
DynamicKV: Task-Aware Adaptive KV Cache Compression for
Long Context LLMs

Anonymous ACL submission

Abstract

Efficient KV cache management in LLMs is001
crucial for long-context tasks like RAG and002
summarization. Existing KV cache compres-003
sion methods enforce a fixed pattern, neglecting004
task-specific characteristics and reducing the005
retention of essential information. However,006
we observe distinct activation patterns across007
layers in various tasks, highlighting the need008
for adaptive strategies tailored to each task’s009
unique demands. Based on this insight, we pro-010
pose DynamicKV, a method that dynamically011
optimizes token retention by adjusting the num-012
ber of tokens retained at each layer to adapt013
to the specific task. DynamicKV establishes014
global and per-layer maximum KV cache bud-015
gets, temporarily retaining the maximum bud-016
get for the current layer, and periodically updat-017
ing the KV cache sizes of all preceding layers018
during inference. Our method retains only019
1.7% of the KV cache size while achieving020
∼ 85% of the Full KV cache performance021
on LongBench. Notably, even under extreme022
compression (0.9%), DynamicKV surpasses023
state-of-the-art (SOTA) methods by 11% in024
the Needle-in-a-Haystack test using Mistral-025
7B-Instruct-v0.2. The code will be released.026

1 Introduction027

Large Language Models (LLMs) (Achiam et al.,028

2023; Radford, 2018; Radford et al., 2019) are ex-029

erting a considerable influence in the field of nat-030

ural language processing (NLP), driving advance-031

ments in summarization, translation, code genera-032

tion, etc. (Chiang et al., 2023; Zhong et al., 2023;033

Peng et al., 2023; Lu et al., 2024; Wang et al., 2024).034

Recent developments in LLMs (Liu et al., 2024b)035

have been scaled up to handle long contexts, with036

LlaMA3 (Dubey et al., 2024) processing up to 32K037

tokens and InternLM (Cai et al., 2024) handling038

1M tokens. However, scaling LLMs to handle ex-039

tended contexts inherently incurs a substantial de-040

lay due to the quadratic complexity of attention041

mechanisms with increasing context length. A 042

widely adopted solution to alleviate these delays is 043

caching the key and value (KV) states of previous 044

tokens (Waddington et al., 2013). Despite this op- 045

timization, handling long sequences still demands 046

substantial memory (e.g., maintaining a KV cache 047

for 100K tokens in LlaMA2-7B (Touvron et al., 048

2023) consumes over 50 GB of memory). 049

To address this issue, recent studies have ex- 050

plored the optimization of KV caching, including 051

KV cache quantization (Kang et al., 2024; Hooper 052

et al., 2024), token dropping (Zhang et al., 2024b; 053

Xiao et al., 2023), architectural improvements to 054

Transformers (Sun et al., 2024), KV cache fusion 055

(Nawrot et al., 2024), and hierarchical sharing and 056

constraints(Liu et al., 2024a; Brandon et al., 2024). 057

Existing KV cache compression methods enforce a 058

fixed pattern (as shown in Figure 1), such as a hi- 059

erarchical pyramid structure (Zhang et al., 2024a) 060

or a structure similar to FastGen’s fixed internal 061

pattern (Ge et al., 2023), or they fix the length of 062

the KV cache to selectively retain tokens across dif- 063

ferent layers (Zhang et al., 2024b; Li et al., 2024). 064

However, LLMs require different numbers of layers 065

when handling different types of tasks. For exam- 066

ple, for knowledge-based question-answering tasks, 067

only the first few layers are needed to achieve high 068

accuracy, while for complex reasoning tasks (e.g., 069

mathematics and code generation), more layers are 070

often required to achieve higher accuracy (Elhoushi 071

et al., 2024). Thus, we raise a question: Do differ- 072

ent types of tasks all follow a fixed pattern? 073

To examine this question, we aim to systemat- 074

ically investigate the design principles of the KV 075

cache compression across different tasks. Inspired 076

by Zhang et al. (2024a), we first investigate how 077

information flow is aggregated through attention 078

mechanisms across different layers in four types of 079

tasks, including single- and multi-document QA, 080

summarization, synthetic tasks and code comple- 081

tion. We find that the attention distribution varies 082

1

K
V

 C
ac

h
e

S
iz

e
Layer Step

a. FullKV b. StreamingLLM/H2O/SnapKV c. PyramidKV d. DynamicKV

32

34

36

38

40

42

100 200 300 400 500

28

30

KV Cache Size Retention

Av
g

ac
cu

ra
cy

FullKV
StreamingLLm
H2O
SnapKV
PyramidKV
DynamicKV

Figure 1: Comparison of DynamicKV with traditional methods in maintaining KV cache size across layers.
Left: the structure difference: (a) Retain all KV cache. (b) Fixed KV cache for each layer (e.g., StreamingLLM,
H2O, SnapKV). (c) Hierarchically decreasing pyramid KV cache retention. (d) Ours DynamicKV: layer-aware
adaptive KV cache retention. Right: average accuracy on different KV cache retention.

for different types of tasks. For example, in summa-083

rization tasks, the upper layers require a small KV084

cache size, while code completion tasks need larger085

KV cache sizes in the upper layers. This implies086

that for code completion tasks, upper layers require087

maintaining a larger KV cache size, in contrast to088

PyramidKV (Zhang et al., 2024a), where the KV089

cache size decreases as the layer depth increases.090

Building on this insight, we propose a task-aware091

adaptive KV cache compression method, named092

DynamicKV. Specifically, we first calculate an at-093

tention score for the most recent few tokens and094

all other tokens, which in RAG (Lewis et al., 2020)095

can be viewed as calculating the relevance of the096

most recent query to the retrieved text. Then, we097

preset a temporary storage to hold the temporary098

KV cache states and gradually calculate the size of099

the final retained temporary storage at each k layer100

by calculating the size of the correlation mean. It101

should be noted that at each update, the value is102

gradually normalized, and the retained temporary103

storage at each layer is always smaller than the pre-104

vious one. This temporary storage is determined105

by the number of tokens that need to be retained,106

and its size is much smaller than the original cache,107

thus imposing minimal memory overhead.108

We validate our DynamicKV on 16 datasets109

from LongBench (Bai et al., 2023), demonstrat-110

ing robust performance across multiple models, in-111

cluding LlaMA-3-8B-Instruct (Dubey et al., 2024),112

Qwen-2-7B-Instruct (Yang et al., 2024), Mistral-113

7b-Instruct-v0.2 (Jiang et al., 2023), InternLM-2.5-114

7b-Chat-1M (Cai et al., 2024). Our DynamicKV115

exhibits superior overall effectiveness compared to116

conventional fixed-pattern methods (Zhang et al.,117

2024b; Li et al., 2024; Nawrot et al., 2024). No-118

tably, DynamicKV can retain full performance119

while utilizing only 6.9% of the tokens, and in120

extreme scenarios, it preserves 90% of the perfor-121

mance with just 1.7% of the tokens. Furthermore, 122

experiments on the Needle in a Haystack bench- 123

mark revealed that DynamicKV significantly out- 124

performs state-of-the-art (SOTA) methods. 125

2 Related Work 126

Potential patterns of attention in LLMs. The 127

Transformer architecture (Vaswani, 2017) becomes 128

a cornerstone in NLP by stacking multiple layers 129

to progressively refine input data. BERT (Devlin, 130

2018), a model based on this architecture, Jawahar 131

et al. (2019) demonstrates that intermediate layers 132

encode a rich hierarchy of linguistic information: 133

from surface-level features at the bottom, through 134

syntactic features in the middle, to semantic fea- 135

tures at the top. This indicates that models are 136

capable not only of understanding lexical informa- 137

tion but also of grasping more complex linguistic 138

structures. 139

For decoder-only LLMs, Fan et al. (2024) ob- 140

serves that not all layers are necessary for simple 141

tasks, as intermediate layers can often achieve com- 142

parable performance to the final layer. Techniques 143

like (Elhoushi et al., 2024), which involve increas- 144

ing dropout in lower layers during training, allow 145

the model to exit computation early, reducing re- 146

source consumption. 147

To optimize model inference efficiency, espe- 148

cially in terms of KV cache compression, Brandon 149

et al. (2024) proposes cross-layer attention(CLA), 150

which can reduce the KV cache size by at least half 151

by sharing cross-layer attention, significantly low- 152

ering memory usage. Ada-KV (Feng et al., 2024) 153

visualizes attention distributions across all layers 154

have also shown that attention patterns dynamically 155

evolve as the layers progress. Inspired by these 156

findings, we aim to dynamically select and adjust 157

the number of tokens to retain per layer, combining 158

2

(a) Single/Multi-Document QA (b) Summarization

(c) Synthetic Task (d) Code Completion

Figure 2: Average token retention across layers in LlaMA for different tasks, including (a) Single/Multi-
Document QA, (b) Summarization, (c) Synthetic Task, and (d) Code Completion. There is a sharp decrease in token
retention after the first layer, followed by varying patterns of fluctuation. Peaks are observed around Layer 15 and
towards the final layers.

inter-layer redundancy identification with efficient159

KV cache management. This approach aims to160

maintain high-quality output while improving in-161

ference efficiency.162

Token drop strategies in KV cache compression.163

Token drop is a strategy designed to reduce memory164

usage by selectively retaining the most influential165

tokens in the KV cache during the inference phase166

of LLMs. Due to its plug-and-play nature, the to-167

ken drop method can often be applied to different168

models without incurring any additional costs. Fast-169

Gen (Ge et al., 2023) evicts unnecessary contexts170

and discards non-special tokens based on the recog-171

nized structure of attention modules by effectively172

analyzing the token information within attention173

patterns. Scissorhands (Liu et al., 2024c) exploits174

the hypothesis of the persistence of importance,175

suggesting that tokens with significant influence176

at one point will continue to impact future genera-177

tions. By using attention scores as a metric and ap-178

plying a Least Recently Used (LRU) cache eviction179

strategy, it discards non-critical tokens to optimize180

memory usage. StreamingLLM (Xiao et al., 2023)181

leverages the characteristics of attention sinks in182

LLMs to focus on streaming processing with dy-183

namic adjustment of the KV cache. H2O (Zhang184

et al., 2024b) proposes a scoring function based on185

accumulated attention scores for greedily evicting186

KV pairs during generation. SnapKV (Li et al.,187

2024) primarily achieves compression by selec- 188

tively targeting key positions for each attention 189

head. PyramidKV (Zhang et al., 2024a) identified 190

the phenomenon of massive activation and adopted 191

a hierarchical structure to optimize the number of 192

KV cache entries retained at each layer. Although 193

the PyramidKV approach considers the varying 194

information density across different layers, its pyra- 195

midal pattern does not generalize across multiple 196

models or tasks. LazyLLM (Fu et al., 2024) uti- 197

lizes dynamic token pruning and an Aux Cache 198

mechanism, allowing the model to select differ- 199

ent subsets of tokens from the context at various 200

generation steps, even reviving tokens pruned in 201

previous steps. Ada-KV (Feng et al., 2024) breaks 202

from the conventional approach of uniform budget 203

allocation across attention heads within layers, and 204

optimizes the eviction loss upper bound, leading 205

to improved performance under various memory 206

constraints when integrated with SnapKV and Pyra- 207

midKV. 208

3 Observation 209

To systematically investigate the attention mech- 210

anism across layers in LLMs for long-context in- 211

puts, we conduct a fine-grained analysis of four 212

tasks: single- and multi-document question an- 213

swering (QA), summarization, synthetic tasks, and 214

code completion. The main target is to investi- 215

gate the distribution of attention in these various 216

3

tasks, thereby enhancing our understanding of how217

the model aggregates dispread information within218

long-context inputs to generate accurate responses.219

In particular, we focus our analysis on220

LlaMA (Dubey et al., 2024), visualizing the distri-221

bution and behavior of attention across layers to222

gain deeper insights into its internal mechanisms.223

Inspired by Zhang et al. (2024a), we calculate the224

average attention scores between the most recent225

tokens and all other tokens. Based on these scores,226

we then identify the top-k (128 multiplied by the227

number of layers) tokens with the highest attention228

across all layers, resulting in a layer distribution229

map denoted as Figure 2.230

We observe a significant drop in the KV cache231

size requirement at the lower layers across the four232

tasks, indicating that only a small KV cache is233

needed in these layers. In contrast, the upper layers234

show a clear upward trend, suggesting that larger235

KV cache sizes are necessary, particularly in the236

code completion task, where complex reasoning is237

required. This phenomenon underscores that tasks238

involving complex reasoning demand larger KV239

cache sizes in the upper layers.240

4 DynamicKV241

During inference, the quadratic complexity of at-242

tention calculation results in a significant compu-243

tational and memory burden, especially when pro-244

cessing long contexts. DynamicKV addresses this245

issue by focusing on inter-layer attention in large246

language models (LLMs), determining the appro-247

priate size of KV cache to retain per layer through248

efficient awareness of inter-layer attention.249

Rather than relying on a fixed retention pattern,250

such as pyramid-shape or average retention all lay-251

ers, DynamicKV employs a progressive algorithm252

that dynamically adjusts token retention during the253

prefill phase. This dynamic retention strategy accel-254

erates the decoding stage while maintaining mini-255

mal impact on overall memory usage.256

Specifically, we first define layer l ∈ RL and257

head h ∈ RH in LLMs. For the calculation of258

attention scores, we use weights WQ ∈ RN×N ,259

WK ∈ RN×N , and WV ∈ RN×N , with the input260

query embedding denoted as X ∈ RN×M , N is the261

dimension of the hidden size, and M is the length262

of input tokens. Traditional token drop methods263

often consider the most recent tokens as the impor-264

tant ones for producing output information, as they265

retain relevant information needed for generating266

answers. We refer to these tokens collectively as 267

the current window, with the window size denoted 268

as ws. In the prefill phase, we adopt the method 269

from Li et al. (2024), Zhang et al. (2024a), where 270

the attention score is calculated by averaging over 271

the current window and previous tokens, followed 272

by pooling. The formula is as follows: 273

Al,h = pooling(
1

ws

ws∑
i=1

Attention(Xi,WQ,WK)),

(1) 274

where pooling helps better understand the context 275

and Al,h denotes the attention score for the l-th 276

layer and the h-th head. This approach allows us to 277

effectively pool the attention scores, ensuring that 278

key tokens are retained based on their relevance to 279

both the current window and previous context. 280

Next, we set a fixed retention budget. Specifi- 281

cally, to ensure a fair comparison with other meth- 282

ods, we introduce the average retention length per 283

layer, denoted as wt, and a scaling ratio, rmax. The 284

calculation formula is as follows: 285

bs = (wt− ws)× rmax, (2) 286

where bs represents the size of retained KV cache 287

across all layers. Next, we design a layer-aware pro- 288

gressive dynamic KV cache compression method. 289

The prefill phase of LLMs involves a hierarchical 290

forward process, where for each layer, we retain 291

a KV cache of length bs when computing A. Ad- 292

ditionally, every m layers, we perform an update 293

across the current and all previous layers. Specif- 294

ically, for each layer, we use a top-k strategy to 295

retain the largest bs values from Al, where Al rep- 296

resents the attention scores of layer l. The formula 297

for this process is as follows: 298

A′
l = TopK(Al, bs). (3) 299

Next, we extract the indices in the original Al 300

that correspond to the values in A′
l. The KV cache 301

at these indices is retained as the compressed KV 302

cache. Specifically, the retained KV cache is de- 303

fined as: 304

KV′
l = KVl[A

′
l.indices], (4) 305

where A′
l.indices represents the indices of the top- 306

k values in Al. This ensures that the KV cache 307

is compressed efficiently, retaining only the most 308

important tokens for each layer while minimizing 309

memory usage. 310

4

Figure 3: Overview of our DynamicKV structure and KV cache compression comparison. Left: Layer-
wise KV cache retention mechanism in transformer architectures. Right: Our proposed DynamicKV framework
employs stage-wise dynamic updating to maintain KV cache within predefined memory budgets, with task-specific
visualization showing KV cache preservation patterns across layers.

To ensure that the memory required for hierar-311

chical transmission remains small, the KV cache312

of each layer is initially compressed as described313

above. For every m layer, we extract A and per-314

form a unified normalization across the completed315

layers, updating them layer by layer to ensure con-316

sistency across the entire hierarchy.317

First, we fix the final size of the KV cache to be318

retained, which is calculated as (wt−ws)×H× l,319

where H is the number of heads and l is the number320

of layers. Then, for each layer, the attention score321

A is used to compute the length to retain for each322

layer Cl via a top-k strategy. The retention lengths323

for the first m layers are then normalized to obtain324

a budget length Z, ensuring that the retention is325

distributed effectively across layers. The specific326

formula is as follows:327

I =
TopKindices(A, (wt− ws)×H × l)

(L×M × l)
(5)328

329
Cl = Norm(Count_Elements (I)) (6)330

Z =

[
bs× t

max(Cl)
for t ∈ Cl

]
(7)331

332

r =

∑
Z

(wt− ws)× L
,Z =

[
k

r
for k ∈ Z

]
(8)333

The KV cache is further updated layer by layer 334

based on this normalized budget, progressively re- 335

fining the retained information to align with the 336

overall compression strategy. The above process 337

can be expressed as Algorithm 1. 338

5 Experiments 339

We conduct comprehensive comparative and abla- 340

tion experiments to verify the effectiveness of our 341

DynamicKV. In Section 5.1, we introduce the mod- 342

els, datasets and baselines used in our experiments. 343

Section 5.2 provides a performance comparison be- 344

tween DynamicKV and baseline approaches. Next, 345

in Section 5.3, we present the results of Dynam- 346

icKV on the Needle in Haystack Task. Finally, in 347

Section 5.4, we conduct an ablation study on the 348

parameters of our method to validate its feasibility. 349

5.1 Implementation details 350

Models and Context Length. We utilize 351

the official checkpoints of recently released 352

models from huggingface including LlaMA-3- 353

8B-Instruct (Dubey et al., 2024), Qwen-2-7B- 354

Instruct (Yang et al., 2024), Mistral-7B-Instruct- 355

v0.2 (Jiang et al., 2023), and InternLM-2.5-7B- 356

Chat-1M (Cai et al., 2024) as our base models, 357

5

which support context lengths of 8k, 32k, 32k, and358

1M tokens respectively.359

Datasets. LongBench is a comprehensive bench-360

mark for evaluating the contextual understanding361

capabilities of LLMs. For our comparative experi-362

ments, we use 16 English datasets from this bench-363

mark, specifically NarrativeQA (Kočiskỳ et al.,364

2018), Qasper (Dasigi et al., 2021), MultiFieldQA-365

en, HotpotQA (Yang et al., 2018), 2WikiMul-366

tihopQA (Ho et al., 2020), MuSiQue (Trivedi367

et al., 2022), GovReport (Huang et al., 2021), QM-368

Sum (Zhong et al., 2021), MultiNews (Fabbri et al.,369

2019), TREC (Li and Roth, 2002), TriviaQA (Joshi370

et al., 2017), SAMSum (Gliwa et al., 2019), Pas-371

sageCount, PassageRetrieval-en, LCC (Guo et al.,372

2023), and RepoBench-P (Liu et al., 2023). These373

cover key long context application scenarios such374

as Single-Document QA, Multi-Document QA, Sum-375

marization, Few-shot Learning, Synthetic Tasks,376

and Code Completion. Additionally, for the experi-377

ment on the Needle in Haystack task, we test the378

models across their maximum length ranges [8k,379

32k, 1M] using the PaulGrahamEssays dataset.380

Baselines. We evaluate the recent fixed-381

pattern token-dropping methods, including: (1)382

StreamingLLM, which utilizes attention sinks and383

rolling KV caches to retain the most recent tokens.384

(2) H2O, which employs a Heavy Hitter Oracle385

for KV cache eviction. (3) SnapKV, which selects386

important tokens for each attention head through387

clustering. (4) PyramidKV, which introduces388

a pyramid pattern where layers select important389

tokens in a monotonically decreasing manner.390

5.2 Comparative experiments on LongBench391

With the total KV cache size fixed at 128 and392

512, we compare the performance retention of393

StreamingLLM, H2O, SnapKV, PyramidKV, and394

our proposed method, DynamicKV, relative to Ful-395

lKV. As shown in Table 1, DynamicKV demon-396

strates stable improvements even while maintaining397

an extremely low KV cache size relative to the total398

context (128: 1.7%; 512: 6.9%). Specifically, with399

the cache size of 128, DynamicKV outperforms400

the best alternative by 0.3%, 0.97%, 1.68%, and401

0.79% on LLaMA, Mistral, Qwen, and InternLM,402

respectively, retaining 90%, 87%, 78%, and 83%403

of the overall performance. Moreover, with a cache404

size of 512, DynamicKV surpasses the highest-405

performing method by 0.43%, 0.19%, 0.69%, and406

0.53% on the same models, retaining 97%, 96%,407

96%, and 89% of FullKV’s performance. The data 408

in the table clearly demonstrate DynamicKV’s ef- 409

fectiveness under extreme compression, achieving 410

nearly FullKV-level performance with just 6.9% 411

of the cache size. The experimental results show 412

that DynamicKV can improve the effect of com- 413

plex tasks such as code completion more obviously 414

based on maintaining PyramidKV performance, 415

and greatly improve the performance upper limit 416

of lower KV cache size. 417

5.3 Visualization on Needle-in-Haystack Task 418

The needle-in-a-haystack test involves inserting 419

key information at random positions within a long 420

context and setting answers to evaluate whether 421

LLMs can accurately detect critical information in 422

extensive contexts. To further illustrate the effec- 423

tiveness of our approach in compressing the KV 424

cache, we conduct additional experiments using 425

Mistral on the needle-in-a-haystack task, focusing 426

on maintaining an optimal size for the KV cache. 427

As shown in Figure 4, we insert information at 428

various positions in the Paul Graham Essays dataset 429

and extract answers by prompting the model to 430

generate responses. The green blocks indicate that 431

the response matches the contents of the needle, 432

but the colour change from yellow to red indicates 433

that the response is more irrelevant to the needle. 434

We test a fixed KV cache size of 64 using Ful- 435

lKV, StreamingLLM, H2O, SnapKV, PyramidKV, 436

and the DynamicKV method. The results indicate 437

that DynamicKV maintains 90% of the model’s 438

performance even under extreme compression, im- 439

proving accuracy by 57%, 37%, 41%, and 11% 440

compared to the other methods, respectively. Addi- 441

tionally, the figure shows that with a context length 442

of up to 7000, the extreme compression of Dynam- 443

icKV nearly achieves full scores, and even beyond 444

7000, it shows significant improvements compared 445

to other approaches. This finding illustrates that 446

DynamicKV has a distinct advantage in hierarchi- 447

cal token selection and confirms that the number 448

of critical tokens contained at different layers is 449

always dynamic. 450

5.4 Ablation Study 451

In this study, we investigate the performance of 452

the DynamicKV mechanism across varying key- 453

value cache sizes. The results, as shown in Table 454

2, reveal a consistent improvement in performance 455

with an increase in the cache size for all evaluated 456

models. For the LlaMA-3-8B-Instruct, the perfor- 457

6

Model
Size

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

18409 3619 4559 9151 4887 11214 8734 10614 2113 5177 8209 6258 11141 9289 1235 4206 –

L
la

M
A

-3
-8

B
-I

ns
tr

uc
t

– FullKV 25.16 31.81 39.59 43.09 36.15 21.77 28.62 23.34 26.33 75.00 90.50 42.36 5.20 69.25 59.04 53.93 41.95

128

StreamingLLM 17.85 9.50 23.09 37.84 29.02 16.77 17.91 20.42 20.16 44.00 73.00 30.00 5.80 69.50 48.38 49.31 32.03
H2O 21.58 12.54 28.49 37.13 32.36 18.88 20.23 22.16 21.14 39.00 86.62 39.19 5.50 69.50 57.39 54.46 35.39

SnapKV 21.71 12.37 32.38 37.44 30.48 19.50 19.06 21.36 20.07 45.5 87.74 38.15 5.50 68.85 57.42 54.61 35.76
PyramidKV 22.26 16.65 30.73 38.97 29.28 19.19 19.92 22.06 20.87 68.00 88.95 38.23 5.92 69.50 57.20 51.54 37.45

ours 22.10 14.93 32.94 41.06 27.98 21.18 20.03 22.06 21.28 65.50 89.61 38.70 5.13 69.50 58.01 54.00 37.75

512

StreamingLLM 19.03 12.78 28.67 37.83 29.97 16.55 20.30 20.94 24.56 61.00 75.43 30.82 5.86 69.50 51.93 49.98 34.70
H2O 22.84 16.80 32.36 41.43 34.07 19.30 22.28 22.81 23.69 41.00 90.46 40.19 5.54 69.50 57.52 55.43 37.20

SnapKV 24.62 22.78 37.88 42.96 34.82 20.65 22.63 22.54 23.93 70.00 90.39 40.30 5.74 69.50 60.27 55.85 40.30
PyramidKV 24.48 23.51 36.14 42.33 31.95 20.73 23.37 23.01 24.37 72.50 90.43 40.54 5.88 69.50 59.25 54.87 40.18

ours 24.78 24.76 36.84 44.13 33.25 20.82 23.00 22.76 24.14 72.50 90.39 40.76 5.78 69.50 61.40 56.91 40.73

M
is

tr
al

-7
B

-I
ns

tr
uc

t-
v0

.2

– FullKV 26.63 32.99 49.34 42.77 27.35 18.77 32.87 24.24 27.10 71.00 86.23 42.96 2.75 86.98 56.93 54.49 42.71

128

StreamingLLM 16.58 14.76 30.36 28.13 21.76 11.98 18.26 19.02 19.16 43.50 74.12 28.50 2.50 31.81 43.65 41.19 27.83
H2O 21.66 21.64 38.60 30.96 20.63 13.02 20.65 22.61 22.08 39.00 82.19 39.75 3.16 79.98 51.25 48.20 34.71

SnapKV 20.11 21.28 42.98 37.51 22.31 14.43 19.19 21.89 21.01 48.00 83.77 40.44 2.51 66.99 51.64 48.57 35.16
PyramidKV 22.11 22.52 43.04 33.57 22.98 15.69 20.56 22.52 21.36 65.50 83.84 40.03 2.89 67.26 51.51 46.42 36.36

ours 22.05 23.65 43.08 36.03 22.60 15.23 21.35 23.11 22.19 68.00 84.79 41.02 4.20 70.11 52.45 47.41 37.33

512

StreamingLLM 19.05 17.21 36.82 30.64 21.84 10.56 24.47 19.84 25.48 62.00 72.82 29.49 2.71 19.25 46.15 42.55 30.06
H2O 22.33 25.75 44.09 32.76 22.88 14.96 23.53 22.96 24.53 41.50 85.53 41.54 3.39 86.20 55.11 50.81 37.37

SnapKV 24.95 27.97 49.04 39.93 25.18 17.64 24.14 23.69 24.47 67.50 86.04 41.14 2.90 86.98 56.73 53.11 40.71
PyramidKV 23.49 28.79 48.71 41.00 25.64 16.35 24.79 23.52 24.49 69.50 86.20 42.58 3.53 81.81 55.45 51.67 40.47

ours 25.63 29.11 48.41 39.85 26.62 16.72 24.73 23.72 24.83 70.50 86.74 43.01 3.20 83.57 55.40 52.35 40.90

Q
w

en
2-

7B
-I

ns
tr

uc
t

– FullKV 25.14 42.35 45.04 14.80 14.13 9.23 36.35 23.79 26.51 76.50 89.16 45.23 6.50 75.50 60.30 60.78 40.71

128

StreamingLLM 19.25 23.63 26.51 14.00 15.30 7.46 18.07 19.30 18.30 47.00 77.92 31.57 6.50 17.00 42.52 41.94 26.64
H2O 20.33 30.43 34.22 13.61 13.37 7.81 20.72 21.66 18.44 40.00 86.94 42.17 7.00 70.50 53.45 53.76 33.40

SnapKV 22.26 31.62 38.95 16.05 17.71 7.66 18.91 21.41 18.21 46.00 87.61 42.01 6.50 63.50 54.87 53.03 34.14
PyramidKV 20.50 31.70 39.95 18.54 18.54 8.85 19.24 20.47 18.18 60.00 87.98 39.71 7.00 49.00 48.77 47.91 33.52

ours 22.77 35.57 42.62 14.80 16.35 8.31 21.41 21.97 19.56 58.00 88.18 40.93 6.50 70.00 53.58 52.50 35.82

512

StreamingLLM 20.47 26.97 32.64 14.31 14.39 6.82 25.70 19.31 24.88 66.00 76.56 32.11 8.00 15.50 46.58 44.20 29.65
H2O 22.88 34.28 41.40 13.30 14.60 8.31 23.69 22.07 22.72 39.50 88.75 43.91 6.00 72.00 58.83 57.83 35.63

SnapKV 23.86 38.61 44.65 15.60 14.62 9.13 24.56 22.39 23.07 70.00 89.31 43.32 5.00 72.00 58.67 60.74 38.47
PyramidKV 24.47 37.60 43.51 14.48 12.83 8.99 23.59 22.30 22.41 74.00 89.21 43.40 6.50 74.00 57.67 56.14 38.19

ours 24.66 40.44 45.30 15.42 13.89 8.46 25.51 22.77 22.92 74.00 89.27 43.18 7.00 74.00 60.38 59.33 39.16

In
te

rn
L

M
-2

.5
-7

B
-C

ha
t-

1M

– FullKV 22.42 27.61 39.98 40.92 33.48 26.68 33.01 25.18 26.28 72.50 86.76 39.76 2.91 100.00 55.86 57.95 43.21

128

StreamingLLM 17.91 13.02 24.31 24.27 16.01 11.29 17.29 20.62 18.06 48.5 67.53 21.93 0.82 87.39 43.45 42.79 29.70
H2O 16.16 17.71 27.94 26.83 17.83 17.81 13.99 22.59 16.9 39.50 81.87 32.15 1.32 96.50 48.30 47.27 32.79

SnapKV 19.65 17.44 35.29 27.36 18.58 19.79 12.76 22.42 16.31 48.00 80.23 31.35 0.95 95.00 49.47 48.22 33.93
PyramidKV 18.80 17.35 33.48 31.16 20.05 19.02 14.65 22.02 17.40 69.50 80.87 32.02 1.23 95.00 47.13 44.73 35.28

ours 17.93 19.89 34.15 31.50 19.03 20.60 15.14 22.41 18.15 70.00 83.09 32.44 0.86 95.50 49.33 47.16 36.07

512

StreamingLLM 17.58 15.86 26.55 26.68 16.69 11.01 25.96 21.33 25.57 65.00 67.16 21.71 0.95 87.56 43.58 42.76 32.25
H2O 15.33 19.84 32.41 27.88 20.10 21.13 16.91 22.99 21.49 41.00 84.38 34.76 1.23 96.50 48.46 50.00 34.65

SnapKV 16.86 23.28 36.24 32.14 19.89 23.21 17.69 23.18 22.44 71.00 84.05 34.34 1.00 96.50 50.32 53.34 37.84
PyramidKV 17.62 21.08 37.52 32.21 21.31 22.03 19.37 24.06 22.22 73.00 83.94 34.61 1.05 95.50 50.45 49.72 37.86

ours 17.77 23.87 37.74 32.98 21.13 20.85 19.13 23.49 22.48 75.00 84.89 36.70 0.91 95.50 50.70 51.08 38.39

Table 1: Performance comparison on the LongBench dataset for full KV cache, previous methods
(StreamingLLM, H2O, SnapKV, PyramidKV), and our DynamicKV method, with KV cache sizes of 128 and 512,
using models including LLaMA3-8B-Instruct, Mistral-7B-Instruct-v0.2, QWen2-7B-Instruct, and InternLM-2.5-
Chat-1M. Bold indicates the best performance.

KV size LlaMA-3-8B-
Instruct

Mistral-7B-
Instruct-v0.2

Qwen2-7B-
Instruct

InternLM2.5-7B-
Chat-1M

64 34.93 33.95 32.67 33.67
96 36.70 36.22 34.85 35.31
128 37.75 37.33 35.82 36.07
256 39.83 39.23 36.98 37.29
512 40.73 40.90 39.16 38.39
1024 41.22 41.48 39.72 38.86

Table 2: Performance of DynamicKV with different
KV cache size.

mance metric improved from 34.93 to 41.22 as458

the key-value cache size was increased from 64459

to 1024. This improvement is also applicable to460

other models. These findings underscore the ef-461

fectiveness of the DynamicKV cache in leveraging462

KV cache compression to maintain the capabilities 463

of long context. Notably, a larger cache capacity 464

is generally associated with superior performance. 465

Nonetheless, it is essential to strike a balance when 466

selecting the cache size, taking into account the 467

practical constraints related to storage and compu- 468

tational resources. 469

☞ More analyses in Appendix 470

In addition to the above discussions, we con- 471

duct more related analyses and show them in Ap- 472

pendix: (1) DynamicKV is effectively scalable to 473

other models on the Needle-in-Haystack task (Ap- 474

pendix A.3); (2) Enhancing generation efficiency 475

7

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

16
00

0
17

00
0

18
00

0
19

00
0

20
00

0
21

00
0

22
00

0
23

00
0

24
00

0
25

00
0

26
00

0
27

00
0

28
00

0
29

00
0

30
00

0
31

00
0

32
00

0

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

True Average Score 0.92

(a) FullKV

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

16
00

0
17

00
0

18
00

0
19

00
0

20
00

0
21

00
0

22
00

0
23

00
0

24
00

0
25

00
0

26
00

0
27

00
0

28
00

0
29

00
0

30
00

0
31

00
0

32
00

0

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

True Average Score 0.26

(b) StreamingLLM

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

16
00

0
17

00
0

18
00

0
19

00
0

20
00

0
21

00
0

22
00

0
23

00
0

24
00

0
25

00
0

26
00

0
27

00
0

28
00

0
29

00
0

30
00

0
31

00
0

32
00

0

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

True Average Score 0.72

(c) PyramidKV

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

16
00

0
17

00
0

18
00

0
19

00
0

20
00

0
21

00
0

22
00

0
23

00
0

24
00

0
25

00
0

26
00

0
27

00
0

28
00

0
29

00
0

30
00

0
31

00
0

32
00

0

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

True Average Score 0.83

(d) DynamicKV

Figure 4: Performance Comparison on the Needle in a Haystack Task Using Mistral-7B-Instruct-v0.2.

with 22.5-129% higher token throughput compared476

to fullKV and superior memory optimization sav-477

ing up to 11.2% GPU memory while maintain-478

ing stable performance (Appendix A.4); (3) Task-479

Aware adaptability that dynamically adjusts token480

processing across transformer layers based on in-481

put complexity(Appendix A.5). Please refer to the482

Appendix for more details.483

6 Conclusion484

In this study, we analyze the intrinsic patterns ex-485

hibited by large language models (LLMs) when486

processing long-context inputs across different task487

types. Our empirical findings reveal significant488

variations in the distribution of attention across489

these task types. Based on this observation, we490

introduce DynamicKV, a novel layer-aware KV491

cache compression approach that dynamically ad-492

justs the KV cache size across layers. We evaluate 493

the effectiveness and generalizability of Dynam- 494

icKV through experiments on 16 datasets from the 495

LongBench benchmark, demonstrating its broad 496

applicability and performance benefits. From the 497

results, we mainly conclude that: (1) a wave-like 498

pattern is followed in complex reasoning tasks (e.g., 499

code completion tasks); (2) a pyramid-like pat- 500

tern is followed in Synthetic and Summarization 501

tasks; (3) The dynamic hierarchical adaptive Dy- 502

namicKV approach is capable of formulating a rel- 503

atively appropriate KV cache retention strategy in 504

accordance with diverse tasks. Particularly, in the 505

circumstance of maintaining an extremely small 506

KV cache size, the effect is significantly enhanced.; 507

In the future, we hope that there is a more suitable 508

method to perform KV cache compression without 509

increasing the computation. 510

8

Limitations511

Our work has several potential limitations. First,512

given the limited computational budget, we only513

validate our DynamicKV on models Scaling up514

to super-large model sizes (e.g., 70B), and apply-515

ing DynamicKV to more cutting-edge model archi-516

tectures will be more convincing model architec-517

tures. Second, although we have conducted experi-518

ments on multiple tasks including single- and multi-519

document QA, summarization, synthetic tasks, and520

code completion, the generalization ability of Dy-521

namicKV to other tasks or datasets has not been522

fully explored. Future work will focus on expand-523

ing the application scope of DynamicKV to more524

diverse tasks and datasets.525

Ethics and Reproducibility Statements526

Ethics We take ethical considerations seriously527

and follow the guidelines outlined by the ACL528

Ethics Policy. The DynamicKV method is designed529

to optimize long-context inference in LLMs, with-530

out the need for collecting sensitive or private in-531

formation. All datasets used in the experiments532

are publicly available and widely adopted by the533

research community, ensuring transparency and534

accessibility. We do not foresee any significant eth-535

ical concerns related to the development and use of536

the DynamicKV method.537

Reproducibility To ensure reproducibility, we538

provide detailed descriptions of our experimen-539

tal setup, including model configurations, datasets,540

and performance metrics. Furthermore, we have541

provided our code in the Supplementary Ma-542

terial. We hope that the provided resources will543

support further advancements in efficient LLM in-544

ference and memory management.545

References546

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama547
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,548
Diogo Almeida, Janko Altenschmidt, Sam Altman,549
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.550
arXiv preprint arXiv:2303.08774.551

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,552
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao553
Liu, Aohan Zeng, Lei Hou, et al. 2023. Longbench:554
A bilingual, multitask benchmark for long context555
understanding. arXiv preprint arXiv:2308.14508.556

William Brandon, Mayank Mishra, Aniruddha557
Nrusimha, Rameswar Panda, and Jonathan Ragan558

Kelly. 2024. Reducing transformer key-value cache 559
size with cross-layer attention. arXiv preprint 560
arXiv:2405.12981. 561

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, 562
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi 563
Chen, Pei Chu, et al. 2024. Internlm2 technical re- 564
port. arXiv preprint arXiv:2403.17297. 565

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 566
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 567
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. 568
2023. Vicuna: An open-source chatbot impressing 569
gpt-4 with 90%* chatgpt quality. See https://vicuna. 570
lmsys. org (accessed 14 April 2023), 2(3):6. 571

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, 572
Noah A Smith, and Matt Gardner. 2021. A dataset of 573
information-seeking questions and answers anchored 574
in research papers. arXiv preprint arXiv:2105.03011. 575

Jacob Devlin. 2018. Bert: Pre-training of deep bidi- 576
rectional transformers for language understanding. 577
arXiv preprint arXiv:1810.04805. 578

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 579
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 580
Akhil Mathur, Alan Schelten, Amy Yang, Angela 581
Fan, et al. 2024. The llama 3 herd of models. arXiv 582
preprint arXiv:2407.21783. 583

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, 584
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas 585
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed 586
Roman, et al. 2024. Layer skip: Enabling early 587
exit inference and self-speculative decoding. arXiv 588
preprint arXiv:2404.16710. 589

Alexander Richard Fabbri, Irene Li, Tianwei She, Suyi 590
Li, and Dragomir Radev. 2019. Multi-news: A large- 591
scale multi-document summarization dataset and ab- 592
stractive hierarchical model. In Proceedings of the 593
57th Annual Meeting of the Association for Compu- 594
tational Linguistics, pages 1074–1084. 595

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng 596
Han, Shuo Shang, Aixin Sun, Yequan Wang, and 597
Zhongyuan Wang. 2024. Not all layers of llms 598
are necessary during inference. arXiv preprint 599
arXiv:2403.02181. 600

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and 601
S Kevin Zhou. 2024. Optimizing kv cache eviction 602
in llms: Adaptive allocation for enhanced budget 603
utilization. arXiv preprint arXiv:2407.11550. 604

Qichen Fu, Minsik Cho, Thomas Merth, Sachin 605
Mehta, Mohammad Rastegari, and Mahyar Najibi. 606
2024. Lazyllm: Dynamic token pruning for effi- 607
cient long context llm inference. arXiv preprint 608
arXiv:2407.14057. 609

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, 610
Jiawei Han, and Jianfeng Gao. 2023. Model tells you 611
what to discard: Adaptive kv cache compression for 612
llms. arXiv preprint arXiv:2310.01801. 613

9

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-614
sander Wawer. 2019. Samsum corpus: A human-615
annotated dialogue dataset for abstractive summa-616
rization. arXiv preprint arXiv:1911.12237.617

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Ju-618
lian McAuley. 2023. Longcoder: A long-range pre-619
trained language model for code completion. In In-620
ternational Conference on Machine Learning, pages621
12098–12107. PMLR.622

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,623
and Akiko Aizawa. 2020. Constructing a multi-hop624
qa dataset for comprehensive evaluation of reasoning625
steps. In Proceedings of the 28th International Con-626
ference on Computational Linguistics, pages 6609–627
6625.628

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,629
Michael W Mahoney, Yakun Sophia Shao, Kurt630
Keutzer, and Amir Gholami. 2024. Kvquant:631
Towards 10 million context length llm inference632
with kv cache quantization. arXiv preprint633
arXiv:2401.18079.634

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng635
Ji, and Lu Wang. 2021. Efficient attentions for long636
document summarization. In Proceedings of the 2021637
Conference of the North American Chapter of the638
Association for Computational Linguistics: Human639
Language Technologies, pages 1419–1436.640

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.641
2019. What does bert learn about the structure of642
language? In ACL 2019-57th Annual Meeting of the643
Association for Computational Linguistics.644

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-645
sch, Chris Bamford, Devendra Singh Chaplot, Diego646
de las Casas, Florian Bressand, Gianna Lengyel, Guil-647
laume Lample, Lucile Saulnier, et al. 2023. Mistral648
7b. arXiv preprint arXiv:2310.06825.649

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke650
Zettlemoyer. 2017. Triviaqa: A large scale distantly651
supervised challenge dataset for reading comprehen-652
sion. arXiv preprint arXiv:1705.03551.653

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa654
Jeong, Zaoxing Liu, Tushar Krishna, and Tuo Zhao.655
2024. Gear: An efficient kv cache compression656
recipefor near-lossless generative inference of llm.657
arXiv preprint arXiv:2403.05527.658

Tomáš Kočiskỳ, Jonathan Schwarz, Phil Blunsom, Chris659
Dyer, Karl Moritz Hermann, Gábor Melis, and Ed-660
ward Grefenstette. 2018. The narrativeqa reading661
comprehension challenge. Transactions of the Asso-662
ciation for Computational Linguistics, 6:317–328.663

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio664
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-665
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-666
täschel, et al. 2020. Retrieval-augmented generation667
for knowledge-intensive nlp tasks. Advances in Neu-668
ral Information Processing Systems, 33:9459–9474.669

Xin Li and Dan Roth. 2002. Learning question clas- 670
sifiers. In COLING 2002: The 19th International 671
Conference on Computational Linguistics. 672

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat 673
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai, 674
Patrick Lewis, and Deming Chen. 2024. Snapkv: 675
Llm knows what you are looking for before genera- 676
tion. arXiv preprint arXiv:2404.14469. 677

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholam- 678
reza Haffari, and Bohan Zhuang. 2024a. Minicache: 679
Kv cache compression in depth dimension for large 680
language models. arXiv preprint arXiv:2405.14366. 681

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran- 682
jape, Michele Bevilacqua, Fabio Petroni, and Percy 683
Liang. 2024b. Lost in the middle: How language 684
models use long contexts. Transactions of the Asso- 685
ciation for Computational Linguistics, 12:157–173. 686

Tianyang Liu, Canwen Xu, and Julian McAuley. 687
2023. Repobench: Benchmarking repository-level 688
code auto-completion systems. arXiv preprint 689
arXiv:2306.03091. 690

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao 691
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril- 692
lidis, and Anshumali Shrivastava. 2024c. Scis- 693
sorhands: Exploiting the persistence of importance 694
hypothesis for llm kv cache compression at test time. 695
Advances in Neural Information Processing Systems, 696
36. 697

Qingyu Lu, Baopu Qiu, Liang Ding, Kanjian Zhang, 698
Tom Kocmi, and Dacheng Tao. 2024. Error analysis 699
prompting enables human-like translation evaluation 700
in large language models. In Findings of the Asso- 701
ciation for Computational Linguistics: ACL 2024, 702
pages 8801–8816, Bangkok, Thailand. Association 703
for Computational Linguistics. 704

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, 705
David Tarjan, and Edoardo M Ponti. 2024. Dynamic 706
memory compression: Retrofitting llms for acceler- 707
ated inference. arXiv preprint arXiv:2403.09636. 708

Keqin Peng, Liang Ding, Qihuang Zhong, Li Shen, 709
Xuebo Liu, Min Zhang, Yuanxin Ouyang, and 710
Dacheng Tao. 2023. Towards making the most of 711
chatgpt for machine translation. In Findings of the 712
Association for Computational Linguistics: EMNLP 713
2023, pages 5622–5633. 714

Alec Radford. 2018. Improving language understanding 715
by generative pre-training. 716

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 717
Dario Amodei, Ilya Sutskever, et al. 2019. Language 718
models are unsupervised multitask learners. OpenAI 719
blog, 1(8):9. 720

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui 721
Wang, Shuming Ma, Quanlu Zhang, Jianyong Wang, 722
and Furu Wei. 2024. You only cache once: Decoder- 723
decoder architectures for language models. arXiv 724
preprint arXiv:2405.05254. 725

10

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-726
bert, Amjad Almahairi, Yasmine Babaei, Nikolay727
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti728
Bhosale, et al. 2023. Llama 2: Open founda-729
tion and fine-tuned chat models. arXiv preprint730
arXiv:2307.09288.731

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,732
and Ashish Sabharwal. 2022. Musique: Multi-733
hop questions via single-hop question composition.734
Transactions of the Association for Computational735
Linguistics, 10:539–554.736

A Vaswani. 2017. Attention is all you need. Advances737
in Neural Information Processing Systems.738

Daniel Waddington, Juan Colmenares, Jilong Kuang,739
and Fengguang Song. 2013. Kv-cache: A scalable740
high-performance web-object cache for manycore.741
In 2013 IEEE/ACM 6th International Conference on742
Utility and Cloud Computing, pages 123–130. IEEE.743

Shuai Wang, Liang Ding, Li Shen, Yong Luo, Zheng He,744
Wei Yu, and Dacheng Tao. 2024. Improving code745
generation of llms by uncertainty-aware selective con-746
trastive decoding. arXiv preprint arXiv:2409.05923.747

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song748
Han, and Mike Lewis. 2023. Efficient streaming749
language models with attention sinks. arXiv preprint750
arXiv:2309.17453.751

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,752
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan753
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2754
technical report. arXiv preprint arXiv:2407.10671.755

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,756
William Cohen, Ruslan Salakhutdinov, and Christo-757
pher D Manning. 2018. Hotpotqa: A dataset for758
diverse, explainable multi-hop question answering.759
In Proceedings of the 2018 Conference on Empiri-760
cal Methods in Natural Language Processing, pages761
2369–2380.762

Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu,763
Wayne Xiong, Yue Dong, Baobao Chang, Junjie Hu,764
Wen Xiao, et al. 2024a. Pyramidkv: Dynamic kv765
cache compression based on pyramidal information766
funneling. arXiv preprint arXiv:2406.02069.767

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong768
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-769
dong Tian, Christopher Ré, Clark Barrett, et al. 2024b.770
H2o: Heavy-hitter oracle for efficient generative in-771
ference of large language models. Advances in Neu-772
ral Information Processing Systems, 36.773

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia774
Mutuma, Rahul Jha, Ahmed Hassan, Asli Celikyil-775
maz, Yang Liu, Xipeng Qiu, et al. 2021. Qmsum: A776
new benchmark for query-based multi-domain meet-777
ing summarization. In Proceedings of the 2021 Con-778
ference of the North American Chapter of the Asso-779
ciation for Computational Linguistics: Human Lan-780
guage Technologies, pages 5905–5921.781

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and 782
Dacheng Tao. 2023. Can chatgpt understand too? 783
a comparative study on chatgpt and fine-tuned bert. 784
arXiv preprint arXiv:2302.10198. 785

11

A Appendix786

A.1 Model Details787

All the model structures and details in our experi-788

ment are shown in Table 3.789

A.2 Dataset Details790

The data sources, average length, evaluation met-791

rics, language, and data volume of the Long-792

Bench(Bai et al., 2023) dataset’s subdatasets are793

shown in Table 4.794

A.3 Need in a HayStack795

The experimental results are presented in Table 5,796

which illustrates the performance of our Dynam-797

icKV approach across various models, including798

LlaMA and Qwen, in Needle in a Haystack task.799

A.4 Efficiency Experiments800

We evaluate the efficiency of DynamicKV against801

the standard method (FullKV) under varying in-802

put/output lengths. All experiments are conducted803

with a fixed context window (m = 128), measur-804

ing Time-to-First-Token (TTFT), Time-Per-Output-805

Token (TPOT), end-to-end latency, and GPU mem-806

ory usage. The results are summarized in Table 6.807

Key observations include:808

• Short Sequences (8k/2k): DynamicKV809

improves TPOT by 22.5% (27.63→33.85810

tok/s) while slightly increasing TTFT by 6%811

(0.66s→0.70s), achieving 18.2% lower total812

latency (74.79s→61.21s) with 638MB mem-813

ory reduction.814

• Long Sequences (32k/8k): The advan-815

tages amplify significantly, with Dy-816

namicKV delivering 129% higher TPOT817

(11.65→26.69 tok/s), 56% lower latency818

(706.56s→310.56s), and 11.2% memory819

savings (31213MB→27713MB).820

• Scalability: FullKV shows superlinear TPOT821

degradation (11.65 tok/s at 32k inputs), while822

DynamicKV maintains stable throughput823

through on-demand computation, demonstrat-824

ing better adaptability to long-context genera-825

tion.826

The experiments demonstrate that dynamic KV827

caching trades marginal initial latency for substan-828

tially better sustained generation speed and mem-829

ory efficiency, particularly beneficial for long-text830

generation tasks (>2k output tokens).831

A.5 Task-Aware Sensitivity Study 832

The presented Table 7 offers a comprehensive in- 833

sight into the token processing statistics per layer 834

for 32 transformer layers using the DynamicKV 835

method in Mistral-7B-Instruct, as applied to vari- 836

ous datasets from LongBench. This detailed anal- 837

ysis reveals significant variability in how tokens 838

are processed at different layers depending on the 839

specific task. 840

In particular, our approach demonstrates that cer- 841

tain tasks, such as those represented by the Multi- 842

News and GovReport datasets, exhibit exception- 843

ally high token processing counts even in early 844

layers, indicating a potentially greater complexity 845

or information density in these tasks. Conversely, 846

datasets such as TriviaQA and SAMSum show rel- 847

atively lower initial processing demands, but with 848

significant spikes in later layers, suggesting evolv- 849

ing complexity throughout the document or dia- 850

logue. 851

Moreover, the data highlights that the Dynam- 852

icKV mechanism adeptly adjusts to the unique de- 853

mands of each dataset, optimizing performance and 854

resource allocation dynamically across all layers. 855

This adaptability is crucial for handling the diverse 856

range of tasks and input lengths encountered in real- 857

world applications, ensuring efficient processing 858

without compromising on understanding or accu- 859

racy. 860

12

Configuration LlaMA-3-8B-
Instruct

Mistral-7B-
Instruct-v0.2

Qwen2-7B-
Instruct

InternLM2.5-7B-
Chat-1M

Hidden Size 4,096 4,096 3,584 4096
Layers 32 32 28 32
Query Heads 32 32 28 32
KV Heads 8 8 4 8
Head Size 128 128 128 128
Intermediate Size 14,336 14,336 18,944 14336
Embedding False False False False
Vocabulary Size 128,256 32,000 151,646 92,544

Table 3: Configuration of Models.

Dataset Source Avg length Metric Language #data

Single-Document QA
NarrativeQA Literature, Film 18,409 F1 English 200
Qasper Science 3,619 F1 English 200
MultiFieldQA-en Multi-field 4,559 F1 English 150

Multi-Document QA
HotpotQA Wikipedia 9,151 F1 English 200
2WikiMultihopQA Wikipedia 4,887 F1 English 200
MuSiQue Wikipedia 11,214 F1 English 200

Summarization
GovReport Government report 8,734 Rouge-L English 200
QMSum Meeting 10,614 Rouge-L English 200
MultiNews News 2,113 Rouge-L English 200

Few-shot Learning
TREC Web question 5,177 Accuracy (CLS) English 200
TriviaQA Wikipedia, Web 8,209 F1 English 200
SAMSum Dialogue 6,258 Rouge-L English 200

Synthetic Task
PassageCount Wikipedia 11,141 Accuracy (EM) English 200
PassageRetrieval-en Wikipedia 9,289 Accuracy (EM) English 200

Code Completion
LCC Github 1,235 Edit Sim Python/C#/Java 500
RepoBench-P Github repository 4,206 Edit Sim Python/Java 500

Table 4: An overview of the dataset statistics in LongBench.

Model StreamingLLM H2O SnapKV PyramidKV DynamicKV

LlaMA-3-8B-Instruct 0.29 0.46 0.80 0.89 0.9
Qwen-2-7B-Instruct 0.22 0.41 0.84 0.86 0.87

Table 5: Configuration of Models.

13

Input Len Output Len Method TTFT (s) TPOT (tok/s) Latency (s) Memory (MB)

8k 2k FullKV 0.66 27.63 74.79 20055
8k 2k Dynamickv 0.70 33.85 61.21 19417

16k 4k FullKV 1.45 19.55 209.56 23859
16k 4k Dynamickv 1.49 33.02 125.52 22051

32k 8k FullKV 3.52 11.65 706.56 31213
32k 8k Dynamickv 3.58 26.69 310.56 27713

Table 6: Efficiency Comparison Between FullKV and DynamicKV

Dataset
Layer-wise (1 - 32) Tokens

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

NarrativeQA 93 75 111 51 71 75 91 108 97 154 138 143 196 126 156 201
173 133 202 200 158 128 115 86 123 109 117 76 122 120 142 206

Qasper 157 66 92 43 59 70 77 111 93 137 132 160 187 122 147 186
184 132 183 181 160 135 122 77 119 117 128 69 127 113 179 231

MultifieldQA-en 245 79 109 50 76 75 92 106 90 169 138 164 205 115 155 196
174 116 167 169 145 116 103 74 97 90 108 67 116 116 154 220

HotpotQA 145 75 115 55 73 73 92 102 88 146 128 140 190 106 140 208
172 129 194 185 146 123 109 80 105 99 125 75 127 122 173 256

2WikiMQA 198 74 110 53 69 74 91 105 89 159 133 153 196 109 143 215
178 132 181 179 139 112 96 76 102 94 120 70 118 117 161 250

MuSiQue 108 71 108 54 72 71 89 98 85 143 124 135 189 104 138 216
178 128 206 198 148 130 113 84 112 100 126 76 134 128 173 257

GovReport 332 98 113 48 73 78 88 136 125 150 176 145 142 113 136 164
212 129 148 161 145 115 79 62 103 78 94 57 99 121 138 238

QMSum 156 85 119 51 65 63 78 116 81 146 126 136 185 105 142 218
187 121 204 201 165 134 121 85 122 105 122 70 115 121 144 207

MultiNews 459 94 115 50 67 71 88 101 99 120 126 147 168 130 156 190
202 125 147 160 134 107 78 60 101 84 95 55 102 117 146 202

TREC 214 70 112 47 69 97 93 129 98 156 142 215 220 141 213 115
143 110 166 103 105 91 90 67 84 89 139 78 129 96 192 283

TriviaQA 105 62 97 52 73 89 86 106 102 178 139 178 198 140 189 199
168 118 159 139 144 103 90 66 109 102 131 71 127 124 196 256

SAMSum 126 64 103 48 71 96 93 152 118 157 130 174 173 150 189 179
168 132 177 135 135 108 98 84 101 104 120 87 114 114 168 228

PassageCount 91 72 106 48 54 58 80 111 96 119 153 143 166 147 157 225
214 147 191 203 178 106 96 72 116 116 118 70 122 130 148 243

PassageRetrieval-en 152 92 129 70 72 75 92 121 108 128 162 149 142 139 145 175
179 145 180 172 134 113 95 87 112 109 124 91 108 118 140 238

LCC 186 59 104 44 64 80 98 128 112 159 169 161 177 173 162 163
175 133 170 147 113 102 83 69 94 80 114 84 138 130 178 247

RepoBench-P 106 63 106 46 66 89 96 132 119 168 177 169 179 183 176 189
197 138 177 148 113 102 80 71 94 80 106 83 132 133 157 221

Table 7: Per-layer token processing statistics across 32 transformer layers by DynamicKV in Mistral-7B-Instruct-
v0.2 model on LongBench datasets.

14

Algorithm 1 DynamicKV in Prefill Phase

1: Input: initial budget K/V cache list Kb, V b, radio max rmax, update interval m, mean token length
wt, window size ws, sequence length S, head dimention hd, input embedding of window size
Xws ∈ Rws∗d, initial budget Attention list computed by window token and others Ab,

2: Output: Compressed K/V cache Kc, V c

3: bs = (wt− ws)× rmax

4: def Update_Buffer_Length(A, l):
5: Agather ← cat(([A for l in (1, l)]), 0).view(-1)
6: cnts← Count_Elemnets(topk(Agather, k=(wt− ws) ∗H ∗ l).indices / (L ∗ S)) / l
7: Compute the norm of cnts, range in (0, 1)
8: BL← [int((bs ∗ t / max(norm))) for t in norm]
9: r← sum(BL) / ((wt− ws)∗L)

10: BL← [int(k/r) for k in BL]
11: Return BL
12: for l← 1 to L do
13: Compute full KV states Ks, V s

14: for h← 1 to H do
15: /* compute the Attention between window size token and other all token */
16: Al,h← softmax((XwsWQ

h) ·KT
h).mean(dim=-2).pooling(dim=-1)

17: end for
18: Append Al to Ab /* current Al shape is [H , S] */
19: /* calculate current layer buffer KV cache */
20: indices← Al.topk(bs, dim=-1).indices.unsqueeze(-1).expand(-1, -1, hd)
21: Kb

l ← cat((Ks[:,:−ws,:].gather(dim=-2, indices),Ks[:,−ws:,:]), dim=-2)
22: V b

l ← cat((V s[:,:−ws,:].gather(dim=-2, indices),V s[:,−ws:,:]), dim=-2)
23: /* gradually compress*/
24: if l % m == 0 then
25: Bl← Update_Buffer_Length(Al, l)
26: /* update the buffer K/V Cache*/
27: for i← 1 to l do
28: Kb

i ← cat((Kb
l [:,:Bli,:], Kb

l [:,−ws:,:]), dim=-2)
29: V b

i ← cat((V b
l [:,:Bli,:], V b

l [:,−ws:,:]), dim=-2)
30: end for
31: end if
32: end for
33: Update the K/V Cache Kc, V c from Kb, V b

15

	Introduction
	Related Work
	Observation
	DynamicKV
	Experiments
	Implementation details
	Comparative experiments on LongBench
	Visualization on Needle-in-Haystack Task
	Ablation Study

	Conclusion
	Appendix
	Model Details
	Dataset Details
	Need in a HayStack
	Efficiency Experiments
	Task-Aware Sensitivity Study

