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ABSTRACT

Vision-Language Models (VLMs) for radiology report generation are typically
trained to mimic the narrative flow of human experts. However, we identify a po-
tential limitation in this conventional paradigm. We hypothesize that optimizing
for narrative coherence encourages models to rely on linguistic priors and inter-
sentence correlations, which can weaken their grounding in direct visual evidence
and lead to factual inaccuracies. To investigate this, we design a controlled ex-
periment demonstrating that as textual context increases, a model’s reliance on
the input image systematically decays. We propose LLaVA-TA (Topic-guided
and Anatomy-aware), a new fine-tuning framework that directly addresses this
challenge by re-engineering the generation process. Instead of producing a linear
narrative, LLaVA-TA decomposes the report into a set of independent, clinically-
relevant topics. By training the model to generate a discrete finding for each topic
conditioned on both the full image and its corresponding anatomical region, we re-
duce the model’s reliance on narrative flow and enforce stricter visual grounding.
Our experiments show that LLaVA-TA sets a new state of the art on the MIMIC-
CXR dataset, significantly improving clinical accuracy on metrics like RadGraph
F1 (from 29.4 to 44.0) and CheXpert F1-14 (from 39.5 to 71.5) over strong base-
lines. Our work demonstrates that dismantling a report’s narrative structure to en-
force independent, visually-grounded observations is a crucial and effective step
toward building more accurate and reliable medical VLMs.

1 INTRODUCTION

The automated generation of radiology reports from medical images, such as chest X-rays (CXRs), is
a pivotal task in medical AI with the potential to streamline clinical workflows and reduce radiologist
burnout. Unlike general-purpose vision-language tasks, radiology report generation (RRG) (Chen
et al., 2022; Tanida et al., 2023; Tanno et al., 2025) operates with minimal tolerance for error, de-
manding exceptional factual precision, spatial grounding of findings to specific anatomy, and adher-
ence to structured medical language—where ambiguity can have severe clinical consequences.

We propose that a potential pitfall in adapting large Vision-Language Models (VLMs) (Wang et al.,
2024; Liu et al., 2023; Grattafiori et al., 2024; OpenAI et al., 2024) to RRG lies in their implicit
optimization for narrative flow. Our central hypothesis is that conventional training, by treating the
report as a monolithic text sequence, inadvertently teaches models to prioritize linguistic coherence
over strict visual fidelity. This learned reliance on the textual context of previously generated sen-
tences could become actively detrimental, allowing it to bias subsequent findings and override direct
evidence from the image itself—a process that we suspect weakens visual grounding and fosters
clinical hallucination. To investigate this vulnerability, we designed a controlled experiment with a
pre-trained VLM, LLaVA-Rad (Zambrano Chaves et al., 2025). We prompted the model to com-
plete the last K sentences of a ground-truth report given the preceding sentences, comparing its
performance when conditioned on the true CXR versus a blank image. Our findings provide strong
empirical validation for our initial hypothesis, as shown in Fig. 1. Crucially, the performance gap
between using the real versus the blank image diminished significantly as the textual prefix grew
longer (i.e., as K decreased). This demonstrates that with sufficient textual context, the model in-
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creasingly disregards the visual input, relying instead on learned language patterns to complete the
report—a critical vulnerability for a diagnostic task.

This core issue of narrative-induced bias persists across existing methodologies. Early works
focused on representation learning, developing powerful CXR-report embeddings (e.g., GLo-
RIA (Huang et al., 2021), BioViL (Boecking et al., 2022)), but these models do not directly address
the structured generation process. More recent instruction-tuned VLMs like LLaVA (Liu et al.,
2023) and MiniGPT-4 treat the entire report as a single, undifferentiated output, inheriting the nar-
rative flow problem. Even specialized medical VLMs have not fully escaped this trap (Li et al.,
2023; Chen et al., 2024; Hyland et al., 2024; Tu et al., 2023). LLaVA-Rad (Zambrano Chaves et al.,
2025), for instance, improves performance by filtering out sentences describing historical compar-
isons but still generates the core findings as a sequential narrative. Other notable approaches, such
as COMG (Gu et al., 2024), which incorporates anatomical masks, or the Multi-Grained frame-
work (Liu et al., 2024) with its sentence-level contrastive learning, have advanced the field. Yet,
they do not fundamentally dismantle the sentence-to-sentence dependency that allows contextual
priors to override direct visual evidence, failing to achieve topic-level disentanglement.

To address this fundamental limitation, we propose LLaVA-TA (Topic-guided and Anatomy-aware),
a novel fine-tuning framework that re-envisions report generation. Instead of producing a linear
narrative, LLaVA-TA decomposes the task by distinct medical topics corresponding to anatomi-
cal regions (e.g., lungs, heart, mediastinum). The model is trained to generate short, independent
paragraphs for each relevant topic, conditioned on the entire image. This topic-guided approach
confers two critical advantages. First, it enhances visual grounding. By breaking the sequential
chain of dependency, we force the model to ground its statements for each topic (e.g., ”lungs”) di-
rectly and solely on the visual evidence present in the corresponding anatomical area, preventing
knowledge from a previously generated sentence (e.g., about the ”heart”) from biasing the text. The
visual grounding is provided by a CXR segmentation model that provides masks for each topic, as
shown in Figure 2. Second, it reduces hallucination via tighter supervision. Training on short,
topic-isolated ground-truth sentences provides a much stricter and more focused learning signal.
This structure minimizes the model’s ability to make ”lucky guesses” based on spurious sentence
correlations, a common failure mode during training that reinforces hallucinatory behavior.

Our key contributions are as follows:

• Diagnosing the ”Narrative Flow” Problem. We empirically validate that narrative-flow-
based training is a fundamental limitation in RRG, demonstrating how it induces a harmful
trade-off between textual coherence and visual grounding.

• LLaVA-TA: A Topic-Guided Generation Framework. We propose LLaVA-TA, a novel
framework that re-engineers the generation process by decomposing it into independent,
clinically relevant topics to enforce stricter visual grounding.

• State-of-the-Art Clinical Accuracy and Grounding. We demonstrate through extensive
experiments that LLaVA-TA sets a new state of the art, producing reports that are signifi-
cantly more factually accurate, spatially grounded, and less prone to clinical hallucination
than prior methods.

2 METHODS

The LLaVA-TA framework enhances RRG by replacing unstructured, narrative-based training with
structured supervision that explicitly aligns clinical topics with their corresponding anatomical re-
gions in the chest X-ray. As illustrated in Fig. 2, LLaVA-TA comprises three core stages: (1)
topic-guided decomposition of ground-truth reports into atomic, image-grounded statements; (2)
anatomical segmentation to create spatially-aware visual inputs; and (3) a vision-language fine-
tuning process that learns to generate topic-specific findings from these aligned pairs.

2.1 TOPIC-GUIDED REPORT DECOMPOSITION

Our first step is to disentangle the complex, multi-topic narratives of clinical reports into clean,
image-grounded training targets. To achieve this, we employ DeepSeek-V3 (DeepSeek-AI et al.,
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Figure 1: Empirical validation of the model’s over-reliance on textual priors over visual evidence.
The plots show the score difference between generating report findings with the original image ver-
sus a blank image across four metric categories. The y-axis represents this performance gap (OriImg
- BlackImg); a larger value means the visual information provides a greater benefit. The x-axis rep-
resents the amount of textual context provided to the model, where ”NoPrior” is full generation and
”lastk -K” is the task of generating only the final K sentences. Across all metrics, the performance
gap consistently shrinks as more textual context is given (i.e., as K decreases from 3 to 1). This
demonstrates that the model increasingly ignores the visual input as the textual prefix grows, relying
instead on learned linguistic patterns to complete the report. This result provides strong evidence
that training with narrative flow weakens visual grounding. More detailed results are shown in Ap-
pendix A.

Vision Encoder

M
LP

The lungs are low in volume, which obscures the right lower lung calcified granuloma.
No focal consolidation is seen.
There is no pleural effusion or pneumothorax.
The heart is normal in size with post-surgical changes, including intact mediastinal wires.

organ-lungs: 
The lungs are low in volume. 
A right lower lung calcified granuloma is present.

disease-consolidation: 
Focal consolidation is absent.

disease-pleural effusion: 
Pleural effusion is absent.

disease-pneumothorax: 
Pneumothorax is absent.

organ-heart: 
The heart is normal in size.

support devices: 
Intact mediastinal wires are present.

Given the image <image>
and the segmented part <image>.
Provide a description of the findings in the radiology image
for the following organs or diseases: {organ-lungs}.

The lungs are low in volume.
A right lower lung calcified

granuloma is present.

Topic-specific 
ground truth sentences

(b) Radiology Report Topic Split (DeepSeekV3)(a) Anatomy CXR Segmentation
O

riginal
Topic split

(c) LLaVA-TA architecture

Language m
odel

(d) Topic split reports 
quality evaluation for
 the MIMIC-CXR-JPG

training set

BLEU1

BLEU4

Rouge_L

Macro-F1-14

RG_ER

Macro-F1-5

CXAS model

Original Segmented

58.7

38.0

60.8

60.8

67.2

62.2

lung halves

abdomen ribs heart

mediastinum vertebrae diaphragm

D
eepSeek-V3

Disease level:
atelectasis, cardiomegaly, 
consolidation, edema, 
enlarged cardiomediastinum,
fracture, lung lesion,lung
opacity, pleural effusion, pleural
other, pneumonia, pneumothorax
organ level:
heart, lungs,  pleura, 
mediastinum, bones, diaphragm
Special categories:
support devices, patient
status, other

Complete list of defined topics

Figure 2: Overview of the LLaVA-TA framework. Our pipeline transforms unstructured data into
aligned, topic-specific training instances. (a) First, a pretrained segmentation model (CXAS) gen-
erates anatomy-specific masks for each CXR to serve as spatially-aware visual inputs. (b) Concur-
rently, an LLM (DeepSeek-V3) dismantles the narrative structure of each report, decomposing it
into discrete, cleaned sentences aligned with a clinical topic ontology. (c) During fine-tuning, the
LLaVA-TA model is conditioned on both the original image and the relevant anatomical mask, and
is prompted to generate a finding for a single topic. (d) A quantitative evaluation confirms that our
report decomposition process preserves high lexical and clinical fidelity compared to the original
reports.
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2025), an instruction-following LLM, to preprocess and decompose each report into a set of discrete,
topic-specific sentences. The topics are shown in Fig. 2(b).

This process consists of two key steps:

• Cleaning: Comparative phrases (e.g., “compared to prior exam”) and speculative language
(e.g., “possibly atelectasis”) are removed to retain only evidence-based findings visible in
the current image.

• Topic Splitting: Each sentence is mapped to a clinical topic using a hierarchical ontology.
Topics are prioritized as follows: (1) pathology-level (e.g., “disease-consolidation”), (2)
anatomy-level (e.g., “organ-lungs”), and (3) auxiliary categories (e.g., “support devices”).

To ensure high-quality sentence splits, we apply additional rules: each sentence must refer to a sin-
gle topic, comparative or ambiguous language is rewritten for clarity, and negations are standardized
(e.g., “Pneumothorax is absent”). This yields structured, direct, and image-grounded sentence tar-
gets for each report. The complete list of topics are provided in the Appendix B. The full prompt for
applying the topic-split is shown in the Appendix C.

Each radiology report is transformed into a set of clean, topic-specific findings. This process en-
forces one sentence per topic and provides clear supervision targets that can be aligned with local-
ized visual inputs.

We further evaluate the quality of the topic-split reports using both lexical metrics and radiology-
specific metrics over the entire MIMIC-CXR-JPG training set (Johnson et al., 2019b) by concate-
nating them as a whole paragraph first; the results are shown in Figure 2(d). The evaluation demon-
strates strong alignment between preprocessed and original medical reports, with high BLEU-1
(58.7), BLEU-4 (38.0) and ROUGE-L (60.8) scores confirming lexical and semantic fidelity. The
superior RadGraph-F1 (67.2) highlights robust retention of structured clinical entities and relations,
while Micro-F1-14 (0.64) and Macro-F1-14 (0.61) indicate effective fine-grained label preservation.

2.2 ANATOMICAL REGION SEGMENTATION

To provide spatial grounding for each textual topic, we generate anatomical segmentation masks
that isolate the relevant visual regions within the CXR. We employ CXAS (Seibold et al., 2022;
2023), a specialized UNet-based model, to segment each image into seven key anatomical regions:
vertebrae, ribs, diaphragm, mediastinum, abdomen, heart, and lung halves.

Each clinical topic from our ontology is mapped to one or more of these anatomical regions via a
predefined lookup table (Appendix B). If a topic pertains to multiple regions (e.g., “disease-pleural
effusion” may involve the lungs and diaphragm), their corresponding masks are merged. This map-
ping yields two aligned visual inputs for each topic-sentence pair: (1) the original global image I ,
and (2) the topic-specific segmented image S, which provides a localized view. This dual-input
strategy focuses the model’s attention, improving interpretability and reducing noise from irrelevant
regions.

2.3 VISION-LANGUAGE FINE-TUNING

Our fine-tuning process, adapted from LLaVA-Rad (Zambrano Chaves et al., 2025), trains a model
to generate topic-specific findings conditioned on both global and localized visual evidence. The
architecture consists of three core components: (1) Vision Encoder: BiomedCLIP-CXR (Zhang
et al., 2025; Zambrano Chaves et al., 2025), pretrained on 697k paired radiology image-report data,
processes both the original image I and the segmented image S, producing two distinct visual em-
beddings, ZI and ZS . (2) Multimodal Alignment Layer: A learnable MLP projects the visual
embeddings ZI and ZS from the vision encoder’s feature space into the language model’s word
embedding space. (3) Language Model: Vicuna-7B-v1.5 (Zheng et al., 2023), an instruction-tuned
LLM, is used to generate topic-specific findings auto-regressively.

Each training instance is constructed from a structured prompt containing two special ¡image¿ to-
kens: “Given the image <image> and the segmented part <image>, describe the findings for the
topic: topic.”. During the forward pass, the token embeddings corresponding to the two <image>
placeholders are replaced by the projected visual embeddings from the MLP. This creates a single,
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"Small bilateral pleural effusions are present." Mild cardiomegaly is present.

O
riginal

Segm
ented

Topic: 
Segmentation:

disease-pleural effusion
lung halves

Topic: 
Segmentation:

disease-fracture
[ribs, vertebrae]

Topic: 
Segmentation:

support devices
all

Topic: 
Segmentation:

disease-cardiomegaly
heart region

"Compression deformity of a mid thoracic 
vertebral body is present."

"A feeding tube is present. The feeding tube
terminates in the proximal stomach."

Figure 3: Attention Visualization of LLaVA-TA. We adopt an aggregation using max across all
attention layers and heads of the attention scores for the currently generated tokens for the features
corresponding to the two input images. The examples above illustrate how LLaVA-TA grounds
clinically meaningful tokens in the appropriate image regions, demonstrating spatial interpretability
for specific findings in the generated report (bottom row).

unified input sequence of embeddings that seamlessly integrates textual and visual information for
the language model.

The model is trained to maximize the likelihood of the ground-truth topic sentence Y = (y1, ..., yL)
by minimizing the standard auto-regressive cross-entropy loss:

L(θ) = −
L∑

t=1

logP (yt|y<t, Xprompt, ZI , ZS ; θ)

where θ represents the trainable model parameters, yt is the t-th token in the target sentence, y<t are
the preceding ground-truth tokens, and Xprompt is the structured text prompt.

We follow the established two-phase training protocol: (1)Phase 1: Cross-Modal Alignment. The
vision encoder and LLM are kept frozen. Only the MLP is trained to align the visual features with
the LLM’s token space. (2)Phase 2: Instruction Fine-Tuning. The vision encoder remains frozen
while the MLP and the full LLM are fine-tuned end-to-end using the auto-regressive loss objective
defined above. This phase teaches the model to generate coherent, topic-specific sentences that are
conditioned on both the global and localized image features.

2.4 INFERENCE PROCESS

During inference, we evaluate our model under two distinct settings to provide a comprehensive
assessment. The first setting measures fine-grained, topic-level accuracy, while the second evaluates
the model’s ability to generate a complete and clinically coherent report.

2.4.1 TOPIC-LEVEL EVALUATION

This setting provides a controlled evaluation of the model’s core ability to generate a factually correct
sentence for a given clinical topic. During evaluation, each test instance consists of the image pair
(I, S) and one ground-truth topic (e.g., “disease-consolidation”) as the prompt. The single sentence
generated by the model is then compared directly against the corresponding ground-truth sentence
for that specific topic. This process isolates the model’s conditional text generation quality from the
separate challenge of topic selection.

2.4.2 REPORT-LEVEL EVALUATION

This setting assesses the model’s practical ability to synthesize a complete and comprehensive clin-
ical report. To achieve this, the model iterates through a set of topics and generates a sentence for
each; the final report is the concatenation of these individual outputs. The topic set is compiled as
follows: (1) Organ- and special- level topics. To ensure systematic and comprehensive anatomical
coverage, the model is prompted with the complete, predefined set of all organ-level and auxiliary
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topics for every report. (2) Disease-level topics. We use the ground-truth disease labels from the
test set as prompts. This is a deliberate experimental design choice to isolate the generative model’s
performance from the variance and potential errors of an upstream disease classification model, en-
abling a fair and direct comparison of text generation quality against other methods. The complete,
multi-sentence generated report is then evaluated against the full ground-truth report.

3 IMPLEMENTATION DETAILS

3.1 DATASET

We conduct training and evaluation on the MIMIC-CXR-JPG dataset (Johnson et al., 2019a;b),
following the official train/validation/test splits. We retain only frontal-view images and exclude
studies that lack a “Findings” section, consistent with the filtering protocol of LLaVA-Rad. After
preprocessing, we obtain 212,379 training, 1,721 validation, and 3,029 test image-report pairs.

Following our topic-splitting procedure using DeepSeek-V3, each report is decomposed into mul-
tiple topic-level sentences. This results in 1,161,753 topic-aligned training pairs, 9,388 validation
pairs, and 17,193 test pairs—each consisting of an image, a localized anatomical region, and a list
of topic-specific sentences.

To evaluate cross-domain generalization, we apply the same preprocessing pipeline to the IU-Xray
dataset (Demner-Fushman et al., 2015), yielding 2,950 images and 16,131 image-topic pairs after
topic decomposition and filtering.

Support devices
gt:

pred:

An endotracheal tube is present. 
A right internal jugular line is present. 
A nasogastric tube is present.

An endotracheal tube is present. 
A right internal jugular line is present. 
A nasogastric tube is present.

disease-cardiomegaly
Cardiomegaly is substantial.
Moderate cardiomegaly is present.

gt:
pred:

  disease-edema
gt:

pred: Mild pulmonary edema is present.
Vascular congestion is present.

disease-lung opacity gt:
pred:

Bibasal opacities are present.
A left retrocardiac opacity is present.

(a)  An example of LLaVA-TA generated report
(d)  LLaVA-TA attention visualization:

Visualization of Missed Finding (Omission)
(c) LLaVA-TA attention visualization:

Clinically Aligned but Lexically Divergent Prediction

The lung volumes have decreased.

The monitoring and support devices are in unchanged
position. 

Moderate cardiomegaly with mild to moderate pulmonary
edema persists.

Areas of atelectasis are seen at both the left and the right lung
bases. 

No new focal parenchymal opacities.

(b)  The corresponding LLaVA-Rad generated report

Figure 4: Qualitative example of LLaVA-TA’s report generation and attention visualization. (a)
shows the report generated by LLaVA-TA; (b) shows the output from the baseline model LLaVA-
Rad. Green highlights denote correct predictions, orange indicates partially correct sentences (in-
cluding hallucinations), and red marks omissions. (c) and (d) visualize LLaVA-TA’s attention for
the partially correct and omitted findings, respectively. Notably, even when LLaVA-TA fails to fully
verbalize a finding, its attention maps correctly highlight the lesion area in the image. This spatial
grounding provides interpretable feedback, helping radiologists identify potential errors, thereby in-
creasing trust in model outputs.

3.2 TRAINING DETAILS

We adopt a two-stage training procedure and the same hyper-parameters as LLaVA-Rad. In stage 1,
we first train the multimodal alignment MLP while keeping the vision encoder and language model
frozen. This stage runs for 1 epoch on the MIMIC-CXR-JPG training set. We use a batch size of
256 and a learning rate of 1e−3, with a cosine scheduler and warm-up ratio of 0.03. In stage 2,
we fine-tune both the language model and MLP using LoRA (Hu et al., 2021) with a rank of 128.
The vision encoder remains frozen. Training is performed for 3 epochs on the MIMIC-CXR-JPG
training set, using a batch size of 64 and a cosine learning rate of 1e−4 with a 0.03 warm-up ratio.
We report results using the final model.

All experiments are conducted on 4 A100 GPUs (40GB), and our implementation builds on the
LLaVA-Rad codebase with modifications to support topic-level supervision and dual-image input.
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4 RESULTS

We evaluate LLaVA-TA to answer three key questions: (1) Does topic-guided generation outperform
state-of-the-art narrative-based methods in clinical accuracy? (2) What are the specific contributions
of topic disentanglement versus anatomy-aware grounding? (3) Does our approach generalize to
new datasets and provide interpretable, visually-grounded outputs?

Table 1: Main performance on the MIMIC-CXR-JPG test set. LLaVA-TA establishes a new state of
the art, significantly outperforming all baselines. The strong performance of our ablation, LLaVA-
T, confirms that topic disentanglement is the primary driver of improvement. While the additional
anatomical masks in LLaVA-TA offer comparable performance here, they are crucial for enabling
parameter-efficient fine-tuning (Tables 2 and 4).

Model Size CheXpert RadGraph F1 BLEU ROUGE-LMicro-avg Macro-avg Micro-avg Macro-avg (1) (4)
F1-14 F1-5 F1-14 F1-5 F1-14+ F1-5+ F1-14+ F1-5+

R2Gen ≤1B - - - - 22.8 34.6 - - - 35.3 8.6 27.7
RGRG ≤1B - - - - - 54.7 - - - 37.3 12.6 26.4
Flamingo-CXR ≤1B - - - - 51.9 56.5 - - 20.5 - 10.1 29.7
Qwen2-VL 7B 25.9 20.6 17.0 16.5 25.0 22.4 19.3 20.3 11.0 12.0 0.8 11.6
LLaVA 7B 22.9 23.4 15.4 17.5 23.7 26.9 17.0 20.3 4.5 21.0 1.3 13.8
LLaVA-Med 7B 27.2 22.0 15.5 16.6 27.3 24.4 18.7 20.5 6.5 22.2 1.0 13.3
CheXagent 7B 39.3 41.2 24.7 34.5 39.4 42.1 27.3 35.8 20.5 16.9 4.7 21.5
MAIRA-1 7B 55.7 56.0 38.6 47.7 55.3 58.8 42.3 51.7 29.6 39.2 14.2 28.9
GPT-4V - 35.5 25.8 20.4 19.6 35.6 33.3 25.3 29.6 13.2 16.4 1.9 13.2
Llama 3.2 11B 33.3 31.8 21.3 26.3 34.4 37.4 25.0 32.6 9.0 10.2 0.7 11.1
Med-PaLM M 84B 53.6 57.9 39.8 51.6 - - - - 26.7 32.3 11.3 27.3
LLaVA-Rad 7B 58.1 57.7 40.1 50.3 57.7 59.8 42.9 53.0 30.8 40.0 16.1 30.8
LLaVA-T (topic)* 7B 83.7 90.0 72.2 87.9 83.7 90.3 78.2 88.7 46.5 50.9 32.1 60.9
LLaVA-T (report)* 7B 80.2 88.5 63.0 87.0 81.6 88.7 71.4 87.7 34.2 43.9 25.7 41.8
LLaVA-TA (topic)* 7B 83.5 89.6 71.5 87.3 83.6 90.1 77.9 88.3 44.0 50.9 31.8 60.6
LLaVA-TA (report)* 7B 80.0 89.0 62.4 86.8 81.0 88.7 70.7 87.4 34.3 43.7 24.8 42.6

Table 2: In-distribution performance on MIMIC-CXR with MLP-only fine-tuning. In this parameter-
efficient setting, LLaVA-TA dramatically outperforms both the LLaVA-Rad baseline and our topic-
only LLaVA-T ablation. The results demonstrate that when the LLM is frozen, the explicit spatial
guidance from anatomical masks is critical for learning an effective mapping from vision to lan-
guage.

Model Size CheXpert RadGraph F1 BLEU ROUGE-LMicro-avg Macro-avg Micro-avg Macro-avg (1) (4)
F1-14 F1-5 F1-14 F1-5 F1-14+ F1-5+ F1-14+ F1-5+

LLaVA-Rad 7B 42.1 48.5 23.3 36.6 40.6 48.8 25.1 39.0 19.8 16.5 3.6 15.3
LLaVA-T (topic)* 7B 27.7 27.5 20.4 22.3 27.7 27.5 21.9 23.0 5.8 2.9 0.4 5.9
LLaVA-T (report)* 7B 11.1 7.4 7.0 6.6 11.0 7.4 7.3 6.6 1.6 0.8 0.1 1.6
LLaVA-TA (topic)* 7B 82.7 89.6 70.0 87.5 82.6 90.1 76.8 88.5 41.4 46.1 27.4 57.3
LLaVA-TA (report)* 7B 79.6 89.2 61.9 87.2 79.5 89.1 69.6 87.7 31.1 41.1 22.5 38.6

4.1 TOPIC-GUIDED GENERATION IMPROVES CLINICAL ACCURACY

We first compare LLaVA-TA against state-of-the-art models on the MIMIC-CXR-JPG test set. As
shown in Table. 1, our method establishes a new state of the art, significantly outperforming all
baselines across both clinical accuracy (Smit et al., 2020; Irvin et al., 2019; Jain et al., 2021) and
lexical similarity metrics (Papineni et al., 2002; Lin, 2004).

Most critically, LLaVA-TA demonstrates substantial gains in metrics that measure factual accuracy.
Compared to the strong LLaVA-Rad baseline, our model improves the RadGraph F1 score from
29.4 to 34.3 and the CheXpert Macro-F1-14 from 39.5 to 62.4 at the report level. This significant
improvement confirms that by decomposing the generation task into independent topics, our model
produces more clinically precise and semantically correct findings. These results directly support
our central hypothesis: by preventing the model from relying on inter-sentence linguistic priors, we
force it to ground its findings more strictly in visual evidence, leading to higher factual accuracy.

The superior performance on lexical metrics (e.g., BLEU-4 of 24.8 and ROUGE-L of 42.6) indicates
that this enhanced accuracy does not come at the cost of linguistic quality. On the contrary, by
focusing on one topic at a time, LLaVA-TA generates more precise and relevant language. Notably,
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our 7B parameter model also outperforms much larger, general-purpose models like Med-PaLM M
(84B) and GPT-4V, highlighting that our structured, topic-guided supervision is a more efficient and
effective strategy than simply scaling language model size.

The performance gap between the topic-level and report-level evaluations is expected. Metrics like
RadGraph F1 score an entity as a false positive if the ground truth contains no mention of it, even if
the model correctly generates a negative finding (e.g., “Heart is normal”). The topic-level evaluation
avoids this by only assessing topics present in the ground truth, providing a cleaner measure of
conditional generation quality. The results of LLaVA-Rad, LLaVA-T, and LLaVA-TA are the median
of 500 bootstrap iterations. More detailed results can be found in Appendix. D and E.

4.2 TOPIC DISENTANGLEMENT UNLOCKS PERFORMANCE, WHILE ANATOMY ENHANCES
EFFICIENCY

To isolate the contributions of our core design choices, we conduct a series of ablation studies. We
compare our full LLaVA-TA model against LLaVA-T (which uses topic-guided decomposition but
only the original image, without anatomical masks) and the LLaVA-Rad baseline.

Topic Disentanglement is the Primary Driver of Performance. As shown in Table 1, simply
introducing topic-guided training (LLaVA-T) without anatomy masks already yields massive per-
formance gains over the narrative-based LLaVA-Rad. RadGraph F1 improves from 29.4 to 34.2,
and CheXpert Macro-F1-14 jumps from 39.5 to 63.0. This demonstrates that breaking the narrative
flow is the single most critical factor in our model’s success. It validates our hypothesis that forcing
the model to generate independent, topic-specific findings is crucial for enhancing visual grounding
and reducing hallucination.

Anatomy-Awareness Enhances Parameter-Efficient Fine-Tuning While adding anatomical
masks (LLaVA-TA) provides comparable performance in the full fine-tuning setting, its true value
emerges in a parameter-efficient fine-tuning (PEFT) regime. We conducted an experiment where
only the multimodal MLP projector was trained, keeping the vision encoder and LLM frozen.

As shown in Table 2, under this MLP-only setting, LLaVA-TA dramatically outperforms both
LLaVA-T and LLaVA-Rad. For instance, on MIMIC-CXR, LLaVA-TA achieves a RadGraph F1
of 31.1, whereas LLaVA-T and LLaVA-Rad lag far behind at 1.6 and 19.8, respectively. This sug-
gests that when the LLM’s parameters are frozen, the explicit spatial cues from the anatomical masks
are vital. They provide a strong, structured signal that helps the lightweight MLP learn to map vi-
sual regions to the LLM’s latent space effectively. This finding points to a promising direction for
efficiently adapting large, frozen VLMs to the medical domain by using structured visual inputs.

Table 3: Out-of-distribution generalization performance on the IU-Xray dataset. LLaVA-TA main-
tains its significant performance advantage over the LLaVA-Rad baseline, especially on clinical
accuracy metrics (RadGraph F1, CheXpert Macro-F1). This demonstrates the robustness of the
topic-guided approach, which learns a stronger vision-language mapping less dependent on the lin-
guistic priors of the training set.

Model Size CheXpert RadGraph F1 BLEU ROUGE-LMicro-avg Macro-avg Micro-avg Macro-avg (1) (4)
F1-14 F1-5 F1-14 F1-5 F1-14+ F1-5+ F1-14+ F1-5+

LLaVA-Rad 7B 50.3 38.9 28.8 29.9 48.2 39.3 30.9 33.5 19.8 32.0 6.4 22.2
LLaVA-T (topic)* 7B 87.8 92.7 61.0 85.7 87.0 92.3 65.8 85.9 43.8 50.1 28.7 58.1
LLaVA-T (report)* 7B 76.9 93.2 54.2 86.1 84.0 93.1 62.5 86.2 30.6 40.7 21.3 40.0
LLaVA-TA (topic)* 7B 87.4 92.0 60.8 84.5 86.7 91.9 65.9 85.0 45.0 50.8 28.7 57.7
LLaVA-TA (report)* 7B 77.4 92.5 54.5 84.7 84.5 92.7 63.4 85.4 31.4 41.8 21.5 40.9

4.3 GENERALIZATION, ROBUSTNESS, AND INTERPRETABILITY

Finally, we assess whether LLaVA-TA’s improvements are robust and whether the model’s internal
mechanisms align with our theory of improved visual grounding.

Strong Generalization to Out-of-Distribution Data. We evaluated our model on the IU-Xray
dataset, a common out-of-distribution benchmark. As detailed in Table 3 and 4, LLaVA-TA demon-
strates superior generalization compared to the strong baseline and our topic-only LLaVA-T abla-
tion study under both in-distribution and out-of-distribution settings. This large margin suggests

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Out-of-distribution performance on IU-Xray with MLP-only fine-tuning. LLaVA-TA main-
tains its substantial performance lead in this challenging generalization setting. The strong results
confirm that the benefits of combining topic disentanglement with anatomy-aware inputs are robust
and transfer effectively to new data domains, even with minimal model updates.

Model Size CheXpert RadGraph F1 BLEU ROUGE-LMicro-avg Macro-avg Micro-avg Macro-avg (1) (4)
F1-14 F1-5 F1-14 F1-5 F1-14+ F1-5+ F1-14+ F1-5+

LLaVA-Rad 7B 20.2 18.7 12.9 16.4 20.2 21.0 13.4 18.6 23.5 11.9 3.0 12.1
LLaVA-T (topic)* 7B 43.5 47.2 25.2 38.0 44.0 51.2 29.5 42.9 7.3 3.8 0.3 7.8
LLaVA-T (report)* 7B 39.8 55.8 20.2 33.4 39.7 58.0 24.1 40.4 6.8 2.5 0.3 4.4
LLaVA-TA (topic)* 7B 88.4 93.8 62.9 89.0 87.6 93.5 67.8 88.8 48.2 54.2 32.2 61.4
LLaVA-TA (report)* 7B 77.9 94.3 57.6 88.5 85.4 94.2 66.0 88.4 34.0 43.5 24.7 43.4

that by reducing the reliance on dataset-specific linguistic priors (i.e., narrative flow), our topic-
guided method learns a more fundamental and robust mapping between visual evidence and clinical
findings, allowing it to adapt more effectively to new data distributions.

Qualitative Evidence of Visual Grounding. To verify that LLaVA-TA is indeed ”looking at the
right places,” we visualize its attention maps during generation. As shown in Fig. 3, the model
consistently focuses on the correct anatomical regions when generating topic-specific sentences. For
example, when describing the heart, attention is concentrated on the cardiac silhouette. This visual
evidence confirms that our training strategy successfully fosters spatial grounding. The attention
maps not only provide a layer of interpretability crucial for clinical trust but also serve as qualitative
proof that the model is operating as intended—deriving findings from relevant visual evidence rather
than textual context.

Further analysis in Figure 4 illustrates a challenging case in which the generated report partially
diverges from the ground truth. While the reference mentions “bibasal opacities,” our model instead
generates “a left retrocardiac opacity is present.” Despite this mismatch, the attention visualization
accurately highlights the posterior lower lung zones, indicating the model’s internal consistency
and pointing toward a visually grounded rationale for its prediction. These examples showcase the
utility of attention-based explanations for identifying potential ambiguities and guiding radiologist
interpretation during clinical review. This level of transparency is crucial for building clinical trust
and provides a pathway for human-in-the-loop validation in diagnostic workflows.

5 DISCUSSION

In this work, we identified a fundamental limitation in existing approaches to Radiology Report
Generation: an implicit optimization for narrative flow. We provided empirical evidence that this
auto-regressive, sequential generation process encourages models to rely on linguistic priors at the
expense of strict visual grounding, a primary cause of factual errors and clinical hallucination. To ad-
dress this, we introduced LLaVA-TA, a novel framework that re-engineers report generation around
a topic-guided paradigm. By decomposing the task into independent, anatomically-grounded clin-
ical topics, LLaVA-TA breaks the cross-sentence dependency and forces the model to ground each
finding directly in the relevant visual evidence. Our extensive experiments demonstrate that this ap-
proach sets a new state of the art in clinical accuracy and out-of-distribution generalization, proving
that disentangling a report’s narrative structure to enforce independent, visually-grounded findings
is a crucial step toward building more reliable medical AI.

Despite its strong performance, our work has several limitations that open avenues for future re-
search. First, our framework relies on a static, predefined list of clinical topics. A more dynamic
approach could learn to discover and adapt topics directly from the data, potentially capturing a
richer and more nuanced set of findings. Second, LLaVA-TA depends on an external, pretrained
segmentation model. While effective, an end-to-end architecture that co-learns segmentation and
generation could lead to tighter vision-language alignment and improved performance. Finally, our
pre-processing deliberately removes comparative sentences to focus on findings from the current
exam. Extending this framework to handle longitudinal studies by incorporating temporal reasoning
and modeling changes between exams is a critical next step for real-world clinical utility. We believe
our topic-guided methodology provides a robust foundation for these future explorations.
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A DETAILED ANALYSIS OF THE NARRATIVE FLOW EXPERIMENT
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Figure 5: Detailed performance scores for the narrative flow experiment. The plots show the abso-
lute scores for both the oriImg and blackImg conditions across four metric categories. These results
illustrate the model’s behavior with and without visual input under varying degrees of textual con-
text.

To provide empirical evidence for our central hypothesis—that optimizing for narrative flow weak-
ens a model’s visual grounding—we conducted a controlled experiment. This section details the
experimental setup and provides an in-depth analysis of the results.

A.1 EXPERIMENTAL SETUP

We used a pretrained LLaVA-Rad model to generate the final K sentences of a radiology report,
given the preceding sentences as a textual prompt. This task was performed under two distinct
conditions:

• oriImg Condition: The model was provided with both the textual prompt and the corre-
sponding ground-truth chest X-ray.

• blackImg Condition: The model was provided with the same textual prompt but with a
blank (black) image, forcing it to rely solely on linguistic priors.

Denote the number of sentences for a ground truth report is L. We split the front L−K sentences to
the prompt and let the model generate the last K sentences. We varied the amount of textual context
by setting K to 3, 2, and 1 (denoted as lastk−3, lastk−2, lastk−1). We also evaluated a baseline
NoPrior condition where the model generated the full report from scratch, K = L. The performance
under all settings is shown in Fig. 5.

A.2 DETAILED PERFORMANCE ANALYSIS

The results in Figure 3 reveal several key trends that support our hypothesis: conventional training,
by treating the report as a monolithic text sequence, inadvertently teaches models to prioritize lin-
guistic coherence over strict visual fidelity. This learned reliance on the textual context of previously
generated sentences could become actively detrimental, allowing it to bias subsequent findings and
override direct evidence from the image itself—a process that we suspect weakens visual grounding
and fosters clinical hallucination.
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We analyze the behavior within each condition below.

Analysis of the oriImg condition

• Textual Context Degrades Visual Grounding: The model achieves its highest scores in
the NoPrior setting, where its generation is primarily guided by the visual evidence. The
subsequent drop in performance across most metrics suggests that the preceding sentences
introduce a strong linguistic bias, causing the model to generate text that follows the narra-
tive, even at the expense of visual accuracy.

• Strong Context Leads to Overfitting on Common Diseases: A notable outlier occurs
in the CheXpert-14 F1 score at lastk − 1. The Micro-F1 score (which is weighted by
label frequency) remains high, while the Macro-F1 score (unweighted) drops sharply. This
divergence indicates that when given strong textual context and a short generation target,
the model defaults to predicting common, high-frequency diseases that are statistically
likely to follow the prompt. It relies on learned textual correlations rather than observing
the image, leading to overfitting on common pathologies.

Analysis of the blackImg Condition: Textual Context as a Driver for Hallucination

In the absence of visual input, the model’s generation is driven entirely by the textual prompt. This
setting allows us to directly measure how linguistic context induces hallucination.

• Textual Priors Trigger Plausible, Structured Hallucinations: The most direct evidence
of hallucination is the jump in RadGraph F1 score when any textual context is provided
(lastk settings) compared to none (blackImg NoPrior). RadGraph requires both a clinical
finding and its anatomical location (e.g., “opacity” in the “lungs”). The model’s ability
to generate structurally correct entities from text alone demonstrates that the preceding
sentences trigger a chain of plausible, yet entirely fabricated, clinical statements. This is
not random guessing; it is coherent, context-driven hallucination.

• More Context Narrows Hallucinations and Reduces “Lucky Guesses”: While it may
seem counter-intuitive, performance scores generally decrease as more textual context is
provided (from lastk − 3 to lastk − 1). This is not because the model is hallucinating
less, but because the evaluation becomes stricter. A longer prompt creates a more specific
narrative context, forcing the model to generate a more specific (and thus more likely to
be incorrect) hallucination. When generating three sentences (lastk − 3), there is more
opportunity for a random part of the hallucinated text to overlap with one of the three
ground-truth sentences—a ”lucky guess.” When generating only one sentence (lastk − 1),
the model must match a single, specific target, and any deviation results in a score of zero.

• For Common Diseases, Textual Context Overwrites Visual Evidence: The most strik-
ing finding is the trend of the Micro-F1-14 score in the blackImg condition. Unlike other
metrics, this score increases as more context is provided, eventually matching the perfor-
mance of the oriImg condition at the lastk − 1 setting. This provides definitive proof of
our hypothesis. The Micro-F1 score is weighted by the prevalence of each disease label.
The rising score shows that with strong textual priors, the model becomes highly proficient
at hallucinating the most common diseases, to the point where the actual image provides
no additional benefit. The linguistic patterns learned from the training data are so strong
for these common cases that they completely override the need for visual input.
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B TOPIC-SEGMENTATION MAPPING

This mapping is manually constructed between topics at the level of disease, organ, and other to the
seven segmentation categories provided by the CXAS(Seibold et al., 2023) system.

Table 5: Mapping between topics and segmentation labels

Topic Segmentation labels
disease-atelectasis lung halves
disease-cardiomegaly heart region
disease-consolidation lung halves
disease-edema lung halves
disease-enlarged cardiomediastinum mediastinum
disease-fracture ribs, all vertebrae
disease-lung lesion lung halves
disease-lung opacity lung halves
disease-pleural effusion lung halves
disease-pleural other lung halves
disease-pneumonia lung halves
disease-pneumothorax lung halves
organ-heart heart region
organ-lungs lung halves
organ-pleura lung halves
organ-mediastinum mediastinum
organ-bones ribs, all vertebrae
organ-diaphragm diaphragm
support devices all
patient status all
other all
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C PROMPT FOR SPLITTING REPORTS INTO SENTENCES BASED ON TOPIC

You are an AI radiology assistant specialized in preprocessing chest X-ray reports for vision-
language model training. Your task is to extract and reorganize findings into standardized sentences,
each aligned with a specific topic, while ensuring clarity and suitability for paired image-text learn-
ing.

Rules for Processing Reports:

1. Hierarchical Topic Classification
• Classification Priority: Assign each sentence to the most specific applicable topic

using this order:
1.1 Pathology-Level Topics: disease-atelectasis, disease-cardiomegaly, disease-

consolidation, disease-edema, disease-enlarged cardiomediastinum, disease-
fracture, disease-lung lesion, disease-lung opacity, disease-pleural effusion,
disease-pleural other, disease-pneumonia, disease-pneumothorax.

1.2 Anatomy-Level Topics (Only if no pathology match): organ-heart, organ-lungs,
organ-pleura, organ-mediastinum, organ-bones, organ-diaphragm.

1.3 Special Categories (Only if no previous topics matches): support devices, patient
status, other.

• If a sentence covers multiple topics, split it into separate sentences (e.g., “Car-
diomegaly and pulmonary edema” should be split into “Cardiomegaly is present.”
and “Pulmonary edema is present.”)

• support devices: Implanted or external hardware directly visible on imaging (e.g.,
pacemakers, catheters, surgical clips). Exclude historical procedures without visible
remnants.

• patient status: Clinically relevant history (e.g., post-surgical changes, intubation) that
may explain imaging findings but does not describe visible devices/anatomy.

• other for sentences that don’t fit predefined topics but are visually relevant.
2. Single Finding per Sentence:

• Each sentence must describe only one finding/disease (e.g., “The heart is enlarged with
pleural effusion” should be split into “The heart is enlarged.” and “Pleural effusion is
present.”)

3. Handle Comparisons:
• If a sentence references prior images (e.g., “Increased opacity compared to prior”),

reformat it to describe the current study only.
• Example:

– Before: “The pleural effusion has increased since last study.”
– After: “Pleural effusion is present.”

4. Exclude Non-Visual Content
• Remove the following:

– Speculation/Interpretation: e.g., “suggestive of pneumonia”, “likely due to CHF”
– Recommendations: e.g., “Recommend follow-up CT.”
– Technical Artifacts: e.g., “Left lung is hard to see in the image.”

5. Negations and Absence
• Keep negative findings but phrase them affirmatively:
• Example:

– Before: “No pneumothorax is seen.”
– After: “Pneumothorax is absent.”

6. Clarity
• Use short, concrete phrases that directly map to visual features.
• Examples:

– Bad example: “There are some mild interstitial markings.”
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– Good example: “Mild interstitial opacities are present.”

Output Format:

[ ”topic”: ”disease-lung opacity”, ”sentences”: [”Substantial hyperexpansion of the lungs is
present.”], ”topic”: ”organ-lungs”, ”sentences”: [”Prominence of central pulmonary arteries is
present.”, ”Severe emphysema is present.”], ”topic”: ”support devices”, ”sentences”: [”A tra-
cheostomy tube is present.”] ]

Only output the JSON list without additional descriptions.
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D PERFORMANCE OF FINE-TUNE MLP AND LLM

The following are the complete performance results for our model LLaVA-TA and the strong base-
line model LLaVA-Rad under the settings of fine-tuning both the MLP and the language model.

Following LLaVA-Rad Zambrano Chaves et al. (2025), we obtain the median and 95% bootstrap
confidence intervals from 500 resampling iterations.

Table 6: Detailed performance on the MIMIC test set when fine-tuning both MLP and LLM

Model Statistic
CheXpert

RadGraph F1
BLEU

ROUGE-LMicro-avg Macro-avg Micro-avg Macro-avg (1) (4)
F1-14 F1-5 F1-14 F1-5 F1-14+ F1-5+ F1-14+ F1-5+

LLaVA-Rad
median 58.1 57.7 40.1 50.3 57.7 59.8 42.9 53.0 30.8 40.0 16.1 30.8
CI-low 57.2 56.3 38.6 48.6 56.9 58.6 41.5 51.6 30.2 39.4 15.6 30.3
CI-high 59.0 59.1 41.5 52.1 58.6 61.0 44.2 54.4 31.4 40.5 16.5 31.3

LLaVA-T (Topic)*
median 83.7 90.0 72.2 87.9 83.7 90.3 78.2 88.7 46.5 50.9 32.1 60.9
CI-low 83.2 89.5 70.7 87.2 83.2 89.8 77.1 88.1 45.9 50.3 31.6 60.5
CI-high 84.2 90.6 73.6 88.6 84.3 90.9 79.3 89.4 47.2 51.5 32.7 61.4

LLaVA-T (Report)*
median 80.2 88.5 63.0 87.0 81.6 88.7 71.4 87.7 34.2 43.9 25.7 41.8
CI-low 79.5 87.8 61.4 86.2 81.0 88.1 69.9 86.9 33.8 43.4 25.3 41.4
CI-high 80.8 89.1 64.7 87.7 82.1 89.3 73.0 88.3 34.7 44.3 26.1 42.2

LLaVA-TA (Topic)*
median 83.5 89.6 71.5 87.3 83.6 90.1 77.9 88.3 44.0 50.9 31.8 60.6
CI-low 83.0 89.0 70.1 86.5 83.1 89.5 76.8 87.5 43.4 50.3 31.3 60.2
CI-high 84.1 90.2 73.0 88.0 84.2 90.6 78.9 89.0 44.6 51.5 32.4 61.2

LLaVA-TA (Report)*
median 80.0 89.0 62.4 86.8 81.0 88.7 70.7 87.4 34.3 43.7 24.8 42.6
CI-low 79.3 88.4 60.8 86.0 80.5 88.1 69.3 86.7 33.8 43.3 24.4 42.3
CI-high 80.7 89.6 64.1 87.5 81.6 89.3 72.2 88.2 34.8 44.1 25.2 43.0

Table 7: Detailed performance on the IU-Xray dataset when fine-tuning both MLP and LLM

Model Statistic
CheXpert

RadGraph F1
BLEU

ROUGE-LMicro-avg Macro-avg Micro-avg Macro-avg (1) (4)
F1-14 F1-5 F1-14 F1-5 F1-14+ F1-5+ F1-14+ F1-5+

LLaVA-Rad
median 50.3 38.9 28.8 29.9 48.2 39.3 30.9 33.5 19.8 32.0 6.4 22.2
CI-low 49.6 37.3 27.6 27.9 47.5 37.9 29.8 31.7 19.6 31.8 6.3 22.1
CI-high 51.0 40.4 30.0 32.2 48.9 40.7 32.1 35.2 20.0 32.2 6.5 22.3

LLaVA-T (topic)*
median 87.8 92.7 61.0 85.7 87.0 92.3 65.8 85.9 43.8 50.1 28.7 58.1
CI-low 87.3 92.0 59.3 84.2 86.5 91.7 64.2 84.4 43.1 49.5 28.2 57.6
CI-high 88.2 93.3 62.5 87.1 87.4 92.9 67.4 87.2 44.4 50.7 29.3 58.7

LLaVA-T (report)*
median 76.9 93.2 54.2 86.1 84.0 93.1 62.5 86.2 30.6 40.7 21.3 40.0
CI-low 76.1 92.6 52.4 84.6 83.3 92.4 60.8 84.7 30.3 40.4 21.0 39.8
CI-high 77.8 93.9 55.8 87.4 84.7 93.6 64.0 87.5 31.0 41.0 21.6 40.3

LLaVA-TA (topic)*
median 87.4 92.0 60.8 84.5 86.7 91.9 65.9 85.0 45.0 50.8 28.7 57.7
CI-low 87.0 91.4 59.2 82.9 86.2 91.3 64.2 83.5 44.4 50.2 28.2 57.1
CI-high 87.9 92.7 62.5 86.0 87.1 92.6 67.6 86.4 45.6 51.4 29.3 58.2

LLaVA-TA (report)*
median 77.4 92.5 54.5 84.7 84.5 92.7 63.4 85.4 31.4 41.8 21.5 40.9
CI-low 76.6 91.9 52.9 83.2 83.8 92.1 61.7 84.0 31.1 41.5 21.3 40.6
CI-high 78.2 93.2 55.9 86.1 85.1 93.3 65.0 86.9 31.8 42.1 21.8 41.2
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E PERFORMANCE OF FINE-TUNE ONLY MLP

The following are the complete performance results for our model LLaVA-TA and the strong base-
line model LLaVA-Rad under the settings of fine-tuning only the MLP.

Following LLaVA-Rad Zambrano Chaves et al. (2025), we obtain the median and 95% bootstrap
confidence intervals from 500 resampling iterations.

Table 8: Detailed performance on the MIMIC test set when fine-tuning only MLP layers

Model Statistic
CheXpert

RadGraph F1
BLEU

ROUGE-LMicro-avg Macro-avg Micro-avg Macro-avg (1) (4)
F1-14 F1-5 F1-14 F1-5 F1-14+ F1-5+ F1-14+ F1-5+

LLaVA-Rad
median 42.1 48.5 23.3 36.6 40.6 48.8 25.1 39.0 19.8 16.5 3.6 15.3
CI-low 41.0 47.0 22.3 35.1 39.4 47.3 24.1 37.5 19.4 16.3 3.5 15.1
CI-high 43.4 50.1 24.4 38.3 41.7 50.2 26.2 40.6 20.2 16.8 3.8 15.5

LLaVA-T (topic)*
median 27.7 27.5 20.4 22.3 27.7 27.5 21.9 23.0 5.8 2.9 0.4 5.9
CI-low 27.1 26.6 19.7 21.5 27.0 26.6 21.2 22.3 5.6 2.9 0.3 5.8
CI-high 28.3 28.3 21.0 23.1 28.3 28.4 22.6 23.9 6.0 2.9 0.4 6.0

LLaVA-T (report)*
median 11.1 7.4 7.0 6.6 11.0 7.4 7.3 6.6 1.6 0.8 0.1 1.6
CI-low 10.9 7.1 6.8 6.3 10.7 7.1 7.1 6.4 1.5 0.7 0.1 1.6
CI-high 11.3 7.7 7.2 6.9 11.2 7.6 7.5 6.9 1.6 0.8 0.1 1.6

LLaVA-TA (topic)*
median 82.7 89.6 70.0 87.5 82.6 90.1 76.8 88.5 41.4 46.1 27.4 57.3
CI-low 82.2 88.9 68.6 86.7 82.1 89.4 75.7 87.7 40.8 45.4 26.9 56.8
CI-high 83.2 90.2 71.4 88.3 83.2 90.6 77.7 89.1 42.1 46.7 28.0 57.9

LLaVA-TA (report)*
median 79.6 89.2 61.9 87.2 79.5 89.1 69.6 87.7 31.1 41.1 22.5 38.6
CI-low 78.9 88.6 60.4 86.5 79.0 88.6 68.2 87.1 30.6 40.5 22.1 38.3
CI-high 80.2 89.8 63.4 87.9 80.1 89.7 71.0 88.4 31.6 41.8 23.0 39.0

Table 9: Detailed performance on the IU-Xray dataset when fine-tuning only MLP layers

Model Statistic
CheXpert

RadGraph F1
BLEU

ROUGE-LMicro-avg Macro-avg Micro-avg Macro-avg (1) (4)
F1-14 F1-5 F1-14 F1-5 F1-14+ F1-5+ F1-14+ F1-5+

LLaVA-Rad
median 20.2 18.7 12.9 16.4 20.2 21.0 13.4 18.6 23.5 11.9 3.0 12.1
CI-low 19.5 17.6 12.2 15.0 19.6 20.0 12.9 17.5 23.4 11.8 3.0 12.1
CI-high 20.8 19.8 13.5 17.6 20.7 22.1 14.0 19.7 23.7 11.9 3.0 12.2

LLaVA-T (topic)*
median 43.5 47.2 25.2 38.0 44.0 51.2 29.5 42.9 7.3 3.8 0.3 7.8
CI-low 42.8 46.1 24.5 36.6 43.4 50.2 28.7 41.3 7.1 3.8 0.3 7.7
CI-high 44.2 48.5 26.1 39.5 44.7 52.3 30.3 44.5 7.5 3.9 0.3 7.9

LLaVA-T (report)*
median 39.8 55.8 20.2 33.4 39.7 58.0 24.1 40.4 6.8 2.5 0.3 4.4
CI-low 38.8 54.5 18.8 30.4 38.8 56.6 22.6 36.8 6.5 2.5 0.3 4.3
CI-high 40.8 57.3 21.8 37.5 40.7 59.5 25.6 43.8 7.0 2.6 0.4 4.4

LLaVA-TA (topic)*
median 88.4 93.8 62.9 89.0 87.6 93.5 67.8 88.8 48.2 54.2 32.2 61.4
CI-low 88.0 93.2 61.3 87.6 87.2 92.9 66.2 87.4 47.6 53.6 31.7 60.9
CI-high 88.9 94.4 64.5 90.2 88.1 94.1 69.5 89.9 48.9 54.8 32.8 61.9

LLaVA-TA (report)*
median 77.9 94.3 57.6 88.5 85.4 94.2 66.0 88.4 34.0 43.5 24.7 43.4
CI-low 77.0 93.7 55.7 87.0 84.7 93.7 64.2 87.0 33.6 43.2 24.4 43.1
CI-high 78.7 94.8 59.5 89.8 86.2 94.8 67.6 89.6 34.4 43.8 25.0 43.7
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