linear in n in the worst case.

Our results have a broader significance for the grand challenge of improving LLM reasoning. The
three architectures we consider correspond to three schools of thought about how to make progress
on this problem, each of which has received support from the theoretical literature:

1. Scale up transformers by, e.g., adding more layers, and greater capabilities will continue
to emerge. Transformers with depth log(n) can do k-hop induction and graph algorithms
[Merrill and Sabharwal, 2025, Sanford et al., 2024b,c].

2. Devise better architectures, such as state space RNNs or hybrid models, because attention
is not all you need to learn and reason efficiently. RNNs can more easily do state tracking
tasks like recognizing regular languages [Merrill et al., 2024].

3. Introduce test-time scaling via chain of thought, opening a new axis of the design space.
This enables dynamic programming and simulating Turing machines [Feng et al., 2024,
Merrill and Sabharwal, 2023b].

In previous work, the school that looks most promising depends on which model problem they chose
to study. CRQs are just as fundamental as any of the other problems studied in the literature. However,
when using CRQs as a theoretical yardstick of reasoning, we find that none of the schools is a clear
winner and none is a clear loser. Thus, the theory of representational capacity does not give a single
answer to the question of how to improve LLM reasoning. Perhaps some blend of the three schools
or a fourth school will emerge that dominates the others, but for now the answer is equivocal and
contingent, even for a single task.

There are several open questions remaining. First, is our solution using constant depth transformers
that generates n CoT tokens optimal, or is it possible to solve CRQs while generating fewer tokens?
Second, our work only considers the expressiveness point of view, it would be interesting to understand
the optimization process of transformers and other models when solving CRQs. Finally, it would be
interesting to understand how general the solutions learned by transformers are. Do they generalize
to other trees with different structures, sizes and different question regimes?

4In the arithmetic problems from Feng et al. [2024] we refer to n as the number of symbols in the problems.
i.e. numbers, parenthesis and arithmetic operations.

10

Acknowledgments NA was supported by NSF award 2234660. We thank Will Merrill for helpful
discussions related to this work and for drawing our attention to the Boolean formula evaluation
problem.

References
J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt,

S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

A. Amiri, X. Huang, M. Rofin, and M. Hahn. Lower bounds for chain-of-thought reasoning in
hard-attention transformers. arXiv preprint arXiv:2502.02393, 2025.

N. Amsel, G. Yehudai, and J. Bruna. Quality over quantity in attention layers: When adding more
heads hurts. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=y9Xp9NozPR.

R. Anil, S. Borgeaud, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M. Dai, A. Hauth, K. Millican,
et al. Gemini: a family of highly capable multimodal models. arXiv preprint arXiv:2312.11805,
2023.

S. R. Buss. The boolean formula value problem is in alogtime. In Proceedings of the nineteenth
annual ACM symposium on Theory of computing, pages 123–131, 1987.

L. Chen, B. Peng, and H. Wu. Theoretical limitations of multi-layer transformer, 2024. URL
https://arxiv.org/abs/2412.02975.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

A. Daniely. Depth separation for neural networks. In Conference on Learning Theory, pages 690–696.
PMLR, 2017.

G. Feng, B. Zhang, Y. Gu, H. Ye, D. He, and L. Wang. Towards revealing the mystery behind chain
of thought: a theoretical perspective. Advances in Neural Information Processing Systems, 36,
2024.

A. Giannou, S. Rajput, J.-Y. Sohn, K. Lee, J. D. Lee, and D. Papailiopoulos. Looped transformers
as programmable computers. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and
J. Scarlett, editors, Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pages 11398–11442. PMLR, 23–29 Jul 2023.
URL https://proceedings.mlr.press/v202/giannou23a.html.

M. Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of the
Association for Computational Linguistics, 8:156–171, 2020.

Y. Hao, D. Angluin, and R. Frank. Formal language recognition by hard attention transformers: Per-
spectives from circuit complexity. Transactions of the Association for Computational Linguistics,
10:800–810, 2022.

S. Jelassi, D. Brandfonbrener, S. M. Kakade, and E. Malach. Repeat after me: Transformers are
better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

S. A. Korsky and R. C. Berwick. On the computational power of rnns. arXiv preprint
arXiv:1906.06349, 2019.

M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function. Neural networks, 6(6):861–867,
1993.

Z. Li, H. Liu, D. Zhou, and T. Ma. Chain of thought empowers transformers to solve inherently serial
problems. arXiv preprint arXiv:2402.12875, 2024.

11

https://openreview.net/forum?id=y9Xp9NozPR
https://arxiv.org/abs/2412.02975
https://proceedings.mlr.press/v202/giannou23a.html

B. Liu, J. T. Ash, S. Goel, A. Krishnamurthy, and C. Zhang. Transformers learn shortcuts to automata.
arXiv preprint arXiv:2210.10749, 2022.

W. Merrill. Sequential neural networks as automata. In J. Eisner, M. Gallé, J. Heinz, A. Quattoni, and
G. Rabusseau, editors, Proceedings of the Workshop on Deep Learning and Formal Languages:
Building Bridges, pages 1–13, Florence, Aug. 2019. Association for Computational Linguistics.
doi: 10.18653/v1/W19-3901. URL https://aclanthology.org/W19-3901/.

W. Merrill and A. Sabharwal. A logic for expressing log-precision transformers. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023a. URL https://openreview.
net/forum?id=uR8TtWCIsr.

W. Merrill and A. Sabharwal. The expresssive power of transformers with chain of thought. arXiv
preprint arXiv:2310.07923, 2023b.

W. Merrill and A. Sabharwal. The parallelism tradeoff: Limitations of log-precision transformers.
Transactions of the Association for Computational Linguistics, 11:531–545, 2023c.

W. Merrill and A. Sabharwal. A little depth goes a long way: The expressive power of log-depth
transformers, 2025. URL https://arxiv.org/abs/2503.03961.

W. Merrill, G. Weiss, Y. Goldberg, R. Schwartz, N. A. Smith, and E. Yahav. A formal hierarchy of
RNN architectures. In D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault, editors, Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pages 443–459, Online,
July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.43. URL
https://aclanthology.org/2020.acl-main.43/.

W. Merrill, A. Sabharwal, and N. A. Smith. Saturated transformers are constant-depth threshold
circuits. Transactions of the Association for Computational Linguistics, 10:843–856, 2022.

W. Merrill, J. Petty, and A. Sabharwal. The illusion of state in state-space models. arXiv preprint
arXiv:2404.08819, 2024.

M. Nye, A. J. Andreassen, G. Gur-Ari, H. Michalewski, J. Austin, D. Bieber, D. Dohan,
A. Lewkowycz, M. Bosma, D. Luan, et al. Show your work: Scratchpads for intermediate
computation with language models. arXiv preprint arXiv:2112.00114, 2021.

L. Reynolds and K. McDonell. Prompt programming for large language models: Beyond the few-shot
paradigm. In Extended abstracts of the 2021 CHI conference on human factors in computing
systems, pages 1–7, 2021.

C. Sanford, B. Fatemi, E. Hall, A. Tsitsulin, M. Kazemi, J. Halcrow, B. Perozzi, and V. Mir-
rokni. Understanding transformer reasoning capabilities via graph algorithms. arXiv preprint
arXiv:2405.18512, 2024a.

C. Sanford, D. Hsu, and M. Telgarsky. Transformers, parallel computation, and logarithmic depth,
2024b.

C. Sanford, D. J. Hsu, and M. Telgarsky. Representational strengths and limitations of transformers.
Advances in Neural Information Processing Systems, 36, 2024c.

K. Sinha, S. Sodhani, J. Dong, J. Pineau, and W. L. Hamilton. CLUTRR: A diagnostic benchmark for
inductive reasoning from text. In K. Inui, J. Jiang, V. Ng, and X. Wan, editors, Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4506–4515, Hong
Kong, China, Nov. 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1458.
URL https://aclanthology.org/D19-1458/.

L. Strobl, W. Merrill, G. Weiss, D. Chiang, and D. Angluin. What Formal Languages Can
Transformers Express? A Survey. Transactions of the Association for Computational Lin-
guistics, 12:543–561, 05 2024. ISSN 2307-387X. doi: 10.1162/tacl_a_00663. URL https:
//doi.org/10.1162/tacl_a_00663.

12

https://aclanthology.org/W19-3901/
https://openreview.net/forum?id=uR8TtWCIsr
https://openreview.net/forum?id=uR8TtWCIsr
https://arxiv.org/abs/2503.03961
https://aclanthology.org/2020.acl-main.43/
https://aclanthology.org/D19-1458/
https://doi.org/10.1162/tacl_a_00663
https://doi.org/10.1162/tacl_a_00663

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

C. Wei, Y. Chen, and T. Ma. Statistically meaningful approximation: a case study on approximating
turing machines with transformers. Advances in Neural Information Processing Systems, 35:
12071–12083, 2022a.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-thought
prompting elicits reasoning in large language models. Advances in neural information processing
systems, 35:24824–24837, 2022b.

A. C.-C. Yao. Some complexity questions related to distributive computing (preliminary report). In
Proceedings of the eleventh annual ACM symposium on Theory of computing, pages 209–213,
1979.

G. Yehudai, H. Kaplan, A. Ghandeharioun, M. Geva, and A. Globerson. When can transformers
count to n? arXiv preprint arXiv:2407.15160, 2024.

C. Yun, S. Bhojanapalli, A. S. Rawat, S. J. Reddi, and S. Kumar. Are transformers universal
approximators of sequence-to-sequence functions? arXiv preprint arXiv:1912.10077, 2019.

13

A Proofs from Section 4

A.1 Proof of Theorem 4.1

The following lemma is useful for defining the positional encodings:

Lemma A.1. For any k ≥ 2 there exist v1, . . . ,vk ∈ {±1}4 log(k) such that | ⟨vi,vj⟩ | ≤ 3 log(k)
for all i ̸= j.

Proof. We sample v1, . . . ,vk ∈ {±1}4 log(k) uniformly at random. Note that for any i ̸= j we have
that E[⟨vi,vj⟩] = 0. By Hoeffding’s inequality we have that:

Pr (|⟨vi,vj⟩| ≥ 3 log(k)) ≤ 2 exp(−4 log(k)) . (4)

Applying union bound on the above for all pairs i ̸= j we get that:

Pr (∀i ̸= j, |⟨vi,vj⟩| ≤ 3 log(k)) ≥ 1− 2 exp(−4 log(k)) · k2 ≥ 1− 2

k2
.

In particular, for k ≥ 2 this probability is non-zero, meaning that there exists such vectors v1, . . . ,vk.

Theorem 4.1. For any CRQ with up to n nodes, there exist at most |Y | ≤ n possible queries. By
Lemma A.1 there exist vectors z1, . . . , zn ∈ {±1}4 log(n) such that | ⟨zi, zj⟩ | ≤ 3 log(n) for any
i ̸= j.

We will first describe how we embed each node as an input token to the transformer, and then describe
the construction of the transformer itself. For each node v ∈ V that is not a leaf, we set one of the
vectors zi’s to be corresponded with this node, and denote it as zv . Recall that P(v) is the parent of
node v. Note that although each node may have several children, it only has one parent.

Each node of the tree will be embedded as a vector in R2d+8 log(n)+2. The input tokens corresponding
to a leaf node u and a non-leaf node v are defined as:

tu :=


xu

0d

zP(u)

04 log(n)

0
0

 , tv :=


xv

0d

zv
zP(v)

ℓ(v)
1(ℓ(v) = L− 1)

 , (5)

where ℓ(v) is the depth of node v (the length of the shortest path from v to the root).

The crux of the construction lies mainly in the way we choose the embedding: The embedding first
contains the value of the leaves or query of the corresponding node. The embedding also contains a
positional encoding (PE), where each leaf token contains its parent’s PE, and each non-leaf token
contains its own PE as well as its parent’s. In addition, there is a number representing the depth of
each node and a flag on whether a node is in the second to last layer (i.e it is the deepest intermediate
node connected to a leaf).

We construct the weights of the transformer so it will work as follows: In the first layer, each token
representing an intermediate node will attend either to itself, if its depth is higher than L− 1, or to
its children, if its depth is exactly L− 1. This means that only the tokens of nodes in depth L− 1
will change while all other tokens of intermediate nodes will remain the same. Using the positional
encodings, the tokens at depth L− 1 will attend only to their children, not to themselves, and after
the self-attention layer (before applying the V matrix) will be equal to the token representing their
child with the highest correlation to their query. We now use the V matrix, residual connection and
MLP so that the tokens with depth L − 1 will have a similar embedding to the leaves tokens, and
decrease the depth of all other intermediate tokens. We also make sure that the flag after the first layer
will be equal to 1 for nodes of depth L− 2. We now apply a similar layer exactly L times, so that in
the final layer the output of the token representing the root will be equal to the solution to the CRQ.

We now turn to the formal construction of the transformer. The order of the input tokens is not
important for the construction, except for the root token which will be the last token since its final

14

embedding will include the answer to the CRQ. Let c ≥ 1 be some universal constant such that
∥x∥2 ≤ c for every x ∈ Γd, there exists such a constant since Γ is finite. The matrices of all the
layers of the transformer will be the same and equal to:

K =

(
I2d+8 log(n)

0
1

)
,

Q =


I2d

6cI4 log(n)

cI4 log(n)

0
−6c log(n)

 ,

V =

(
0d Id
Id 0d

08 log(n)+2

)
.

Before defining the MLP, we will explain how the attention layer operates on the input tokens. Since
the attention mechanism contains a hardmax head, the output of each token will depend only on the
token to which it attends. We will first show the next two claims:

1. Each token non-leaf node v with (tv)−1 = 0 will attend to itself.

2. Each token non-leaf v with (tv)−1 = 1 will attend to tu with argmaxtu,u∈C(v) ⟨xu,xv⟩.

For the first claim, let v be some node with (tv)−1 = 0. Then we have that:

t⊤v K
⊤Qtv = ∥xv∥2 + 6c ∥zv∥2 + c

∥∥zP(v)

∥∥2 ≥ 28c log(n) (6)
Now, let u ̸= v be some other node. If u is a leaf then we have that:

t⊤uK
⊤Qtv ≤ | ⟨xu,xv⟩ |+ 6c|

〈
zP(u), zv

〉
|+ c|

〈
000, zP(v)

〉
|

≤ c+ 24c log(n)+ < 25c log(n) .

If u is not a leaf then we have that:

t⊤uK
⊤Qtv ≤ | ⟨xu,xv⟩ |+ 6c| ⟨zu, zv⟩ |+ c|

〈
zP(u), zP(v)

〉
|

≤ c+ 18c log(n) + 4c log(n) < 23c log(n) ,

where we used that | ⟨zu, zv⟩ | ≤ 3 log(n) for u ̸= v. This shows that tv can only attend to itself.

Next, let v be a node with (tv)−1 = 1. Let u be a node with u ∈ C(v) and let w ̸= v with w /∈ C(v).
We have that:

t⊤v K
⊤Qtu = ⟨xu,xv⟩+ 6c ∥zv∥2

≥ −c+ 24c log(n) ≥ 23c log(n)

t⊤v K
⊤Qtw ≤ | ⟨xw,xv⟩ |+ 6| ⟨z′, zv⟩ |+ |

〈
zP(w), zP(v)

〉
|

≤ c+ 18c log(n) + 4c log(n) < 23c log(n)

t⊤v K
⊤Qtv = ∥xv∥2 + 6c ∥zv∥2 + c

∥∥zP(v)

∥∥2 − 6c log(n)

≤ c+ 24c log(n) + 4c log(n)− 6c log(n) < 23c log(n) .

Here z′ is some vector with z′ ̸= zv (n fact, z′ = zw or z′ = zP(w), depending on whether w is a
leaf). This shows that tv can only attend to its children. It is also clear that tv will attend to its child
u that maximized ⟨xu,xv⟩. This finishes the two claims above.

After applying the V matrix and the residual connection from the previous layer, the output of
the self-attention layer on token tv is equal tv + ov, where (ov)(d+1:2d) = xv if (tv)−1 = 0 and
(ov)(d+1:2d) = argmaxxu,u∈C(v) ⟨xu,xv⟩ if (tv)−1 = 1. In words, the entries of each token in
place d+ 1 until 2d after the self-attention layer is the solution to the sub-question for the deepest
non-leaves nodes of the tree, and for other nodes it is the queries themselves.

We now define an MLP that will reorganize the tokens before applying the next layer of self-attention.
The role of the MLP will be to perform the following operations on an input token tv:

15

(
−1
−2

)

(
2
1

)

(
−2
1

)

φ

(
1
1

)

(
1
0

)

(
0
1

)
t0/t1

φ1 φ2

Figure 3: Left: Construction for ¬φ. Right: Construction for φ1 ∧ φ2 and φ1 ∨ φ2

1. If the entries in places 2d+ 4 log(n) + 1 to 2d+ 8 log(n) are zero, then tv = 000.

2. If the last entry of tv is equal to 1, then replace the entries in places 2d+1 until 2d+4 log(n)
(which used to hold zv) with the entries in places 2d + 4 log(n) + 1 until 2d + 8 log(n)
(which used to hold zP(v)). Then, replace the entries in places 2d + 4 log(n) + 1 until
2d+ 8 log(n) with zeroes. This makes it a leaf embedding.

3. Replace between the entries in places 1 until d and d+ 1 until 2d. Then replace the entries
in places d+ 1 until 2d with zeroes.

4. Add 1 to the entry in place 2d+ 8 log(n) + 1. Then, if this entry is equal to L− 1, replace
the last entry with 1, if this entry is equal to L replace the last two entries with zeroes.

The first operation zero out any token that corresponded to a leaf node, as they won’t be necessary in
later stages of the computation. The second operation turn tokens in the second to last layer to have
the same embedding as leaf nodes, namely that they only contain the PE of their parent, and don’t
have a PE of their own. The third operation update the value of xv , this only changes for nodes that
were in the second to last layer. For any other non-leaf node, since it attended to itself both vectors
are equal. The last operation updates the depth of each node. Now, each node that was in the second
to last layer will be embedded similarly to a leaf, while nodes in the third to last layer will have 1 in
their last coordinate.

Each such operation can be implemented by a 2-layer MLP with width bounded by O(d+ log(n)).
For example, to implement the first operation we use the function:

f(z) = σ(z + 1)− σ(z − 1/2) + σ(1− z)− σ(1/2− z) ,

that can be implemented by the first layer of an MLP. We concatenate the output of this function on
the 2d+ 4 log(n) + 1-th coordinate of the input, to the input itself. Then, we use the output layer
to apply the function x̃ 7→ 000k · (x̃)k+1 + x̃ · (1− (x̃)k+1), where x̃ is the input concatenated with
the additional coordinate of the output of f , and k = 2d+ 8 log(n) + 2. use similar constructions to
implement the rest of the operations.

After applying the MLP we have that each token is either equal to: (1) 000 if it was previously a leaf.
(2) An embedding of a leaf if it was previously in the second to last layer; or (3) An embedding of
a non-leaf node if it wasn’t a leaf or in the second to last layer. By applying the same construction
L times, we get that each node except the root is equal to 000, while the first d coordinates of the
root contain the answer to the CRQ, which is the final output of the transformer. This finishes the
proof.

A.2 Proof of Lemma 4.2

Our proof relies on a reduction to the Boolean Formula Evaluation Problem (BFEP). It was shown in
Buss [1987], that this problem is NC1-complete, thus a reduction of BFEP to CRQ would finish the

16

proof. The BFEP is defined recursively over the alphabet: Σ = {1, 0,∨,∧,¬, (,)} in the following
way:

1. 0 and 1 are Boolean formula.
2. If φ is a Boolean formula, then (¬φ) is a Boolean formula.
3. If φ1, φ2 are Boolean formulas, then (φ1 ∨ φ2) and (φ1 ∧ φ2) are Boolean formulas.

The goal in BFEP, is given a Boolean formula to evaluate whether it is true or false (i.e. outputs 1
or 0). We will construct a translation function f from Boolean formulas to CRQ, and specifically
to a tree structure where each node is given a specific value. We will use vectors in R2, while in
fact all the possible values of the vectors in the CRQ will be in {0,±1,±2}. We define the vectors

t1 =

(
1
0

)
and t0 =

(
0
1

)
. The translation function is defined recursively as follows:

1. For f(0) and f(1) we construct a node in the tree whose corresponding value is equal to t0
and t1 respectively.

2. Given two Boolean formulas φ1, φ2 we define f((φ1 ∧ φ2)) and f((φ1 ∨ φ2)) as the tree
in Figure 3 (right), where for ∧ we use t0 for the root, and for ∨ we use t1.

3. Given a Boolean formulas φ we define f((¬φ)) as the tree in Figure 3 (left).

We will first show that this construction can be done using TC0 circuits, and then show its correctness.
Given a Boolean formula of length s, it is clear that the construction above creates a tree with at most
O(|s|) nodes, where the values of each nodes is a 2-d vectors with entries in {0,±1,±2}. Thus, the
total number of bits requires for the construction is also bounded by O(|s|).
The translation works recursively over the logical operators ¬,∧,∨, and to make the construction
work we need to know in which order to translate them. Namely, the root should begin with the
outmost logical operator, its children the second to outmost operators etc., until we reach either 0 or
1, which should be translated to leaves in the tree. We will show that this order can be determined
using TC0 circuits. Given a Boolean formula φ we define by φi its character in place i. We define:

ri =
∑
j<i

1
[
φj = ‘(’

]
−
∑
j<i

1
[
φj = ‘)’

]
. (7)

It is easy to see that ri can be calculated using TC0 circuits. Now, the order in which the recursion
works is in increasing order w.r.t ri over the logical operators. Namely, begin with the logical operator
in place i where ri = 0, continue with ri = ±2 an so forth.

For the correctness of the reduction, it is an easy calculation to see that given ti for i ∈ {0, 1} the
construction for ¬φ outputs t1−i with the definition of a CRQ. Also, for ∧ and ∨ the construction
outputs correctly ti ∧ tj and ti ∨ tj for i, j ∈ {0, 1}. Therfore, this construction forms a reduction
from the BFEP to CRQ, and thus CRQ is NC1-hard.

B Memory-rank sort

In this section we formally define the memory-rank sort. It is presented in Algorithm 1. We next
prove that performing memory-rank sort and calculting the memory-rank of all the nodes in a tree
can be done efficiently:
Lemma B.1. Let T = (V,E) be a rooted binary tree, then calculating the memory-rank of each
node and performing the memory-rank sort takes time O(|V |).

Proof. Calculating the memory rank of each node can be done using a reverse breadth-first search
(BFS) of the tree, traversing from the leaves to the root. BFS can be done in time O(|V |), and
calculating the memory rank of each nodes requires only knowledge of the memory rank of its
children. Thus, this can be done in a linear time by going over each node only once.

The time that Algorithm 1 runs is the number of iterations in the “while” loop. Note that each leaf in
the tree is visited at most once, since if vcur is a leaf, it is inserted to the list and not visited again. For
any non-leaf node, it is visited at most 3 times during the loop. Once for each one of its children, and

17

Algorithm 1: Memory-Rank Sort
Input: A Tree T = (V,E) with root vr and memory rank calculated for each node.
S = []
vcur ← vr
while |S| ≠ |V | do

if C(vcur) = ∅ or C(vcur) ⊆ S then
S ← vcur
vcur ← P(vcur)
Continue

vcur ← argmax
v∈C(vcur),v /∈S

mr(v)

Return: S

again when it is inserted into the list. In total the running time of the sorting algorithm is bounded by
3|V |.

C Proofs from Section 5

C.1 Proof of Theorem 5.2

Proof. Our proof uses the following claim from communication complexity:

Claim C.1 (Lower bound for set disjointness [Yao, 1979]). Suppose Alice and Bob are given
inputs a, b ∈ {0, 1}n, respectively. Their goal is to calculate maxi aibi by alternately sending 1-bit
messages to one another over a sequence of communication rounds. Any deterministic protocol for
computing maxi aibi requires at least n rounds of communication.

For simplicity of the proof, we use trees with 4n − 1 nodes instead of n, this will only affect the
constant in the Ω notation. We construct the following CRQ: The tree T = (V,E) is a balanced
binary tree with 4n− 1 nodes, thus it has 2n leaves. All the values of the leaves are in {±1}. The
nodes in the second to last layer are all equal to −1, and the rest non-leaf nodes are equal to 1. We
number the leaves as v1, . . . , v2n. Suppose we are given an instance of the set-disjointness problem,
where Alice is given the leaves v2i−1 and Bob the leaves v2i for i ∈ [n]. By the definition of CRQ,
the answer to the second to last layer nodes with leaves v2i−1 and v2i is 1 if v2i−1 = v2i = 1 and
−1 otherwise. In addition the answer to any other node will be 1 if one of its children is 1 and −1
otherwise. In total, the answer to the tree is 1 if there exists some i ∈ [n] with v2i−1 = v2i = 1 and
−1 otherwise.

Consider the following ordering of the nodes for the RNN: The first n nodes are v2i−1 for i ∈ [n], the
next n nodes are v2i for i ∈ [n]. The root is the last node in this ordering, and the rest of the nodes
are given in some arbitrary order. Suppose there is an RNN known to both Alice and Bob that solves
the CRQ problem above in the prescribed order of the nodes, and it has a hidden state h ∈ Rm where
each coordinate is represented by p bits. We will define the following communication protocol to
solve the set disjointness problem: Alice apply the RNN on her inputs. After each input v2i−1 for
i ∈ [n] she passes the hidden state hi to the next recurrence of the RNN. After n such recurrences of
the RNN, the hidden state hn is passed to Bob, he inputs his inputs v2j for j ∈ [n] in the prescribed
order, each time passing a hidden state. He continue to run the RNN on the rest of the nodes, and
output the answer to the CRQ. The number of bits transferred between Alice and Bob is m · p, since
the only communication between them is transferring hn and Alice finishes processing her inputs.
By Claim C.1 we have that mp = Ω(n), which finishes the proof.

C.2 Proof of Theorem 5.4

We first need the following two lemmas:

Lemma C.2. For a binary tree T with n nodes, we have that mr(T) ≤ log(n).

18

Proof. Let rk be the smallest number of descendants for a node with memory-rank k. It is easy to
see that r1 = 2, which happens when the node has only two children that are leaves. Let v be a node
with mr(v) = k, and let u1, u2 be its children. It can be seen that rk ≥ 2rk−1. This is because, if
mr(u1) ̸= mr(u2), then one of them must be equal to k, assume w.l.o.g it is u1. This means that
either u1 or one of its descendants have two children with a memory-rank of k − 1. In particular,
the number of descendants of v is larger than 2rk−1. If mr(u1) = mr(u2), then they are both equal
to k − 1, in which case the same conclusion follows. Applying the recurrence formula, we get that
rk ≥ 2k.

Let k be the memory rank of a tree with n nodes. We have 2k ≤ rk ≤ n. Thus, k ≤ ⌊log(n)⌋. Hence,
for any tree with n nodes, the largest possible memory-rank of the tree is bounded by log(n).

Lemma C.3. Let R, ϵ > 0 and d ∈ N. There exists a 2-layer neural network N : R2d → R with
width O

(
d2R
ϵ

)
such that maxx,y∈[−R,R]d |N (x,y)− ⟨x,y⟩ | ≤ ϵ .

Proof. We can use Lemma 6 from Daniely [2017] to find a 2-layer network N : R2 → R with
width O

(
R
ϵ

)
such that maxx,y∈[−R,R]d |N(x, y)− x · y| ≤ ϵ. Summing d such networks over the

coordinates of x and y, and replacing ϵ with ϵ′ = ϵ
d proves the lemma.

Theorem 5.4. The main crux of the proof is to simulate a stack using a ReLU network with constant
depth. The maximal size of the stack for a tree T = (V,E) will be O(d ·mr(T)). The RNN will
execute the following pseudo-code:

1. Given an input node v, check the last node u in the stack:

(a) If u has the same depth or a larger depth than v, then add v to the stack.
(b) If u has a depth that is lower by exactly 1 than v, then pop out the last two nodes from

the stack u and w. If ⟨u, v⟩ ≥ ⟨w, v⟩ then insert u into the stack and raise its depth by
1. Otherwise, inset w and raise its depth by 1.

2. The stack is the hidden state that is transferred to the next iteration of the RNN.

We now turn to the formal construction. Each node v ∈ V in the tree will be embedded as a vector(
xv

ℓ(v)

)
∈ Rd+1, where ℓ(v) is the depth of v. The hidden state of the RNN at the beginning will

be h = 0d(log(n)+1). The input to the RNN will be the current input vector, concatenated to the
hidden state. Throughout the proof we refer to x̃ the vector that is inputted to the RNN, namely
the concatenation of the embedding of each node with the hidden state. We call the part of x̃ that
contains the hidden state h the stack, and each consecutive d+ 1 coordinates in it as a node that is
was inputted to the stack. The reason is that this part of the input will simulate a stack where the
RNN can only access its first and second nodes, namely the first 2d+ 2 coordinates. The RNN will
add at most 3 coordinates to x̃, which will simulate flags with values that are either 0 or 1. The RNN
contains the following layers:

1. Layer 1: Check whether the depth of the input node v is the same or larger than the depth
of the last node in the stack. If so, turn on a specific flag for this event.

2. Layer 2: If the flag is turned on, insert v into the stack by moving all the elements log(n)+1
entries forward and putting v at the top of the stack.

3. Layer 3: If the flag is turned off, extract the last two nodes from the stack u1 and u2, and
calculate ⟨xu1 ,xv⟩ , ⟨xu2 ,xv⟩.

4. Layers 4 & 5: If the flag is turned off, insert u1 or u2 to the stack, whichever has the higher
inner product with v. Also, increase the depth of this node by 1.

Note that the input to the RNN is of dimension d(log(n)+1)+d+1, which is a concatenation of the
embedding of the current input node and the hidden state. We will also need to following parameters:

19

Let c > 0 be such that c > |a| for every a ∈ Γ, namely, it is larger than all possible entries of the
xv’s, and that c > L, the depth of the tree. We have that c = O(n) which is the largest possible
depth of the tree. Also, let ϵ > 0 such that mina,b∈Γ |a − b| < ϵ. We think about ϵ as a constant
independent of n and d, as it only depends on the possible values in Γ. Each layer is constructed in
the following way:

First layer: We denote the input vector to the RNN is x̃. The first layer add a coordinate to the input.
All the input coordinates are copied, while the last coordinate is constructed as: σ((x̃)d+1−(x̃)2d+1+
1)−σ((x̃)d+1− (x̃)2d+1). Note that this added last coordinate is equal to 1 if (x̃)d+1− (x̃)2d+1 ≥ 0,
meaning that the current node has an equal or larger depth that the last node in the stack, and 0
if (x̃)d+1 − (x̃)2d+1 ≤ −1. The copying of the input can be done by a ReLU network, since
σ(z)− σ(−z) = z for every z ∈ R. Thus, adding two identity matrices to the weights of the MLP
with different signs, and adding their outputs together will copy the inputs.

Second layer: Let A =

(
Id+1 000

Id(log(n)+1) 000

)
be a d(log(n) + 1) + d+ 1 square matrix. The second

layer will perform the following operation:

x 7→ σ
(
Ix(1:−2) − 2cIx(−1) + c111

)
+ σ

(
Ax(1:−2) − 2cI(−x(−1) + 1) + c111

)
− c111 .

This operation can be implemented by a 2-layer network, where the constant 111 vectors are added
using the bias terms. This operation will apply the identity matrix to the inputs if the flag (defined
in the previous layer) is 0, and apply the A matrix if it is 1. The A matrix will copy the first d+ 1
entries (the current input node), and will move also add it to the stack, while also moving all the other
entries d+1 coordinates further down in the stack. The added c111 factor is so that if there are negative
values in the entries of the inputs, they will not be removed by the ReLU, this factor is removed at the
end to keep the original value. We will later on prove that the stack will not get overflown, meaning
that we don’t delete the last d+ 1 entries of it.

Third layer: This layer will be used to approximate inner products. Assume that v is a non-leaf
node and let u1 and u2 be its two children. If it is a leaf node, this layer will not effect its input. The
layer will add two coordinates to its input vector, corresponding to an approximation of ⟨xu1 ,x⟩ and
⟨xu2

,x⟩.

By Lemma C.3 there exists a 2-layer neural network N : R2d → R with width O(d2) such that
maxx,y∈Γd |N (x,y) − ⟨x,y⟩ | ≤ ϵ

4 . We will stack two such networks that approximate up to an
error ϵ

4 the inner products ⟨xu1 ,xv⟩ , ⟨xu2 ,xv⟩. If xu1 ̸= xu2 , then by the assumption on ϵ we have
that | ⟨xu1 ,xv⟩ − ⟨xu2 ,xv⟩ | ≥ ϵ. By the construction of N , we also have that:

| ⟨xu1
,xv⟩ − ⟨xu2

,xv⟩ | ≤ |N (xu1
,xv)−N (xu2

,xv)|+
ϵ

2
.

This means that |N (xu1
,xv)−N (xu2

,xv)| ≥ ϵ
2 . We use a similar construction to the previous layer

to apply this calculation and addN (xu1
,xv) andN (xu2

,xv) only if the flag in the last coordinate is
turned off. Otherwise, if the flag is turned on, we just copy the inputs.

Fourth and Fifth layers: In the last layer, we add an additional flag on whether ⟨xu1
,xv⟩ >

⟨xu2
,xv⟩ and 0 otherwise. This can be calculated by using the following function:

x 7→ 2

ϵ

(
σ((x)−2 − (x)−2)− σ((x)−2 − (x)−2 −

ϵ

2
)
)

.

By the argument from the previous layer, this function will provide the additional flag. All the other
coordinates are copied as is. We use another layer to pop out the first 2d+ 2 coordinates from the
stack, meaning that all the entries in the stack are moved upward by d+ 1 coordinates, and the first

d+1 are changed to either
(

xu1

ℓ(u1)− 1

)
or
(

xu2

ℓ(u2)− 1

)
, depending on whether the new flag is 1 or

0. Again, we apply this operation only if the flag from the first layer is turned off, by using a similar
construction to the second layer. The rest of the coordinates are copied, and the coordinates of the
flags that were used throughout the computation are removed. The output will be the hidden state to
the next recurrence with the dimension as the hidden state that was inputted.

Proof of correctness: First, it is clear from the construction that applying the RNN on a single input
node will perform the pseudo-code described in the beginning of the proof. We will show the the
construction outputs the correct answer to the CRQ. When a node is inputted to the RNN, according
to the ordering of the memory-rank sort, there are three options:

20

1. Its depth is equal to the the depth of the first node in the stack. This can only happen to leaf
nodes, in which case, according to the memory-rank sorting, the node in the stack must be a
sibling of the inputted node.

2. Its depth is larger than the depth of the first node in the stack. In this case, the first node in
the stack will be pushed down to the second place after applying the RNN.

3. Its depth is smaller by exactly 1 than the last node in the stack. In which case, it must be its
parent, and the second node in the stack is its sibling. After applying the RNN, both nodes
are popped out, and the node that correctly answer the query corresponding to v is inputted
back to the stack, but with an updated depth. In this case, all the descendants of the inputted
node have already being processed by the RNN, and the next inputted node will necessarily
be its parent or sibling.

By induction over the nodes of the tree, and using these three options we get that after applying the
RNN to the root (which is the last inputted node), the only node left in the stack is the answer to the
question given by the root, which is the answer to the CRQ.

We are left with showing that the stack does not overflow. We will show that the maximal number of
nodes in the stack is bounded by mr(T) + 1. Since the number of coordinates in the representation
of each node is d+ 1, using Lemma C.2 finishes the proof. Let v be some node with mr(v) = k. We
will first show by induction on k that at any point in time, before processing v, the maximal number
of nodes in the stacks that are also descendants of v is bounded by k. If k = 0 then v is a leaf a
doesn’t have any children. For the induction step, assume k > 0, and let u1, u2 be the two children
of v. If mr(u1) = mr(u2), then by the definition of memory rank, they are both equal to k − 1.
Assume w.l.o.g that u1 is processed before u2. Note that in this case, u2 is processed only after all the
descendants of u1 are processed. Then, by the induction step, the maximal number of nodes in the
stacks that are also descendants of u2 is bounded by k − 1. Hence, the maximal number of nodes in
the stack that are descendants of v is k, which includes u1. If mr(u1) ̸= mr(u2), assume w.l.o.g that
mr(u1) > mr(u2), then u1 is processed before u2 (resp. u2 before u1). In this case, by the induction
case, again the number of nodes in the stack the are descendants of v, are either descendants of u1, in
which case no nodes that are descendants of u2 have being processed, or descendants of u2, in which
case u1 is in the stack, as well as at most k − 1 descendants of u2. This finished the induction.

Now, we will show that the number of nodes that are not descendants of v and are in the stack is
bounded by 1 + mr(T) − k. This will be by induction over P(i)(v), namely the ancestors of v.
We assume that mr(k) = v. If mr(P(v)) = k, then v is processed before its sibling, which by
the induction we showed before, the number of nodes in the stack that are descendant of P(i)(v)
is bounded by k. If mr(P(v)) = k + 1, then the sibling of v either have a memory-rank of k or
larger than k. In both cases it can be processed before v (as well as all its descendants), hence the
number of nodes in the stack that are descendants of P(v) is bounded by k + 1. Using the same
induction argument as before, applied for the sibling of P(i)(v), we get that the number of nodes the
are descendants of v that are in the stack is bounded by mr(P(i+1)(v)) + 1.

Combining the two inductive arguments above, we get that when v is processed into the RNN, the
number of nodes in the stack is bounded by mr(T) + 1. This finishes the correctness proof.

By induction on mr(v). If mr(v) = 0, then it is a leaf. By Algorithm 1, since v doesn’t have children,
the only node that is processed before it can be its sibling. When its sibling was processed necessarily
all its children were already processed, hence there is at most 1 node in the stack. Assume that if
mr(u) = k, then there are at most k + 1 nodes in the stack, and let v with mr(v) = k + 1. Denote
by u1 and u2 the children of v, and assume w.l.o.g that mr(u1) ≥ mr(u2). If mr(u1) > mr(u2),
then mr(v) = mr(u1). This means that u1 was processed before u2. Hence, u1 is in the stack, and
u2 was processed right before v, which by induction shows that there are at most k + 1 nodes in the
stack. If mr(u1) = mr(u2), the by the definition of memory-rank, it necessarily happen that they are
both equal to k. Assume w.l.o.g that u1 is processed before u2 (the order of them being processed is
chosen arbitrarily in this case). Hence, when processing u2 there are at most k nodes.

21

C.3 Proof of Theorem 5.5

We begin with proving the theorem for balanced binary trees and then generalize to other trees. Let T
be a rooted balanced binary tree of size n with a given ordering of the nodes denoted as: v1, . . . , vn.

Let k := log2(n+ 1). We define the vectors t0 =

(
0
1

)
, t1 =

(
1
0

)
, tnull =

(
0
0

)
. We now define

a set of CRQs given by xvi
∈ {t0, t1, tnull} for all i ∈ [n]. We will show that given an RNN that

solves all CRQs with this tree and this ordering of the nodes must have a hidden state containing
Ω(log(n)) bits.

As in Lemma 4.2, an intuitive way to look at these CRQs is as Boolean formulas. For leaf nodes t0
represents 0 and t1 represents 1. For non-leaf nodes, t0 represents ∧ and t1 represents ∨. The vector
tnull is used by a hidden node to pass values up the tree without changing them, as described below.

Let u1 be the last leaf node in the prescribed ordering. Denote its ancestors as u2, . . . , uk, where
uk is the root. Also, for each ui with i ̸= 1 denote its other child as wi−1 (i.e. the sibling of ui−1).
Suppose that the current input to the RNN is u1. We will show that the RNN needs at least k bits in
its memory at this point in the calculation to solve the CRQ.

We consider the set of CRQs defined by the following rules:

1. Each of the nodes w1 and u1, . . . , uk is equal to either t0 or t1.
2. For each node w2, . . . , wk−1, all its leaf descendants are identical to one another. Either

they are all t0, or they are all t1. Its non-leaf descendants, including itself, are all equal to
tnull.

To solve the sub-question represented by u2, the RNN must use 1-bit of memory to remember w1,
since by assumption, w1 precedes u1 in the sequence. Similarly, to solve the sub-question represented
by u2, the RNN must know the answer to w2. Because of rule 2, each subquestion in the subtree
rooted at w2 results in a tie. Because all the leaves in this subtree are identical, the answer to the
subquestion rooted at w2 equals any of its descendant leaves. These leaves all precede u1 in the
sequence, so we must use 1-bit of memory to store their value. For each node u2, . . . , uk, the RNN
must store at least 1 bit of memory at the point when it processes u1. In total, this amounts to
log(n)− 1 bits of memory that needs to be transferred through the hidden state of the RNN.

Now, let T be some rooted tree of size n, which is not necessarily a balanced binary tree. Denote
by ℓ := mr(T), and recall this means that the root has a memory-rank of ℓ. We will find a subset of
T that forms a balanced binary tree whose depth equals ℓ. We will construct all the other nodes to
simply copy their inputs up the tree, and appeal to the case of a balanced binary tree proved above.

We first show how to find such a subset. If the root has two children with a memory rank of ℓ− 1,
denote the root by u1. Otherwise, exactly one of its children has a memory-rank of ℓ; search
recursively through its children until a node with two children of rank ℓ− 1 is found and label it u1.
We now apply the above procedure recursively on the two children of u1. This yields two nodes,
u2 and u3, each of which has two children with a memory rank of ℓ− 2. We apply this procedure
recursively until we defined nodes u1, . . . , u2ℓ , where each node is either a leaf or has two children
with the same memory-rank as one another. By the definition of memory rank, this process will
generate a subset that forms a (possibly non-consecutive) complete binary tree.

We now construct a family of CRQs on the original tree whose answer always equals that of the
complete binary subset {u1, . . . , u2ℓ}. Nodes in the subset are labeled with t0, t1, tnull, as above,
except we append an extra 1 to each of these vectors:

t0 =

(
0
1
1

)
, t1 =

(
1
0
1

)
, tnull =

(
0
0
1

)
, (8)

Each node of the original tree that is not in the subset is labeled with one of the following two vectors:

t+ =

(
0
0
1

)
or t− =

(
0
0
−1

)
. Specifically, leaf nodes that are not in the subset are labeled with t−,

and non-leaf nodes are labeled with t+. To see that the answer to this CRQ equals that of the CRQ
corresponding to the balanced binary subset, it suffices to show that the vectors t+ and t− are never

22

chosen over t0 and t1 at any subquestion. First, we show that t− is never chosen over t0 and t1.
This can be seen be enumerating all the possible values that the parent (non-leaf) node can take on
(t0, t1, tnull, t+) and seeing that each prefers t0 and t1 to t−. Second, t+ is never even compared to
t0 and t1, because no leaves are labeled with t+.

We now define a CRQ over u1, . . . , u2ℓ the same way as in the balanced binary tree case using
t0, t1, tnull. By construction, the depth of this synthetic tree is ℓ = mr(T), so the RNN needs
memory of size mr(T).

Finally, if an RNN solves all CRQs on trees of size n, it also solves them on balanced binary trees of
size n. Thus, the number of required bits in the hidden state of the RNN is Ω(log(n)).

D Extension of the RNN solution to non-binary trees

D.1 Converting non-binary to binary trees

Suppose we have a CRQ over a tree T with n nodes and max degree k. We can transform it to an
equivalent CRQ over a binary tree T ′ with 2n nodes and max degree 2. By equivalent we mean that
the answer to the two CRQs are the same.

The construction is as follows: Let v be some node with degree k and denote its leaves by u1, . . . , uk.
Suppose that k = 2ℓ for some integer ℓ. We create a balanced binary tree with at most 2k nodes and
depth ℓ. The leaves will have vectors xu1 , . . . ,xuk

and all the non-leaf nodes have a vector equal
to xv. It is easy to see that the answer to the sub-question of the root of this tree is the same as the
answer to the sub-question of the node v from the original tree. The number of nodes is increased by
a factor of at most 2. If k is not a power of 2, we can duplicate the last leaf node until the number of
leaves is a power of 2 and use the same construction.

Doing this for every node increases the size of the tree by a factor of at most 2, and the resulting CRQ
will have the same answer as the original CRQ.

D.2 Memory-rank for non-binary trees

In this sub-section we explain how to extend some of the results from Section 5 to non-binary trees.
We first define memory-rank for general trees:

Definition D.1 (Memory Rank for non-binary trees). Let T = (V,E) be a rooted tree. The memory
rank of a node v ∈ V is defined recursively as: mr(v) = 0 if v is a leaf. If v is not a leaf, suppose it
has k children denoted by u1, . . . , uk where mr(u1) ≥ · · · ≥ mr(uk), then:

mr(v) = max (mr(u1),mr(u2) + 1, . . . ,mr(uk) + k − 1)

It is straightforward to see that this definition generalizes Definition 5.3. Also, Algorithm 1 readily
generalizes to Definition D.1, since it has no dependence on the degree of each node.

Extending Theorem 5.4 to general trees with maximal degree of k can be done in a straightforward
way by having an RNN with hidden dimension of O(dk log(n)) and O(k) layers. The idea is to add
for each node an additional coordinate representing its degree. Now, in the proof of Theorem 5.4,
when the last two nodes are extracted from the stack (layer 3 in the construction), we split this into k
layers. Each layer checks the degree of the parent node from 2 until k and for degree i extracts the
last i nodes from the stack. This can be implemented by a ReLU network of depth O(k). Finally, the
node with the highest inner product to the parent is inserted back to the stack with an updated depth
(similarly to layers 4 and 5 from the proof of Theorem 5.4).

We believe it is also possible to extend this construction to having depth O(1) and hidden dimension
O(d log(n)) for general trees by changing the sorting algorithm. This can be done by splitting
the argmax operation over k inputs into k − 1 argmax operations, each over 2 inputs, where these
operations are nested. We leave this construction for future works.

23

E Proofs from Section 6

The main idea of the construction is to iteratively use the self-attention layer constructed in The-
orem 4.1, while wrapping it with a construction that allows outputting CoT tokens in the right
order.

By Lemma A.1 there exist vectors z1, . . . , zn ∈ {±1}4 log(n) such that | ⟨zi, zj⟩ | ≤ 3 log(n) for any
i ̸= j. We will use these vectors twice, and for two different use cases. The first one is similar to
the construction of Theorem 4.1. Namely, for each node v ∈ V that is not a leaf, we set one of the
vectors zi to be corresponded with this node and denote it as zv .

We also assume that the tree has a reverse BFS ordering. This means that we do a standard BFS
ordering of the tree, and order of node i in the reverse order is n− i+ 1. For a node v, let I(v) be be
its place in the reverse BFS ordering. We also correspond one of the vectors defined above to each
place in this order we denote this vector as wI(v). For the root vr we have I(vr) = n, and define
wI(vr)+1 = w1. We use a different notation for the BFS ordering to not confuse them with the other
set of positional encoding, although this is the same set of vectors. It is also possible to find another
set of vectors with the same property, although it won’t matter for the construction. The embedding
for a leaf node u and a non-leaf node v are defined as:

tu :=



xu

0d

zP(u)

04 log(n)

wI(u)

wI(u)+1

0


, tv :=



xv

0d

zv
zP(v)

wI(v)

wI(v)+1

1


∈ R2d+16 log(n)+1 . (9)

As in Theorem 4.1, all the coordinates of the positional encoding are in {±1}, and the matrices that
operate over these coordinates will have all their entries in {−1, 0, 1}. We will first give an intuitive
explanation of the embedding and how the transformer will work. The embedding first contains the
vector x corresponding to the node. It also contains its own positional encoding zv if its a non-leaf,
and the positional encoding of its parent. Next, it contains the vector representing its place in the
reverse BFS ordering, as well as the subsequent vector in the order. The last coordinate is a flag for
whether a node is a leaf.

The transformer will contain 2 self-attention layers, and an MLP with O(1) layers after each self-
attention layer. The first self-attention layer and the MLP afterwards is similar to the construction
in Theorem 4.1. Their goal is to solve the sub-questions in the CRQ. This layer will use the z’s
positional encoding vectors. The second self-attention layer will make sure that the last CoT token
that was created will attend to the next token corresponding to the node after it in the reverse BFS
ordering. This way, each CoT token will provide an answer to one sub-question of the CRQ, and
using the reverse BFS order we make sure that any subsequent questions will have the questions of
their children already solved.

We now turn to the formal construction: Let c ≥ 1 be some constant such that ∥x∥2 ≤ c for every
x ∈ Γd. The matrices for the first self-attention layer are equal to:

K =


Id

000d×d √
c · I4 log(n)

00012 log(n)×12 log(n) √
3c



Q =


Id

000d×d √
c · I4 log(n)

00012 log(n)×12 log(n)

−
√
3c

 ,

V =

(
000d×d Id
Id 000d×d

00016 log(n)×16 log(n)+1

)
.

24

We will first show to which each token can attend to. Let v be some non-leaf node, and u a child of v
which is a leaf, and w some other node. We will show that v can only attend to u:

t⊤v K
⊤Qtu = ⟨xv,xu⟩+ c ∥zv∥2 ≥ 4c log(n)− c

t⊤v K
⊤Qtv = ∥xv∥2 + c ∥zv∥2 − 3c ≤ 4c log(n)− 2c

t⊤v K
⊤Qtw = ⟨xv,xu⟩+ c ⟨zv, zu⟩ − 3c ≤ 4c log(n)− 2c

This shows that t⊤v K
⊤Qtu ≥ t⊤v K

⊤Qtv and t⊤v K
⊤Qtu ≥ t⊤v K

⊤Qtw. In particular, v will attend
to its child with maxu∈C(v) ⟨xv,xu⟩, which is the correct answer to the sub-question represented by
v. After applying the V matrix and adding the residual connection, the to embedding of v is equal to:

t̃v =



xv

xu

zv
zP(v)

wI(v)

wI(v)+1

1


,

where xu maximizes the inner product with xv over its children. The first layer of the MLP doesn’t
change the input. This can be easily done with a ReLU network since σ(z)− σ(−z) = z for every
z ∈ R.

The second self-attention layer will have the following weights:

K =

0002d×2d

0004 log(n)×4 log(n) I4 log(n)

0004 log(n)×4 log(n) 0004 log(n)×4 log(n)

0

 ,

Q =

0002d×2d

I4 log(n) 0004 log(n)×4 log(n)

0004 log(n)×4 log(n) 0004 log(n)×4 log(n)

0

 ,

V =


000d×d Id
000d×d 000d×d

0004 log(n)×4 log(n) I4 log(n)

0004 log(n)×4 log(n) 0004 log(n)×4 log(n)

I8d log(n)+1

 .

The second MLP will again just copy the input, and we will not use the residual connection for the
second layer 5.

We now turn to prove the correctness of the construction. The second self-attention layer forces each
token v to attend to the token u with I(u) = I(v) + 1, namely the consecutive token in the reverse
BFS order. The V matrix of the second self-attention layer transform the embedding of this token
to be similar to that of an embedding of a node. Suppose we constructed k − 1 CoT tokens already,
and for a node v, I(v) = k. By the ordering, this means that all the descendants of v have being
processed. Also, if v have descendants that are non-leaves, then the first layer correctly solved the
corresponding sub-question to them, and they were outputted as CoT tokens with a similar embedding
to a leaf node. Hence, in the current iteration, the token corresponding to v will necessarily attend the
token corresponding to its child that solves the sub-question. In addition, the last token CoT token
that was created will necessarily attend to the token corresponding to v by the construction of the
second self-attention layer. This means that the new CoT token will be the answer to the sub-question
corresponding to v, with and embedding similar to a leaf. This is true for any node v, hence the last
CoT token will contain the answer to the root, which is the answer to the CRQ.

5It is always possible to ignore the residual connection (if it exists) by doubling the embedding dimension.
This can be done by adding zero coordinates, then use the V matrix to copy the original vector intro those added
coordinates, and use another linear layer from the MLP to move back the vector to the first coordinates while
removing what was added from the residual connection.

25

F General CRQs

In our definition of CRQs (Definition 3.1) each sub-question is defined as the argmax over inner
products. There are two main reasons for this choice: (1) The argmax function aligns well with the
attention layers in transformers, allowing for simple constructions, and (2) The argmax function
is flexible enough to capture many natural problems as special cases, such as evaluating Boolean
expressions. However, by allowing for other operations besides argmax, CRQs can be generalized to
include many more tasks. We define the class of generalized CRQ problems formally below. For
simplicity we only consider binary trees. (Given a CRQ over a non-binary tree, we can always convert
it into an equivalent CRQ over a binary tree with at most twice as many nodes; see Appendix D.)

Definition F.1. A General Compositional Reasoning Question (GCRQ) is a rooted binary tree
T = (V,E) with root vr ∈ V , and a set of operators f1, . . . , fk : R3d → Rd. Each node v ∈ V is
labeled by a vector xv ∈ Γd, and non-leaf nodes are also labeled by an operator’s index iv ∈ [k].
Here Γ ⊂ R is some finite vocabulary of constant size and d ∈ N.

The answer to the GCRQ is defined as A(vr) where the function A is defined recursively: For a leaf
u ∈ V we define A(u) = xu. For a non-leaf node v ∈ V with children u1, u2 we define:

A(v) = fiv (xv,A(u1),A(u2)) .

We refer to every node v ∈ V which is not a leaf as a sub-question.

As a concrete example, we can represent modular arithmetic problems as a special case of GCRQs.
Let Γ = {0, 1, . . . , p− 1} for some prime p. Let the dimension of the embedding vectors be d = 1.
We define the operators: f+, f−, f×, f÷ as:

f+ = (xv,xu1 ,xu2) = xu1 + xu2 , f− = (xv,xu1 ,xu2) = xu1 − xu2 ,

f× = (xv,xu1 ,xu2) = xu1 × xu2 , f÷ = (xv,xu1 ,xu2) = xu1 ÷ xu2 .

(In this construction, the non-leaf labels xv are not used.) Clearly, any arithmetic expression can
be converted into a GCRQ whose tree structure matches the order of operations in the expression.
Furthermore, each of the four arithmetic operators can be represented by a ReLU network. For
instance, Feng et al. [2024, Lemma C.5, Theorem D.1] implements them using a lookup table, since
the inputs come from a finite field.

All of our constructions can be adapted to work for GCRQs. Consider k operators f1, . . . , fk :
R3d → Rd, where each operator can be implemented by a ReLU network. Note that the only place
in the proofs of Theorem 4.1 and Theorem 6.1 we use the fact that the operator is argmax is where
we use a single self-attention layer to calculate inner products. Instead, we can modify this attention
layer so that each parent node attends to both its children, with the output being a concatenation
of their vectors. In more detail, assume that each two siblings u1 and u2 in the tree are labeled

by vectors
(
xu1

000d

)
and

(
000d
xu2

)
. Then using the positional embeddings, we can force their parent

to attend to both of them with the same attention score just as in the proofs of Theorem 4.1 and
Theorem 6.1. We also construct the MLP so that its input will include the index of the operator, iv.
The MLP will simulate an ”if“ statement over the k operators and apply the relevant one over the
vectors xv,xu1 ,xu2 . This ”if“ statement can be simulated by a k-layer ReLU network. We need to
assume that k is independent of n, which is natural since the number of possible operators (e.g. 4 in
arithmetic problems) is independent of the input length.

A similar construction will work for the proof of Theorem 5.4, where here the MLP will output the
last two inputs from the stack and apply the operator iv . Again, it will increase the depth of the MLP
by k. We leave exact constructions for future work.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

26

Justification: Our abstract and introduction highlight the main results of each section: the
definition of CRQs, the lower bounds (Theorem 4.3, Theorem 5.5), and the upper bounds
(Theorem 4.1, Theorem 5.4, Theorem 6.1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Each of our theorems clearly states all assumptions. Section 7 discusses the
questions raised by our work that remain open.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Formal theorem statements include all assumptions. Proofs appear in Appen-
dices A to C and E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.

27

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

28

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No human subjects or data was used. No clear potential exists for harmful
consequences.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This paper provides theoretical comparison of several widely-used LLM
architectures. The goal is to achieve better scientific understanding of these methods. While
LLMs have broad societal impacts, the results of this paper do not directly relate to this
impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate

30

https://neurips.cc/public/EthicsGuidelines

to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No data or models are released.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No such existing assets are used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

31

paperswithcode.com/datasets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No research with human subjects was performed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No research with human subjects was performed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

32

Answer: [NA]
Justification: LLMs were not used in any meaningful way.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

33

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Problem Formulation and Preliminaries
	Compositional Reasoning Questions
	Transformers

	Depth in Transformers is Necessary and Sufficient
	Deep transformers can solve CRQs
	Constant depth transformers cannot solve CRQs

	Solution Using Shallow RNNs
	The order of the nodes matters
	Memory-rank sort
	Shallow RNNs can solve CRQs

	Solution Using Shallow Transformers with Chain of Thought
	Discussion and Future Work
	Proofs from sec:deep transformers
	Proof of thm:deep transformer
	Proof of thm:crq nc1 hard

	Memory-rank sort
	Proofs from sec:rnn
	Proof of thm:rnn bad order
	Proof of thm:rnns solves crq
	Proof of thm:mr lower bound

	Extension of the RNN solution to non-binary trees
	Converting non-binary to binary trees
	Memory-rank for non-binary trees

	Proofs from sec:cot solves crq
	General CRQs

