
CONJR: Conjunctive Sentence Splitter without Parsing

Anonymous ACL submission

Abstract
In this paper, we observe and address the001
challenges of splitting conjunctive sentences002
around each group of conjuncts. Most existing003
methods rely on parsers to identify the con-004
juncts in a sentence and detect the coordination005
boundaries. However, state-of-the-art syntactic006
parsers are slow and suffer from errors, espe-007
cially for long and complicated sentences. In or-008
der to better solve the problems, we formulate009
coordination boundary detection as a sequence010
tagging task and propose a specialized model011
CONJR without using syntactic parsers. We012
introduce both semantic and syntactic features013
and a specially designed attention mechanism014
to capture the symmetry among the potential015
conjuncts. The experimental results on datasets016
from various domains demonstrate the effec-017
tiveness of our proposed methods.018

1 Introduction019

Conjunction is a common syntactic phenomenon020

in various Natural Language Processing (NLP) cor-021

pora. Based on our counting, 39.4% of the sen-022

tences in OntoNotes Release 5.0 (Weischedel et al.,023

2013) contain at least one conjunctions. The fre-024

quently appeared conjunctive sentences bring many025

NLP tasks challenges.026

It is a common practice to apply constituency027

parsers or dependency parsers to identify the con-028

junctions of a sentence and then split this conjunc-029

tive sentence around each group of the conjuncts.030

However, there are two drawbacks. First, the state-031

of-the-art syntactic parsers confront an increase032

of errors when processing sentences with conjunc-033

tions, especially when the input sentence contains034

multiple conjunctions. Second, training and ap-035

plying parsers can be slow, which will make the036

identification of conjunctions less efficient. Exist-037

ing coordination boundary detection methods rely038

on the results of syntactic parsers (Ficler and Gold-039

berg, 2016, 2017; Saha and Mausam, 2018) and040

thus still face similar drawbacks.041

In this work, we approach the coordination 042

boundary detection problem without using syn- 043

tactic parsers. We innovatively formulate coordi- 044

nation boundary detection as a sequence tagging 045

task. Inspired by researches in NER tasks, we mod- 046

ify the BIO (Beginning-Inside-Outside) schema 047

(Ramshaw and Marcus, 1995) based on the task 048

characteristics of coordination boundary detection. 049

The proposed method, CONJR (CONJunctive sen- 050

tence splitteR) can detect the boundary of conjunc- 051

tion with more than two conjuncts, as well as han- 052

dle multiple conjunctions in one sentence. We de- 053

sign input features with BERT contextualized token 054

encoding, Part-of-Speech embeddings, suffix, and 055

character embeddings, and further design a special 056

attention mechanism to better capture the seman- 057

tic and syntactic symmetry among the potential 058

conjuncts. Empirically, we test CONJR on three 059

datasets from both general domain and biomedi- 060

cal domain. The results show that the proposed 061

CONJR consistently outperforms state-of-the-art 062

models. 063

In summary, our main contributions are: 064

• We observe and address the challenges of split- 065

ting conjunctive sentences in the field of NLP. 066

• We design the coordination boundary detec- 067

tion task as a sequence tagging task, and propose 068

CONJR, a specialized coordination boundary de- 069

tection model without using syntactic parsers. 070

• We propose both semantic and syntactic fea- 071

tures and a special attention mechanism to capture 072

the symmetry among the potential conjuncts. 073

• Empirical studies on three datasets from vari- 074

ous domains demonstrate the effectiveness of the 075

proposed method. 076

2 Related Work 077

For the tasks of coordination boundary detec- 078

tion and disambiguation, earlier work designs dif- 079

ferent types of features and principles (Hogan, 080

2007; Shimbo and Hara, 2007; Hara et al., 2009; 081
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Hanamoto et al., 2012; Del Corro and Gemulla,082

2013). (Ficler and Goldberg, 2016) is the first to083

propose a neural-network-based model for coordi-084

nation boundary detection. This model operates085

on top of the constituency parse trees, and decom-086

poses the trees to capture the syntactic context of087

each word. Later, CALM is proposed by (Saha088

and Mausam, 2018) to improve upon the conjuncts089

identified from dependency parsers. CALM ranks090

conjunct spans based on the ‘replaceability’ princi-091

ple and uses various linguistic constraints to addi-092

tionally restrict the search space. (Teranishi et al.,093

2017, 2019) design similarity and replaceability094

feature vectors and train scoring models to evalu-095

ate the possible boundary pairs of the conjuncts.096

These state-of-the-art models build on syntactic097

parsers, and thus may inherit some of the parsers’098

shortcomings, such as low efficiency and suffering099

from errors. IGL-CA, a coordination analyzer in100

OpenIE6 (Kolluru et al., 2020), utilizes a novel101

iterative labeling-based architecture designed for102

OpenIE and improves the performance of coordi-103

nation boundary detection task.104

3 Methodology105

3.1 Task Formulation and Labeling Schema106

A sentence may contain multiple conjunctions. For107

example, one sentence may have more than two108

“and”. Previous research (Saha and Mausam, 2018)109

shows that for each pair of conjunctions in a sen-110

tence, they are either non-overlapping, or one is111

fully contained in the other (i.e., nested). Thus in112

this paper we focus on one conjunction at a time.113

Our goal of coordination boundary detection is114

to find the boundary of each conjunct given a tar-115

get conjunctive word in a sentence. The original116

multiple-conjunction sentence can be transformed117

into multiple input sentences, with each input sen-118

tence having exactly one conjunctive word replaced119

by the ‘[CW]’ token indicating which specific con-120

junction is to be processed. A illustrative example121

can be found in Figure 1.122

It can also be observed that there can be more123

than two conjuncts coordinated by the same con-124

junctive word. Therefore, the model needs to be125

designed to detect the coordination boundary for126

each conjunct. Inspired by the BIO (Beginning-127

Inside-Outside) labeling schema of the NER task,128

where entity boundaries are to detected, we use129

‘B’ to label the beginning word and ‘I’ to label the130

inside words for each conjunct, and ‘O’ to label131

Figure 1: Illustrative examples of input sentences and
their corresponding labels

words outside the current conjunction. We add a 132

special label for the ‘[CW]’ token as ‘CONJ’. 133

With the BIO and ‘CONJ’ label schema, we need 134

to further incorporate the following constraints. ‘B’ 135

or ‘I’ before the special ‘CONJ’ label cannot be 136

followed by ‘O’, but after the ‘CONJ’ label they 137

can be followed by ‘O’ but cannot be followed 138

by another ‘CONJ’. Therefore, to preserve the dif- 139

ferent sequential rules of labels before and after 140

the ‘[CW]’ token, we use ‘B-before’ and ‘I-before’ 141

for conjuncts before the ‘[CW]’ token, and use ‘B- 142

after’ and ‘I-after’ for the conjunct after the ‘[CW]’ 143

token. The designed BIOC labeling schema is il- 144

lustrated in Figure 1. 145

3.2 Input Features 146

Given a conjunctive sentence with word tokens 147

{w1, w2, ..., wN}, the input features consist of both 148

semantic and syntactic features, including BERT 149

contextualized token encoding, Part-of-Speech 150

(POS) embeddings, suffix, and character embed- 151

dings, to capture the symmetry among the potential 152

conjuncts and enhance the model performance. 153

BERT Contextualized Token Encoding. Coor- 154

dinated conjuncts tend to have related semantic 155

meanings. Therefore we adopt BERT (Devlin et al., 156

2018) token encoding to capture the semantics of 157

the input tokens. Specifically, we use the output of 158

the last hidden layer of BERTbase model to gen- 159

erate the token encoding. During BERT’s tok- 160

enization, a word wi may be splitted into subwords 161

[t1, t2, ..., tk]. Then its token encoding is: 162

ENC(wi) =
1

k

k∑
j=1

enc(tj) (1) 163

Part-of-Speech Embedding. Syntactic informa- 164

tion is another important feature of coordinated 165

conjuncts. To capture this feature, we propose 166

to add POS embeddings. Specifically, we run 167

a POS tagger and get {pos1, pos2, ..., posN} for 168
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each sentence. Then the sequence of POS tags169

are used to train a GloVe (Pennington et al.,170

2014) embedding as the POS embedding POS =171

{v(pos1), v(pos2), ..., v(posN )}. It can capture172

the statistics of POS tag co-occurrences in the cor-173

pus and carry more than syntactic information com-174

paring to original POS tags.175

Suffix. In some of the conjunctions, the head176

words of the coordinated conjuncts have a simi-177

lar form (Ficler and Goldberg, 2017). Thus the178

length of the common suffix can be a signal of179

symmetry, and we also implement it as an in-180

put feature of the CONJR model, represented as181

SUF = {suf1, suf2, ..., sufN}.182

Character Embedding. Character-level compo-183

sitions of the words can reflect the symmetry as-184

pect of the coordinated conjuncts as well. Thus185

we use Bi-LSTM (Lample et al., 2016) to gener-186

ate character-level embeddings for each token and187

obtain C = {c1, c2, ..., cN}.188

Positional Encoding. To better capture the sym-189

metry among the conjuncts, we propose to add190

the attention mechanism to draw more attention191

to compare words before and after the target con-192

junctive word (‘[CW]’). Since the regular self at-193

tention mechanism (Vaswani et al., 2017) contains194

no information about relative positions within the195

sequence, we include such information by adding196

a relative position vector bi for each token. Specifi-197

cally, there are five important relative positions to198

‘[CW]’ token: the ‘[CW]’ token itself, the left and199

right tokens adjacent to the ‘[CW]’ token, and all200

other left tokens and right tokens. We use one-hot201

vector to indicate the relative positions.202

3.3 Model Architecture203

We propose a Bi-LSTM-Attn-CRF architecture for204

the CONJR model to predict labels based on the205

BIOC labeling schema defined in Section 3.1.206

Bidirectional LSTM. Bi-LSTM is robust and207

can take advantage of context on both sides of a208

word (Graves, 2013). Thus we use it as an encoder209

of our input features. The input of Bi-LSTM is:210

X = [ENC;POS;SUF ;B;C] (2)211

The output of Bi-LSTM is the concatenation of212

its forward and backward context representations,213

h = [
−→
h ;
←−
h ].214

Attention. We set queries, keys and values to be 215

Q = K = V = h and calculate the attention as: 216

Attn(Q,K,V ) = softmax(
QKT

√
dk

)V (3) 217

where dk is the dimension of queries and keys. The 218

concatenation of Bi-LSTM and attention output 219

Z = [h;attn], is feed to two linear transforma- 220

tions with a ReLU activation in between to add 221

nonlinearity: 222

F (Z) = ReLU(ZW1 + b1)W2 + b2 (4) 223

Conditional Random Fields. Finally, a CRF 224

(Lafferty et al., 2001) layer is added to ensure the 225

constraints on the sequential rules of labels and de- 226

code the best label path in all possible label paths. 227

4 Experiments 228

4.1 Experiment Setup 229

Training Setup The proposed model, CONJR, 230

is trained on the training set (WSJ 0-18) of Penn 231

Treebank1 (Marcus et al., 1993), and we continue 232

following the most common split to use WSJ 19- 233

21 for validation and WSJ 22-24 for testing. The 234

ground truth Penn Treebank constituency parsing 235

trees containing coordination structures (e.g., have 236

‘CC’ tag) are pre-processed to generate our special 237

BIOC labels as follows. For each target conjunc- 238

tive word, we first extract the subtrees which are at 239

the same depth as the conjunctive word, and each 240

of these subtrees is regarded as a conjunct coordi- 241

nated by that conjunctive word. Thus we obtain the 242

boundaries of the conjuncts for each sentence and 243

generate labels as described in Section 3.1. 244

Testing Setup We use three testing datasets to 245

evaluate the performance of the proposed CONJR 246

model. The first testing dataset contains 10,000 247

randomly selected conjunctive sentences from 248

OntoNotes Release 5.02 (Weischedel et al., 2013). 249

We convert the gold standard constituency pars- 250

ing results into the BIOC labels in the same way 251

as the Penn Treebank, and we call this portion of 252

data ‘OntoNotes Test Set’. The second dataset is 253

our manually labeled CORD-19 Test Set, which 254

contains 768 sentences randomly selected from 255

COVID-19 Open Research Dataset (Wang et al., 256

1https://catalog.ldc.upenn.edu/
LDC99T42

2https://catalog.ldc.upenn.edu/
LDC2013T19
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OntoNotes CORD-19 Penn
Model Training Time P R F1 P R F1 P R F1

AllenNLP hours 76.71 70.99 73.74 70.72 70.02 70.36 87.39 69.28 77.29
Stanford hours 64.32 60.75 62.48 63.73 60.41 62.02 79.03 74.84 76.88

Teranishi+19 3000-3500s - - - - - - 73.19 73.52 73.35
IGL-CA 4800-5500s 59.03 52.39 55.51 57.98 55.00 56.45 84.35 85.21 83.50

CONJR (our) 1600-2000s 75.65 75.20 75.42 72.81 72.89 72.85 87.83 87.38 87.60
Table 1: Performance Comparison.

2020) and each of them has at least one conjunc-257

tive word. These sentences contain many domain-258

specific terms, and are longer and more compli-259

cated in structure. The release of CORD-19 Test260

Set can be found in the Supplementary Materials.261

The third dataset is Penn Treebank Test Set (WSJ262

22-24) as mentioned in 4.1.263

Baseline Methods We compare the proposed264

CONJR with two categories of baseline methods:265

rule-based and learning-based methods. Rule-266

based methods convert the constituency parsing267

results and regard constituents at the same depth268

as the target conjunctive word as conjuncts coordi-269

nated by that conjunctive word. We adopt two state-270

of-the-art constituency parsers, AllenNLP (Joshi271

et al., 2018) and Stanford (Qi et al., 2019) parsers,272

for this category. For learning-based methods, we273

choose two state-of-the-art models for coordina-274

tion boundary detection, Teranishi+19 (Teranishi275

et al., 2019), and IGL-CA (Kolluru et al., 2020).276

All results are obtained using their official released277

code.278

Evaluation Metrics We evaluate both the effec-279

tiveness and efficiency of different methods. We280

use precision, recall, and F1 score compared to281

the ground truth coordination spans to evaluate the282

performance in terms of effectiveness. A span is283

correct only if it is an exact match of the corre-284

sponding span in the ground truth.285

For efficiency evaluation, we report the train-286

ing time of each method. All experiments are287

conducted on a computer with Intel(R) Core(TM)288

i7-11700k 3.60GHz CPU, NVIDIA(R) RTX(TM)289

3070 GPU, and 40GB memory.290

4.2 Main Results291

The results are shown in Table 1. In terms of effec-292

tiveness, CONJR’s recall and F1 score are higher293

than all the baseline methods on all datasets, and294

the improvement on F1 scores is 1.68, 2.49, and295

4.10 for OntoNotes Test Set, CORD-19 Test Set,296

and Penn Treebank Test Set compared to the best297

Model Precision Recall F1
BERT 86.19 85.62 85.90
+POS 86.58 85.77 86.18
+suffix 87.06 86.26 86.66
+char 87.18 86.24 86.71

+attention 87.83 87.38 87.60
Table 2: Ablation Study

baseline method, respectively. Although CONJR is 298

not trained on a biomedical corpus, it still demon- 299

strates superior performance. These results illus- 300

trate that the proposed task formulation is reason- 301

able and the features used in CONJR are domain- 302

independent. The training time of CONJR is also 303

better than all the baseline methods. 304

4.3 Ablation Study 305

In order to study the model improvement of adding 306

different features and components, an ablation 307

study is conducted. The base model only uses 308

BERT token encoding as the input feature, then 309

POS embeddings, suffix, character embeddings, 310

and attention are incrementally added. The testing 311

results on Penn Treebank Test Set are shown in 312

Table 2. From the results, we can see that all of the 313

components can improve the performance in terms 314

of F1 score. 315

5 Conclusions 316

In this paper, we develop CONJR, a specialized 317

model for coordination boundary detection without 318

using syntactic parsers. We approach the problem 319

by (1) formulating coordination boundary detection 320

as a sequence tagging task with a special BIOC 321

labeling schema, and (2) designing conjunction- 322

specific features and attention mechanism. CONJR 323

can not only detect the boundaries of more than 324

two conjuncts for a conjunction, but also handle 325

multiple conjunctions in one sentence. It outper- 326

forms state-of-the-art models on datasets from both 327

general and biomedical domains. 328
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