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Abstract

Code-switching (CSW) is the act of alternating001
between two or more languages within a sin-002
gle discourse. This phenomenon is widespread003
in multilingual communities, and increasingly004
prevalent in online content, where users nat-005
urally mix languages in everyday communi-006
cation. As a result, Large Language Mod-007
els (LLMs), now central to content process-008
ing and generation, are frequently exposed to009
code-switched inputs. Given their widespread010
use, it is crucial to understand how LLMs pro-011
cess and reason about such mixed-language012
text. This paper presents a systematic eval-013
uation of LLM comprehension under code-014
switching by generating CSW variants of es-015
tablished reasoning and comprehension bench-016
marks. While degradation is evident when for-017
eign tokens disrupt English text—even under018
linguistic constraints—embedding English into019
other languages often improves comprehension.020
Though prompting yields mixed results, fine-021
tuning offers a more stable path to degradation022
mitigation.023

1 Introduction024

Code-switching (CSW)—the act of alternating025

between two or more languages within a single026

discourse (Das et al., 2023; Zhang et al., 2023;027

Ochieng et al., 2024)—is a common phenomenon028

in multilingual communities (Bullock and Toribio,029

2009; Parekh et al., 2020; Doğruöz et al., 2021),030

and increasingly prevalent in online content (Kodali031

et al., 2024), where users naturally mix languages032

in everyday informal communications.033

Large Language Models (LLMs) have demon-034

strated remarkable capabilities across a wide range035

of natural language processing tasks (Zhao et al.,036

2023). As they are increasingly used to process037

and generate content, the widespread availability of038

code-switched inputs makes it crucial to understand039

how LLMs reason about such mixed-language data,040

and whether their multilingual fluency reflects gen- 041

uine understanding or superficial pattern match- 042

ing (Zhang et al., 2023). To systematically assess 043

LLMs’ handling of such data, we turn to insights 044

from linguistic theories that define the structural 045

constraints governing natural code-switching. 046

Linguistic theories have long studied the struc- 047

ture of code-switching, proposing formal con- 048

straints on permissible switch points, such as 049

the Equivalence Constraint Theory (ECT), which 050

posits that switches occur at positions where the sur- 051

face structures of both languages are grammatically 052

compatible (Poplack, 1978), and the Matrix Lan- 053

guage Frame model (MLF), which distinguishes 054

between a Matrix Language (ML) that provides 055

the grammatical frame of the clause and an Em- 056

bedded Language (EL) that contributes inserted 057

content without disrupting this structure (Myers- 058

Scotton, 1993). These frameworks aim to identify 059

the grammatical boundaries and syntactic compat- 060

ibility that make code-switching possible and nat- 061

ural. While such theories offer testable hypothe- 062

ses for analyzing CSW, current efforts in synthetic 063

CSW generation often prioritize producing fluent 064

mixed-language text over probing whether LLMs 065

genuinely internalize and apply these structural 066

constraints in their reasoning (Pratapa et al., 2018; 067

Potter and Yuan, 2024; Kuwanto et al., 2024; Here- 068

dia et al., 2025). 069

Despite the availability of well-established lin- 070

guistic theories, existing evaluation benchmarks 071

fall short of leveraging these insights to as- 072

sess deeper comprehension in code-switched con- 073

texts. Current benchmarks for evaluating the code- 074

switching capabilities of language models primar- 075

ily focus on surface-level tasks such as language 076

identification, sentiment analysis, and sequence la- 077

beling (Khanuja et al., 2020; Aguilar et al., 2020; 078

Patwa et al., 2020). However, they largely overlook 079

the challenge of evaluating deeper reasoning and 080

semantic understanding in mixed-language settings 081
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: (D): Hume says that beauty is _____.
: Hume says that الجمال is _____.

: Hume says that la beauté is _____.
: Hume says that Schönheit is _____.

: Hume says that 美 is _____.

  (A) a quality in things themselves  (B) a matter of a priori knowledge
      (C) judged by logical standards    (D) no quality in things themselves

: (A)

: (D)
: (C)

: (B)

Input Output

Choices:

Figure 1: An example illustrating the noun-token code-switching methodology from Experiment 1. The figure
demonstrates how different embedded languages (Arabic, French, German, Chinese) for the noun “beauty” in an
English matrix sentence can lead to varied model outputs.

(Yadav et al., 2024; Gupta et al., 2024; Ng and082

Chan, 2024), leaving a critical gap in assessing the083

true extent of LLMs’ code-switched comprehen-084

sion abilities.085

To address these gaps, we introduce a system-086

atic evaluation framework that leverages a con-087

strained, multi-step LLM pipeline to generate lin-088

guistically grounded code-switched variants of es-089

tablished benchmarks in reading comprehension,090

multi-domain knowledge, and natural language091

inference. Code, data, and benchmarks are pub-092

licly available1. Our experiments reveal that code-093

switching has a nuanced impact on LLM compre-094

hension, influenced by the languages involved and095

the switching style. In particular:096

• Embedding non-English tokens into an En-097

glish matrix language consistently degrades per-098

formance, even when the switches follow linguistic099

constraints, suggesting a structural vulnerability100

that cannot be explained solely by token-level un-101

familiarity.102

• Embedding English tokens into non-English ma-103

trix languages often improves comprehension, es-104

pecially for models with limited proficiency in the105

matrix language, indicating a facilitative role for106

English in such contexts.107

• While strategic prompting can help some models,108

it negatively affects others, highlighting inconsis-109

tency in controllability; by contrast, fine-tuning110

on code-switched data leads to more stable, albeit111

partial, performance recovery.112

2 Related Work113

Code-Switching in Language Models. Early114

multilingual encoder-based models (e.g., mBERT115

1Links will be provided upon acceptance.

(Devlin et al., 2019), XLM-R (Conneau et al., 116

2020)), while effective on monolingual tasks, con- 117

sistently faltered on code-switched inputs (Winata 118

et al., 2021a). This gap spurred specialized meth- 119

ods for mixed-language text, including new archi- 120

tectures and training regimes (Winata et al., 2019; 121

Liu et al., 2020; Winata et al., 2021b). Although ex- 122

isting benchmarks (Khanuja et al., 2020) supported 123

these efforts, research predominantly focused on 124

encoder-centric models (Winata et al., 2019; Tan 125

and Joty, 2021; Zhu et al., 2023). Consequently, 126

decoder-only architectures, now central to state-of- 127

the-art NLP, have received markedly less scrutiny 128

regarding CSW. While some studies probed adver- 129

sarial code-mixing in autoregressive models (Das 130

et al., 2022), meaningful evaluation of such models 131

requires access to high-quality, linguistically coher- 132

ent code-switched text. This has motivated growing 133

interest in controlled CSW text generation. 134

Code-Switched Text Generation. Synthetic 135

code-switched text generation plays a critical role 136

in data augmentation and diversification for mul- 137

tilingual language models (Pratapa et al., 2018; 138

Zhang et al., 2023). Methods range from linguis- 139

tically motivated approaches—such as the Equiv- 140

alence Constraint Theory (ECT) (Poplack, 1978) 141

and Matrix Language Frame (MLF) model (Myers- 142

Scotton, 1993)—to heuristic token-level substitu- 143

tions (Myslín, 2014; and, 2018; Chan et al., 2024). 144

Recent work often relies on word-level aligners to 145

guide borrowing from embedded-language texts 146

while preserving grammatical structure (Kuwanto 147

et al., 2024). Although these techniques aim for 148

token-level accuracy, they overlook the growing 149

capacity of LLMs to perform context-aware, lin- 150

guistically grounded substitutions. Leveraging this 151
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potential, recent studies have explored LLM-based152

generation using linguistic constraints (Kuwanto153

et al., 2024), fine-tuning on CSW data (Heredia154

et al., 2025), or zero-shot prompting (Potter and155

Yuan, 2024). Still, challenges remain in control-156

ling switch placement, scaling across language157

pairs, and conducting robust evaluation. Our work158

addresses these challenges by leveraging modern159

LLMs to generate linguistically grounded code-160

switched text, grounded in established theoretical161

constraints, to support more rigorous evaluation of162

model comprehension in mixed-language contexts.163

Evaluation of LLM CSW Capabilities. LLM164

code-switching evaluation has largely focused on165

surface-level tasks through benchmarks like GLUE-166

CoS (Khanuja et al., 2020), LINCE (Aguilar et al.,167

2020), and SemEval (Patwa et al., 2020) (e.g., lan-168

guage ID, sentiment, PoS tagging), thus neglect-169

ing deeper semantic or reasoning capabilities. Al-170

though more recent studies assess CSW sentiment171

classification (Winata et al., 2021a), and question172

answering (Huzaifah et al., 2024), they are limited173

in scope, emphasizing task-specific metrics over174

broader comprehension. In contrast, our approach175

introduces linguistically grounded CSW variants176

of established comprehension and reasoning tasks,177

enabling a more rigorous assessment of LLMs’ ca-178

pacity to reason over mixed-language input beyond179

surface-level performance.180

3 Methodology181

3.1 Notations182

Let
B = {Bp}Pp=1

be a set of P standard benchmarks. Let

L = {lj}Lj=1

be a set of L languages from which the matrix
and embedded languages are selected for code-
switched benchmarks generation. Let

M = {mk}Kk=1

be a set of K LLMs. To evaluate the perfor-183

mance of an LLM mk ∈ M on code-switched184

text comprehension, we generate a code-switched185

version of benchmark Bp ∈ B using a single186

matrix language lmatrix ∈ L and a set of em-187

bedded languages Lembedded, where Lembedded ⊆188

L\ lmatrix and |Lembedded| ≥ 1, which we denote by189

Blmatrix→Lembedded
p .190

3.2 Code-Switching Methods 191

To investigate how different code-switching strate- 192

gies affect LLM comprehension, we generate in- 193

puts using two distinct approaches: a linguisti- 194

cally grounded noun-token method (Poplack, 1988; 195

Muysken, 2000; Moyer, 2002; Chan et al., 2024) 196

and a heuristic ratio-token method (Chan et al., 197

2024). In the noun-token method, we replace nouns 198

in the matrix language text with their aligned coun- 199

terparts from a parallel sentence in the embedded 200

language. Substitutions are only applied when they 201

preserve grammatical well-formedness according 202

to two established linguistic constraints: the Equiv- 203

alence Constraint Theory (ECT), which requires 204

syntactic alignment at switch points, and the Ma- 205

trix Language Frame (MLF) model, which man- 206

dates that the matrix language maintains control 207

over the clause’s morpho-syntactic structure. In 208

contrast, the ratio-token method replaces 20% of 209

tokens at random, regardless of linguistic struc- 210

ture. This comparison allows us to isolate the role 211

of syntactic and grammatical constraints in LLM 212

comprehension of code-switched text. 213

3.3 Code-Switched Text Generation 214

Approaches 215

Given a corpus of parallel texts, we generate 216

code-switched sentences by substituting embedded- 217

language words into matrix-language sentences us- 218

ing two approaches: 219

Alignment-Based Approach. We begin by align- 220

ing words between matrix and embedded language 221

sentences using the AWESOME aligner (Dou and 222

Neubig, 2021), guided by LaBSE embeddings 223

(Feng et al., 2022). Based on this alignment, we 224

apply two code-switching strategies: 225

Noun-Token: Matrix-language nouns are identi- 226

fied using the Stanza POS tagger (Qi et al., 2020), 227

then replaced by their aligned counterparts from 228

the embedded-language text guided by Claude 3.5 229

Sonnet (Claude), while ensuring compliance with 230

the Equivalence Constraint Theory (ECT), and the 231

Matrix Language Frame (MLF) model. 232

Ratio-Token: 20% of aligned tokens are randomly 233

sampled and substituted with embedded-language 234

words, without enforcing any linguistic constraints 235

(Chan et al., 2024). 236

LLM-Centric Approach Inspired by the recent 237

capabilities of LLMs in code-switched text gener- 238

ation (Potter and Yuan, 2024), we propose a two- 239
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step approach using Claude to generate CSW text.240

In step (1), the model identifies and placeholder-241

masks switching points in the matrix-language sen-242

tence—nouns for the noun-token strategy and ran-243

domly selected tokens for the ratio-token strategy.244

In step (2), the placeholders are filled with con-245

textually appropriate words from the embedded-246

language sentence.247

3.4 Code-Switching Approach Evaluation248

For each embedded language, we assembled a 300-249

sample test-set, and generated code-switched vari-250

ants using both CSW approaches. GPT-4o then251

conducted blind, pairwise comparisons under the252

LLM-as-a-Judge framework (Zheng et al., 2023),253

evaluating fluency, depth of mixing, grammatical254

validity at switch points, adherence to the Matrix255

Language Frame model, and overall coherence. In256

every case, GPT-4o preferred the two-step LLM-257

Centric approach, demonstrating its superior capac-258

ity to produce high-quality, linguistically coherent259

code-switched text (See Appendix B for details260

on the embedding model, LLM setup, and CSW261

approach selection and evaluation).262

3.5 Evaluation Metrics263

We evaluate models using three key metrics to cap-264

ture baseline performance and the effects of code-265

switching: accuracy, weighted average accuracy,266

and accuracy delta.267

Accuracy. For a model mk ∈ M and bench-
mark B′, whether a monolingual test Bp ∈ B or its
code-switched variant Blmatrix→Lembedded

p , we define
accuracy as:
Acc(mk, B

′) =

1

|B′|

|B′|∑
i=1

1(Correct(mk, instancei)), (1)

where |B′| denotes the number of samples in bench-268

mark B′, instancei is its i-th example, and 1(·) is269

the indicator function.270

Weighted Average Accuracy. To report an ag-
gregate performance measure for a model mk

across multiple benchmarks B, we compute the
weighted average accuracy as:

Accweighted(mk, lmatrix,Lembedded) =∑
Bp∈B |Bp| ·Acc(mk, B

lmatrix→Lembedded
p )∑

Bp∈B |Bp|
, (2)

Accuracy Delta (∆Acc). We quantify the code-
switching impact by computing the accuracy delta,
i.e., the difference between a model’s score on the
code-switched benchmark and its score on the orig-
inal monolingual benchmark, as:
∆Acc(mk, B

lmatrix→Lembedded
p ) =

Acc(mk, B
lmatrix→Lembedded
p )−Acc(mk, Bp). (3)

Positive ∆Acc indicates an improvement under 271

code-switching, negative values a drop. 272

4 Experimental Setting 273

Languages selection We consider a set of lan-
guages
L = {English,Arabic,German,French,Chinese}

We hypothesize that this set creates varying de- 274

grees of semantic, lexical, and syntactic similari- 275

ties between the matrix language and the embedded 276

languages set, which may differentially affect the 277

degradation caused by code-switching, akin to ef- 278

fects observed in machine translation (Guerin et al., 279

2024; Mohamed et al., 2025). 280

Models selection We evaluated LLaMA 3.2 In- 281

struct (3B) and LLaMA 3.1 Instruct (8B, 70B) 282

(Grattafiori et al., 2024), Qwen 2.5 Instruct (3B, 283

7B, 72B) (Yang et al., 2025), Mistral 7B Instruct 284

(v0.3) (Albert et al., 2023), and ALLaM 7B (Bari 285

et al., 2024), encompassing a wide range of scales 286

and pretraining curricula. Allam currently repre- 287

sents the state-of-the-art in Arabic LLMs, while 288

Qwen and Mistral excel in Chinese and French, 289

respectively, even as they maintain strong multi- 290

lingual capabilities. The Llama family delivers 291

consistently robust multilingual performance, en- 292

abling us to isolate the effects of architecture and 293

model scale on code-switching resilience. 294

Benchmarks selection We assess LLM com- 295

prehension on three established tasks: Belebele 296

(Bandarkar et al., 2023) for passage-level reading 297

comprehension (with both passages and questions 298

code-switched), MMLU2 (Hendrycks et al., 2020) 299

for broad-domain multiple-choice reasoning (code- 300

switching applied to questions), and XNLI (Con- 301

neau et al., 2018) natural language inference (both 302

premise and hypothesis code-switched). To ensure 303

consistent, scalable evaluation across models, we 304

used and adapted EleutherAI’s Language Model 305

Evaluation Harness (Gao et al., 2024) for our code- 306

switched variants. 307
2https://huggingface.co/datasets/openai/MMMLU
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Figure 2: Comparison of LLM accuracy on monolingual English versions of Belebele, MMLU, and XNLI benchmarks
(baseline) versus their noun-token code-switched counterparts. English serves as the matrix language, with Arabic
(EN→AR), French (EN→FR), German (EN→DE), and Chinese (EN→ZH) as embedded languages.

5 Experiments308

5.1 Experiment 1: Linguistically motivated309

CSW310

Setup We use English as the matrix language311

lmatrix, and perform code-switching on the bench-312

marks with each language in L \ lmatrix as the em-313

bedded language separately, using the noun-token314

code-switching method, and compare the perfor-315

mance of the code-switched benchmarks with the316

original English benchmarks.317

Hypothesis 1 (H1) We hypothesize that LLM per-318

formance on code-switched benchmarks degrades319

in proportion to the linguistic distance between the320

matrix and embedded languages.321

Results Table 1 and Figure 2 show consistent322

drops in LLM performance on noun-token code-323

switched benchmarks compared to their English324

versions. The extent of degradation varied by325

embedded language and model. For example,326

LLaMA-70B’s weighted average accuracy declined327

from 0.70 (English) to 0.66 on EN→AR/EN→DE328

(∆ ≈ −0.04) and 0.67 on EN→ZH (∆ ≈ −0.03).329

Mistral-7B showed minimal loss on EN→FR330

(∆ ≈ −0.01), and ALLaM-7B retained relatively331

strong performance on EN→AR (∆ ≈ −0.06).332

Qwen models exhibited consistent degradation333

across languages (e.g., Qwen-7B: ∆ ≈ −0.03 to334

−0.06), with larger models achieving better abso-335

lute scores but similar relative drops. These trends336

held across all three tasks, underscoring both the337

general difficulty of CSW and the role of language-338

specific model strengths.339

5.2 Experiment 2: Non-linguistically340

motivated code-switching341

Setup In this experiment, we retain the experi-342

mental framework of Experiment 1, replacing the343

Model EN→AR EN→DE EN→FR EN→ZH EN
Llama 3B 0.47 0.47 0.47 0.50 0.54
Qwen 3B 0.49 0.50 0.52 0.51 0.56
Allam 7B 0.55 0.52 0.53 0.53 0.58
Mistral 7B 0.47 0.52 0.52 0.51 0.57
Qwen 7B 0.52 0.55 0.56 0.57 0.61
Llama 8B 0.48 0.51 0.52 0.51 0.59
Llama 70B 0.66 0.66 0.67 0.67 0.70
Qwen 72B 0.65 0.66 0.65 0.65 0.69

Table 1: Weighted average accuracy of selected LLMs
on noun-token code-switched benchmarks (EN→ AR,
EN→DE, EN→FR, EN→ZH) compared to the mono-
lingual English baseline. Cell colors indicate relative
performance from highest (green) to lowest (red). The
highest scores are indicated in bold.

linguistically motivated noun-token CSW method 344

with the ratio-token method. 345

Hypothesis 2 (H2) We hypothesize that non- 346

linguistically motivated code-switching leads to 347

sharper performance degradation in LLMs than 348

that observed on linguistically motivated code- 349

switching, as such input is less likely to align with 350

patterns encountered during pre-training. 351

Results Results are show in Table 2. All models 352

exhibited a decline in weighted average accuracy, 353

consistent with the patterns observed in Experi- 354

ment 1. The extent of degradation varied with 355

model size and language pairing. Smaller models 356

experienced the most pronounced drops; for exam- 357

ple, Llama 3B decreased from 0.54 (EN) to 0.43 on 358

EN→DE (∆ = −0.11) and to 0.47 on EN→AR 359

(∆ = −0.07). In contrast, Llama 70B showed min- 360

imal degradation, with weighted average accuracy 361

decreasing from 0.70 to 0.68 across all embedded 362

languages (∆ ≈ −0.02). Language-specific re- 363

silience was also observed. Allam 7B and Mistral 364

7B relatively strong performance on EN→AR on 365

EN→FR, respectively. Qwen 7B exhibited consis- 366
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Model EN→AR EN→DE EN→FR EN→ZH EN
Llama 3B 0.47 0.43 0.46 0.51 0.54
Qwen 3B 0.50 0.51 0.52 0.51 0.56
Allam 7B 0.56 0.51 0.53 0.54 0.58
Mistral 7B 0.49 0.52 0.53 0.52 0.57
Qwen 7B 0.53 0.55 0.56 0.57 0.61
Llama 8B 0.50 0.52 0.53 0.54 0.59
Llama 70B 0.68 0.67 0.68 0.68 0.70
Qwen 72B 0.66 0.66 0.66 0.66 0.69

Table 2: Weighted average accuracy of selected LLMs
on ratio-token code-switched benchmarks (EN→ AR,
EN→DE, EN→FR, EN→ZH) compared to the mono-
lingual English baseline. Cell colors indicate relative
performance from highest (green) to lowest (red). The
highest scores are indicated in bold.

tent, moderate degradation, decreasing from 0.61367

to a range of 0.53–0.57 depending on the embedded368

language (∆ = −0.08 to −0.04).369

6 Ablations370

Building on Section 5, which found comparable371

degradation from noun-token and ratio-token code-372

switching, we proceed with ablation studies using373

exclusively the noun-token method.374

6.1 English as an embedded language375

To assess whether embedding English improves376

comprehension in other matrix languages, we re-377

versed the language roles from the main experi-378

ments, using each language in L \ lmatrix as the379

matrix language, and English as the sole embed-380

ded language. We generated code-switched ver-381

sions (Blmatrix→{English}
p ) of the Belebele, MMLU,382

and XNLI benchmarks. By comparing model per-383

formance on these variants against their original384

monolingual counterparts, we aimed to assess any385

comprehension enhancement attributable to the em-386

bedded English words.387

Results are presented in Table 3. Embedding388

English into lower-resource matrix languages of-389

ten improved model performance or, at minimum,390

avoided large degradations. Gains were espe-391

cially prominent when models lacked proficiency392

in the matrix language. For instance, Mistral 7B’s393

weighted average accuracy in Arabic rose from394

0.35 to 0.48 (∆ = +0.13), while its score in Chi-395

nese increased by +0.07 points. In contrast, when396

models already demonstrated strong matrix lan-397

guage proficiency, improvements were minimal or398

absent. Allam 7B (Arabic) and Mistral 7B (French)399

saw gains of only +0.01 and +0.03, respectively.400

High-performing models such as Llama 70B and401

Model AR→EN DE→EN FR→EN ZH→EN
Orig CSW Orig CSW Orig CSW Orig CSW

Llama 3B 0.37 0.45 0.35 0.38 0.43 0.45 0.42 0.47
Qwen 3B 0.40 0.48 0.49 0.52 0.50 0.53 0.48 0.48
Allam 7B 0.51 0.52 0.39 0.43 0.49 0.52 0.44 0.51
Mistral 7B 0.35 0.48 0.50 0.54 0.52 0.55 0.46 0.53
Qwen 7B 0.47 0.52 0.51 0.53 0.56 0.57 0.56 0.55
Llama 8B 0.38 0.44 0.50 0.50 0.50 0.52 0.49 0.53
Llama 70B 0.61 0.66 0.67 0.67 0.68 0.68 0.64 0.66
Qwen 72B 0.63 0.66 0.68 0.68 0.68 0.68 0.66 0.66

Table 3: Weighted average accuracy of LLMs on mono-
lingual (Orig) versus English-embedded code-switched
(CSW) benchmarks across Arabic, German, French, and
Chinese, rounded to two decimals. Bold indicates the
higher score in each Orig/CSW pair. Italic indicates
instances where performance did not change between
the original and code-switched versions.

Qwen 72B showed no change in several settings. 402

Only one case showed a minor drop: Qwen 7B 403

on Chinese (∆ ≈ −0.01). This suggests that em- 404

bedded English may introduce interference when 405

matrix language representations are already strong. 406

6.2 When Code-Switching Goes Extreme 407

To assess performance under more complex mul- 408

tilingual mixing, an "extreme" code-switching ex- 409

periment was conducted on the MMLU bench- 410

mark. English served as the matrix lan- 411

guage, with nouns code-switched using three 412

distinct embedded languages sets: Setting 1 413

featured a non-Latin script pair (Lembedded = 414

{Arabic,Chinese}), Setting 2 used a Latin script 415

pair (Lembedded = {French,German}), and Set- 416

ting 3 combined all four languages (Lembedded = 417

{Arabic,Chinese,French,German}). For generat- 418

ing the code-switched text across these settings, 419

Claude was, additionally, prompted to borrow 420

words evenly from the specified embedded lan- 421

guages for each instance. Table 4 demonstrates 422

that all models experience a decline in MMLU ac- 423

curacy under extreme code-switching relative to the 424

monolingual English baseline. For example, Llama 425

70B’s score decreases from 0.77 to between 0.70 426

and 0.72, and Qwen 72B’s from 0.77 to 0.73–0.74. 427

Analyzing language-script effects by comparing 428

the non-Latin mix (Setting 1) against the Latin mix 429

(Setting 2) reveals no uniform penalty for non-Latin 430

scripts. Allam 7B achieves a higher accuracy with 431

the non-Latin pair (0.56 vs. 0.54), whereas Mis- 432

tral 7B performs better with the Latin pair (0.56 vs. 433

0.53). Moreover, extending the embedded set to 434

all four languages (Setting 3) does not invariably 435
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Model Setting 1 Setting 2 Setting 3 EN
Llama 3B 0.48 0.46 0.47 0.55
Qwen 3B 0.54 0.55 0.53 0.59
Allam 7B 0.56 0.54 0.54 0.58
Mistral 7B 0.53 0.56 0.55 0.59
Qwen 7B 0.58 0.60 0.59 0.65
Llama 8B 0.49 0.51 0.49 0.60
Llama 70B 0.72 0.70 0.70 0.77
Qwen 72B 0.74 0.74 0.73 0.77

Table 4: MMLU accuracy for extreme
code-switching with lmatrix = English and
Lembedded = {Arabic,Chinese} (Setting 1),
Lembedded = {French,German} (Setting 2), and
Lembedded = {Arabic,Chinese,French,German}
(Setting 3), alongside the monolingual English baseline.
The highest scores are indicated in bold.

yield the lowest scores, while Llama 70B (0.70)436

and Qwen 72B (0.73) record their minima in Set-437

ting 3, other models exhibit accuracies intermediate438

between those in Settings 1 and 2.439

7 Mitigation strategies440

To mitigate the performance declines induced by441

code-switching, we investigate two strategies: a442

prompt-based approach, which prepends explicit443

instructions to code-switched inputs, and a model-444

based approach, which fine-tunes LLMs on syn-445

thetic CSW data.446

7.1 Prompt-based Mitigation447

Each noun-token code-switched benchmark in-448

stance was prepended with an explicit instruction449

indicating that the input involves English mixed450

with an embedded language. Further details on451

the prompts used per benchmark are provided in452

Appendix C.453

Model EN→AR EN→DE EN→FR EN→ZH EN
Llama 3B 0.31 0.34 0.32 0.32 0.54
Qwen 3B 0.51 0.53 0.54 0.53 0.56
Mistral 7B 0.46 0.50 0.50 0.50 0.57
Allam 7B 0.56 0.53 0.54 0.53 0.58
Qwen 7B 0.54 0.56 0.58 0.59 0.61
Llama 8B 0.41 0.47 0.48 0.47 0.59
Llama 70B 0.53 0.53 0.64 0.50 0.70
Qwen 72B 0.70 0.71 0.71 0.72 0.69

Table 5: Impact of an instructional prompt on
LLM weighted average accuracy for noun-token code-
switched benchmarks. English serves as the matrix
language, with results shown for various embedded lan-
guages. The highest scores are indicated in bold

The results of the prompt-based mitigation ap-454

proach, presented in Table 5, show considerable 455

variation across models when compared to un- 456

prompted noun-token code-switching (Table 1). 457

For some models, most notably the Qwen family, 458

the addition of an explicit instruction led to con- 459

sistent performance gains. Qwen 72B improved 460

across all language pairs, most remarkably surpass- 461

ing its monolingual English weighted average ac- 462

curacy (EN→ZH: 0.72 vs. EN: 0.69). Similarly, 463

Qwen 7B also benefited, with EN→ZH improving 464

from 0.57 to 0.59 (∆ = +0.02). Allam 7B exhib- 465

ited minor improvements as well, such as EN→AR 466

increasing from 0.55 to 0.56 (∆ = +0.01). 467

Conversely, for other models, particularly the 468

Llama family and Mistral 7B, the prompt-based 469

strategy was frequently detrimental. Llama 8B 470

saw weighted average accuracy declines across 471

all embedded languages (e.g., EN→FR dropped 472

from 0.52 to 0.48, ∆ = −0.04). More substantial 473

drops were observed for Llama 70B, especially on 474

EN→AR and EN→ZH, where performance fell by 475

13 and 17 points respectively. Llama 3B and Mis- 476

tral 7B similarly exhibited declines (e.g., Llama 3B 477

EN→AR: 0.47 to 0.31, ∆ = −0.16). 478

7.2 Model-based Mitigation 479

Directly fine-tuning LLMs on code-switched text 480

presents another avenue for mitigation. For this, 481

Llama 8B was selected, primarily due to its limited 482

responsiveness to prompting within its size cate- 483

gory. A parallel corpus of TED Talk transcripts 484

(Qi et al., 2018) spanning English, Arabic, Chinese, 485

French, and German was utilized. The instruction- 486

tuning dataset was constructed by first selecting 487

samples from the parallel corpus where the English 488

sentence length was greater than 70 words. This 489

filtering yielded approximately 3,650 pairs per lan- 490

guage combination. Noun-token code-switching, 491

with English as a matrix language, was then ap- 492

plied to these, resulting in an instruction-tuning 493

dataset of approximately 14,600 training samples. 494

The instruction required the model to generate the 495

code-switched text from the original English and 496

embedded-language sentences, using five distinct 497

prompt templates to ensure instructions diversity 498

(further details in Appendix D). 499

The impact of this instruction fine-tuning is illus- 500

trated in Figure 3. The baseline Llama 8B model 501

achieved an English-only weighted average accu- 502

racy of 0.59 on the combined benchmarks. Intro- 503

ducing noun-token code-switching without fine- 504

tuning resulted in a weighted average accuracy re- 505
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Figure 3: Comparison of Llama 8B and its instruction-
tuned variant (CSW-Llama 8B) on monolingual English
benchmarks (Belebele, MMLU, and XNLI) versus their
noun-token code-switched counterparts. English serves
as the matrix language, with Arabic, French, German,
and Chinese, as embedded languages.

duction of up to 0.11 points, depending on the506

embedded language. After fine-tuning on the code-507

switched corpus (yielding CSW-Llama 8B), a par-508

tial recovery of performance was observed. The509

most significant improvement was for the EN→AR510

setting, where the weighted average accuracy in-511

creased by +0.04 points over the baseline. The512

smallest gain was for EN→FR, with an increase of513

+0.03 points.514

8 Discussion and Conclusion515

As LLMs increasingly process multilingual and516

mixed-language inputs, understanding their com-517

prehension limits is paramount. This study sys-518

tematically evaluated LLM performance on code-519

switched text, yielding multifaceted insights into520

information processing under these conditions. Our521

findings reveal several nuanced insights.522

LLM comprehension of English as a matrix lan-523

guage is significantly disrupted by the introduc-524

tion of elements from other languages. Our ex-525

periments consistently show that inserting tokens526

from other languages—Arabic, Chinese, French, or527

German—into English text leads to a drop in LLM528

comprehension. This drop does not appear to stem529

solely from unfamiliarity with code-switching, as530

similar performance declines were observed when531

randomly inserting foreign tokens (as in the ratio-532

token method from Experiment 2). Instead, these533

findings point to a more fundamental difficulty:534

LLMs struggle to process disrupted monolingual535

structures and integrate mixed linguistic signals536

effectively.537

Embedding English tokens into other languages 538

often improves LLM comprehension of the orig- 539

inal text. LLMs frequently exhibited improved 540

comprehension on non-English texts when English 541

tokens were embedded, surpassing their baseline 542

performance on the original monolingual versions 543

of the same benchmarks. 544

Code-switching complexity does not linearly cor- 545

relate with performance degradation. In our "ex- 546

treme" code-switching experiments, increasing the 547

number of embedded languages or mixing script 548

types did not consistently lead to greater declines 549

in model performance compared to simpler two- 550

language settings. These findings suggest that 551

degradation is not a direct function of multilingual 552

complexity, but rather emerges from a nuanced in- 553

teraction between specific language combinations 554

and model-specific linguistic representations. 555

While prompting helps some models mitigate 556

degradation, fine-tuning offers a more reliable 557

solution. We evaluated two strategies for mitigat- 558

ing the effects of code-switching: prompt-based 559

and model-based. Explicitly prepending instruc- 560

tions about upcoming code-switched input (Table 561

5) proved effective for some architectures—most 562

notably the Qwen family. However, this strategy 563

was less effective, or even detrimental, for others 564

like Llama and Mistral, likely due to interference 565

with their internal processing. For models that 566

did not benefit from prompting, such as Llama 567

8B, we explored direct instruction fine-tuning on 568

code-switched data. This approach led to a more 569

consistent improvement. As shown in Figure 3, 570

Llama 8B, which suffered performance drops under 571

prompting, partially recovered its accuracy after in- 572

struction tuning—demonstrating that fine-tuning is 573

a more promising path for improving LLM robust- 574

ness to code-switching.
575

These findings underscore that while LLMs ex- 576

hibit impressive multilingual capabilities, code- 577

switching introduces specific comprehension chal- 578

lenges distinct from monolingual processing. The 579

asymmetric impact of English as a matrix versus 580

embedded language highlights areas requiring fur- 581

ther research. While mitigation is possible, the 582

model-specific nature of these solutions points to- 583

wards the need for more adaptive approaches to 584

ensure reliable LLM performance in real-world 585

multilingual environments. 586
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Limitations587

While our study adopts a controlled evaluation588

setup for both linguistically and non-linguistically589

motivated code-switching, the noun-token ap-590

proach we employ reflects one of the fundamen-591

tal forms of linguistically grounded, naturalistic592

switching. However, more complex forms of code-593

switching may induce more severe performance594

degradation. Future work should investigate how595

higher-complexity switching patterns affect LLMs’596

understanding.597

Additionally, in our non-linguistically motivated598

ratio-token experiments, the substitution rate was599

fixed at 20%. Exploring how variation in this ratio600

affects model behavior could yield a more nuanced601

understanding of the impact of non-linguistically602

grounded switching on LLM comprehension.603
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A. Seza Doğruöz, Sunayana Sitaram, Barbara E. Bul- 681
lock, and Almeida Jacqueline Toribio. 2021. A sur- 682
vey of code-switching: Linguistic and social per- 683
spectives for language technologies. In Proceedings 684
of the 59th Annual Meeting of the Association for 685
Computational Linguistics and the 11th International 686
Joint Conference on Natural Language Processing 687
(Volume 1: Long Papers), pages 1654–1666, Online. 688
Association for Computational Linguistics. 689

Zi-Yi Dou and Graham Neubig. 2021. Word alignment 690
by fine-tuning embeddings on parallel corpora. In 691
Proceedings of the 16th Conference of the European 692
Chapter of the Association for Computational Lin- 693
guistics: Main Volume, pages 2112–2128, Online. 694
Association for Computational Linguistics. 695

9

https://aclanthology.org/2020.lrec-1.223/
https://aclanthology.org/2020.lrec-1.223/
https://aclanthology.org/2020.lrec-1.223/
https://doi.org/10.1080/07268602.2018.1510727
https://doi.org/10.1080/07268602.2018.1510727
https://doi.org/10.1080/07268602.2018.1510727
https://doi.org/10.1080/07268602.2018.1510727
https://doi.org/10.1080/07268602.2018.1510727
https://aclanthology.org/2024.lrec-main.698/
https://aclanthology.org/2024.lrec-main.698/
https://aclanthology.org/2024.lrec-main.698/
https://aclanthology.org/2024.lrec-main.698/
https://aclanthology.org/2024.lrec-main.698/
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/2023.acl-long.66
https://doi.org/10.18653/v1/2023.acl-long.66
https://doi.org/10.18653/v1/2023.acl-long.66
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.acl-long.131
https://doi.org/10.18653/v1/2021.acl-long.131
https://doi.org/10.18653/v1/2021.acl-long.131
https://doi.org/10.18653/v1/2021.acl-long.131
https://doi.org/10.18653/v1/2021.acl-long.131
https://doi.org/10.18653/v1/2021.eacl-main.181
https://doi.org/10.18653/v1/2021.eacl-main.181
https://doi.org/10.18653/v1/2021.eacl-main.181


Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-696
vazhagan, and Wei Wang. 2022. Language-agnostic697
BERT sentence embedding. In Proceedings of the698
60th Annual Meeting of the Association for Compu-699
tational Linguistics (Volume 1: Long Papers), pages700
878–891, Dublin, Ireland. Association for Computa-701
tional Linguistics.702

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,703
Sid Black, Anthony DiPofi, Charles Foster, Laurence704
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,705
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,706
Jason Phang, Laria Reynolds, Hailey Schoelkopf,707
Aviya Skowron, Lintang Sutawika, Eric Tang, Anish708
Thite, Ben Wang, Kevin Wang, and Andy Zou. 2024.709
The language model evaluation harness.710

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,711
Abhinav Pandey, Abhishek Kadian, Ahmad Al-712
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,713
Alex Vaughan, et al. 2024. The llama 3 herd of mod-714
els. arXiv preprint arXiv:2407.21783.715

Nicolas Guerin, Shane Steinert-Threlkeld, and Em-716
manuel Chemla. 2024. The impact of syntactic and717
semantic proximity on machine translation with back-718
translation. arXiv preprint arXiv:2403.18031.719

Ayushman Gupta, Akhil Bhogal, and Kripabandhu720
Ghosh. 2024. Code-mixer ya nahi: Novel approaches721
to measuring multilingual llms’ code-mixing capabil-722
ities. arXiv preprint arXiv:2410.11079.723

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,724
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.725
2020. Measuring massive multitask language under-726
standing. arXiv preprint arXiv:2009.03300.727

Maite Heredia, Gorka Labaka, Jeremy Barnes, and Aitor728
Soroa. 2025. Conditioning llms to generate code-729
switched text: A methodology grounded in naturally730
occurring data. arXiv preprint arXiv:2502.12924.731

Muhammad Huzaifah, Weihua Zheng, Nattapol Chan-732
paisit, and Kui Wu. 2024. Evaluating code-switching733
translation with large language models. In Pro-734
ceedings of the 2024 Joint International Conference735
on Computational Linguistics, Language Resources736
and Evaluation (LREC-COLING 2024), pages 6381–737
6394, Torino, Italia. ELRA and ICCL.738

Pranjal Khanuja et al. 2020. Improving code-switched739
nlp using data augmentation. In Proceedings of ACL740
2020, pages 1860–1871.741

Prashant Kodali, Anmol Goel, Likhith Asapu,742
Vamshi Krishna Bonagiri, Anirudh Govil, Monojit743
Choudhury, Manish Shrivastava, and Ponnurangam744
Kumaraguru. 2024. From human judgements to pre-745
dictive models: Unravelling acceptability in code-746
mixed sentences. arXiv preprint arXiv:2405.05572.747

Garry Kuwanto, Chaitanya Agarwal, Genta Indra748
Winata, and Derry Tanti Wijaya. 2024. Linguis-749
tics theory meets llm: Code-switched text generation750
via equivalence constrained large language models.751
arXiv preprint arXiv:2410.22660.752

Zihan Liu, Genta Indra Winata, Zhaojiang Lin, Peng Xu, 753
and Pascale Fung. 2020. Attention-informed mixed- 754
language training for zero-shot cross-lingual task- 755
oriented dialogue systems. Proceedings of the AAAI 756
Conference on Artificial Intelligence, 34(05):8433– 757
8440. 758

Amr Mohamed, Mingmeng Geng, Michalis Vazirgian- 759
nis, and Guokan Shang. 2025. Llm as a broken 760
telephone: Iterative generation distorts information. 761
arXiv preprint arXiv:2502.20258. 762

Melissa G. Moyer. 2002. Pieter muysken, bilingual 763
speech: A typology of code-mixing. cambridge: 764
Cambridge university press, 2000. pp. xvi, 306. hb 765
59.95. Language in Society, 31(4):621–624. 766

P. Muysken. 2000. Bilingual Speech: A Typology of 767
Code-Mixing. Cambridge University Press. 768

R. Myers-Scotton. 1993. Social Motivations for Code- 769
Switching: Evidence from Africa. Oxford University 770
Press. 771

Mark Myslín. 2014. Codeswitching and predictabil- 772
ity of meaning in discourse. In Codeswitching and 773
predictability of meaning in discourse. 774

Lynnette Hui Xian Ng and Luo Qi Chan. 2024. What 775
talking you?: Translating code-mixed messaging 776
texts to english. arXiv preprint arXiv:2411.05253. 777

Millicent Ochieng, Varun Gumma, Sunayana Sitaram, 778
Jindong Wang, Vishrav Chaudhary, Keshet Ronen, 779
Kalika Bali, and Jacki O’Neill. 2024. Beyond met- 780
rics: evaluating llms’ effectiveness in culturally nu- 781
anced, low-resource real-world scenarios. arXiv 782
preprint arXiv:2406.00343. 783

Tanmay Parekh, Emily Ahn, Yulia Tsvetkov, and 784
Alan W Black. 2020. Understanding linguistic ac- 785
commodation in code-switched human-machine di- 786
alogues. In Proceedings of the 24th Conference on 787
Computational Natural Language Learning, pages 788
565–577, Online. Association for Computational Lin- 789
guistics. 790

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj 791
Pandey, Srinivas PYKL, Björn Gambäck, Tanmoy 792
Chakraborty, Thamar Solorio, and Amitava Das. 793
2020. SemEval-2020 task 9: Overview of sentiment 794
analysis of code-mixed tweets. In Proceedings of the 795
Fourteenth Workshop on Semantic Evaluation, pages 796
774–790, Barcelona (online). International Commit- 797
tee for Computational Linguistics. 798

Shana Poplack. 1988. 8. Contrasting patterns of 799
codeswitching in two communities, pages 215–244. 800
De Gruyter Mouton, Berlin, New York. 801

Susan Poplack. 1978. Sometimes i’ll start a sentence in 802
spanish y termino en español: Toward a typology of 803
code-switching. Linguistics, 16(7-8):581–618. 804

10

https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.5281/zenodo.12608602
https://aclanthology.org/2024.lrec-main.565/
https://aclanthology.org/2024.lrec-main.565/
https://aclanthology.org/2024.lrec-main.565/
https://aclanthology.org/2020.acl-main.338
https://aclanthology.org/2020.acl-main.338
https://aclanthology.org/2020.acl-main.338
https://doi.org/10.1609/aaai.v34i05.6362
https://doi.org/10.1609/aaai.v34i05.6362
https://doi.org/10.1609/aaai.v34i05.6362
https://doi.org/10.1609/aaai.v34i05.6362
https://doi.org/10.1609/aaai.v34i05.6362
https://doi.org/10.1017/S004740450224405X
https://doi.org/10.1017/S004740450224405X
https://doi.org/10.1017/S004740450224405X
https://doi.org/10.1017/S004740450224405X
https://doi.org/10.1017/S004740450224405X
https://doi.org/10.1017/S004740450224405X
https://doi.org/10.1017/S004740450224405X
https://books.google.fr/books?id=lJI7qrIKmokC
https://books.google.fr/books?id=lJI7qrIKmokC
https://books.google.fr/books?id=lJI7qrIKmokC
https://api.semanticscholar.org/CorpusID:272681368
https://api.semanticscholar.org/CorpusID:272681368
https://api.semanticscholar.org/CorpusID:272681368
https://doi.org/10.18653/v1/2020.conll-1.46
https://doi.org/10.18653/v1/2020.conll-1.46
https://doi.org/10.18653/v1/2020.conll-1.46
https://doi.org/10.18653/v1/2020.conll-1.46
https://doi.org/10.18653/v1/2020.conll-1.46
https://doi.org/10.18653/v1/2020.semeval-1.100
https://doi.org/10.18653/v1/2020.semeval-1.100
https://doi.org/10.18653/v1/2020.semeval-1.100
https://doi.org/doi:10.1515/9783110849615.215
https://doi.org/doi:10.1515/9783110849615.215
https://doi.org/doi:10.1515/9783110849615.215


Tom Potter and Zheng Yuan. 2024. LLM-based code-805
switched text generation for grammatical error cor-806
rection. In Proceedings of the 2024 Conference on807
Empirical Methods in Natural Language Processing,808
pages 16957–16965, Miami, Florida, USA. Associa-809
tion for Computational Linguistics.810

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,811
Sunayana Sitaram, Sandipan Dandapat, and Kalika812
Bali. 2018. Language modeling for code-mixing:813
The role of linguistic theory based synthetic data. In814
Proceedings of the 56th Annual Meeting of the As-815
sociation for Computational Linguistics (Volume 1:816
Long Papers), pages 1543–1553, Melbourne, Aus-817
tralia. Association for Computational Linguistics.818

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and819
Christopher D. Manning. 2020. Stanza: A python820
natural language processing toolkit for many human821
languages. In Proceedings of the 58th Annual Meet-822
ing of the Association for Computational Linguistics:823
System Demonstrations, pages 101–108, Online. As-824
sociation for Computational Linguistics.825

Ye Qi, Devendra Sachan, Matthieu Felix, Sarguna Pad-826
manabhan, and Graham Neubig. 2018. When and827
why are pre-trained word embeddings useful for neu-828
ral machine translation? In Proceedings of the 2018829
Conference of the North American Chapter of the830
Association for Computational Linguistics: Human831
Language Technologies, Volume 2 (Short Papers),832
pages 529–535, New Orleans, Louisiana. Associa-833
tion for Computational Linguistics.834

Samson Tan and Shafiq Joty. 2021. Code-mixing on835
sesame street: Dawn of the adversarial polyglots. In836
Proceedings of the 2021 Conference of the North837
American Chapter of the Association for Computa-838
tional Linguistics: Human Language Technologies,839
pages 3596–3616, Online. Association for Computa-840
tional Linguistics.841

Genta Winata et al. 2021a. Multilingual pretrained mod-842
els are effective for code-switching nlp. In Proceed-843
ings of EMNLP 2021, pages 2345–2356.844

Genta Indra Winata, Andrea Madotto, Zhaojiang Lin,845
Rosanne Liu, Jason Yosinski, and Pascale Fung.846
2021b. Language models are few-shot multilingual847
learners. In Proceedings of the 1st Workshop on848
Multilingual Representation Learning, pages 1–15,849
Punta Cana, Dominican Republic. Association for850
Computational Linguistics.851

Genta Indra Winata, Andrea Madotto, Chien-Sheng Wu,852
and Pascale Fung. 2019. Code-switched language853
models using neural based synthetic data from par-854
allel sentences. In Proceedings of the 23rd Confer-855
ence on Computational Natural Language Learning856
(CoNLL), pages 271–280, Hong Kong, China. Asso-857
ciation for Computational Linguistics.858

Anjali Yadav, Tanya Garg, Matej Klemen, Matej Ulcar,859
Basant Agarwal, and Marko Robnik Sikonja. 2024.860
Code-mixed sentiment and hate-speech prediction.861
arXiv preprint arXiv:2405.12929.862

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, 863
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, 864
Chengen Huang, Chenxu Lv, et al. 2025. Qwen3 865
technical report. arXiv preprint arXiv:2505.09388. 866

Ruochen Zhang, Samuel Cahyawijaya, Jan Chris- 867
tian Blaise Cruz, Genta Winata, and Alham Fikri 868
Aji. 2023. Multilingual large language models are 869
not (yet) code-switchers. In Proceedings of the 2023 870
Conference on Empirical Methods in Natural Lan- 871
guage Processing, pages 12567–12582, Singapore. 872
Association for Computational Linguistics. 873

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, 874
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen 875
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A 876
survey of large language models. arXiv preprint 877
arXiv:2303.18223, 1(2). 878

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 879
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 880
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. 881
Judging llm-as-a-judge with mt-bench and chatbot 882
arena. Advances in Neural Information Processing 883
Systems, 36:46595–46623. 884

Zhihong Zhu, Xuxin Cheng, Zhiqi Huang, Dongsheng 885
Chen, and Yuexian Zou. 2023. Enhancing code- 886
switching for cross-lingual SLU: A unified view of 887
semantic and grammatical coherence. In Proceed- 888
ings of the 2023 Conference on Empirical Methods 889
in Natural Language Processing, pages 7849–7856, 890
Singapore. Association for Computational Linguis- 891
tics. 892

11

https://doi.org/10.18653/v1/2024.emnlp-main.942
https://doi.org/10.18653/v1/2024.emnlp-main.942
https://doi.org/10.18653/v1/2024.emnlp-main.942
https://doi.org/10.18653/v1/2024.emnlp-main.942
https://doi.org/10.18653/v1/2024.emnlp-main.942
https://doi.org/10.18653/v1/P18-1143
https://doi.org/10.18653/v1/P18-1143
https://doi.org/10.18653/v1/P18-1143
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/N18-2084
https://doi.org/10.18653/v1/N18-2084
https://doi.org/10.18653/v1/N18-2084
https://doi.org/10.18653/v1/N18-2084
https://doi.org/10.18653/v1/N18-2084
https://doi.org/10.18653/v1/2021.naacl-main.282
https://doi.org/10.18653/v1/2021.naacl-main.282
https://doi.org/10.18653/v1/2021.naacl-main.282
https://aclanthology.org/2021.emnlp-main.190
https://aclanthology.org/2021.emnlp-main.190
https://aclanthology.org/2021.emnlp-main.190
https://doi.org/10.18653/v1/2021.mrl-1.1
https://doi.org/10.18653/v1/2021.mrl-1.1
https://doi.org/10.18653/v1/2021.mrl-1.1
https://doi.org/10.18653/v1/K19-1026
https://doi.org/10.18653/v1/K19-1026
https://doi.org/10.18653/v1/K19-1026
https://doi.org/10.18653/v1/K19-1026
https://doi.org/10.18653/v1/K19-1026
https://doi.org/10.18653/v1/2023.emnlp-main.774
https://doi.org/10.18653/v1/2023.emnlp-main.774
https://doi.org/10.18653/v1/2023.emnlp-main.774
https://doi.org/10.18653/v1/2023.emnlp-main.486
https://doi.org/10.18653/v1/2023.emnlp-main.486
https://doi.org/10.18653/v1/2023.emnlp-main.486
https://doi.org/10.18653/v1/2023.emnlp-main.486
https://doi.org/10.18653/v1/2023.emnlp-main.486


A Additional Details893

All experiments were conducted using NVIDIA A100 (40GB VRAM) and A10 (24GB VRAM) GPU894

clusters. The compute allocation totaled 22 GPU-days, comprising 8 GPU-days on 8×A100 nodes and 14895

GPU-days on 4×A10 nodes.896

B Code-Switched Text Generation Approaches and Component Selection897

This section details our selection process for model components used in generating code-switched (CSW)898

text, as introduced in Section 3. Our objective was to identify the most effective LLM and alignment899

backbone for producing fluent, grammatically valid CSW outputs suitable for benchmark construction.900

B.1 LLM Selection for Generation901

We compared Claude 3.5 Sonnet and GPT-4o as generation modules for both the Alignment-Based and902

LLM-Centric pipelines. For each matrix–embedded language pair (EN→AR, ZH, FR, DE), we sampled903

100 samples from the Belebele, MMLU, and XNLI benchmarks. Both models generated noun-token CSW904

sentences under linguistically grounded prompting that adhered to the Equivalence Constraint Theory905

(ECT) and Matrix Language Frame (MLF) model.906

Bilingual annotators conducted pairwise preference evaluations of the outputs, focusing on a single907

criterion: which code-switched sentence sounded more natural to them. Claude was consistently favored,908

with preference rates ranging from 52% to 62% across languages, as shown in Table 6. Accordingly,909

Claude was selected as the generation model for all subsequent CSW construction.910

Embedded Language Claude (%) GPT-4o (%)

Arabic 55 45
Chinese 57 43
French 52 48
German 62 38

Table 6: Human preferences for CSW text generated by Claude vs. GPT-4o (100 examples per language pair).

B.2 Embedding Backbone Selection911

To identify the best embedding model for alignment in the Alignment-Based Pipeline, we evaluated912

AWESOME with mBERT (AWESOME’s default embedding model) and LaBSE. For each language913

pair, 300 noun-token CSW sentences were generated using alignments from each configuration, with914

substitution handled by Claude.915

Using GPT-4o as an LLM-based judge, we found that LaBSE-based alignments consistently yielded916

more natural and fluent code-switched outputs than those derived from mBERT, with clear preferences917

observed for Arabic (89.0%), Chinese (91.3%), and French (74.7%). For German, the preference was918

more modest (55.3%), though still in favor of LaBSE. GPT-4o was selected as the evaluator due to919

its strong multilingual capabilities and demonstrated aptitude in code-switching understanding across920

typologically diverse languages. Importantly, using GPT-4o rather than Claude to evaluate outputs avoids921

the potential biases introduced by self-evaluation, such as output familiarity or training data memorization,922

thus providing a more neutral and reliable assessment of generation quality. Results presented in Table 7,923

informed our decision to adopt LaBSE as the default embedding backbone for alignment in all subsequent924

experiments.925
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Embedded Language LaBSE (%) mBERT (%)

Arabic 89.0 11.0
Chinese 91.3 8.7
French 74.7 25.3
German 55.3 44.7

Table 7: GPT-4o preference rates for CSW text generated using LaBSE vs. mBERT alignments. Percentages reflect
outcome ratios from 300 evaluation instances per language.

B.3 Final Generation Approach Selection 926

We compared the Alignment-Based Pipeline and the LLM-Centric Method for generating noun-token 927

CSW text across 100 samples per language and benchmark. Results are presented in Table 8. Pairwise 928

evaluation via GPT-4o favored the LLM-Centric approach in all settings, with the strongest preferences 929

for Chinese (66%) and French (63.8%). Based on these results, we adopt the LLM-Centric Method for 930

all noun-token CSW benchmark construction, while retaining the Alignment-Based Pipeline for tasks 931

requiring explicit control over substitution rates (e.g., ratio-token generation). 932

Embedded Language LLM-Centric (%) Alignment-Based (%)

Arabic 56.1 43.9
Chinese 66.0 34.0
French 63.8 36.2
German 53.4 46.6

Table 8: GPT-4o preferences between generation methods for noun-token CSW outputs.

You have two code -switched sentences , A and B, each blending English (matrix
language) with {second_language }. Follow these steps and then choose the better
sentence (A or B):

1. Assess Fluency: check which sentence flows most naturally , like plausible
bilingual speech.

2. Assess Depth of Mixing: check which sentence meaningfully integrates both
languages rather than inserting isolated tokens.

3. Assess Switch Grammar: check which sentence has grammatically valid switch points
under Equivalence Constraint Theory.

4. Assess Consistency: check which sentence uses English as its grammatical frame
and embeds {second_language} elements appropriately under the Matrix Language
Frame model.

5. Assess Overall Coherence: check which sentence remains clear and plausible as a
whole despite the language mixing.

After evaluating all five criteria , return A or B with no further explanation.

Sentences:
A: {sentence_one}
B: {sentence_two}

Output:

Figure 4: The prompt given to Claude 3.5 Sonnet for choosing the best summary between the baseline and LLM-
generated summaries.
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C Instructional Prompt for Prompt-Based Mitigation933

Belebele Prompt934

You are an expert in understanding code -switched text. You will be given a passage
and a question in code -switched English and Arabic. You have to understand them
and respond to the given question with best answer: A, B, C, or D.

Figure 5: Instructional prompt prepended for Belebele multiple-choice QA tasks.

MMLU Prompt935

You are an expert in understanding code -switched text. You will be given a question
in code -switched English and Arabic. You have to understand it and respond to
the given question with best answer: A, B, C, or D.

Figure 6: Instructional prompt prepended for MMLU multiple-choice QA tasks.

XNLI Prompt936

You are an expert in understanding code -switched text. You will be given two code -
switched passages that correspond to a premise and a hypothesis in code -switched
English and Arabic text. You have to understand them and respond with the best

answer: 0, 1, or 2.

Figure 7: Instructional prompt prepended for XNLI natural language inference tasks.

D Instruction Tuning for Model-Based Mitigation937

We fine-tuned LLaMA-3.1-8B-Instruct to improve its comprehension of code-switched text using a targeted938

instruction-tuning dataset. Full-model training was conducted over a single epoch using a learning rate939

of 2× 10−6 with linear decay and 5% warmup. Training leveraged mixed-precision BF16 and dynamic940

sequence packing within a 4096-token window, and a batch-size of four.941

D.1 Dataset Preparation942

The training data was derived from parallel TED Talk translations (Qi et al., 2018), selecting English943

sentences longer than 70 words and their Arabic, Chinese, French, and German equivalents. Each English944

sentence was converted into four code-switched variants using the LLM-Centric Method (Appendix B.3).945

The final dataset included over 14,000 examples, shuffled and formatted as instruction–response pairs.946

D.2 Prompt Templates for Instruction Tuning947

To prevent overfitting to fixed phrasing, each training instance was paired with a randomly selected prompt948

from a pool of five semantically equivalent instruction templates. These templates varied in their surface949

structure but uniformly instructed the model to blend the matrix English sentence with embedded nouns950

from the translation. Figures 8–12 illustrate the five styles used.951

Take this English sentence and infuse it with <LANGUAGE > code -switching:
English: "<ENGLISH_SENTENCE >"
<LANGUAGE >: "<TRANSLATION_SENTENCE >"

Figure 8: Infusion-style template.
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Convert the following English line into a code -switched mix with <LANGUAGE >:
English: "<ENGLISH_SENTENCE >"
<LANGUAGE >: "<TRANSLATION_SENTENCE >"

Figure 9: Conversion-style template.

Blend English and <LANGUAGE > in the sentence below:
English text: "<ENGLISH_SENTENCE >"
<LANGUAGE > equivalent: "<TRANSLATION_SENTENCE >"

Figure 10: Blending-style template.

Generate a code -switched rendition by swapping in <LANGUAGE >:
English original: "<ENGLISH_SENTENCE >"
<LANGUAGE > snippet: "<TRANSLATION_SENTENCE >"

Figure 11: Rendition-style template.

Switch parts of this English sentence into <LANGUAGE >:
English: "<ENGLISH_SENTENCE >"
<LANGUAGE >: "<TRANSLATION_SENTENCE >"

Figure 12: Switching-style template.
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