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ABSTRACT

Single-cell foundation models such as scGPT represent a significant advancement
in single-cell omics, with an ability to achieve state-of-the-art performance on var-
ious downstream biological tasks. However, these models are inherently limited
in that a vast amount of information in biology exists as text, which they are un-
able to leverage. There have therefore been several recent works that propose the
use of LLMs as an alternative to single-cell foundation models, achieving com-
petitive results. However, there is little understanding of what factors drive this
performance, along with a strong focus on using LLMs as an alternative, rather
than complementary approach to single-cell foundation models. In this study, we
therefore investigate what biological insights contribute toward the performance
of LLMs when applied to single-cell data, and introduce scMPT; a model which
leverages synergies between scGPT, and single-cell representations from LLMs
that capture these insights. scMPT demonstrates stronger, more consistent perfor-
mance than either of its component models, which frequently have large perfor-
mance gaps between each other across datasets.

1 INTRODUCTION

Single-cell foundation models, such as scGPT (Cui et al., 2024), have seen a surge in recent interest
due to their ability to be adapted to achieve state-of-the-art performance on a variety of biological
tasks. However, these models have inherent limitations. A vast amount of knowledge in the field
of biology is represented as text, but these single-cell foundation models are trained only on gene
expression data, and have no way to use this information. There has therefore been significant
interest in applying large language models (LLMs) to single-cell transcriptomics, as many of these
models have a large amount of pretrained knowledge which encompasses this knowledge of biology.
LLMs could potentially leverage this knowledge to drive improvements in important tasks in single-
cell analysis. Either as an alternative approach, circumventing the need to curate massive amounts
of data to train new single-cell foundation models, or as a complementary approach, merging the
knowledge and capabilities of LLMs and single-cell foundation models to improve performance
over either.

A popular approach for enabling LLMs to work with single-cell data is converting this data to simple
text sequences (i.e. cell sentences), which are encoded to generate representations that encapsulate
the pre-trained knowledge of these models. This method has yielded promising results that are
competitive with dedicated foundation models on certain single-cell analysis tasks such as cell type
classification (Chen & Zou, 2023) (Choi et al., 2024) (Levine et al., 2023) (Fang et al., 2024). How-
ever, what pre-trained knowledge is being captured, as well as how to leverage synergies between
this knowledge, and representations generated by single-cell foundation models remains largely
unexplored. These questions are necessary to understand how LLMs can meaningfully improve
single-cell analysis and address the shortcomings of single-cell foundation models.

In this work, we therefore use interpretability methods along with an ablation study to elucidate
what pre-trained knowledge of biology LLMs leverage when applied to single-cell analysis. We then
explore how these models can be used to complement single-cell foundation models in a manner that
leverages synergies between representations to improve performance. Our key contributions are:
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1. Despite scGPT being a state of the art foundation model, we find that fusion with LLMs can
improve upon its performance, indicating that cell representations derived from text and single-cell
data are complementary. We introduce scMPT, which leverages synergies between representations
generated by scGPT and an Ember-V1 text encoder, enabling better overall performance.

2. We find LLMs interpret and represent cell sentences in a way that leverages biological insight,
and specifically knowledge of marker genes.

2 RELATED WORK

2.1 LARGE LANGUAGE MODELS

LLMs have received much attention due to their versatility and strong performance across a variety
of domains and tasks. They have been shown to perform well on classification, question-answering,
fact retrieval, and more, even without fine-tuning (Gallegos et al., 2024). These models, typically
based on the Transformer architecture (Vaswani, 2017), consist of millions or even billions of train-
able parameters, and are pre-trained with vast amounts of language data which often encompasses
many domains, facilitating this versatility (Zhang et al., 2024a).

LLMs are often used to generate text in an autoregressive fashion, or to generate representations of
text in the form of embeddings that can be used for a variety of downstream tasks. However, models
used for each of these tasks are generally quite different, with LLMs designed for text generation typ-
ically employing a different type of architecture than text embedding models (Zhang et al., 2024a).
We will therefore study each type of model separately.

2.2 SINGLE-CELL FOUNDATION MODELS

Inspired by the success of LLMs, single-cell foundation models such as scGPT have been developed
that display broad capabilities across many biological tasks such as cell type annotation and multi-
batch integration (Chen & Zou, 2023) (Cui et al., 2024). scGPT is, like most LLMs, based on the
transformer architecture. Key to its development was curating and pre-training on a massive amount
of single-cell data, specifically from over 33 million cells from CELLxGENE (Cui et al., 2024)
(Megill et al., 2021).

2.3 APPLYING LARGE LANGUAGE MODELS TO SINGLE-CELL ANALYSIS

To enable large language models to work with single-cell data, existing studies generally represent
this data as text. Perhaps the most common representation used, which we will focus on in this study,
is the “cell sentence”; a textual sequence which lists gene names in descending order of expression
level for a given cell. For example, ”A cell with genes ranked by expression: RAB3B MT-CO1
CHN1 HNRNPA1P40 SYT1.....”. The Cell2Sentence paper demonstrated that conversion to this
representation incurs minimal information loss. This was accomplished through training a linear
model to accurately predict gene expression from gene rank, and motivates our focus on this method
(Levine et al., 2023). Studies that use LLMs with cell sentences for single-cell analysis broadly fit
into two categories; those that use generative models, and those that use embedding models.

Studies that explore the use of generative models include Cell2Sentence (Levine et al., 2023), and
“How do Large Language Models understand Genes and Cells” by Fang et al. (2024). The results
presented in the latter fell short of scGPT on tasks such as cell type annotation, despite using cell
sentences to fine tune large LLMs with up to 13 billion parameters; a process which is quite compu-
tationally expensive. While Cell2Sentence performance is much more competitive with single-cell
foundation models such as scGPT, this method requires curating large single-cell datasets for a fine-
tuning process which involves multiple stages and is computationally expensive. However, ideally
this would not be necessary when working with LLMs due to the knowledge of biology they obtain
during pre-training, enabling ”off-the-shelf” usage. Although not the primary focus of this work,
the scELMO paper by Liu et al. (2023) evaluates the zero-shot cell type annotation performance of
GPT-4 when using cell sentences, and reports that the method is completely ineffective, yielding an
accuracy of 0 % on all datasets tested.
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Studies that use embedding models include GenePT (specifically, the GenePT-s approach) (Chen &
Zou, 2023), and CELLama (Choi et al., 2024). Both papers reported performance that was competi-
tive with scGPT on tasks such as cell type classification in a zero-shot setting. However, a limitation
of these works is that they provide little justification for their selection of embedding models, despite
these models often varying widely in performance on different tasks (Muennighoff et al., 2022). The
focus of these works is also primarily on how LLMs can be used as an alternative to single-cell foun-
dation models, rather than in a complementary fashion. The GenePT paper does notably experiment
with an ensemble approach that aggregates the nearest neighbours from GenePT-s, scGPT, as well
as their GenePT-w method to make a final cell type prediction (Chen & Zou, 2023). However, fusion
at such a late stage ignores possible synergies between different modalities (Steyaert et al., 2023).

3 METHODS

3.1 DATA COLLECTION AND TRANSFORMATION

We focus our experiments on the datasets that were used to evaluate the cell type classification and
clustering performance of GenePT (Chen & Zou, 2023), as well as the subsample of the Tabula
Sapiens dataset (Consortium* et al., 2022) used to evaluate CELLama (Choi et al., 2024). For each
dataset, we use the same train/test split as each of these respective works to evaluate performance
on downstream tasks. Cells were represented using cell sentences following the same approach
as GenePT-s (Chen & Zou, 2023), where gene names are listed in descending order of expression
level, omitting genes with zero counts. These cell sentences are then passed to text encoders to
generate cell embeddings, or to generative LLMs for cell type classification through autoregressive
generation.

3.2 CELL EMBEDDING APPROACHES

In general, text encoders can vary greatly in performance on tasks such as classification and cluster-
ing. To determine what LLM of this type to use for our experiments, we therefore test a variety of
pre-trained models selected using MTEB (Muennighoff et al., 2022). We use the same experimen-
tal design and metrics as the GenePT paper to evaluate classification and clustering performance
(Chen & Zou, 2023). For example, using a k-nearest neighbours method for zero-shot cell type
classification. Details can be found in Appendix A.1.

As another experiment, we train a small multi layer perceptron (MLP) on top of text encoders used
to generate cell embeddings as an alternative to the 10-nearest neighbour classifier for cell type
classification. This setup has the potential to improve performance with minimal training, but more
importantly, the differentiability of the MLP facilitates a wider range of interpretability methods
than k-nearest neighbours. We simply use the default architecture for the scikit-learn library’s MLP
implementation (Pedregosa et al., 2011), and leave the text encoder frozen during training to reduce
computational cost. We report accuracy along with macro-weighted precision, recall, and F1 score
for all datasets.

Building on this idea of training an MLP on top of the frozen text encoder, we train a multimodal
network for cell type classification on top of our top performing text encoder and scGPT, which we
coin scMPT. scMPT combines extracted features from each encoder, and aims to leverage potential
synergies between representations. Both encoders are notably left frozen during training to reduce
computational cost, and maintain the domain specific knowledge encoded in each model. We report
accuracy along with macro-weighted precision, recall, and F1 score for all datasets. The simple
architecture of scMPT takes inspiration from works such as Kwak et al. (2023) and Miller et al.
(2020), and is presented in Figure 1 below.

3.3 GENERATIVE APPROACHES

To classify individual cells using generative LLMs, we pass in the cell sentence for the cell we
want to classify, and instruct the LLM to output the most likely cell type given a list of all cell
types from the corresponding train set. Providing this list of cell types, a notable change from
previous work, is necessary to have a fair comparison of classification performance with scGPT or
text embedding methods, since k-nearest neighbours will also only output labels present in the train
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Figure 1: A depiction of the scMPT architecture. Cell embeddings from scGPT and a text encoder
are fed into dense layers. The output of these dense layers is then concatenated, and fed into an
output layer which predicts final cell type. Encoders are left frozen, while dense and output layers
are trainable.

set. To limit costs, we focus on the three datasets used to evaluate cell-type annotation in the scGPT
paper, namely the Myeloid (Cheng et al., 2021), Pancreas (Luecken et al., 2022), and Multiple
Sclerosis (MS) (Schirmer et al., 2019) datasets. For each dataset we evaluate cell type classification
performance on a subset of 100 randomly selected cells from the test set, reporting accuracy.

As an alternative multimodal approach to scMPT, we then investigate whether GPT-4o can be used to
complement scGPT, leveraging the domain specific knowledge encoded in each model to improve
classification performance. Our pipeline is constructed as follows: For a given cell we want to
classify, we determine the three most likely cell types using scGPT and the 10-nearest neighbour
method of cell type classification previously described. We then employ a two API call setup to
determine which of these three cell types is most likely correct using GPT-4o. Specifically, in our
first API call, we pass in the cell sentence for the cell we want to classify, along with the list of three
potential cell types, and instruct the LLM to generate reasoning about the most likely cell type. We
then feed this reasoning to GPT-4o in our second API call to generate the final cell type. We adopt a
two-stage setup based on previous results that suggest it can improve LLM reasoning when working
with multimodal information (Toma et al., 2024) (Zhang et al., 2023). We instruct GPT-4o to pick
the first cell in the list, which is the most likely class according to scGPT, if it is uncertain. Prompts
used can be found in Appendix A.3.

3.4 INVESTIGATING WHAT FACTORS CONTRIBUTE TOWARD LLMS’ PERFORMANCE

To investigate the factors contributing to the competitive performance of LLMs, specifically focus-
ing on text encoders, we first investigate what features from cell sentences are focused on by the
model when predicting cell type. We employ two interpretability techniques. The first, integrated
gradients, is a gradient based method which has seen significant recent adoption in the biomedi-
cal domain, including for interpreting language models (Sundararajan et al., 2017) (Talebi et al.,
2024). The second, Local Interpretable Model Agnostic Explanations (LIME) is a model agnos-
tic interpretability method that has also seen significant usage in this domain (Ribeiro et al., 2016)
(Wu et al., 2023) (Laatifi et al., 2023). We apply both interpretability techniques on the model that
consists of an MLP trained on top of our highest performing frozen text encoder. We focus on this
model rather than the setup that uses k-nearest neighbours since the MLP is differentiable, facil-
itating the usage of integrated gradients. We limit our analysis to cell types that are specific and
have clearly defined names. For each dataset and each interpretability method, we calculate feature
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attributions for ten cells of each type (or all cells if there are less than ten in the test set). We then
sum attributions across the ten cells of each type, and examine the top ten genes with the highest
positive attribution scores to determine what genes influence the model to predict a cell is of a given
type.

We also conduct a series of ablation tests to determine whether there are factors contributing to the
performance of text encoders that are not related to their knowledge of biology. We accomplish this
through ablating each major element of biological information in the cell sentences that was derived
from the raw single-cell data, namely the gene names, and the ordering of gene names which was
based on expression level. We then observe how this impacts clustering and classification perfor-
mance. Specifically, for our first ablation test, we replace gene names in cell sentences with unique
hashes generated using the SHA-256 algorithm, truncated to ten characters. We then investigate the
effect of shuffling the order of gene names within cell sentences. Finally, we investigate the effect
of applying both of these ablations.

4 RESULTS

Previous work on using LLMs with cell sentences has not considered the large variety of text en-
coders available which vary substantially in performance, and has not been able to successfully use
generative LLMs with cell sentences in a zero-shot setting. We therefore address each of these major
gaps before proceeding with our main experiments. We then investigate what biological insights,
and other factors, contribute to the performance of LLMs in single-cell analysis through the use of
interpretability and ablation tests. Finally, we introduce scMPT, which leverages synergies between
embeddings generated by LLMs and scGPT. We also introduce an alternative fusion method which
uses GPT-4o to complement scGPT.

4.1 ENCODERS USED IN PREVIOUS WORK ARE OUTPERFORMED BY EMBER-V1

To select an encoder for our main experiments, we investigate the performance of different pre-
trained LLMs for generating cell embeddings from cell sentences.

We first compare the cell type classification and clustering performance of all encoders of potential
interest on the Aorta dataset (Li et al., 2020). Specifically, we compare the performance of six en-
coders selected for their performance on the MTEB benchmark against all-MiniLM-L12-v2 (hug,
b) and OpenAI ada-002 (OpenAI), text encoders which previous work has focused on for generating
cell embeddings. We also compare against OpenAI text-embedding-3-large (OpenAI), and scGPT
(Cui et al., 2024). Results are presented in Table 1. We observe that ada-002 and all-MiniLM-
L12-v2 were both outperformed by several of the encoders selected from MTEB on both cell type
classification and clustering. Ember-V1 performed particularly well, outperforming both of these
encoders by a wide margin and closing much of the gap between text encoder performance and
scGPT performance on this dataset. We also observe that text-embedding-3-large performed signif-
icantly worse than ada-002, despite it being a newer text embedding model from OpenAI designed
to improve performance (OpenAI).

We then compare Ember-V1 against ada-002 and allMiniLM-L12-V2 on all other datasets col-
lected. This includes the MS (Schirmer et al., 2019), Artery (Alsaigh et al., 2022), Bones (Chou
et al., 2020), Myeloid (Cheng et al., 2021), Pancreas(Luecken et al., 2022), and subsampled Tabula
Sapiens (Consortium* et al., 2022) datasets. Results for classification and clustering performance
are reported in Tables 9,10,11,12,13, and 14 (see Appendix A.1). Overall, Ember-V1 outperforms
allMiniLM-L12-V2 on every metric on every dataset. The improvement in performance over ada-
002 is more modest, with improved clustering and classification performance on 5/7 datasets tested
overall. However, ada-002 is not an open source model, which makes many interpretability methods
challenging or impossible to use.

Ultimately, we find that switching pre-trained text encoders to Ember-V1 can lead to improved
performance over previous methods to generate cell embeddings from cell sentences, motivating us
to select this encoder for our main experiments.
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Table 1: Zero-shot cell type classification and clustering performance of encoders on the Aorta
dataset. Highest value for a metric in bold, second highest underlined.

Model Accuracy Precision Recall F1 k-means ARI k-means AMI
ada-002 0.872 0.865 0.670 0.716 0.350 0.510
text-embedding-3-large 0.791 0.570 0.438 0.451 0.160 0.200
all-MiniLM-L12-v2 0.855 0.731 0.623 0.644 0.441 0.495
Ember-V1 0.906 0.910 0.800 0.841 0.535 0.597
gte-large-en-v1.5 0.894 0.903 0.746 0.791 0.442 0.529
mxbai-embed-large-v1 0.901 0.885 0.761 0.801 0.303 0.506
bge-large-en-v1.5 0.905 0.902 0.799 0.837 0.405 0.546
GIST-small-embedding-v0 0.871 0.859 0.696 0.735 0.342 0.482
stella en 400m v5 0.905 0.903 0.804 0.838 0.323 0.552
scGPT 0.960 0.958 0.942 0.949 0.463 0.637

4.2 PROVIDING POSSIBLE LABELS CAN DRAMATICALLY IMPROVE THE ZERO SHOT CELL
TYPE CLASSIFICATION PERFORMANCE OF GENERATIVE LLMS

We next investigate whether there are simple-to-implement changes that can improve the zero shot
cell type classification performance of generative LLMs when working with cell sentences compared
to previous results, to a point where further experiments using these methods have value.

We evaluate the cell type classification performance of GPT-4o when passing in the cell sentence
for the cell of interest, and instructing the LLM to output the most likely cell type. Different from
previous work, we also pass in a list of potential cell types derived from the train set, aiming to im-
prove performance, and have a setup that can be more fairly compared with models like scGPT. We
compare performance against another state-of-the-art LLM, Llama 3.1 405B (Dubey et al., 2024),
and also report the performance of scGPT as a reference. We report classification accuracy for all
models on a subset of 100 cells from each of the Pancreas, Myeloid, and MS datasets in Table 2.

Table 2: Cell type classification accuracy of generative LLMs on different datasets when provided
with a list of possible labels. scGPT included for reference.

Dataset Model Accuracy
Pancreas GPT-4o 0.96

Llama 3.1 405B 0.80
scGPT 0.77

Myeloid GPT-4o 0.34
Llama 3.1 405B 0.29
scGPT 0.51

MS GPT-4o 0.34
Llama 3.1 405B 0.33
scGPT 0.74

In general, the performance of GPT-4o was reasonably strong. While this model was outperformed
overall by scGPT, the performance was at least comparable, with GPT-4o performing much better
on the Pancreas dataset. Performance was also consistently stronger than Llama 3.1 405B, although
this model still performed reasonably well. This is a dramatic improvement compared to previously
reported results, which found that GPT-4 was unable to classify any cells correctly (Liu et al., 2023).
We also attempt to replicate these results by repeating our evaluation of GPT-4o without passing in
a list of potential cell types, and find the model to be completely ineffective, achieving an accuracy
of 0 % and corroborating previous findings.

Therefore, we find that simply passing in a list of potential cell types can lead to a dramatic improve-
ment in the zero-shot cell type classification performance of generative LLMs compared to previous
results, justifying further experimentation with these models.
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4.3 LANGUAGE MODELS EFFECTIVELY LEVERAGE KNOWLEDGE OF MARKER GENES -
HOWEVER, FACTORS UNRELATED TO BIOLOGY MAY ALSO BE CONTRIBUTING
TOWARD THEIR STRONG PERFORMANCE

To determine what factors contribute toward the strong performance of language models, and in
particular text encoders, we conduct a series of interpretability and ablation tests. We focus on text
encoders as this form of LLM has proven to be truly competitive with scGPT on certain single-cell
analysis tasks, and models in this class tend to be small enough that a wider range of interpretability
methods are computationally feasible.

The interpretability methods we use are integrated gradients, and LIME. For this analysis we focus
on the Pancreas and Aorta datasets, given the strong performance of Ember-V1 on them. We apply
both interpretability methods to a model consisting of an MLP trained on top of a frozen Ember-
V1 encoder to determine what parts of cell sentences contribute toward the prediction of certain
cell types. Specifically, through calculating attribution scores for different gene names, which show
how much those gene names contributed toward predicting a cell was of a given type. Early in this
analysis, we noticed that several of the genes corresponding to top attribution scores were marker
genes. We therefore used PanglaoDB (Franzén et al., 2019) to investigate what marker genes were
represented in the lists of top attribution scores for each cell type, calculated through aggregating
results from multiple cells of a given type for a more global level of insight. Results are presented in
table 3 and 4. For each cell type in the Pancreas dataset, both methods had multiple markers within
the top ten genes with the highest attribution scores. There was also at least one and often multiple
markers highlighted by both interpretability methods for each cell type, with this agreement more
strongly indicating these marker genes were focused on by the model. For the Aorta dataset, LIME
once again had multiple markers within the top ten most important genes for each cell type. While
integrated gradients had less, it is notable that the markers highlighted by integrated gradients were
almost an exact subset of the markers highlighted by LIME, suggesting these markers were focused
on by the model. Ultimately, the representation of marker genes among the genes with the high-
est attribution scores for each cell type, along with the level of agreement between interpretability
methods indicates that the model focuses on marker genes when predicting cell type, contributing to
its performance being competitive with scGPT.

Table 3: Marker genes in top 10 gene attributions for Ember-V1 encoder +MLP with different
interpretability methods - Pancreas dataset.
(Markers that were highlighted by both interpretability methods in bold)

Cell Type LIME Integrated Gradients
Alpha GCG, TTR, CRYBA2, TM4SF4, LOXL4 GCG, TTR, NEUROD1, GC, ALDH1A1,

SLC30A8
Beta INS, IAPP, ADCYAP1 ADCYAP1, IAPP

Gamma (PP) PPY, ISL1 PPY, NEUROD1
PSC COL6A3, FN1, TIMP1 COL1A1, COL1A2, COL6A3, COL3A1

Ductal SERPING1, KRT19, MUC1 KRT19, MMP7, SERPINA3
Endothelial PLVAP, RGCC, PODXL PLVAP, RGCC, IGFBP7

Epsilon GHRL, S100A6, SPINK1, ACSL1 GHRL, SPINK1, S100A6, HMGCS2
Mast TPSAB1, CPA3 TPSAB1, ICT4S

Acinar PRSS1, CXCL17, PRSS3, REG1A PRSS1, PRSS3, REG1A, CELA3A,
CXCL17, CELA2A

Delta SST, RBP4, LEPR, PCSK1 SST, RBP4

For our ablation tests, we experiment with ablating the major elements of biological information
in cell sentences; the gene names, which are replaced with truncated SHA-256 hashes, and their
order, which is shuffled. We report how these ablations affect performance on the Aorta dataset
for Ember-V1 in table 5 below, and ada-002 in table 21 (see Appendix A.4), using the k-nearest
neighbours setup for cell type classification. Note that to be able to compare the effect of ablations
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Table 4: Marker genes in top 10 gene attributions for Ember-V1 encoder + MLP with different
interpretability methods - Aorta dataset.
(Markers that were highlighted by both methods in blue)

Cell Type LIME Integrated Gradients
NK KLRB1, NKG7, XCL1, XCL2, KLRD1 KLRB1, XCL1, NKG7

T Cell S100A4, TNFAIP3
B Cell HLA-DRA, CD74, IGKC HLA-DRA

Fibroblast MGP, CTGF, LUM, COL1A2, DCN IGFBP6, MGP
Mast Cell TPSAB1, TPSB2, RGS1, KIT TPSAB1

Plasma Cell IGHG1, IGKC, IGHG3, IGHA1,
IGHG4, IGLC2, JCHAIN

IGHG3, IGKC, IGHG4, IGHG1

on each encoder’s performance, we truncate the cell sentences encoded by ada-002 to be the same
length as Ember-V1, which has a shorter context length. We find that both encoders, and especially
ada-002, had only a moderate drop in performance when ablating gene names. To confirm this is
not because of unique characteristics of the Aorta dataset, we also see how this ablation affects
the cell type classification performance of Ember-V1 on all other datasets, finding a consistently
moderate drop in performance as can be seen in Appendix A.4. The effect of shuffling gene names
on the performance of Ember-V1 was also quite moderate, but was more significant for ada-002.
However, given the smaller drop in performance for ada-002 than Ember-V1 when ablating gene
names, this is likely because the encoder places higher value on syntactical similarity, rather than
being because of additional knowledge of biology. The combination of both ablations lead to a large
drop in performance for both encoders, however, it is notable that both encoders still retained some
performance. Therefore, there may be factors unrelated to biology contributing to the performance
of text encoders.

Table 5: Ablation test results - Ember-V1 encoder, Aorta dataset (zero-shot)

Metric Ember-V1 Gene
Ablated

Ember-V1
Gene+Order

Ablation

Ember-V1 Order
Ablation Ember-V1

Accuracy 0.830 0.615 0.856 0.906
Precision 0.816 0.286 0.902 0.910
Recall 0.563 0.221 0.623 0.800
F1 0.605 0.216 0.681 0.841
k-means ARI 0.360 0.092 0.506 0.535
k-means AMI 0.390 0.081 0.529 0.597

Ultimately, our interpretability tests strongly suggest that text embedding models leverage marker
gene knowledge in cell type prediction, especially given the level of agreement between LIME and
integrated gradients. However, the ablations we conducted indicate that factors unrelated to biology
may be contributing to the performance of text encoders as well.

4.4 SCMPT AND SIMPLE TWO-STAGE LLM PIPELINES CAN ENABLE LLMS TO
COMPLEMENT SCGPT, IMPROVING PERFORMANCE

Finally, we investigate how LLMs can be leveraged to more effectively complement deep learning
models trained on single-cell data.

We first investigate how Ember-V1 can be used with scGPT in a complementary fashion. For each
dataset, we use the train split to train a simple multimodal neural network on top of these encoders,
which are left frozen. We then evaluate cell type classification performance on the test split. To
provide a baseline, we also evaluate the performance of training an MLP on top of each individ-
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ual encoder. We report results for the Pancreas dataset in table 6 and results for other datasets in
Appendix A.2. We observe that the fusion model, which we coin scMPT, performs competitively
with, and often better than the best of the two encoders on each dataset. The performance of scMPT
is notably strong enough that it is even competitive with full fine tunes of scGPT on each dataset,
based on results reported in the original scGPT paper (Cui et al., 2024). We also observe that simply
training an MLP on top of scGPT or Ember-V1 performs quite well, and can improve performance
significantly over k-nearest neighbours. This is shown in Figure 2 and Figure 3 (see Appendix A.2).

Table 6: Cell type classification performance of scMPT vs. unimodal models on the Pancreas
dataset. scMPT results reported as Mean (Standard Deviation)

Model Accuracy Precision Recall F1
scMPT 0.962 (0.0019) 0.764 (0.0017) 0.752 (0.0037) 0.745 (0.0039)
scGPT (full fine-tune - reported) 0.968 0.735 0.725 0.718
Ember-V1 + MLP 0.974 0.6815 0.694 0.684
scGPT (from-scratch - reported) 0.936 0.665 0.668 0.622
scGPT + MLP 0.865 0.625 0.614 0.592

As an alternative to scMPT, we next investigate how GPT-4o can be used to complement scGPT.
Specifically, through using the LLM to guide the predictions of scGPT, narrowing down the top
three cell types predicted as most likely for a cell of interest to a final prediction based on the cell’s
cell sentence. We report results on a subset of 100 cells from each of the Pancreas, Myeloid, and
MS datasets, and include the accuracy of scGPT and GPT-4o as a baseline, in table 7 below. We
find that our method that combines the two models performs competitively with the best model for
a given dataset.

Table 7: Accuracy of scGPT, GPT-4o, and fusion method.

Model Pancreas Data Myeloid Data MS Data
scGPT 0.77 0.51 0.74
GPT4o 0.96 0.34 0.34
GPT4o+scGPT 0.93 0.54 0.72

Overall, we find methods that use LLMs to complement scGPT can yield cell type classification
performance that is competitive with, and often better than the more performant of the two compo-
nent models. scMPT, which uses Ember-V1 to complement scGPT performs particularly well. We
also find that training a small MLP on top of Ember-V1 or scGPT can lead to improved cell type
classification performance over k-nearest neighbours.

5 DISCUSSION

LLMs have shown great potential in single-cell analysis, often performing competitively with ded-
icated state of the art foundation models. In this study, after finding simple methods of improving
this performance, we obtain an understanding of the biological insight and other factors contributing
to it, and finally explore how LLMs can better be used to complement rather than compete with
single-cell foundation models, culminating in our introduction of scMPT.

We find that simply switching the pre-trained encoder used to Ember-V1 can yield significant im-
provements over the previously proposed GenePT-s and CELLama methods, illustrating the impor-
tance of testing different encoders. For generative methods, it was interesting to see that restricting
the output space of GPT-4o by providing a list of possible cell types improved performance so
dramatically compared to results from prior work. This shows that large generative LLMs can be
grounded effectively with cell sentences, potentially opening up new possibilities for how these
LLMs like GPT-4o can be used in single-cell analysis.
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Ember-V1’s focus on marker genes when predicting cell type was intriguing, as focusing on markers
is a common approach for both automatic and manual cell type annotation (Clarke et al., 2021). It
is therefore highly encouraging that this is a factor contributing towards the model’s predictions,
and ultimately its performance. One important limitation of our analysis, however, is that integrated
gradients and LIME are local interpretability methods. While aggregating attribution scores across
many examples can help get a more global understanding of the model’s behaviour, and has been
used in previous work (Talebi et al., 2024), this method is still limited. We therefore take inspiration
from the analysis of Liétard et al. (2021) to get a more global understanding of Ember-V1 and its
knowledge of marker genes. For each dataset, we compute the cosine similarity between the top
marker gene name for each cell type from PanglaoDB (Franzén et al., 2019) and other marker genes
from the same cell, and compare this to the cosine similarity between these top markers and marker
genes of different cells, averaging results over all cell types. As shown in table 8, we find that the
cosine similarities to marker genes of the same cell type (Intra-Similarity) are higher, providing
further evidence that the model is able to leverage knowledge of marker genes.

Table 8: Cosine similarity between top marker gene names and markers of same cell type (Intra-
Similarity), different cell types (Inter-Similarity), and gap between these.

Dataset Intra-Similarity Inter-Similarity Gap
Pancreas 0.644 0.623 0.021
Aorta 0.667 0.653 0.014

With that said, based on ablation studies, there may be other factors contributing to the performance
of text embedding models that are unrelated to biology. As previously mentioned, ada-002 likely val-
ues syntactic similarity between cell sentences highly. This is based on the large drop in performance
when shuffling gene names, but moderately small drop in performance when ablating gene names
(where these ablated gene names would notably still be in the same order). Ember-V1 interestingly
had a moderate drop in performance both when ablating gene names or shuffling gene order. A po-
tential explanation for this is that cells of the same type likely have higher overlap between their top
genes expressed (which are the only ones present in the truncated cell sentence) compared to cells of
different types; lexical similarity which Ember-V1 may be leveraging. This is also a potential expla-
nation for why encoders still maintained some performance even when combining both ablations.
We therefore caution that high classification and clustering performance alone does not demonstrate
an encoder has a strong understanding of the underlying biology of cell sentences. With that said,
we also note that an encoder placing some value on syntactic or lexical similarity is not strictly a
flaw in this context. The highest expressed genes and their rank for different cells of a given type
may indeed be quite similar, which would lead to a high degree of lexical and syntactic similarity.
If a text encoder exploited this simple structure to outperform models such as scGPT, this would not
necessarily be undesirable.

The fusion methods evaluated, which were designed to more effectively leverage synergies between
modalities than prior work, performed quite well, especially scMPT. On datasets where both modal-
ities yielded similar performance individually, the performance of scMPT was in general modestly
stronger than either individual modality. However, potentially the more valuable result was that on
datasets where one modality yielded poor performance, scMPT still performed well. This consis-
tency in performance is valuable because performance between the two modalities varied widely on
certain datasets. For example, Ember-V1 outperformed scGPT on the Pancreas and Bones datasets,
whereas scGPT outperformed Ember-V1 by a wide margin on the Multiple Sclerosis dataset.

One important direction for future research would therefore be to test the performance of text em-
bedding models and scGPT on many more datasets to gain a more comprehensive understanding
of when each type of model may perform better. Another potential direction for future research,
which could benefit from this, is the development of more advanced fusion methods. For example,
large multimodal models have shown strong multimodal classification performance, and would be
an interesting direction to explore (Alayrac et al., 2022). Finally, a limitation of this study is that
only cell sentences were focused on as textual representations of single-cell data. In future work, it
may be valuable to investigate whether there are other textual representations of single-cell data that
can drive stronger performance.
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6 REPRODUCIBILITY STATEMENT

References to all datasets, and pre-trained models used are provided in this work. The architecture
of any models trained is specified, with additional details for scMPT provided in Appendix A.2.
Prompts used for the method that fused GPT-4o and scGPT are provided in Appendix A.3.
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A APPENDIX

A.1 ZERO SHOT PERFORMANCE OF VARIOUS ENCODERS - ADDITIONAL DETAILS AND
RESULTS

We test a variety of pre-trained text encoders for generating cell embeddings from cell sen-
tences, selected using the Massive Text Embedding Benchmark (MTEB) (Muennighoff et al., 2022)
(https://huggingface.co/spaces/mteb/leaderboard). Encoders were selected through looking at clas-
sification performance on this benchmark, filtering out encoders with over one billion parameters, or
that were proprietary. We then select from the top ten encoders after applying these criteria, taking
only the top encoder from a given family if several encoders from this family appear, and omit-
ting encoders that were not compatible with the sentence-transformers library. The final encoders
selected from MTEB were stella-en-400M-v5 (hug, a), gte-large-en-v1.5 (Zhang et al., 2024b) (Li
et al., 2023), GIST-small-Embedding-v0 (Solatorio, 2024), ember-v1 (Nur & Aliyev, 2023), bge-
large-en-v1.5 (Xiao et al., 2023), and mxbai-embed-large-v1 (Li & Li, 2023) (Lee et al., 2024).
These encoders were tested against all-MiniLM-L12-v2 (the encoder used for CELLama), Ope-
nAI ada-002 (the encoder used for GenePT), and OpenAI’s newest text embedding model text-
embedding-3-large.

To assess the cell type classification and clustering performance of various text encoders, we base
our experimental design on the GenePT paper. For classification, we apply a 10-nearest neighbour
classifier, classifying each cell in the test set of a given dataset based on the labels of its 10-nearest
neighbours from the corresponding train set, measured using cosine similarity between cell embed-
dings. Accuracy, along with macro-weighted precision, recall and F1 score are then reported. To
evaluate cell type clustering, for each encoder on each dataset, we apply k-means clustering on the
cell embeddings, setting the number of clusters to match the number of cell types for the given
dataset. We then compute the Adjusted Rand Index (ARI) and Adjusted Mutual Information (AMI)
to evaluate the concordance between the resultant clusters and the true cell type labels. Additional
results for this experiment are reported below.

Table 9: Zero-Shot cell type classification and clustering performance of different encoders on the
Myeloid dataset.

Metric ada-002 Ember-V1 scGPT all-MiniLM-L12-v2
Accuracy 0.518 0.499 0.545 0.497
Precision 0.359 0.333 0.336 0.330
Recall 0.287 0.266 0.294 0.254
F1 0.306 0.284 0.306 0.268
K-means ARI 0.297 0.283 0.414 0.241
K-means AMI 0.393 0.409 0.516 0.304

Table 10: Zero-shot cell type classification and clustering performance of different encoders on the
MS dataset.

Metric scGPT Ember ada-002 all-MiniLM-L12-v2
Accuracy 0.752 0.444 0.460 0.416
Precision 0.667 0.457 0.467 0.415
Recall 0.616 0.338 0.380 0.331
F1 0.596 0.325 0.360 0.319
K-means ARI 0.292 0.185 0.247 0.168
K-means AMI 0.480 0.394 0.339 0.298
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Table 11: Zero-shot cell type classification and clustering performance of different encoders on the
Pancreas dataset.

Metric scGPT Ember-V1 ada-002 all-MiniLM-L12-v2
Accuracy 0.784 0.984 0.983 0.978
Precision 0.594 0.796 0.805 0.770
Recall 0.550 0.767 0.742 0.667
F1 0.545 0.778 0.769 0.699
K-means ARI 0.202 0.864 0.487 0.456
K-means AMI 0.411 0.827 0.740 0.666

Table 12: Zero-Shot cell type classification and clustering performance of different encoders on the
bones dataset.

Metric ada-002 Ember-V1 scGPT all-MiniLM-L12-v2
Accuracy 0.353 0.427 0.326 0.311
Precision 0.372 0.423 0.358 0.345
Recall 0.495 0.550 0.494 0.473
F1 0.272 0.322 0.244 0.249
K-means ARI 0.165 0.251 0.098 0.127
K-means AMI 0.282 0.357 0.199 0.221

Table 13: Zero-shot cell type classification and clustering performance of different encoders on the
Artery dataset.

Metric ada-002 Ember-V1 scGPT all-MiniLM-L12-v2
Accuracy 0.916 0.924 0.949 0.890
Precision 0.874 0.885 0.920 0.809
Recall 0.819 0.823 0.894 0.798
F1 0.839 0.847 0.904 0.799
K-means ARI 0.358 0.490 0.533 0.346
K-means AMI 0.564 0.671 0.704 0.524

Table 14: Zero-shot cell type classification and clustering performance of different encoders on the
Tabula Sapeins dataset.

Metric ada-002 Ember-V1 scGPT all-MiniLM-L12-v2
Accuracy 0.682 0.703 0.690 0.682
Precision 0.262 0.282 0.278 0.260
Recall 0.252 0.265 0.277 0.236
F1 0.231 0.250 0.246 0.219
K-means ARI 0.311 0.521 0.197 0.410
K-means AMI 0.633 0.700 0.565 0.609
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A.2 SCMPT - ADDITIONAL DETAILS AND RESULTS

scMPT is trained using the AdamW optimizer (Chollet et al., 2015) (Loshchilov, 2017) (Kingma,
2014), and an exponential decay learning rate scheduler. The initial learning rate, number of epochs,
batch size, and decay rate are selected for each dataset through a grid search. This hyperparameter
tuning was conducted for each dataset using a validation split derived from the train set. The dense
layers which the encoders feed into each have an output dimension of 4096, and use the ReLU
(Agarap, 2018) activation function. The output layer uses a softmax activation function. Results for
scMPT were averaged across 5 random seeds, with mean and standard deviation reported as Mean
(Standard Deviation).

Table 15: scMPT cell type classification performance vs unimodal models - Aorta dataset.

Model Accuracy Precision Recall F1
scMPT 0.971 (0.0008) 0.967 (0.0019) 0.954 (0.0013) 0.960 (0.0012)

scGPT + MLP 0.968 0.960 0.949 0.954

Ember-V1 + MLP 0.940 0.923 0.869 0.889

Table 16: scMPT cell type classification performance vs unimodal models - Artery dataset.

Model Accuracy Precision Recall F1

scMPT 0.962 (0.00057) 0.935 (0.00033) 0.928 (0.0019) 0.931 (0.0011)

scGPT (MLP) 0.961 0.932 0.926 0.929

Ember-V1 + MLP 0.949 0.910 0.899 0.903

Table 17: scMPT cell type classification performance vs unimodal models - Bones dataset.

Model Accuracy Precision Recall F1

scMPT 0.684 (0.031) 0.549 (0.0126) 0.691 (0.0094) 0.554 (0.0217)

Ember-V1 + MLP 0.674 0.526 0.686 0.541

scGPT (MLP) 0.630 0.509 0.657 0.498

Table 18: scMPT cell type classification performance vs unimodal models - Tsapeins dataset.

Model Accuracy Precision Recall F1

scMPT 0.764 (0.0033) 0.349 (0.0177) 0.297 (0.0094) 0.290 (0.0128)

scGPT (MLP) 0.736 0.304 0.274 0.261

Ember-V1 + MLP 0.748 0.291 0.236 0.236
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Table 19: scMPT cell type classification performance vs unimodal models - Myeloid dataset.

Model Accuracy Precision Recall F1

scMPT 0.664 (0.0026) 0.387 (0.009) 0.364 (0.0086) 0.3694 (0.0087)

scGPT (fine-tuned) 0.642 0.366 0.347 0.346

scGPT (MLP) 0.622 0.380 0.349 0.354

scGPT (from-scratch) 0.606 0.304 0.339 0.309

Ember-V1 + MLP 0.601 0.352 0.314 0.325

Table 20: scMPT cell type classification performance vs unimodal models - MS dataset.

Model Accuracy Precision Recall F1

scGPT (MLP) 0.845 0.769 0.735 0.726

scMPT 0.837 (0.00089) 0.733 (0.0039) 0.718 (0.0024) 0.704 (0.003)

scGPT (fine-tuned) 0.856 0.729 0.720 0.703

scGPT (from-scratch) 0.798 0.660 0.623 0.600

Ember-V1 + MLP 0.687 0.597 0.582 0.568

Figures 2 and 3 below summarize scMPT cell type classification performance compared to scGPT;
both for the setting where an MLP is trained on top of scGPT, and where k-nearest neighbours is
used for zero-shot cell type classification.
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0.25

0.50

0.75

1.00

Pancreas Myeloid MS Aorta Artery Tsapiens Bones

scGPT (zero-shot) scGPT (MLP) scMPT

scMPT vs scGPT Accuracy on Different Datasets

Figure 2: Comparison between cell type classification accuracy of scMPT and scGPT on all datasets
studied. scMPT outperforms scGPT on most datasets tested, with particularly significant improve-
ments on the Pancreas and Bones datasets.
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scMPT vs scGPT F1 Score on Different Datasets

Figure 3: Comparison between cell type classification F1 score of scMPT and scGPT on all datasets
studied. scMPT outperforms scGPT on most datasets tested, with particularly significant improve-
ments on the Pancreas and Bones datasets.

A.3 GPT-4O PROMPTS AND PIPELINE ILLUSTRATION

prompt = """Given the cell described below from 
multiple sclerosis dataset is one of these cells, 
which is more likely?: """ +[3 most likely cell types
according to scGPT] + """Let's think step by step, 
but concisely. Think carefully. If there are no clear 
marker genes that you are confident would indicate 
what cell type this is (remembering this is multiple 
sclerosis data), please just go with the first option 
in the list""” + cell sentence

GPT-4o – First API Call (Output Reasoning)

GPT-4o
GPT-4o – Second API Call (Output Cell Type) 

prompt = """Given the following reasoning from an 
expert biologist, output ONLY the most likely class 
from the following list exactly as it appears. If 
their explanation isn't convincing, then please just 
go with the first option: """ +[3 most likely cell 
types according to scGPT

Figure 4: Pipeline for method used to allow GPT-4o to complement scGPT.
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A.4 ADDITIONAL RESULTS FOR ABLATION STUDY

Below are results for all ablations for ada-002 on the Aorta dataset.

Table 21: Ablation Test Results - Aorta Data (zero-shot) - ada-002 encoder

Metric ada-002 Gene
Ablated

ada-002
Gene+Order

Ablation

ada-002 Order
Ablation ada-002 ada-002 original

sentence length
Accuracy 0.838 0.535 0.697 0.889 0.872
Precision 0.883 0.253 0.483 0.916 0.865
Recall 0.567 0.177 0.303 0.765 0.670
F1 0.615 0.171 0.311 0.804 0.716
k-means ARI 0.477 0.010 0.203 0.363 0.350
k-means AMI 0.451 0.005 0.219 0.538 0.510

Next, we present results for the gene name ablation test (where gene names are replaced with SHA-
256 hashes) for Ember-V1 on other datasets, reporting classification performance before and after
this ablation.

Table 22: Ember-V1 cell type classification performance before and after gene name ablation on
datasets used for evaluation in scGPT paper (Cui et al., 2024)

Metrics Pancreas Data MS Data Myeloid Data
Ember-V1 Ablated Ember-V1 Ember-V1 Ablated Ember-V1 Ember-V1 Ablated Ember-V1

accuracy 0.9755 0.984 0.364 0.445 0.483 0.499
precision 0.803 0.796 0.341 0.456 0.317 0.333
recall 0.748 0.767 0.283 0.338 0.244 0.266
F1 0.771 0.778 0.273 0.325 0.261 0.284

Table 23: Ember-V1 cell type classification performance before and after gene name ablation on
other datasets.

Metrics Tabula Sapeins Data Artery Data Bones Data
Ember-V1 Ablated Ember-V1 Ember-V1 Ablated Ember-V1 Ember-V1 Ablated Ember-V1

accuracy 0.534 0.702 0.877 0.924 0.282 0.427
precision 0.217 0.288 0.805 0.885 0.424 0.421
recall 0.181 0.265 0.743 0.823 0.429 0.551
F1 0.162 0.252 0.767 0.847 0.228 0.321
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