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Abstract

Graph generation, which learns from known graphs and discovers novel graphs,1

has great potential in numerous research topics like drug design and mobility2

synthesis and is one of the fastest-growing domains recently due to its promise3

for discovering new knowledge. Though many benchmark datasets have emerged4

in the domain of graph representation learning, the real-world datasets for graph5

generation problem are much fewer and limited to a small number of areas such as6

molecules and citation networks. To fill the gap, we introduce GraphGT, a large7

dataset collection for graph generation problem in machine learning, which contains8

36 datasets from 9 domains across 6 subjects. To assist the researchers with better9

explorations of the datasets, we provide a systemic review and classification of the10

datasets from various views including research tasks, graph types, and application11

domains. In addition, GraphGT provides an easy-to-use graph generation pipeline12

that simplifies the process for graph data loading, experimental setup, model13

evaluation. The community can query and access datasets of interest according14

to a specific domain, task, or type of graph. GraphGT will be regularly updated15

and welcome inputs from the community. GraphGT is publicly available at https:16

//graphgt.github.io/ and can also be accessed via an open Python library.17

1 Introduction18

Graphs are ubiquitous data structures to capture connections (i.e., edges) between individual units19

(i.e., nodes). One central problem in machine learning on graphs is the gap between the discrete graph20

topological information and continuous numerical vectors preferred by data mining and machine21

learning models [1, 2, 3]. This directly leads to two major directions on graph research in modern22

machine learning: 1) graph representation learning [2, 4], which aims at encoding graph structural23

information into a (low-dimensional) vector space, and 2) graph generation [5, 6], which reversely24

aims at generating novel graph-structured data from the (low-dimensional) vector space. In the past25

several years, graph representation learning has enjoyed an explosive growth in machine learning.26

Techniques such as DeepWalk [7], graph convolutional network (GCN) [8], and graph attention27

networks (GAT) [9] have been proposed for various tasks including node classification [10], link28

prediction [11, 12], clustering [2, 4] and others [13, 14].29

Beyond graph representation learning, graph generation and transformation via machine learning30

started to obtain fast-increasing attention in even more recent years. It enables end-to-end learning of31

underlying unknown graph generation or transformation process, which is a significant advancement32

beyond traditional prescribed graph models such as random graphs and stochastic block models33

which require strong human prior knowledge and hand-crafted rules. Hence, graph generation and34

transformation have great potential of many challenging tasks such as molecule design, mobility35

network synthesis, and protein folding statistical modeling. Over recent few years, substantial efforts36

have been paid on developing models and algorithms for graph generation and transformation, and a37
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few of them have been studied targeting specific domains, such as GraphVAE [15], MolGAN [16]38

and JT-VAE [17].39

However, different from graph representation learning domain where there are various benchmark40

datasets such as CORA, CITESEER and PUBMED for node classification [18], OAG for link41

prediction [19], and Molecule-LENET for graph-level prediction [20], SNAP for general purpose42

network analysis and graph mining [21], OGB for realistic graph benchmarking [22] that have43

been developed and well-recognized for model evaluations and comparisons, graph generation via44

machine learning is still in its nascent stage and lack comprehensive benchmark datasets that well45

cover different key real-world applications and types of graph patterns. Existing datasets are usually46

limited to few domains such as citation networks and molecules. Moreover, most of the datasets47

for graph representation learning research cannot be used as graph generation benchmarks as the48

latter requires large number of individual whole graphs in order to learn the distributions of graphs49

and evaluate the learned distributions. Therefore, the gap between the fast-growing body of graph50

generation research and the paucity of benchmark datasets of this domain may limit its advancement.51

In order to fill this gap, we develope and release GraphGT, a large dataset collection for graph52

generation and transformation via machine learning. The major contributions are as follows.53

• 36 datasets are published under various graph types cover 6 disciplines (including biology,54

physics, chemistry, artificial intelligence (AI), engineering, and social science) and 9 domains55

(including protein, brain network, physical simulation, vision, molecule, transportation56

science, electrical and computer engineering (ECE), social network and synthetic data).57

• Among all 36 datasets, 18 are collected by us, 8 are processed by us to construct graphs,58

10 are reformatted to a unified format for easy access and use. We provide 3 types of APIs59

including graph generation dataloaders, graph transformation dataloaders, evaluators, and60

tutorials to use our APIs with 3 lines of code.61

• Easy-to-use Python API for users to query and access pre-processed datasets according62

to specific disciplines, domains, and applications per their interests. We also provide a63

detailed tutorial for the implementation in the appendix. In addition to the access via64

the Python API, GraphGT is open-sourced and available for downloading via GitHub at65

https://graphgt.github.io/.66

2 Graph Generation and Transformation67

In this section, we briefly introduce the two tasks: graph generation and graph transformation, as well68

as their sub-categories which require different types of datasets.69

A graph can be defined as G = (V, E , E, F ), where V is the set of N nodes, and E ⊆ V × V70

corresponds to a set of edges. eij ∈ E is an edge that connects node vi and vj ∈ V . If the graph71

is node-attributed or edge-attributed, it has the node attribute matrix F ∈ RN×D that assigns node72

attributes to each node or edge attribute tensor E ∈ RN×K that assigns attributes to each edge. D73

and K are dimensions of node attributes and edge attributes, respectively.74

2.1 Graph Generation75

Thanks to the development of graph representation learning, the surge of the graph-generation field is76

promoted by first encoding the node and edge attributes into a low-dimensional space to form the77

distribution of given graphs. Then based on the distribution learned from the given graphs, graph78

generation aims to sample novel graphs via well-designed probabilistic models [5]. More formally,79

given a set of observed graphs with arbitrary number of nodes and edges, graph generative models80

aim to learn the distribution p(G) of the observed graphs and then graph generation can be achieved81

by sampling a graph G from the learned distribution G ∼ p(G).82

According to the size of generated graph, graph generation tasks can be classified into two categories:83

(1) fixed-size generation in which the number of nodes is fixed across different graph samples; For84

example, in human brain networks (e.g., functional connectivity), the number of brain regions is85

usually the same across different human subjects; and (2) variable-sized generation when the number86

of nodes varies across graph samples. For example, different molecules can be considered as graphs87

with various numbers of atoms. The two categories are accommodated with different types of datasets.88
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2.2 Graph Transformation89

Graph transformation aims at transforming from one graph in source domain into another graph90

in target domain. It can also be regarded as the graph generation conditioning on another graph.91

For instance, in neuroscience, it is interesting to explore the functional connectivity given the92

corresponding structural connectivity. In hardware design domain, given a integrated circuit design,93

one may be asked to obfuscate it, by adding additional gates and keys (i.e., can be considered as nodes)94

but maintain the same functionality. More formally, graph transformation problem can be formalized95

as learning a generative mapping T : (V0, E0, E0, F0)→ (V ′, E ′, E′, F ′), in which (V0, E0, E0, F0)96

corresponds to the graph in source domain and (V0, E0, E0, F0) represents a graph in target domain.97

Based on the entities that are being transformed in the transformation process, problems regarding98

graph transformation can be further divided into three main scenarios: node transformation, edge99

transformation, and node-edge co-transformation. As the name suggests, (1) node transformation100

transforms nodes and/or their attributes from the source to the target domain. (2) Edge transformation101

maps graph topology and/or edge attributes from the source domain to the target domain. In the102

process of (3) node-edge co-transformation, both the above node and edge information can change103

during the transformation process.104
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Figure 1: GraphGT Benchmark datasets by domains (alphabetical order under each domain)
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Figure 2: GraphGT benchmark datasets by tasks (alphabetical order under each task)

3 GraphGT Pipeline105

3.1 Datasets106

Our GraphGT Benchmark covers in total 36 datasets from various domains and different tasks. The107

taxonomy with respect to different domains is shown in Figure 1, where there are 9 domains, including108

protein, brain network, physical simulation, vision, molecule, transportation science, electrical and109

computer engineering, social network and synthetic data, across 6 subjects including biology, physics,110

artificial intelligence, chemistry, engineering and social science. Moreover, the taxonomy by different111
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tasks is illustrated in Figure 2. For the graph generation task, they can extract datasets for either112

fixed-sized generation or variable-sized generation. For the graph transformation task, we provide113

datasets for node transformation, edge transformation as well as node and edge co-transformation.114

The general profiles for different datasets are summarized in Table 1. A more detailed description of115

each dataset and curation method can be found in the appendix.116

3.2 Evaluations117

There are two main types of evaluations for graph generation and two main types of evaluations for118

graph transformation. For graph generation task, (1)statistics-based evaluation measures the quality of119

the generated graphs by computing the distance between the graph statistic distribution of real graphs120

and generated graphs, and (2)self-quality based evaluation measures the quality of the generated121

graphs: validity, uniqueness and novelty. For graph transformation task, (1)Graph-property-based122

evaluation directly compares each generated graph to its label graph by measuring their similarity or123

distance based on some graph properties or kernels, such as random-walk kernel similarity [23], and124

(2)Mapping-relationship-based evaluation measures whether the learned relationship between the125

input and the generated graphs is consistent with the true relationship between the input and the real126

graphs. The detailed elaborations for each type of evaluation metrics and examples can be found in127

the appendix.128

Table 1: Summary of statistics and types of graphs for different GraphGT datasets. (Note: ‘Y’ stands
for ‘Yes’, ‘N’ stands for ‘No’, ‘GCS’ stands for ‘Geographic Coordinate System’, ‘2D/3D’ stands for
‘2D or 3D coordinates under Cartesian Coordinate System’.)

Name Type #Graphs #Nodes #Edges Attributed Directed Weighted Signed Homogeneous Spatial Temporal Labels

QM9 [24] Molecules 133,885 ∼ 9 ∼ 19 Y N Y N Y 3D N Y

ZINC250K [25] Molecules 249,455 ∼ 23 ∼ 50 Y N Y N Y 3D N Y

MOSES [26] Molecules 193,696 ∼ 22 ∼ 47 Y N Y N Y 3D N Y

MolOpt [27] Molecules 229,473 ∼ 24 ∼ 53 Y N Y N Y 3D N Y

ChEMBL [28] Molecules 1,799,433 ∼ 27 ∼ 58 Y N Y N Y 3D N Y

ChemReact [29] Molecules 7,180 ∼20 ∼ 16 Y N Y N Y 3D N Y

Protein [30] Proteins 1,113 ∼39 ∼73 Y N N N Y N N Y

Enzyme [31] Proteins 600 ∼33 ∼62 Y N N N Y N N Y

ProFold [32] Proteins 76,000 8 ∼40 Y N N N Y 3D Y Y

Brain-restingstate [29] Brain networks 823 68 2274 N N Y Y Y N N Y

Brain-emotion [29] Brain networks 811 68 2278 N N Y Y Y N N Y

Brain-gambling [29] Brain networks 818 68 2278 N N Y Y Y N N Y

Brain-language [29] Brain networks 816 68 2278 N N Y Y Y N N Y

Brain-motor [29] Brain networks 816 68 2278 N N Y Y Y N N Y

Brain-relational [29] Brain networks 808 68 2278 N N Y Y Y N N Y

Brain-social [29] Brain networks 816 68 2278 N N Y Y Y N N Y

Brain-wm [29] Brain networks 812 68 2278 N N Y Y Y N N Y

N-body-charged [33] Physical simulation networks 3,430,000 25 ∼3 Y N N N Y 2D Y Y

N-body-spring [33] Physical simulation networks 3,430,000 5 ∼10 Y N N N Y 2D Y Y

CLEVR [34] Scene graphs 85,000 6 ∼40 Y Y Y N Y 3D N N

Skeleton (Kinectics) [35] Skeleton graphs 260,000 18 17 N N N N Y 2D Y Y

Skeleton (NTU-RGB+D) [36] Skeleton graphs 56,000 25 24 N N N N Y 3D Y Y

METR-LA [37] Traffic networks 34,272 325 2,369 Y Y Y N Y GCS Y Y

PeMS-BAY [38] Traffic networks 50,112 207 1,515 Y Y Y N Y GCS Y Y

AuthNet [39] Authen. networks 114/412 50/300 ∼3/∼7 N Y Y N Y N N Y

IoTNet [29] IoT networks 343 20/40/60 ∼220/∼630/∼800 Y N Y N Y N N Y

CollabNet [40] Collab. networks 2,361 303,308 207,632 N N N N Y GCS Y Y

TwitterNet [41] social networks 2,580 300 0.5 N N N N Y N N N

Barab’asi-Albert Graphs [29] Synthetic networks 1,000 20/40/60 ∼60/∼190/∼300 Y N N N Y N N N

Erdos-Renyi Graphs [29] Synthetic networks 1,000 20/40/60 ∼100/∼200/∼400 Y N N N Y N N N

Scale-Free [39] Synthetic networks 10,000 10/20/50/100/150 20/ 40/ 100/ 200/ 320 N Y N N Y N N N

Random Geometric [32] Synthetic networks 9,600 25 ∼350 Y N N N Y Y Y Y

Waxman Graphs [32] Synthetic networks 9,600 25 ∼250 Y N N N Y Y Y Y
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4 Conclusion129

Although many benchmark datasets have emerged in the domain of graph representation learning,130

the real-world datasets for graph generation are much fewer and limited to a small number of areas.131

To fill this gap, we introduce GraphGT, a large dataset collection for graph generation problem in132

machine learning. GraphGT covers datasets in 9 domains across 6 subjects, in which 18 are collected133

by us, 8 are processed by us to construct graphs, 10 are reformatted to a unified format for easy134

access and use. In addition, we provide 3 types of Python APIs, including dataset downloader, graph135

generation dataloader, graph transformation dataloader and evaluator, for users to query and access136

datasets according to specific disciplines, domains and applications per their interests. We believe137

that GraphGT can advance the community to address significant challenges in graph generation and138

transformation.139
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A Key Information about GraphGT305

A.1 Dataset Documentation306

We provide detailed documentation of dataset collection, processing, task for each dataset both in307

section B and in our website. We provide statistics, taxonomy, detailed description, and task for each308

dataset and can be tracked in our website https://graphgt.github.io/.309

A.2 Intended Use310

GraphGT is intended for the deep graph learning as well as specific domain (e.g. physics, biology,311

chemistry, etc.) community to use and develop machine learning algorithms to advance applications312

in various domains.313

A.3 URLs314

Official website (https://graphgt.github.io/) contains all references of GraphGT, including315

dataset taxonomy, task, evaluation, visualization, tutorials, papers, GitHub, and other useful resources.316

GitHub repository (https://github.com/yuanqidu/GraphGT) hosts all source codes, installation317

instructions, and tutorials of GraphGT.318

A.4 Hosting and Maintenance Plan319

Our GraphGT Python library is regularly maintained and version-tracked via GitHub. All datasets are320

currently hosted on Dropbox and will be transferred to Emory University server soon. Our dataset is321

both directly downloadable with a Dropbox link or from our Python APIs. Our core team commit322

to maintain this initiative for at least five years. In the meantime, we will expand the community in323

multiple dimensions and attract external contributors from the whole community. We will regularly324

update new dataset, task, evaluation and visualization methods to GraphGT.325

A.5 Limitations326

Graph generation and transformation is a fast-growing, vast, and promising field and their applications327

cover a wide range of applications. We start this initiative to build the infrastructure for the community328

which includes most of the mainstream datasets in the graph generation and transformation field and329

many more new datasets. However, it is an ongoing effort and we strive to continuously include more330

datasets, evaluation and visualization methods to advance the field.331

A.6 Potential Negative Societal Impacts332

Graph generation and transformation are motivated by generating novel graph-structured data and333

understanding the graph-structured data; thus, they have vast applications, such as drug discovery,334

protein design, mobility synthesis, etc., which could potentially lead to better designed drug, traffic335

network, etc., and save lives, time, etc. We envision that GraphGT can facilitate algorithmic336

and scientific advances in various domains across subjects and accelerate machine learning model337

development and application for real-world use. GraphGT neither involves human subject research338

nor contains personally identifiable information.339

B Dataset Details340

We list detailed information for each of the datasets stored in GraphGT.341

B.1 Molecules342

We have 6 molecule datasets, in which 4 (QM9 [24], ZINC250K [25], MOSES [26], ChEMBL [28])343

for graph generation and 2 (MolOpt [27], ChemReact [29]) for graph transformation. For all of the344

molecule datasets, we store adjacency matrix, node feature (i.e. atoms), edge feature (i.e. bonds),345

spatial feature (i.e. geometry), and smiles (i.e. string representation). There are in total 4 types of346
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atoms in QM9, 0 = H, 1 = C, 2 = N, 3 = O, 4 = F. There are in total 14 types of atoms in ZINC250K347

dataset, MOSES, and ChEMBL dataset, 0 = Br, 1 = C, 2 = Cl, 3 = F, 4 = H, 5 = I, 6 = N, 7 = N, 8 =348

N, 9 = O, 10 = O, 11 = S, 12 = S, 13 = S. There are in total 4 types of bonds in all the datasets, and349

we represent them as follows: 0 = Single, 1 = Double, 2 = Triple, 3 = Aromatic.350

QM9 [24] dataset is an enumeration of around 134k stable organic molecules with up to 9 heavy351

atoms (carbon, oxygen, nitrogen and fluorine). As no filtering is applied, the molecules in this dataset352

only reflect basic structural constraints.353

ZINC250K [25] dataset is a curated set of 250k commercially available drug-like chemical com-354

pounds. On average, these molecules are bigger (about 23 heavy atoms) and structurally more355

complex than the molecules in QM9 dataset.356

Molecular Sets (MOSES) [26] is a benchmark platform for distribution learning based molecule357

generation. Within this benchmark, MOSES provides a cleaned dataset of molecules that are ideal of358

optimization. It is processed from the ZINC Clean Leads dataset.359

ChEMBL [28] dataset is a manually curated database of bioactive molecules with drug-like properties.360

It brings together chemical, bioactivity and genomic data to aid the translation of genomic information361

into effective new drugs.362

MolOpt [27] dataset extracts translation pairs from the ZINC database in terms of three molecular363

properties, Penalized logP, Drug-likeness, and Dopamine Receptor.364

ChemReact [29] dataset has totally 7180 pairs of reactant and product molecule graph in the dataset365

derived from USPTO dataset [42].366

B.1.1 License367

QM9: CC BY-NC-SA 4.0.368

ZINC250K: Free to use for everyone.369

MOSES: The dataset is generated by [26], which is under MIT License. The license of the dataset is370

not specified.371

ChEMBL: CC BY-NC-SA 3.0.372

MolOpt: Extracted from ZINC Database.373

ChemReact: Not specified.374

B.2 Proteins375

We have three protein datasets available in GraphGT, which includes protein structures, Enzyme and376

dynamic protein folding process.377

Protein [30] dataset contains 918 protein graphs with 100 ≤ ‖V ‖ ≤ 500. Each protein is represented378

by a graph, where nodes are amino acids and two nodes are connected if they are less than 6379

Angstroms apart.380

Enzyme [31] dataset contains protein tertiary structures representing 600 Enzyme. Nodes in a graph381

(protein) represent secondary structure elements, and two nodes are connected if the corresponding382

elements are interacting. The node labels indicate the type of secondary structure, which is either383

helices, turns, or sheets.384

ProFold [32] dataset contains dynamic folding processes of a protein peptide with sequence385

AGAAAAGA in 38 steps. The node feature of each protein is the sequence (AGAAAAGA) along386

with the spatial locations of each amino acid, and the edge feature of each protein is an adjacency387

matrix constructed by connecting all pairs of nodes with distance < 8 Å.388

B.2.1 License389

Enzyme: CC-BY-4.0.390

ProFold: The dataset is collected by [32]. The license is not specified.391
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Protein: CC-BY-4.0.392

B.3 Brain Networks393

The Brain dataset comes from the human connectome project (HCP) [29] and has a few branches:394

restingstate, emotion, gambling, language, motor, relational, social and wm according to different395

tasks. In this dataset, the source graphs reflect the structural connectivity (SC), and the target graphs396

represent the functional connectivity [29]. Specifically, both types of connectivities are processed397

from the magnetic resonance imaging (MRI) data from HCP. SC is obtained by applying probabilistic398

tracking on the diffusion MRI data by Probtrackx tool from the FMRIB Software Library [43] with399

68 regions of insterest (ROI). The edge attributes of FC are defined as Pearson’s correlation between400

two ROIs blood oxygen level-dependent time obtained from the resting-state functional MRI data.401

Node attributes is a one-hot vector representing index of each node. In total, 823 pairs of SC and FC402

samples are enrolled in the dataset.403

B.3.1 License404

Brain: This dataset comes from the human connectome project. Data collection and sharing for this405

project was provided by the MGH-USC Human Connectome Project (HCP; Principal Investigators:406

Bruce Rosen, M.D., Ph.D., Arthur W. Toga, Ph.D., Van J. Weeden, MD). HCP funding was provided407

by the National Institute of Dental and Craniofacial Research (NIDCR), the National Institute of408

Mental Health (NIMH), and the National Institute of Neurological Disorders and Stroke (NINDS).409

HCP data are disseminated by the Laboratory of Neuro Imaging at the University of Southern410

California.411

B.4 N-body Simulations412

N-body-charged [33] dataset simulates a system containing 5 particles with positive or negative413

charges. Particles are located in 2D coordinates without any external forces except attracting force414

and repelling force. The quantity of electrical charges is sampled from uniform probability. Each415

particle interacts via Coulomb forces. Every two particles interact, either attract or repel each other.416

The temporal length of each sequence is 49, which obtains from sub-sampling every 100 steps in a417

trajectory.418

N-body-spring [33] dataset simulates a system containing 5 particles connected by springs. Particles419

are located in 2D coordinates without any external forces except elastic collisions. Particles are420

connected via springs with probability of 0.5, and interactions between springs follow Hooke’s law.421

The initial location of each particle is sampled from a Gaussian distribution and the initial velocity of422

each particle is a random vector of norm 0.5. The trajectories of all springs are calculated by solving423

Newton’s equations of motion PDE. The temporal length of each sequence is 49, which obtains from424

sub-sampling every 100 steps in a trajectory.425

B.4.1 License426

N-body-charged: The dataset is simulated by [33], which is under MIT License. The license of the427

dataset is not specified.428

N-body-spring: The dataset is simulated by [33], which is under MIT License. The license of the429

dataset is not specified.430

B.5 Collaboration Networks431

CollabNet [40] dataset is collected from DBLP-Citation-network V12, which contains around 4.9432

million papers and 45 million citation relationships. We construct graphs by selecting authors as433

nodes and co-authorships as edges during the time period from 1990 to 2019. To cut the graphs into434

pieces, we generate sub-graphs based on the Fields of Study attribute from papers. For each field, we435

generate one spatio-temporal graph. We generate 2361 spatio-tempora graphs with a total of around436

9 million nodes and a total of around 6 million of edges.437
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B.5.1 License438

CollabNet: The dataset is collected from DBLP-Citation-network V12. The license is not specified.439

B.6 Traffic Networks440

METR-LA [37] dataset is collected by Los Angeles Metropolitan Transportation Authority (LA-441

Metro), and processed by University of Southern California’s Integrated Media Systems Center. This442

dataset contains traffic information collected from 207 loop detectors in the highway of Los Angeles443

County for 4 months (from Mar 1st 2012 to Jun 30th 2012). Each sensor records traffic speed value444

per 5 minutes.445

PeMS-BAY [38] dataset is collected by California Transportation Agencies (CalTrans) Performance446

Measurement System (PeMS). PeMS-BAY dataset collects traffic information in the Bay Area. The447

dataset contains traffic information of 325 sensors within 5 months (From Jan 1st 2017 to May 31st448

2017). Each sensor records traffic speed value per 5 minutes.449

B.6.1 License450

METR-LA: The dataset is collected by Los Angeles Metropolitan Transportation Authority (LA-451

Metro), and processed by University of Southern California’s Integrated Media Systems Center. The452

license is not specified.453

PeMS-BAY: The dataset is collected by California Transportation Agencies (CalTrans) Performance454

Measurement System (PeMS). The license is not specified.455

B.7 Authentication Networks456

AuthNet dataset includes the authentication activities of users on their computers and servers in their457

enterprise computer network and is published by Los Alamos National Laboratory (LANL). [44, 39].458

There are two subsets of different sizes of graphs (e.g., 50 and 300) in AuthNet dataset. For each459

subset, we train and test folder separately. Train set contains the graph pairs (one-to-one) which are460

just used for training. Test set contains data for each user. For each user, there are several input461

graphs (e.g., regular user authentication activity graph) and several target graphs (e.g., malware user462

authentication activity graph). Input and target graphs in test set are not one-to-one, which can be463

tested by indirect evaluation. There are no node attributes for this dataset, and only edge attribute464

is considered. For each graph, the value of the i− th row and the j − th column refers to the edge465

attribute of node i and j (0 refers to no links).466

B.7.1 License467

AuthNet: The dataset is publically released by LANL [44]. To the extent possible under law,468

LANL has waived all copyright and related or neighboring rights to User-Computer Authentication469

Associations in Time. This work is published from: United States.470

B.8 IoT Networks471

IoTNet is the malware dataset collected for malware confinement prediction [29]. There are three472

sets of IoT nodes at different amounts (20, 40 and 60) encompassing temperature sensors connected473

with Intel ATLASEDGE Board and Beagle Boards (BeagleBone Blue), communicating via Bluetooth474

protocol. Benign and malware activities are executed on these devices to generate the initial attacked475

networks as input graphs. Benign activities include MiBench [45] and SPEC2006 [46], Linux system476

programs, and word processors. The nodes represent devices and node attribute is a binary value477

referring to whether the device is compromised or not. Edge represents the connection of two478

devices and the edge attribute is a continuous value reflecting the distance of two devices. The real479

target graphs are generated by the classical malware confinement method: stochastic controlling480

with malware detection [47, 48, 49]. We collect 334 pairs of input and target graphs with different481

contextual parameters (infection rate, recovery rate and decay rate) for each of the three datasets. In482

this dataset, there are both nodes attributes and edge attributes considered.483
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B.8.1 License484

IoTNet: The dataset is generated by [29]. The license is not specified.485

B.9 Skeleton Graphs486

Kinetics [35] dataset is a large-scale human action dataset with 300000 videos clips in 400 classes.487

Those video clips are from YouTube with a great variety. The raw Kinetics dataset doesn’t contain488

skeleton data, and [35] uses OpenPose toolbox to generate skeleton with 18 joints on every frame.489

Kinetics-Skeleton contains 240000 clips of training data and 20000 clips of test data.490

NTU-RGB+D [36] dataset is a large and widely used action recognition dataset with 56000 action491

clips in 60 classes. These clips are performed by 40 volunteers captured in a constrained lab492

environment, with three camera views recorded simultaneously. The dataset provides 3D joint493

locations of each frame and 25 joints for each subject.494

B.9.1 License495

Skeleton (Kinectics): CC BY 4.0.496

Skeleton (NTU-RGB+D): Not specified.497

B.10 Social Networks498

Ego: Ego dataset contains 757 3-hop ego networks extracted from the Citeseer [50]. The number499

of nodes of the graph in Ego dataset ranges from 50 to 399. Nodes represent documents and edges500

represent citation relationships [51].501

TwitterNet: The dataset is processed by [41] and obtained from 5 different countries in Latin502

America, namely Brazil, Colombia, Mexico, Paraguay, and Venezuela. Data sources from Twitter are503

adopted as the model inputs. In each case the data for the period from July 1, 2013 to February 9,504

2014 is used for training and validation, where the validation set consists of a randomly chosen 30%505

of the data, and the rest is used for training; the data from February 10, 2014 to December 31, 2014 is506

used for the performance evaluation.507

B.10.1 License508

Ego: This dataset is extracted from Citeseer [50]. Citeserr is under CC BY-NC-SA 3.0.509

TwitterNet: The dataset is obtained from [52]. The license is not specified.510

B.11 Scene Graphs511

CLEVR [34] dataset provides a dataset for visual question answer, which can be formalized as a512

spatial-graph dataset. There are 10 objects in the image with different 3D locations. Each object is513

identified by its shape, such as sphere, cylinder, and cube. The relationship between two objects can514

be categorized into four types: right, behind, front, left, with directions. Thus, each image can be515

formalized as a labeled directed graph with different edge types and node types. Thus, the spatial516

information of each nodes is closely correlated with the edge types between each pair of nodes.517

B.11.1 License518

CLEVR: CC BY 4.0.519

B.12 Synthetic Graphs520

Barab’asi-Albert Graphs: This dataset is generated by the Barab’asi-Albert model [29]. It fits the521

"one-to-one" mapping problem of graph translation. It contains pairs of input and target graphs. The522

target graph topology is the 2-hop connection of the input graph, where each edge in the target graph523

refers to the 3-hop reachability in the input graph (e.g., if node i is 3-hop reachable to node j in the524

input graph, then they are connected in the target graph). There are edge and node attributes for graphs525

in this dataset: the edge attribute E(i,j) denotes the existence of the edge, and the node attributes526
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are continuous values computed following the polynomial function: f(x) : y = ax2 + bx + c527

(a = 0; b = 1; c = 5), where x is the node degree and f(x) is the node attribute. Here we provide the528

datasets with three different node sizes.529

Community: This dataset is generate by [51] and contains 500 two-community graphs with number530

of nodes ranging from 60 to 160. Each community is generated by the Erdos-Renyi model (E-R) [53]531

with |V |2 nodes and the edge probability of 0.3. Then add 0.05|V | inter-community edges are added532

with uniform probability.533

Erdos-Renyi graphs: This dataset is generated by the Erdos-Renyi model with the edge probability534

of 0.2 [29]. It fits the "one-to-one" mapping problem of graph translation. It contains pairs of (input,535

target) graphs. The target graph topology is the 2-hop connection of the input graph, where each536

edge in the target graph refers to the 2-hop reachability in the input graph (e.g., if node i is 2-hop537

reachable to node j in the input graph, then they are connected in the target graph). There are538

edge and node attributes for graphs in this dataset: the edge attribute E(i,j) denotes the existence of539

the edge, and node attributes are continuous values computed following the polynomial function:540

f(x) : y = ax2 + bx + c (a = 0; b = 1; c = 5), where x is the node degree and f(x) is the node541

attribute.542

Scale-free: This dataset is generated as a directed scale-free network [39], which is a network543

whose degree distribution follows power-law property [54]. It fits the "one-to-many" mapping graph544

translation problem. There are no node features in this dataset, and the goal is to learn the mapping545

from the input graph’s topology to the target graph’s topology. To generate a target graph, a node546

will by selected as target node with probability proportional to its in-degree, which will be linked to547

a new source node with probability of 0.41. Similarly, a node will be selected as the source node548

with the probability proportional to its out-degree, which will be linked to a new target node with549

the probability of 0.54. Then, a corresponding target graph is generated by adding m (number of550

nodes of the input graph) edges between two nodes. Thus, both input and target graphs are directed551

scale-free graphs.552

Waxman graphs: This datase contains graphs generated by the Waxman random graph model that553

places n nodes uniformly at random in a rectangular domain [55, 32]. There are three types of factors554

that are related to the generation of Waxman graphs: the independent graph factor b that controls555

node attributes, the independent spatial factor p that controls the overall node positions, and the556

graph-spatial correlated factor s that controls both graph and spatial density [32]. There are 80,000557

samples for training and 80,000 for testing.558

Random Geometric Graphs: This datase contains graphs generated by the random geometric graph559

model that places n nodes uniformly at random in a rectangular domain [32]. Two nodes are joined560

by an edge if their distance is larger than a threshold β = 12. The node attributes among a graph561

are generated in the same rule as that for generating Waxman graphs. There are 8,000 samples for562

training and 1,600 for testing in this dataset.563

B.12.1 License564

Barab’asi-Albert Graphs: The dataset is generated by [29]. The license is not specified.565

Community: The dataset is generated by [51], which is under MIT License. The license of the566

dataset is not specified.567

Erdos-Renyi graphs: The dataset is generated by [29]. The license is not specified.568

Scale-free: The dataset is generated by [39]. The license is not specified.569

Waxman graphs: The dataset is generated by [32]. The license is not specified.570

Random geometric: The dataset is generated by [32]. The license is not specified.571

C Evaluations572

C.1 Graph Generation573

Statistics-based evaluation measures the quality of the generated graphs by computing the distance574

between the graph statistic distribution of real graphs and generated graphs. In the deployed API, seven575
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typical graph statistics are considered, which are summarized as follows: (1) Node degree distribution:576

the empirical node degree distribution of a graph, which could encode its local connectivity patterns.577

(2) Clustering coefficient distribution: the empirical clustering coefficient distribution of a graph.578

Intuitively, the clustering coefficient of a node is calculated as the ratio of the potential number of579

triangles the node could be part of to the actual number of triangles the node is part of. (3) Orbit580

count distribution; the distribution of the counts of node 4-orbits of a graph. Intuitively, an orbit581

count specifies how many of these 4-orbits substructures the node is part of. This measure is useful in582

understanding if the model is capable of matching higher-order graph statistics, as opposed to node583

degree and clustering coefficient, which represent measures of local (or close to local) proximity. (4)584

Largest connected component: the size of the largest connected component of the graphs. (5) Triangle585

count: the number of triangles counted in the graph. (6) Characteristic path length: the average586

number of steps along the shortest paths for all node pairs in the graph. (7) Assortativity: the Pearson587

correlation of degrees of connected nodes in the graph. To calculate the distances regarding the above588

mentioned statistics, Average Kullback-Leibler Divergence and Maximum Mean Discrepancy (MMD)589

are utilized.590

Self-quality based evaluation measures the quality of the generated graphs: validity, uniqueness591

and novelty. The definition and calculation of the three metrics are provided as follows: (1) Validity:592

validity aims to evaluate the graphs by judging whether they preserve some properties. For example,593

for cycles graphs/Tree graphs, the validity is calculated as what percentage of generated graphs are594

actually cycles or trees [6]. For molecule graphs, validity is about the percentage of chemically valid595

molecules based on some domain specific rules [56]. (2) Uniqueness: ideally, high-quality generated596

graphs should be diverse and similar, but not identical. Thus, uniqueness is utilized to capture the597

diversity of generated graphs [57, 6, 56]. To calculate the uniqueness of a generated graph, the598

generated graphs that are sub-graph isomorphic to some other generated graphs are first removed.599

The percentage of graphs remaining after this operation is defined as Uniqueness. For example, if the600

model generates 100 graphs, all of which are identical, the uniqueness is 1/100 = 1%. (3) Novelty.601

Novelty measures the percentage of generated graphs that are not sub-graphs of the training graphs602

and vice versa [57]. Note that identical graphs are defined as graphs that are sub-graph isomorphic to603

each other. In other words, novelty checks if the model has learned to generalize unseen graphs.604

C.2 Graph Transformation605

Graph-property-based evaluation directly compares each generated graph to its label graph by606

measuring their similarity or distance based on some graph properties or kernels, such as the following:607

(1) random-walk kernel similarity by using the random-walk based graph kernel [23]; (2) combination608

of Hamming and Ipsen-Mikhailov distances(HIM) [58]; (3) spectral entropies of the density matrices;609

(4) eigenvector centrality distance [59]; (5) closeness centrality distance [60]; (6) Weisfeiler Lehman610

kernel similarity [61]; (7) Neighborhood Sub-graph Pairwise Distance Kernel [62] by matching pairs611

of subgraphs with different radii and distances.612

Mapping-relationship-based evaluation measures whether the learned relationship between the613

input and the generated graphs is consistent with the true relationship between the input and the real614

graphs. There are two kinds of relationship to be considered [5] as follows: (1) Explicit mapping615

relationship. Considering the situation where the true relationship between the input conditions616

and the generated graphs is known in advance, the evaluation can be conducted as follows: we617

quantitatively compare the property scores of the generated and input graphs to see if the change618

indeed meets the requirement. For example, one can compute the improvement of logP scores from619

the input molecule to the optimized molecule in molecule optimization task [63]. (2) Implicit mapping620

relationship. When the underlying patterns of the mapping from the input graphs to the real target621

graphs are implicit and complex to define and measure, a classifier-based evaluation metric can be622

utilized [39]. By regarding the input and target graphs as two classes, it assumes that a classifier that623

is capable of distinguishing the generated target graphs would also succeed in distinguishing the real624

target graphs from the input graphs. Specifically, a graph classifier is first trained based on the input625

and generated target graphs. Then this trained graph classifier is tested to classify the input graph and626

real target graphs, and the results will be used as the evaluation metrics.627
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D Tutorials628

We provide dataloaders, evaluators, as well as visualizers which simplify the pipeline for graph629

generation and transformation, as shown in Fig. 3, 4 and 5, respectively.630

Figure 3: Loading generation dataset.

Figure 4: Loading transforamtion dataset.
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Figure 5: Evaluation APIs.
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