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Abstract

Recently, instruction-following audio-language001
models have received broad attention for002
human-audio interaction. However, the ab-003
sence of benchmarks capable of evaluating004
audio-centric interaction capabilities has im-005
peded advancements in this field. Previous006
models primarily focus on assessing different007
fundamental tasks, such as Automatic Speech008
Recognition (ASR), and lack an assessment of009
the open-ended generative capabilities centered010
around audio. Thus, it is challenging to track011
the progression in the Large Audio-Language012
Models (LALMs) domain and to provide guid-013
ance for future improvement. In this paper,014
we introduce AIR-Bench (Audio InstRuction015
Benchmark), the first benchmark designed to016
evaluate the ability of LALMs to understand017
various types of audio signals (including human018
speech, natural sounds, and music), and further-019
more, to interact with humans in the textual for-020
mat. AIR-Bench encompasses two dimensions:021
foundation and chat benchmarks. The former022
consists of 19 tasks with approximately 19k023
single-choice questions, intending to inspect024
the basic single-task ability of LALMs. The025
latter one contains 2k instances of open-ended026
question-and-answer data, directly assessing027
the comprehension of the model on complex028
audio and its capacity to follow instructions.029
Both benchmarks require the model to generate030
hypotheses directly. We design a unified frame-031
work that leverages advanced language models,032
such as GPT-4, to evaluate the scores of gener-033
ated hypotheses given the meta-information of034
the audio. Experimental results demonstrate a035
high level of consistency between GPT-4-based036
evaluation and human evaluation. By revealing037
the limitations of existing LALMs through eval-038
uation results, AIR-Bench can provide insights039
into the direction of future research.040

1 Introduction041

Recent advancements in artificial general intelli-042

gence have been significantly driven by the emer-043

gence of large language models (LLMs) (Brown 044

et al., 2020; OpenAI, 2022, 2023; Chowdhery et al., 045

2022; Anil et al., 2023; Touvron et al., 2023a,b; Bai 046

et al., 2023a). These models exhibit remarkable 047

abilities in retaining knowledge, engaging in in- 048

tricate reasoning, and solving problems following 049

human intents. Motivated by the striking progress 050

in large language models (LLMs), the domain of 051

large audio-language models (LALMs) has under- 052

gone a revolutionary transformation. To perceive 053

and comprehend rich audio signals and further gen- 054

erate textual responses following human instruc- 055

tions, many works have been proposed, such as 056

SALMONN (Tang et al., 2023a), BLSP (Wang 057

et al., 2023a), Speech-LLaMA (Wu et al., 2023a), 058

and Qwen-Audio (Chu et al., 2023), showcasing 059

promising capabilities for audio-central dialogues. 060

However, previous LALMs (Tang et al., 2023a; 061

Wang et al., 2023a; Wu et al., 2023a; Chu et al., 062

2023; Huang et al., 2023b; Shen et al., 2023; Gong 063

et al., 2023; Wang et al., 2023b) have predomi- 064

nantly concentrated on evaluation in specific fun- 065

damental tasks. The absence of a standardized 066

benchmark for assessing the generative instruction- 067

following abilities of these models has resulted in 068

a reliance on showcasing examples or releasing the 069

chat models for public experimentation to demon- 070

strate their conversational skills. This approach 071

poses significant challenges for conducting fair and 072

objective comparisons across different research en- 073

deavors. Moreover, it tends to obscure the models’ 074

existing limitations, impeding the ability to monitor 075

advancements within the domain of LALMs. 076

For evaluation in audio domains, the majority of 077

research efforts have concentrated on the creation 078

of benchmarks tailored to individual tasks such as 079

LibriSpeech (Panayotov et al., 2015) and Common 080

Voice benchmark (Ardila et al., 2019) for ASR. 081

Beyond task-specific ones, benchmarks like SU- 082

PERB (Yang et al., 2021a) and HEAR (Turian et al., 083

2021) have been designed to test the versatility of 084
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self-supervised learning models in a wide variety of085

tasks. Regarding the assessment of LALMs’ ability086

to follow instructions, to the best of our knowl-087

edge, Dynamic-SUPERB (Huang et al., 2023a) is088

the only benchmark devoted to this aspect. Nev-089

ertheless, Dynamic-SUPERB only focuses on hu-090

man speech processing and does not extend to the091

assessment of models’ capabilities in producing092

open-ended generations such as dialogues.093

In this paper, we present AIR-Bench (Audio094

InstRuction Benchmark), a novel benchmark de-095

signed to evaluate the ability of LALMs to compre-096

hend various audio signals and to interact following097

instructions. AIR-Bench is characterized by three098

primary features: 1) Comprehensive audio sig-099

nals coverage. AIR-Bench offers comprehensive100

coverage of audio signals, including human speech,101

natural sounds, and music, ensuring a comprehen-102

sive evaluation of LALMs’ capabilities. 2) Hier-103

archical Benchmark Structure. The benchmark104

consists of foundation and chat benchmarks. The105

foundation benchmark comprises 19 distinct au-106

dio tasks with over 19,000 single-choice questions,107

with each question focusing only on a specific foun-108

dational ability. GPT-4 (OpenAI, 2023) extends the109

questions and candidate choices using dedicated110

designed prompts. The chat component consists of111

over 2,000 audio-prompted open-ended questions.112

To enhance the complexity of the audio and achieve113

a closer resemblance to the intricate audio encoun-114

tered in real-life situations, we propose a novel115

audio mixing strategy that incorporates loudness116

control and temporal dislocation. Specifically, we117

adjust the loudness and introduce different tempo-118

ral offsets during the mixing process of two audio119

clips. The resulting variations in relative loudness120

and temporal location are then recorded as addi-121

tional meta-information, contributing to a more122

comprehensive textual representation of the audio.123

The quality of data is upheld through automated124

filtering by GPT-4, followed by manual verifica-125

tion. 3) Unified, objective, and reproducible126

evaluation framework. Models are required to127

generate hypothesis sequences directly across both128

benchmarks to align more accurately with practical129

scenarios. Then, we employ GPT-4 to generate130

reference answers given meta-information through131

carefully constructed prompts. Given references132

and hypotheses, following Liu et al. (2023b); Bai133

et al. (2023b), we use GPT-4 (OpenAI, 2023) to134

judge whether the choice is correct for the founda-135

tion benchmark or score hypotheses for the chat136

benchmark. We further perform a second scoring 137

by swapping their positions to eliminate the posi- 138

tion bias. Based on comprehensive experiments on 139

9 LALMs, we observe that existing LALMs either 140

have limited audio understanding or instruction- 141

following capabilities, leaving significant room for 142

improvement in this field. 143

Our contribution is summarized below: 144

• AIR-Bench is the first generative evaluation 145

benchmark for large audio-language models, 146

encompassing a wide array of audio such 147

as speech, natural sounds, and music. AIR- 148

Bench is a large and hierarchical benchmark, 149

consisting of the foundation benchmark with 150

19 audio tasks and over 19k single-choice 151

questions, alongside a chat benchmark with 152

over 2k meticulously curated open-ended au- 153

dio questions for comprehensive evaluation. 154

• We propose a novel audio mixing strategy 155

with loudness control and temporal disloca- 156

tion to enhance the complexity of the audio. 157

• A unified, objective, and reproducible evalua- 158

tion framework has been developed to assess 159

the quality of generative hypotheses. 160

• We conducted a thorough evaluation of 9 mod- 161

els for the purpose of benchmarking. The eval- 162

uation code, datasets, and an open leaderboard 163

will be made publicly available soon. 164

2 Related Work 165

Benchmarks for Audio Processing. Previous 166

studies have primarily focused on evaluating 167

the specific fundamental capabilities of mod- 168

els. In the field of speech processing, automatic 169

speech recognition is one of the most popular 170

tasks, with representative benchmarks including 171

Librispeech (Panayotov et al., 2015), Common 172

Voice (Ardila et al., 2019), and FLEURS (Con- 173

neau et al., 2022). Additionally, there are various 174

benchmarks available for different speech process- 175

ing tasks such as speech-to-text translation (Wang 176

et al., 2020a,b; Jia et al., 2022) and emotion recog- 177

nition (Cao et al., 2014; Livingstone and Russo, 178

2018). In the field of sound processing, several 179

benchmarks have emerged such as Clotho (Drossos 180

et al., 2020) and Audiocaps (Kim et al., 2019a) 181

for automatic audio captioning, and AVQA (Yang 182

et al., 2022) for sound question answering. In the 183

domain of music processing, numerous datasets are 184
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available, including MusicCaps (Agostinelli et al.,185

2023) for automatic music captioning, and MUSIC-186

AVQA (Li et al., 2022) for music question answer-187

ing. Note that most existing question-answering188

benchmarks, such as Clotho-AQA, AVQA, and189

MUSIC-AVQA, have highly constrained answer190

formats for ease of close-ended evaluation or con-191

version into classification tasks, rather than sup-192

porting open-ended generation.193

Besides the aforementioned datasets that focus194

on specific tasks, there are benchmarks like SU-195

PERB (Yang et al., 2021b) and HEAR (Turian196

et al., 2022) for comprehensive evaluation of self-197

supervised learning models. When it comes to as-198

sessing the ability of LALMs to follow instructions,199

Dynamic-SUPERB is the only benchmark dedi-200

cated to this aspect. However, Dynamic-SUPERB201

focuses on human speech processing and does not202

cover open-ended dialogue generation. In contrast,203

AIR-Bench is the first large-scale generative evalu-204

ation benchmark for large audio-language models,205

encompassing various audio types such as speech,206

natural sounds, and music.207

Large Audio-Language Models following Hu-208

man Instruction Recently, there has been sig-209

nificant interest in instruction-following end-to-210

end audio-language models. Several models have211

emerged, each focusing on different audio do-212

mains. For instance, there are models specif-213

ically focusing on speech processing, such as214

SpeechGPT (Zhang et al., 2023), BLSP (Wang215

et al., 2023a), and LLaSM (Shu et al., 2023). Simi-216

larly, there are models tailored for sound process-217

ing, like LTU (Gong et al., 2023), and for music218

processing, such as LLark (Gardner et al., 2023).219

In contrast, SALMONN (Tang et al., 2023b) and220

Qwen-Audio (Chu et al., 2023) are trained using221

various audio types, showcasing strong universal222

audio understanding abilities. However, these mod-223

els are evaluated on different fundamental tasks,224

making it difficult to conduct a fair comparison.225

Furthermore, these models rely on showcasing ex-226

amples or public demos to demonstrate their con-227

versational skills and do not perform rigorous ex-228

periments to evaluate their instruction-following229

abilities. To address these issues, this paper in-230

troduces AIR-Bench, which proposes two bench-231

marks - the foundation benchmark and the chat232

benchmark, enabling a fair comparison of the233

models’ foundational abilities and their high-level234

instruction-following capabilities respectively.235

Figure 1: The overview of AIR-Bench. AIR-Bench
includes a range of ability dimensions, namely the foun-
dation and chat abilities, which cater to various audio
types such as speech, sound, and music. The founda-
tional dimension comprises 19 distinct leaf abilities,
each of which is assessed using a single-choice question
format. The chat dimension assesses abilities through
an open-ended question-and-answer format, incorporat-
ing diverse audio sources and mixed audio.

3 AIR-Bench 236

There exist three unique characteristics that dif- 237

ferentiate AIR-Bench from existing benchmarks 238

for audio understanding: i) AIR-Bench is the first 239

work to incorporate task evaluation from all types 240

of audio in a hierarchical taxonomy; ii) AIR-Bench 241

is the first generative evaluation benchmark that 242

handles the free-form output of LALMs; iii) AIR- 243

Bench adopts GPT-4-based automatic evaluation 244

yielding trustworthy evaluation results with afford- 245

able cost. In Sec. 3.1, we present the hierarchical 246

taxonomy of AIR-Bench and discuss the design phi- 247

losophy behind it. In Sec. 3.2 and Sec. 3.3, we in- 248

troduce how we collect the audio-central question- 249

answer pairs for foundation and chat tasks. In 250

Sec. 3.4, we present the evaluation framework. 251

3.1 Overview 252

Chat interaction based on audio is a complex task 253

that encompasses a variety of fundamental compe- 254

tencies. For instance, humans are able to respond 255

to sound events due to their capacities for sound 256

perception and common sense reasoning. Similarly, 257

the ability to respond to others’ spoken words is 258

predicated on foundational skills such as speech-to- 259

text recognition and emotion recognition. Based on 260
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the motivation, we propose the hierarchical bench-261

mark AIR-Bench by dividing it into foundation and262

chat benchmarks. The fundamental one is designed263

to assess capabilities across individual subtasks,264

serving to diagnose weaknesses within the model,265

while the chat benchmark directly evaluates com-266

plicated audio-based open-ended questions. The267

data sample is denoted as (A,Q,R), where A de-268

notes the audio, Q represents the query and R is269

the reference answer.270

• Foundation benchmark: The purpose of the271

benchmark is to evaluate the individual capa-272

bilities of foundational tasks. To reduce the273

task difficulties and enable the evaluation of274

various models, we utilize the single-choice275

question-answering format. Specifically, the276

query Q is formed by concatenating a ques-277

tion q and candidate choices C, denoted as278

Q = (q, C). We curate a collection of 19 au-279

dio tasks that span multiple audio types, such280

as speech, music, and sound. These tasks in-281

clude tasks like emotion recognition, acoustic282

scene classification, and music QA. 1283

• Chat benchmark: The benchmark encom-284

passes any form of question and answer pairs285

that could arise from audio signals, with the286

aim of reflecting the model’s ability to gen-287

uinely follow user instructions to perform per-288

ceiving, reasoning, and interacting within real-289

world applications. According to the type of290

audio, the benchmark is categorized into four291

dimensions: speech, sound, music, and mixed292

audio, where mixed audio refers to audio that293

is a mixture of multiple types of audio, such294

as human voice with background music.295

The overview of AIR-Bench is shown in Fig. 1.296

3.2 Foundation Benchmark297

Data Source. We collected over 19k data sam-298

ples for the foundation dimension, encompassing299

19 different subtasks. The data source and statistics300

are provided in Table 1. To ensure a fair and com-301

prehensive evaluation of each capability, we aimed302

for an even distribution of problems related to dif-303

ferent abilities during the data collection process.304

All audio sources were obtained from the original305

dev or test subsets to prevent data leakage.306

1For transcription tasks such as ASR and S2TT, we in-
corporate them into the chat benchmark since they are not
suitable for the single-choice task format.

Types Task Dataset-Source Num

Speech

Speech grounding Librispeech (Panayotov et al., 2015) 0.9k
Spoken language identification Covost2 (Wang et al., 2020b) 1k

Speaker gender recognition
(biologically)

Common voice (Ardila et al., 2019)
MELD (Poria et al., 2018)

1k

Emotion recognition
IEMOCAP (Busso et al., 2008)

MELD (Poria et al., 2018)
1k

Speaker age prediction Common voice (Ardila et al., 2019) 1k
Speech entity recognition SLURP (Bastianelli et al., 2020) 1k

Intent classification SLURP (Bastianelli et al., 2020) 1k
Speaker number verification VoxCeleb1 (Nagrani et al., 2020) 1k
Synthesized voice detection FoR (Reimao and Tzerpos, 2019) 1k

Sound

Audio grounding AudioGrounding (Xu et al., 2021) 0.9k
Vocal sound classification VocalSound (Gong et al., 2022) 1k

Acoustic scene classification
CochlScene (Jeong and Park, 2022)

TUT2017 (Mesaros et al., 2017)
1k

Sound question answering
Clotho-AQA (Lipping et al., 2022)

AVQA (Yang et al., 2022)
1k

Music

Music instruments classification
Nsynth (Engel et al., 2017)

MTJ-Jamendo (Bogdanov et al., 2019)
1k

Music genre classification
FMA (Defferrard et al., 2016)

MTJ-Jamendo (Bogdanov et al., 2019)
1k

Music note analysis-pitch Nsynth (Engel et al., 2017) 1k
Music note analysis-velocity Nsynth (Engel et al., 2017) 1k
Music question answering MUSIC-AVQA (Li et al., 2022) 0.8k
Music emotion detection MTJ-Jamendo (Bogdanov et al., 2019) 1k

Table 1: The statistics of the foundation benchmark.

Types Dataset-Source Num Question Example

Speech

Fisher (Cieri et al., 2004)
SpokenWOZ (Si et al., 2023)

IEMOCAP (Busso et al., 2008)
Common voice (Ardila et al., 2019)

800
Did the first speaker have any more
questions or need further information?

Sound Clotho (Drossos et al., 2020) 400
What should you do to the cloth
according to the voice in the audio?

Music MusicCaps (Agostinelli et al., 2023) 400

How might the elements of the music
in the audio, despite its poor sound
quality, musically convey a sense of
patriotism and ceremonial grandeur
within a 150-word essay?

Mixed

Audio

Common voice (Ardila et al., 2019)
AudioCaps (Kim et al., 2019b)

200
What sound is heard along with the male
speaker in his twenties?

Common voice (Ardila et al., 2019)
MusicCaps (Agostinelli et al., 2023)

200
What type of melody can be heard in the
background of the male speaker’s audio?

Table 2: The statistics and examples of the chat bench-
mark.

Single-choice Query and Reference. The query 307

Q is formed by concatenating a question q and can- 308

didate choices C. For the question q, we mainly 309

construct questions through GPT-4 (OpenAI, 2023), 310

except for QA tasks since the datasets inherently 311

contain questions and we can directly re-use them. 312

Specifically, we design the prompt for the distinct 313

task and provide three questions as demonstrations. 314

Subsequently, GPT-4 generates additional diverse 315

questions based on these inputs. The generated 316

questions are manually reviewed, and 50 different 317

questions are selected for each task. The variability 318

in question format aims to evaluate the model’s abil- 319

ity to follow instructions rather than being overly 320

reliant on specific templates. For each question, 321

we further generate candidate choices C from dif- 322

ferent sources: 1) For tasks with choices in orig- 323

inal datasets like AVQA (Yang et al., 2022), we 324

directly re-use it; 2) For classification tasks, we 325

randomly select options from the predetermined 326

set of categories to serve as candidate choices; 3) 327

For other tasks, we prompt GPT-4 to generate can- 328

didate choices directly, consisting of one correct 329

option and three incorrect options. We encourage 330
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these incorrect options to resemble the correct one,331

making the single-choice task more challenging.332

The reference answer is the golden correct choice.333

To avoid position bias, the candidate choices are334

randomly shuffled. We provide examples of each335

task in Table 6 of the Appendix.336

3.3 Chat Benchmark337

Emotion: relax
Gender: male
Speech Transcription: This piece of music 
truly brings me a sense of relaxation.

Music Caption:  soft piano 
accompaniment and takes off to an 
upbeat groove.

loundess�
control

loundess�
control

+3db -3db
Temporal�Dislocation�Mixing

Age:  teens
Gender:   male
Speech Transcription: 
This piece of music truly brings me a sense of relaxation.
Music Caption:  
soft piano accompaniment and takes off to an upbeat groove.
Ahead: meanwhile
Louder: speech

Figure 2: Loudness and temporal location controlled
mixing strategy. Loudness control aims to provide
Louder meta-information, indicating which audio clip
exhibits a higher volume. Temporal dislocation mixing
aims to provide the Ahead meta-information, referring
to the temporal relationship between the two audio clips.

Data Source and Audio Mixing Strategy. As338

shown in Table 2, we have collected more than 2k339

data samples spanning various audio types includ-340

ing speech, sound, music, and mixed audio. The341

purpose of introducing mixed audio is to augment342

the complexity of the audio signals and make it343

closer to audio from real-world audio scenarios. To344

achieve this, we propose a novel mixing strategy345

involving loudness control and temporal disloca-346

tion, as illustrated in Fig. 2. Specifically, we can347

adjust the relative loudness and temporal relation-348

ship between two audio clips for mixing. Then, we349

can create a complex audio signal that combines350

their meta-information, such as speech transcrip-351

tion accompanied by a background music caption.352

Furthermore, the meta-information also includes353

labels indicating which audio clip is louder and354

which is ahead in the temporal sequence.355

Open-ended Query and Reference. To prompt356

GPT-4 to generate open-ended question-answer357

pairs for audio, we should interpret the rich in-358

formation in each audio with texts. We collect all359

of meta-information such as gender, age, emotion,360

transcription, language for speech, caption for nat- 361

ural sound, and instrument, caption for music from 362

the original dataset. Rather than relying on pre- 363

trained models to extract this meta-information for 364

each audio clip, we adopt the ground truth meta- 365

information to avoid potential errors. 366

After gathering meta-information about the au- 367

dio, we manually construct prompts (see Ap- 368

pendix 5 for guiding GPT-4 in generating question- 369

answer pairs that specifically focus on different 370

abilities). These prompts are carefully designed to 371

ensure a comprehensive coverage of chat interac- 372

tions, taking into consideration the diverse range 373

of audio signals involved. We design the prompts 374

to facilitate the generation of questions related to 375

the perception and reasoning for different types 376

of audio. For the natural sound, the prompts are 377

further tailored to generate questions that involve 378

determining appropriate responses to sound events 379

within a specific scenario. For the music category, 380

prompts are devised to elicit creative writing and 381

story-generation questions based on music compo- 382

sition. To ensure the quality of the generated re- 383

sults, these prompts are designed in a manner that 384

enables GPT-4 to automatically filter out responses 385

that are not directly related to audio. Additionally, 386

we manually reviewed all the question-answer pairs 387

to ensure the quality of the questions and the relia- 388

bility of the answers. The generated answers from 389

GPT-4 are considered as references. 390

3.4 Evaluation Strategy 391

In this paper, we leverage a unified evaluation 392

method, as shown in Fig. 3, by viewing both the 393

single-choice question in the foundation bench- 394

mark, and the open-ended question in the chat 395

benchmark, as the generation tasks for the purpose 396

of better alignment with actual use case scenarios 397

of LALMs. That is, given audio and questions, 398

LALMs are required to directly generate the an- 399

swers as hypotheses, rather than comparing the per- 400

plexity on the probability of different reference an- 401

swers via teacher forcing. Automated and accurate 402

evaluation of open-ended generation is a challeng- 403

ing problem. Traditional automatic metrics such 404

as WER, ROUGE (Lin, 2004), METEOR (Baner- 405

jee and Lavie, 2005) have shown a low correlation 406

with human judgments (Liu et al., 2023a). Recently, 407

LLM-based evaluation, such as GPT-4, shows bet- 408

ter human preference alignment (Zheng et al., 2023; 409

Liu et al., 2023a). In this work, we adopt reference- 410

based GPT-4 evaluators to judge the generation 411
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Foundation：
B. Sad

Chat:
The speaker is referring to 
attending a funeral.

Foundation:
How do you feel about the speaker's 
emotional tone?
A. Neutral     B. Sad
C. Angry       D. Surprised
Answer: B

Chat:
What event is the speaker likely 
referring to?

Emotion: Sad
Gender: Male 
Transcription: and just going 
to the funeral it’s.

Foundation:
Based on the speaker's 
emotional tone, it seems like 
they are feeling sad.

Chat: 
Attending a funeral.

Audio

Question

Meta-Information

Hypothesis

Reference
Foundation: Correct

Chat：9

Audio LLM

Generator

Evaluator

Figure 3: Automated generative evaluation for large audio-language models (LALMs). In the evaluation framework,
LALMs are provided with audio input along with a corresponding question, following which they generate a
hypothesis. The performance of the hypothesis is then assessed using the GPT evaluator, which compares it against
a reference answer by considering the meta-information and the question. For the foundation benchmark, the
reference answer is the golden choice extracted from the meta-information, and the evaluation score is binary, with
0 indicating an incorrect answer and 1 representing a correct answer. For the chat benchmark, the reference answer
is produced by the GPT-4 generator. The reference answer serves as a reference for scoring, stabilizing the scoring
process. The output score for the chat benchmark ranges from 1 to 10, based on the assessment of usefulness,
relevance, accuracy, and comprehensiveness of the hypothesis.

quality of LALMs in the audio domain.412

However, GPT-4 cannot be directly used as an413

evaluator since it cannot receive audio inputs. To414

address this limitation, we offer the GPT-4 model415

rich meta-information of audio to replace audio416

input. Subsequently, we present questions and em-417

ploy GPT-4 to evaluate the hypotheses produced418

by LALMs. To ensure consistency and fairness419

for evaluation, each model’s answer is compared420

against the same reference answer for scoring. For421

the foundation benchmark, the reference answer422

is the golden choice, and we prompt the evalua-423

tor to determine whether the hypothesis is correct424

or not. For the chat benchmark, the reference an-425

swer is generated by GPT-4, and we prompt the426

evaluator to provide a score ranging from 1 to 10,427

based on the assessment of usefulness, relevance,428

accuracy, and comprehensiveness of the hypothesis.429

The prompts used in the evaluation process can be430

found in Appendix 5. Note that for the chat bench-431

mark, the role of the reference is not to serve as the432

ground truth answer, but rather as a reference for433

scoring by GPT-4, in order to stabilize its scoring.434

Additionally, to mitigate any potential position bias435

resulting from the order of hypothesis and refer-436

ence, following Bai et al. (2023b), we perform a437

second scoring round by swapping their positions438

and then compute the average of the two scores.439

Unless otherwise specified, the GPT-4 evaluator is 440

GPT-4 Turbo, the gpt-4-0125-preview version 2. 441

4 Experiments 442

4.1 Models 443

We evaluate the performance of various LALMs 444

with instruction-following capabilities. These 445

models are either open-sourced or accessible 446

through public APIs, such as SpeechGPT (Zhang 447

et al., 2023), BLSP (Wang et al., 2023a), 448

SALMONN (Tang et al., 2023a), Qwen-Audio- 449

Chat (Chu et al., 2023), and Qwen-Audio Turbo 3. 450

Additionally, we consider large multi-modality 451

models with audio understanding abilities like 452

PandaGPT (Su et al., 2023), Macaw-LLM (Lyu 453

et al., 2023), and NExT-GPT (Wu et al., 2023b). 454

Besides, we also incorporate a sequential approach 455

comprising Whisper-large-v2 (Radford et al., 2023) 456

and GPT-4 Turbo (OpenAI, 2023) for tasks related 457

to speech as a baseline. We evaluate the perfor- 458

mance of all these models on both fundamental 459

and chat benchmarks, utilizing their latest publicly 460

available checkpoints. In cases of multiple check- 461

points, we select the model with the largest param- 462

2https://platform.openai.com/docs/models/gpt-4-and-gpt-
4-turbo

3https://help.aliyun.com/zh/dashscope/developer-
reference/qwen-audio-api

6



Benchmark Foundation Chat

Categories Speech Sound Music Average Speech Sound Music Mixed
Audio Average

SALMONN 37.8% 33.0% 37.1% 36.0% 6.16 6.28 5.95 6.08 6.11
Qwen-Audio-Chat 58.7% 60.2% 44.8% 54.5% 6.47 6.95 5.52 5.38 6.08
Qwen-Audio Turbo 63.4% 61.0% 48.9% 57.8% 7.04 6.59 5.98 5.77 6.34

BLSP 36.6% 31.4% 26.1% 31.4% 6.17 5.55 5.08 4.52 5.33
PandaGPT 39.0% 43.6% 38.1% 40.2% 3.58 5.46 5.06 2.93 4.25

Macaw-LLM 32.2% 30.1% 29.7% 30.7% 0.97 1.01 0.91 1.00 1.01
SpeechGPT 34.3% 27.5% 28.1% 30.0% 1.57 0.95 0.95 1.14 1.15
NExT-GPT 33.6% 32.2% 28.9% 31.5% 3.86 4.76 4.18 2.92 4.13

Whisper+GPT-4 53.6% / / / 7.54 / / / /

Table 3: The comparison of different LALMs on AIR-Bench.

Model Name Exact
Matching

GPT
Align

SALMONN 97.3% 100.0%
Qwen-Audio-Chat 30.7% 100.0%
Qwen-Audio Turbo 48.2% 100.0%

BLSP 100.0% 100.0%
PandaGPT 30.8% 100.0%

Macaw-LLM 0.1% 100.0%
SpeechGPT 0.0% 100.0%
NExT-GPT 98.1% 100.0%

Table 4: The success rate of different strategies of match-
ing hypotheses with the golden choices for the founda-
tion benchmark.

eter size. For all models, we directly follow their463

default decoding strategies for evaluation.464

4.2 Main Results465

The results of LALMs are presented in Table 3.466

The detailed results are shown in Table 5. For the467

foundation benchmark, we also conduct a compari-468

son between the use of an exact matching strategy469

with our proposed GPT-4 alignment strategy. As470

an example, we try to match ‘B’, ‘B.’, ‘B)’, etc.471

with LALMs’ hypothesis for the exact matching.472

The results are shown in Table 4. We can find that473

BLSP and SALMONN have a high success rate474

in directly generating the choice, showcasing their475

strong ability to follow single-choice instruction.476

However, we find that it is challenging to precisely477

extract the predicted choice from the hypotheses of478

other models due to significant variations in the out-479

put formats of different LALMs. However, with the480

assistance of GPT-4 as the evaluator, the success481

rate for all models can be improved to 100%.482

According to Table 3, Qwen-Audio-Chat and483

Qwen-Audio Turbo demonstrate superior perfor-484

mance in the foundation benchmark, surpassing 485

other models in the domains of speech, sound, and 486

music. Second to the two models, PandaGPT and 487

SALMONN also exhibit noteworthy performances. 488

Regarding the chat benchmark, Qwen-Audio Turbo 489

achieves the highest average score, followed by 490

SALMONN and Qwen-Audio-Chat with scores of 491

6.11 and 6.08, respectively. Among these models, 492

SALMONN outperforms others in terms of mixed 493

audio understanding. Note that the speech dimen- 494

sion in the foundation benchmark includes tasks 495

beyond speech transcriptions, such as speaker gen- 496

der, age, and emotion prediction, while the speech 497

in the chat benchmark primarily revolves around 498

speech transcriptions. Thus, Whisper plus GPT-4 499

receives a relatively low score in the foundation 500

benchmark but obtains the highest score in the chat 501

benchmark. 502

Based on these results, we have several observa- 503

tions: 1) The existing LALMs either have limited 504

audio understanding or instruction-following capa- 505

bilities. For instance, Qwen-Audio Turbo achieves 506

the highest average score in both foundation and 507

chat benchmarks while the model displays a weak 508

proficiency in following single-choice instructions 509

such as often directly generating a full sentence 510

semantically akin to one of the choices, and thus 511

receives a low success rate for the exact matching; 512

2) As for chat abilities related only to speech tran- 513

scription, none of the models surpass the sequential 514

baseline Whisper plus GPT-4. 515

4.3 Human Evaluation 516

To evaluate the consistency between the evalua- 517

tions of GPT-4 and human judgments, we design 518

experiments for both the foundation and chat bench- 519

marks. For the foundation benchmark, we instruct 520

7



(a) (b) Human evaluation for (c) Positional bias of
the foundation benchmark the chat benchmark evaluation

Figure 4: The experiments of human evaluation and the position bias of GPT-4 evaluator. Figure (a) and (b) are the
results of consistency between the GPT-4 evaluator and human judgment on the foundation benchmark and chat
benchmark, respectively. Figure (c) refers to the result of scores by interchanging the position of the hypothesis and
reference during evaluation on the chat benchmark.

the testers to determine which option aligns closest521

with the hypothesis. We then compare the option522

selected by human testers with the option chosen by523

GPT-4 to assess the extent of agreement. For this524

consistency analysis, we employed Qwen-Audio-525

Chat as a representative model and randomly se-526

lected 400 questions from the benchmark. These527

questions were then evaluated by three native En-528

glish speakers. Additionally, we also compared the529

performance of GPT-4 with GPT-3.5 Turbo. As530

depicted in Figure 4 (a), GPT-4 Turbo, serving as531

the evaluator, exhibited a high level of consistency532

at 98.2% with human judgments. Comparatively,533

GPT-3.5 Turbo had a slightly lower consistency534

rate of 96.4%.535

Regarding the chat benchmark, obtaining a nu-536

merical score on a scale of 1 to 10 directly from537

testers poses challenges. Therefore, we resort to a538

pairwise comparison of the models instead. Testers539

listen to audio and compare the performance of540

both models based on their usefulness, relevance,541

accuracy, and comprehensiveness to the given ques-542

tion, indicating their preference as either “A is bet-543

ter”, “B is better”, or “Both are equal”. Subse-544

quently, we convert the GPT-4 scores into the same545

preference-based rating as the human testers for546

any two models. We then assess the consistency547

between the two sets of results. For the chat bench-548

mark, we conduct pairwise comparisons among549

Qwen-Audio-Chat, SALMONN, BLSP, and GPT-550

4. We randomly select 200 questions and have551

them evaluated by three native English speakers.552

As depicted in Figure 4 (b), the pairwise preference553

consistency scored above 70%, demonstrating a554

high level of agreement.555

4.4 Ablation Study of Positional Bias 556

In our evaluation framework, we adopt a strategy of 557

scoring twice by interchanging the positions of the 558

hypothesis and reference and calculating the aver- 559

age of the two scores. This approach helps mitigate 560

the bias that may arise from the positional place- 561

ment. The outcomes of these two evaluations are 562

presented in Figure 4 (c). We observe that the GPT- 563

4 evaluator exhibits a clear bias in scoring when 564

the hypothesis is placed before the reference. This 565

highlights the importance of conducting a second 566

scoring to account for addressing this bias. 567

5 Conclusion 568

In this paper, we present AIR-Bench, the first gen- 569

erative evaluation benchmark designed specifically 570

for audio-language models. AIR-Bench comprises 571

19 audio tasks with over 19k single-choice ques- 572

tions in the foundation benchmark, as well as over 573

2k open-ended audio questions in the chat bench- 574

mark. Notably, the benchmark covers diverse au- 575

dio types such as speech, natural sounds, and mu- 576

sic. We also propose a novel audio mixing strategy 577

to simulate audio from real-world scenarios more 578

accurately. A standardized, objective, and repro- 579

ducible evaluation framework is employed to au- 580

tomatically assess the quality of hypotheses gener- 581

ated by LALMs. We conduct a thorough evaluation 582

of 9 prominent open-source LALMs. Additionally, 583

we plan to launch and maintain a leaderboard that 584

will serve as a platform for the community to ac- 585

cess and compare model performance consistently 586

over time. 587
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6 Limitations588

The objective of AIR-Bench is to develop a large-589

scale, extensive and generative evaluation frame-590

work that encompasses a wide range of audio do-591

mains and tasks. However, AIR-Bench currently592

has several limitations. Firstly, it does not incor-593

porate tasks involving multiple audio comparisons,594

such as assessing music coherence, for both the595

foundation and chat benchmark. Besides, AIR-596

Bench does not encompass the evaluation of multi-597

turn dialogues that may involve multiple audio in-598

puts. For evaluation, AIR-Bench relies on a power-599

ful and robust evaluator such as GPT-4. However,600

the availability and accessibility of the GPT-4 API601

are external factors beyond our control. In the event602

that GPT-4 transitions to a closed-source model or603

implements higher pricing standards in the future,604

alternative evaluators will need to be explored and605

considered.606

7 Ethical Considerations607

The AIR-Bench initiative uses publicly available608

datasets to create a collection of relevant question-609

and-answer data. It then uses automated methods610

to evaluate this data, which is a more efficient al-611

ternative to manually evaluating it. However, there612

are challenges with this automated evaluation ap-613

proach, including the potential for data misuse and614

the introduction of biases. To prevent data mis-615

use, we follow the licenses and usage guidelines616

associated with the original open-source materi-617

als when generating related data. It’s important to618

point out that the automated evaluation could be619

biased. These biases may come from the datasets620

themselves or the scoring algorithms used, causing621

differences between automated evaluation results622

and human judgment. Therefore, the outcomes623

obtained from automated evaluations should be624

viewed with caution and used as a general bench-625

mark, rather than a definitive measure.626
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A Detailed Results of Foundation 966

Benchmark 967

In Table 5, we delineate the performance assess- 968

ment for each model across the various tasks on 969

the foundation benchmark. With the exception 970

of Speaker Gender Recognition and Synthesized 971

Voice Detection, which are binary-choice tasks, all 972

other tasks necessitate a selection from four op- 973

tions. As such, a random selection in the Speaker 974

Gender Recognition and Synthesized Voice Detec- 975

tion datasets would theoretically achieve an accu- 976

racy of 50%, while the expected accuracy for ran- 977

dom choices across the remaining datasets stands 978

at 25%. Consequently, any performance metrics 979

that approximate these random baselines are indica- 980

tive of an absence of discernible proficiency in the 981

respective tasks. 982

B GPT Prompts for the Chat benchmark 983

In Figure 5, we display the carefully crafted 984

prompts that we have developed on our chat bench- 985

mark. The figure is divided into two sections, the 986

upper section contains prompts designed specifi- 987

cally for generating question-answer pairs related 988

to reasoning, while the lower section features 989

prompts aimed at assessing the chat performance 990

scores of the models. 991

When generating questions and reference an- 992

swers, we guide the process by specifying the type 993

of questions to be elicited, allowing GPT-4 to au- 994

tomatically exclude data that is less amenable to 995

question formulation. For the evaluation of the chat 996

performance scores, we instruct GPT-4 to take a 997

multifaceted approach, scoring both the reference 998

answers and the model responses. This ensures 999

that the reference answers consistently serve as a 1000

standard for comparison. 1001

C Examples of the Foundation 1002

Benchmark 1003

In Table 6, we present data examples for each task 1004

within the foundation benchmark. 1005

D Examples of LALMs’ responses 1006

In Figure 6, we illustrate a representative response 1007

from various models on the foundation benchmark. 1008

The upper portion of the figure displays the ques- 1009

tion along with the metadata for the corresponding 1010

audio. This metadata is not provided as input to 1011

the models under evaluation, the models only have 1012

12



You are a helpful and precise assistant for checking the quality of the answer.

[Detailed Audio Description]

[Question]

[The Start of Assistant 1s Answer]

[The End of Assistant 1s Answer]
[The Start of Assistant 2s Answer]

[The End of Assistant 2s Answer]
[System]
We would like to request your feedback on the performance of two AI assistants in 
response to the user question and audio description displayed above. AI assistants are 
provided with detailed audio descriptions and questions.
Please rate the helpfulness, relevance, accuracy, and comprehensiveness of their responses. 
Each assistant receives an overall score on a scale of 1 to 10, where a higher score indicates 
better overall performance. Please first output a single line containing only two values 
indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a 
space. In the subsequent line, please provide a comprehensive explanation of your 
evaluation, avoiding any potential bias and ensuring that the order in which the responses 
were presented does not affect your judgment.

     Format of Prompt for Creating QA in Chat Benchmark
[System Prompt]
You are an AI audio assistant capable of analyzing sound. You will create some questions 
and answers. The questions you pose should simulate what queries might arise when a 
person hears this sound.

[Question & Answer Requirements]
Here I will give you the detailed requirements for creating questions in the following 
aspects. (1)Create some relatively difficult questions, and using the audio information I've 
provided you, ask questions that require reasoning, such as what to do next, and how to 
react. (2)If you find the sound too simple to generate any complex questions, then output 
"No QA Pairs." (3)Don't explain your question and answer. (4)Do not generate answers for 
questions that are uncertain or unknown. (5)Do not include any descriptions of the sound in 
the question, as this would require the user to first know what the sound is. (6)Your output 
format is either "No QA Pairs" or several dict containing key "Question" and "Answer" in a 
list.

[Detailed Audio Description]
The list in the next line provides descriptions of the audio, with each sentence being an 
annotation of the audio made by different annotators. To reiterate, do not mention any 
information about this audio clip in the question, use "the sound" as a substitute.

     Format of Prompt for Scoring in Chat Benchmark

Figure 5: GPT prompts for creating QA in the foundation benchmark and scoring in the chat benchmark.
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Categories Qwen-Audio Qwen-Audio Turbo SALMONN BLSP NExT-GPT SpeechGPT PandaGPT Whisper+GPT-4
Speech grounding 56.1% 45.4% 25.3% 25.0% 25.4% 28.8% 23.0% 35.0%
Spoken language

identification 92.8% 95.9% 28.1% 30.8% 23.7% 39.6% 34.6% 96.8%

Speaker gender
recognition 67.2% 82.5% 35.5% 33.2% 57.0% 29.2% 66.5% 21.9%

Emotion recognition 43.2% 60.0% 29.9% 27.4% 25.7% 37.6% 26.0% 59.5%
Speaker age
prediction 36.0% 58.8% 48.7% 51.2% 62.4% 20.4% 42.5% 41.1%

Speech entity
recognition 71.2% 48.1% 51.7% 37.2% 26.1% 35.9% 34.0% 69.8%

Intent classification 77.8% 56.4% 36.7% 46.6% 25.6% 45.8% 28.5% 87.7%
Speaker number

verification 35.3% 54.3% 34.3% 28.1% 25.4% 32.6% 43.2% 30.0%

Synthesized voice
detection 48.3% 69.3% 50.0% 50.0% 30.8% 39.2% 53.1% 40.5%

Audio grounding 23.9% 41.6% 24.0% 34.6% 62.2% 26.1% 38.3% /
Vocal sound
classification 84.9% 78.1% 45.3% 29.8% 23.5% 26.2% 31.6% /

Acoustic scene
classification 67.5% 61.3% 34.1% 25.2% 24.1% 23.7% 55.7% /

Sound question
answering 64.6% 62.8% 28.4% 36.1% 18.8% 33.9% 48.7% /

Music instruments
classification 59.1% 59.6% 41.3% 22.8% 24.3% 29.1% 47.7% /

Music genre
classification 71.2% 77.1% 45.3% 26.1% 28.1% 29.3% 39.8% /

Music note
analysis-pitch 28.6% 30.1% 26.4% 23.5% 25.1% 24.1% 26.4% /

Music note
analysis-velocity 25.4% 25.1% 22.8% 24.9% 23.1% 25.2% 27.2% /

Music question
answering 48.2% 62.5% 54.6% 31.0% 47.1% 31.3% 50.7% /

Music emotion detection 36.1% 39.0% 32.2% 28.3% 25.4% 29.7% 36.7% /

Table 5: The accuracy of each model across all tasks in the foundation benchmark.

access to the audio and the question posed. The1013

lower two columns of the figure document the re-1014

sponses from the 9 models being tested. Similarly,1015

an example of responses from various models on1016

the chat benchmark can be seen in Figure 7.1017

E Details in Human Evaluation1018

We conducted a pairwise crowd worker evaluation1019

to assess the alignment between the judgments de-1020

rived from GPT-4 and those of human evaluators1021

for both the foundation and chat benchmarks. Each1022

pair of evaluations was scrutinized by three native1023

English-speaking judges.1024

• For the foundation benchmark, we randomly1025

selected 400 questions from the pool of model1026

responses. These were accompanied by both1027

GPT-3.5 and GPT-4 alignment results. Eval-1028

uators were instructed to ascertain whether1029

the responses provided by GPT-3.5 Turbo and1030

GPT-4 Turbo was accurate. The screenshots1031

of instructions for the foundation benchmark1032

is shown in Figure 8.1033

• For the chat benchmark, we randomly chose1034

200 dialogues from the responses generated1035

by Qwen-Audio-Chat, SALMONN, BLSP, 1036

and GPT-4, respectively. Evaluators were 1037

tasked with determining which model exhib- 1038

ited superior or equivalent performance. The 1039

screenshots of instructions for the chat bench- 1040

mark is shown in Figure 9. 1041
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Types Task Question Example Choice Example

Speech

Speech Grounding Choose when ‘hate’ is spoken.
A.[7.67, 8.05] B.[1.03, 1.53]
C.[3.07, 3.27] D.[7.02, 7.21]

Spoken language identification Recognize the language of the speech. A.en B.ja C.de D.fr
Speaker gender recognition
(biologically)

Detect the gender of the speaker in this audio file. A.male B.female

Emotion recognition What emotion is at the forefront of the speaker’s words?
A.angry B.happy
C.sad D.neutral

Speaker age prediction Which age range do you believe best matches the speaker’s voice?

A.teens to twenties
B.thirties to forties
C.fifties to sixties
D.seventies to eighties

Speech entity recognition Tell me the first ‘transport_type’-connected word in this audio.
A.go B.how
C.metro D.train

Intent classification What’s your opinion on the speaker’s goal in this sound clip?

A.audio_volume_up
B.news_query
C.lists_createoradd
D.play_podcasts

Speaker number verification The speech features how many speakers? A.2 B.4 C.3 D.1
Synthesized voice detection Based on your assessment, is this speech Real or Fake? A.fake B.real

Sound

Audio grounding
What are the exact times when ‘a woman briefly talks’ is
present in the clip?

A.[0.44, 2.38]
B. [3.85, 4.11]
C. [9.01, 10.02]
D. [4.15, 7.83]

Vocal sound classification What’s the provenance of the sound in this clip?
A.Sigh B.Throat clearing
C.Cough D.Sneeze

Acoustic scene classification What venue are the sounds indicative of?
A.kitchen B.elevator
C.street D.crowded indoor

Sound question answering What animal makes a sound in the video?
A.cattle B.horse
C.cat D.bird

Music

Music instruments classification Discern the principal instrument in this tune.
A.bass B.string
C.brass D.mallet

Music genre classification What’s the genre identity of this music?
A.Jazz B.Rock
C.Country D.Experimental

Music note analysis-pitch What is the MIDI pitch level of the note played?

A.midi_pitch_19
B.midi_pitch_29
C.midi_pitch_37
D.midi_pitch_71

Music note analysis-velocity What numerical value is the MIDI velocity for this note?

A.midi_velocity_127
B.midi_velocity_50
C.midi_velocity_100
D.midi_velocity_25

Music question answering Is the guzheng louder than the piano? A.yes B.no C.four D.one

Music emotion detection What kind of sentiment does this music invoke?
A.meditative B.positive
C.trailer D.advertising

Table 6: Examples of questions and choices on the foundation benchmark.
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Figure 6: The illustration of the models’ responses on the foundation benchmark.
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Figure 7: The illustration of the model’s responses on the chat benchmark.
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Figure 8: Screenshot of human evaluation for the foundation benchmark.

Figure 9: Screenshot of human evaluation for the chat benchmark.
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