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Abstract

In this paper, we observe and address the
challenges of splitting conjunctive sentences
around each group of conjuncts. Most existing
methods rely on parsers to identify the con-
juncts in a sentence and detect the coordination
boundaries. However, state-of-the-art syntactic
parsers are slow and suffer from errors, espe-
cially for long and complicated sentences. In or-
der to better solve the problems, we formulate
coordination boundary detection as a sequence
tagging task and propose a specialized model
CONIJR without using syntactic parsers. We
introduce both semantic and syntactic features
and a specially designed attention mechanism
to capture the symmetry among the potential
conjuncts. The experimental results on datasets
from various domains demonstrate the effec-
tiveness of our proposed methods.

1 Introduction

Conjunction is a common syntactic phenomenon
in various Natural Language Processing (NLP) cor-
pora. Based on our counting, 39.4% of the sen-
tences in OntoNotes Release 5.0 (Weischedel et al.,
2013) contain at least one conjunctions. The fre-
quently appeared conjunctive sentences bring many
NLP tasks challenges.

It is a common practice to apply constituency
parsers or dependency parsers to identify the con-
junctions of a sentence and then split this conjunc-
tive sentence around each group of the conjuncts.
However, there are two drawbacks. First, the state-
of-the-art syntactic parsers confront an increase
of errors when processing sentences with conjunc-
tions, especially when the input sentence contains
multiple conjunctions. Second, training and ap-
plying parsers can be slow, which will make the
identification of conjunctions less efficient. Exist-
ing coordination boundary detection methods rely
on the results of syntactic parsers (Ficler and Gold-
berg, 2016, 2017; Saha and Mausam, 2018) and
thus still face similar drawbacks.

In this work, we approach the coordination
boundary detection problem without using syn-
tactic parsers. We innovatively formulate coordi-
nation boundary detection as a sequence tagging
task. Inspired by researches in NER tasks, we mod-
ify the BIO (Beginning-Inside-Outside) schema
(Ramshaw and Marcus, 1995) based on the task
characteristics of coordination boundary detection.
The proposed method, CONJR (CONlJunctive sen-
tence splitteR) can detect the boundary of conjunc-
tion with more than two conjuncts, as well as han-
dle multiple conjunctions in one sentence. We de-
sign input features with BERT contextualized token
encoding, Part-of-Speech embeddings, suffix, and
character embeddings, and further design a special
attention mechanism to better capture the seman-
tic and syntactic symmetry among the potential
conjuncts. Empirically, we test CONJR on three
datasets from both general domain and biomedi-
cal domain. The results show that the proposed
CONIJR consistently outperforms state-of-the-art
models.

In summary, our main contributions are:

* We observe and address the challenges of split-
ting conjunctive sentences in the field of NLP.

* We design the coordination boundary detec-
tion task as a sequence tagging task, and propose
CONIR, a specialized coordination boundary de-
tection model without using syntactic parsers.

* We propose both semantic and syntactic fea-
tures and a special attention mechanism to capture
the symmetry among the potential conjuncts.

* Empirical studies on three datasets from vari-
ous domains demonstrate the effectiveness of the
proposed method.

2 Related Work

For the tasks of coordination boundary detec-
tion and disambiguation, earlier work designs dif-
ferent types of features and principles (Hogan,
2007; Shimbo and Hara, 2007; Hara et al., 2009;



Hanamoto et al., 2012; Del Corro and Gemulla,
2013). (Ficler and Goldberg, 2016) is the first to
propose a neural-network-based model for coordi-
nation boundary detection. This model operates
on top of the constituency parse trees, and decom-
poses the trees to capture the syntactic context of
each word. Later, CALM is proposed by (Saha
and Mausam, 2018) to improve upon the conjuncts
identified from dependency parsers. CALM ranks
conjunct spans based on the ‘replaceability’ princi-
ple and uses various linguistic constraints to addi-
tionally restrict the search space. (Teranishi et al.,
2017, 2019) design similarity and replaceability
feature vectors and train scoring models to evalu-
ate the possible boundary pairs of the conjuncts.
These state-of-the-art models build on syntactic
parsers, and thus may inherit some of the parsers’
shortcomings, such as low efficiency and suffering
from errors. IGL-CA, a coordination analyzer in
OpenlE6 (Kolluru et al., 2020), utilizes a novel
iterative labeling-based architecture designed for
OpenlE and improves the performance of coordi-
nation boundary detection task.

3 Methodology

3.1 Task Formulation and Labeling Schema

A sentence may contain multiple conjunctions. For
example, one sentence may have more than two
“and”. Previous research (Saha and Mausam, 2018)
shows that for each pair of conjunctions in a sen-
tence, they are either non-overlapping, or one is
fully contained in the other (i.e., nested). Thus in
this paper we focus on one conjunction at a time.
Our goal of coordination boundary detection is
to find the boundary of each conjunct given a tar-
get conjunctive word in a sentence. The original
multiple-conjunction sentence can be transformed
into multiple input sentences, with each input sen-
tence having exactly one conjunctive word replaced
by the ‘{CW]’ token indicating which specific con-
junction is to be processed. A illustrative example
can be found in Figure 1.

It can also be observed that there can be more
than two conjuncts coordinated by the same con-
junctive word. Therefore, the model needs to be
designed to detect the coordination boundary for
each conjunct. Inspired by the BIO (Beginning-
Inside-Outside) labeling schema of the NER task,
where entity boundaries are to detected, we use
‘B’ to label the beginning word and ‘I’ to label the
inside words for each conjunct, and ‘O’ to label

(1) T like eating fruits , dancing , [CW] cooking
0O 0O Bb b kb B-b I-b CONJ  B-a

and my sister likes running .
0O O (0] (0] (0] (0]

(2) 1 like eating fruits , dancing , and cooking
B-b I-b I-b I-b I-b I-b I-b I-b I-b

[CW] my sister likes running .
CONJ B-a I-a I-a I-a (0]

Figure 1: Illustrative examples of input sentences and
their corresponding labels

words outside the current conjunction. We add a
special label for the ‘[CW]’ token as ‘CONJ’.

With the BIO and ‘CONJ’ label schema, we need
to further incorporate the following constraints. ‘B’
or ‘I’ before the special ‘CONJ’ label cannot be
followed by ‘O’, but after the ‘CONJ’ label they
can be followed by ‘O’ but cannot be followed
by another ‘CONIJ’. Therefore, to preserve the dif-
ferent sequential rules of labels before and after
the ‘{CW]’ token, we use ‘B-before’ and ‘I-before’
for conjuncts before the ‘{CW]’ token, and use ‘B-
after’ and ‘I-after’ for the conjunct after the ‘[CW]’
token. The designed BIOC labeling schema is il-
lustrated in Figure 1.

3.2 Input Features

Given a conjunctive sentence with word tokens
{w1,wa, ..., wn}, the input features consist of both
semantic and syntactic features, including BERT
contextualized token encoding, Part-of-Speech
(POS) embeddings, suffix, and character embed-
dings, to capture the symmetry among the potential
conjuncts and enhance the model performance.

BERT Contextualized Token Encoding. Coor-
dinated conjuncts tend to have related semantic
meanings. Therefore we adopt BERT (Devlin et al.,
2018) token encoding to capture the semantics of
the input tokens. Specifically, we use the output of
the last hidden layer of BERT},s. model to gen-
erate the token encoding. During BERT’s tok-
enization, a word w; may be splitted into subwords
[t1,t2, ..., tx]. Then its token encoding is:

k
ENC(w;) = % Z enc(t;) (1)
j=1

Part-of-Speech Embedding. Syntactic informa-
tion is another important feature of coordinated
conjuncts. To capture this feature, we propose
to add POS embeddings. Specifically, we run
a POS tagger and get {posi, posa, ..., posy } for



each sentence. Then the sequence of POS tags
are used to train a GloVe (Pennington et al.,
2014) embedding as the POS embedding POS =
{v(pos1),v(posa), ...,v(posy)}. It can capture
the statistics of POS tag co-occurrences in the cor-
pus and carry more than syntactic information com-
paring to original POS tags.

Suffix. In some of the conjunctions, the head
words of the coordinated conjuncts have a simi-
lar form (Ficler and Goldberg, 2017). Thus the
length of the common suffix can be a signal of
symmetry, and we also implement it as an in-
put feature of the CONJR model, represented as
SUF = {sufi,sufa,...,sufn}.

Character Embedding. Character-level compo-
sitions of the words can reflect the symmetry as-
pect of the coordinated conjuncts as well. Thus
we use Bi-LSTM (Lample et al., 2016) to gener-
ate character-level embeddings for each token and
obtain C = {¢1, ¢2,...,cN }-

Positional Encoding. To better capture the sym-
metry among the conjuncts, we propose to add
the attention mechanism to draw more attention
to compare words before and after the target con-
junctive word (‘[CWT]’). Since the regular self at-
tention mechanism (Vaswani et al., 2017) contains
no information about relative positions within the
sequence, we include such information by adding
a relative position vector b; for each token. Specifi-
cally, there are five important relative positions to
‘[CWT]’ token: the ‘[CW]’ token itself, the left and
right tokens adjacent to the ‘{CW]’ token, and all
other left tokens and right tokens. We use one-hot
vector to indicate the relative positions.

3.3 Model Architecture

We propose a Bi-LSTM-Attn-CRF architecture for
the CONJR model to predict labels based on the
BIOC labeling schema defined in Section 3.1.

Bidirectional LSTM. Bi-LSTM is robust and
can take advantage of context on both sides of a
word (Graves, 2013). Thus we use it as an encoder
of our input features. The input of Bi-LSTM is:

X = [ENC; POS;SUF;B;C] (2

The output of Bi-LSTM is the concatenation of

its forward and backward context representations,
"R
h=[h;h].

Attention. We set queries, keys and values to be
Q = K =V = h and calculate the attention as:

QKT
e

where dj, is the dimension of queries and keys. The
concatenation of Bi-LSTM and attention output
Z = [h;attn], is feed to two linear transforma-
tions with a ReLU activation in between to add
nonlinearity:

Attn(Q, K, V') = softmax(

AZENE)

F(Z) = ReLU(ZW, + b))Wy + by (4)

Conditional Random Fields. Finally, a CRF
(Lafferty et al., 2001) layer is added to ensure the
constraints on the sequential rules of labels and de-
code the best label path in all possible label paths.

4 Experiments

4.1 Experiment Setup

Training Setup The proposed model, CONJR,
is trained on the training set (WSJ 0-18) of Penn
Treebank! (Marcus et al., 1993), and we continue
following the most common split to use WSJ 19-
21 for validation and WSJ 22-24 for testing. The
ground truth Penn Treebank constituency parsing
trees containing coordination structures (e.g., have
‘CC’ tag) are pre-processed to generate our special
BIOC labels as follows. For each target conjunc-
tive word, we first extract the subtrees which are at
the same depth as the conjunctive word, and each
of these subtrees is regarded as a conjunct coordi-
nated by that conjunctive word. Thus we obtain the
boundaries of the conjuncts for each sentence and
generate labels as described in Section 3.1.

Testing Setup We use three testing datasets to
evaluate the performance of the proposed CONJR
model. The first testing dataset contains 10,000
randomly selected conjunctive sentences from
OntoNotes Release 5.0% (Weischedel et al., 2013).
We convert the gold standard constituency pars-
ing results into the BIOC labels in the same way
as the Penn Treebank, and we call this portion of
data ‘OntoNotes Test Set’. The second dataset is
our manually labeled CORD-19 Test Set, which
contains 768 sentences randomly selected from
COVID-19 Open Research Dataset (Wang et al.,

1https ://catalog.ldc.upenn.edu/
LDC99T42

https://catalog.ldc.upenn.edu/
LDC2013T19


https://catalog.ldc.upenn.edu/LDC99T42
https://catalog.ldc.upenn.edu/LDC99T42
https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19

OntoNotes CORD-19 Penn
Model Training Time P R P R F1 P R F1
AllenNLP hours 7671 7099 7374 70.72  70.02 7036 87.39 69.28 77.29
Stanford hours 6432 60.75 6248 6373 6041 62.02 79.03 7484 76.88
Teranishi+19 3000-3500s - - - - - - 73.19 73.52 7335
IGL-CA 4800-5500s 59.03 5239 5551 5798 5500 5645 8435 8521 83.50
CONIR (our) 1600-2000s 75.65 7520 7542 7281 7289 7285 87.83 87.38 87.60

Table 1: Performance Comparison.

2020) and each of them has at least one conjunc-
tive word. These sentences contain many domain-
specific terms, and are longer and more compli-
cated in structure. The release of CORD-19 Test
Set can be found in the Supplementary Materials.
The third dataset is Penn Treebank Test Set (WSJ
22-24) as mentioned in 4.1.

Baseline Methods We compare the proposed
CONIJR with two categories of baseline methods:
rule-based and learning-based methods. Rule-
based methods convert the constituency parsing
results and regard constituents at the same depth
as the target conjunctive word as conjuncts coordi-
nated by that conjunctive word. We adopt two state-
of-the-art constituency parsers, AllenNLP (Joshi
et al., 2018) and Stanford (Qi et al., 2019) parsers,
for this category. For learning-based methods, we
choose two state-of-the-art models for coordina-
tion boundary detection, Teranishi+19 (Teranishi
et al., 2019), and IGL-CA (Kolluru et al., 2020).
All results are obtained using their official released
code.

Evaluation Metrics We evaluate both the effec-
tiveness and efficiency of different methods. We
use precision, recall, and F1 score compared to
the ground truth coordination spans to evaluate the
performance in terms of effectiveness. A span is
correct only if it is an exact match of the corre-
sponding span in the ground truth.

For efficiency evaluation, we report the train-
ing time of each method. All experiments are
conducted on a computer with Intel(R) Core(TM)
i7-11700k 3.60GHz CPU, NVIDIA(R) RTX(TM)
3070 GPU, and 40GB memory.

4.2 Main Results

The results are shown in Table 1. In terms of effec-
tiveness, CONJR’s recall and F1 score are higher
than all the baseline methods on all datasets, and
the improvement on F1 scores is 1.68, 2.49, and
4.10 for OntoNotes Test Set, CORD-19 Test Set,
and Penn Treebank Test Set compared to the best

Model Precision Recall F1
BERT 86.19 85.62 85.90
+POS 86.58 85.77 86.18
+suffix 87.06 86.26 86.66
+char 87.18 86.24 86.71
+attention 87.83 87.38 87.60

Table 2: Ablation Study

baseline method, respectively. Although CONIJR is
not trained on a biomedical corpus, it still demon-
strates superior performance. These results illus-
trate that the proposed task formulation is reason-
able and the features used in CONJR are domain-
independent. The training time of CONIJR is also
better than all the baseline methods.

4.3 Ablation Study

In order to study the model improvement of adding
different features and components, an ablation
study is conducted. The base model only uses
BERT token encoding as the input feature, then
POS embeddings, suffix, character embeddings,
and attention are incrementally added. The testing
results on Penn Treebank Test Set are shown in
Table 2. From the results, we can see that all of the
components can improve the performance in terms
of F1 score.

5 Conclusions

In this paper, we develop CONIJR, a specialized
model for coordination boundary detection without
using syntactic parsers. We approach the problem
by (1) formulating coordination boundary detection
as a sequence tagging task with a special BIOC
labeling schema, and (2) designing conjunction-
specific features and attention mechanism. CONJR
can not only detect the boundaries of more than
two conjuncts for a conjunction, but also handle
multiple conjunctions in one sentence. It outper-
forms state-of-the-art models on datasets from both
general and biomedical domains.
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