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ABSTRACT

Recent works have identified the alignment, which measures a layerwise weight
correlation, as a novel yet crucial mechanism for feature learning. We investigate an
underlying connection between the alignment learning and the structural fitting of a
network to the training data span. Based on this insight, we further demonstrate that
fine-tuning on out-of-distribution (OOD) data disrupts this well-aligned structure
fitted during the pre-training phase, degrading generalization performance. To
address this, we propose DARS, DisAlignment-Regularized Sparse fine-tuning, a
novel sparse fine-tuning approach that mitigates disalignment by letting the gradient
update to be partially constrained within the principal subspace of the pre-trained
network, constructed based on the in-distribution (ID) data used for its pre-training.
Specifically, we define the two disjoint subsets of trainable parameters for sparse
channel unfreezing: i) a random subset and ii) a subset with higher gradient projec-
tions onto the principal subspace. The latter serves as a disalignment regularizer
during fine-tuning, while the random subset ensures a minimal bias in parameter se-
lection. By adjusting the ratio between the two subsets, we can control the strength
of subspace regularization, thereby balancing the trade-off between generalization
capacity and strong fitting to new downstream tasks. By employing DARS, we
achieved SOTA performance on various benchmarks, including commonsense and
arithmetic reasoning tasks, across LLaMA-7B and LLaMA2-7B.

1 INTRODUCTION

Since Large Language Models (LLMs) achieved great success with broad adaptability to diverse
domains, fine-tuning methods to better adapt the pre-trained LLMs to target downstream tasks
have been extensively explored, leading to advancements in domain-specific applications. The
most naive approach that re-train the entire networks, called as full fine-tuning (FT) (Roziere et al.,
2023; Azerbayev et al., 2023) not only takes enormous computational resources but also suffers
from catastrophic forgetting, where the model loses its pre-trained knowledge (Luo et al., 2023;
Biderman et al., 2024). To resolve these bottlenecks of full FT, Parameter-Efficient Fine-Tuning
(PEFT) techniques have been proposed to minimize the number of trainable parameters during
fine-tuning. By only updating a smaller subset of parameters, PEFT aims to retain critical pre-trained
knowledge, while efficiently acquiring new information. Common PEFT approaches include LoRA-
based techniques, such as AdaLoRA (Zhang et al., 2023), DoRA (Liu et al., 2024), and Galore (Zhao
et al., 2024) that constrains the model updates into low-rank subspaces of original weight spaces.

Sparse Fine-Tuning However, these LoRA-variants are in general highly sensitive to the choice of
initialization (Hayou et al., 2024; Huang & Balestriero, 2024) and shows much worse performance
than full FT in some tasks (Ding et al., 2022). Recent researches actively investigates non-LoRA
based approaches, searching for more robust and efficient fine-tuning strategies. Especially, sparse
fine-tuning that selects only a subset of pre-trained parameters that are critical to downstream tasks
while remaining the rest intact has achieved better performance and efficiency across various tasks (Xu
et al., 2021; Ansell et al., 2023; Yang et al., 2024; Pan et al., 2024). Among them, S2FT (Yang
et al., 2024) that randomly unfreezes small fraction of row and column vectors of pre-trained weight
matrices shows significant performance jump across diverse domains with improved generalization
capabilities.
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Alignment There has been recent researches that investigate the role of alignment as a mechanism of
feature learning. Alignment can be identified in various forms, such as subspace alignment (Fernando
et al., 2014; Thopalli et al., 2022), layer-wise alignment between parameter space (Xu & Ziyin, 2024),
or alignment between learned representations and the weight matrices (Everett et al., 2024). Studying
the evolution of weight alignment between two consecutive layers during training, prior work has
demonstrated that with small enough initialization, the model preferably learns features by alignment
regardless of the choice of non-linearities (Xu & Ziyin, 2024). This preference on alignment over
disalignment for feature learning can be understood as the alignment enables efficient layerwise
information transfer.

Alignment learning during training is closely related to the magnitude of model norm, which plays
a crucial role in determining the model’s generalization capacity. While aligned model requires a
smaller model norm to make a prediction, a model with disaligned layers requires an overly large
model norm to make the same prediction. However, increasing the model alignment is not always
desirable. While alignment ensures efficient layer utilization and prevents overfitting, overly high
alignment can mask the feature saliency with limited norm size, leading to underfitting. Therefore,
keeping an optimal balance for the trade-off between alignment and disalignment will be a critical
point to consider when developing a new feature learning algorithm.

Although previous works have figured out the favorable conditions for alignment learning and how it
affects the generalization ability of the model, the detailed mechanism of how this alignment occurs
with respect to the training data has not yet been investigated. In this paper, we identify that the
feature learning by alignment is actually deeply connected to fitting the network to the space spanned
by training data. We also explain fine-tuning to new data with large distribution shift from pre-trained
data, namely out-of-distribution (OOD) data, significantly alters this learned alignment, worsening
the generalization capacity of the model.

Contribution and Outlines As the alignment has been recently discussed as a mechanism of
feature learning, existing sparse fine-tuning methods do not consider the effect of altered structural
alignment during fine-tuning. They have employed channel-wise (Yang et al., 2024) or layer-wise (Pan
et al., 2024) sparsity with a primary focus on maximizing the parameter efficiency by reducing the
number of parameters while maintaining the comparable performance. Therefore, we propose a novel
mechanism to regularize the disalignment during fine-tuning by constraining the subset of selected
sparse channels to the parameters whose gradient updates dominantly align to the principal subspace
to which the pre-trained network is originally fitted. Our contributions and outline of this paper are
summarized as follows:

• In Section 3, we discuss how alignment occurs at the basic level of network operations in
accordance with the training data. Then we discuss how fine-tuning to OOD data perturbs
this alignment, impairing the generalization capacity.

• As a remedy to this problem, we propose a novel DisAlignment-Regularized Sparse fine-
tuning algorithm, DARS in Section 4.

• In Section 5, we demonstrate that our method improves the model performance across
various domains and models.

2 PRELIMINARIES

Model and Notation In this section, all the the necessary derivations rely on the very basic network
dynamics universally applied to neural networks of any depth and complexity such as stochastic
gradient descent (SGD) and matrix multiplication. Hence, we consider a simple two-layer network
with power activations without loss of generality. Given the data distribution D = {(xi, yi)}Ni=1

where xi ∈ Rd0 and yi ∈ Rm, the output of networks is given as
f(x) = U(WxT )β , (1)

where U ∈ Rm×d and W ∈ Rd×d0 are weight matrices with intermediate width d for the second and
the first layer, respectively. We can denote the activations drawn from each of the two layers as

zw = (WxT )β , zu = Uzw. (2)
Then the goal of training is to find f∗ that satisfies f∗(x) = argminf∈F LD(f, (x, y)), where
F : X → Rm is the hypothetical space for network function f and L is the loss function.
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Layerwise Alignment and Generalization Following the definition of alignment from Xu &
Ziyin (2024) and Everett et al. (2024), let us define the alignment between two consecutive layers as,

ζ :=
∥UW∥
∥U∥∥W∥

, (3)

where the norm used is the L2 norm. As an analog of cosine similarity defined between two matrices
instead of between vectors, this metric serves as a measure of geometric alignment between two
layers, indicating how well the two parameter spaces align. If ζ is large, the subspaces spanned
by U and W are well-aligned, meaning that transformations at one layer (represented by W ) are
effectively being used by the subsequent layer (represented by U ). Low ζ , on the other hand, suggests
inefficiency in the interaction between layers, potentially leading to redundancy or under-utilization
of layer capacities. Using the alignment term ζ and with a trivial assum, the model can be re-written
as,

f(x) = ∥U∥∥W∥ ζ xT . (4)

The magnitude of model output is determined by two factors: (1) scale of ∥U∥∥W∥ and (2) the
alignment ζ. Assuming that there’s an optimal scale of the model predictions, disaligned layers need
to compensate for the loss of alignment by increasing the model norms to maintain the same outputs,
which could in turn lead to strong overfitting.

∥U∥∥W∥ ∝ ∥f
∗(x)∥
ζ∥x∥

(5)

Therefore, disalignment sacrifices the generalization power of the networks to increase the fitting
in scale, converging to a disproportionally larger norm than what’s actually required to fit the data.
Experimental results from Xu & Ziyin (2024) shows that models trained by disalignment tend to
have larger norms and worse generalization performance, despite achieving 100% training accuracy.

3 ALIGNMENT AND DISALIGNMENT LEARNING

Alignment Fitting to Training Data Span During pre-training, the entire network is fitted to
pre-training data via basic network dynamics. Firstly, since the backpropagated gradient update
with SGD is confined within the input span, weight matrix W and U are the span of x ∈ Rd0 and
zw ∈ Rd, respectively (See the proof in Appendix A). Similar to this alignment between parameter
and its input, it is also possible to find alignments between (1) parameters and post-activations and
(2) layerwise parameters. Let the power activation β = 1, the forward pass in the first-layer of the
model can be given by,

zw = WxT =

d0∑
j

wjx
j , (6)

where wj ∈ Rd is the column vector of weight matrix W . This indicates that the post-activations
from the first layer, zw, lie in the space spanned by the linear combinations of the column vectors of
weight matrix W . Therefore, the weight matrix U confined within the span of zw also aligns to the
space spanned by W . Extending these alignments across multiple layers through iterated forward
and backward passes introduces a strong correlation between the distribution of the pre-training data
and the network’s learned representations.

Disalignment Learning During Fine-Tuning This structured alignment across depths of the
pre-trained network underlies the key bottleneck of fine-tuning, which is to efficiently handle the
distribution shift from training data, known as OOD generalization (Kumar et al., 2022; Choi et al.,
2024). Fine-tuning on data from OOD distributions not only results in underperformance but also
causes significant distortion of the pre-trained knowledge. Given that pre-trained network has learned
features by increasing the layer-wise alignment driven from ID data, fine-tuning to new data with
large distribution shift from ID adds misalignment to the network. Especially when the fine-tuning
data is embedded in an orthogonal space to the pre-trained data, gradient updates, which lie in the
span of input data, significantly decreases the pre-trained alignment, further hindering the efficient
transfer of learned representations. Detailed description about how fine-tuning on data from far OOD
distributions results in reduced alignment is given in Appendix B. We also empirically show that
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fine-tuning constantly decreases the layerwise alignment while compensating this with increased
weight norm in Fig. 1 in Appendix B. This trade-off between efficient use of layer with small norm
in well-aligned model and stronger fitting with larger norm due to disalignment well correlates to
a common dilemma in neural networks, overfitting and generalization. Therefore, regularizing the
layerwise alignment to find the optimal balance for this trade-off has great potential to resolve the
issue.

4 PROPOSED METHOD

Here, we propose our new sparse fine-tuning approach, DARS, which adaptively regularizes the
disalignment during fine-tuning. DARS achieves this by deploying two distinct subsets of trainable
parameters. First subset is a random subset with no bias in parameter selection, which takes a
dominant role in fitting the pre-trained network to new downstream tasks. The second one is a subset
with higher gradient projections onto the principal subspace driven from ID data. While still serving
task-specific parameter fitting, this subset primarily functions as a disalignment regularizer during the
fine-tuning.

Identifying Parameters for Disalignment Regularization We use norm of sample gradients
projected onto the principal subspaces S := [S1, S2, ..., SL] of the L-layered pre-trained network
fθ parameterized by θ = [θ1, θ2, ..., θL]. Principal subspace at l-th layer Sl is constructed as the
lower-rank approximation of the SVD of final hidden representation from l-th layer of the pre-trained
network given the ID data. See Appendix C for algorithmic details for computing the principal
subspace. After computing S, we then get the gradient projection norms onto these subspaces. Given
each data pair (xi, yi) from fine-tuning dataset D = {(xi, yi)}Ni=1, the gradient at layer l is as,

gli = ∇θl LD(fθ(xi), yi),

where the LD is the cross-entropy loss by comparing the model’s predicted softmax probability to
a uniform vector used as the target, following Huang et al. (2021). Let the matrix of computed
gradients concatenated acorss all N samples as Gl = {gl1, gl2, ..., glN}, then the projection onto the
l-th subspace Sl is given by

PSl(Gl) =
1

N

N∑
i

∇θl LD(fθ(xi), yi)S
lSlT . (7)

Since the principal subspace is basically derived from the space spanned by the final activations
from each layer, parameterized by θl, it lies within the span of parameter space given Equation (6).
Accordingly, the parameters whose gradient update has higher projection onto these spaces indicate
that the weight updates along these parameters dominantly lie in the space well-aligned to the
consecutive layers of the pre-trained networks, preserving the original aligned structure. Therefore,
selectively unfreezing these parameters for fine-tuning can regulate the disalignment, restricting the
updates to the principal subspace.

Fine-Tuning Target Modules There are two modules considered for fine-tuning in our approach,
Multi-Head Attention (MHA) and Multi-Layer Perceptron (MLP). For MHA module, there are four
types of linear layers, Query, Key, Value, and Output; Q,K, V,O ∈ Rd×d. For MHA module with
h attention heads, the corresponding linear projection for i-th head can be denoted as Qi,Ki, Vi ∈
Rd×dh and Oi ∈ Rdh×d, where dh = d/h is the head dimension. MLP module has three distinct
linear projections, Up (U ∈ Rd′×d), Gate (G ∈ Rd′×d), and Down (D ∈ Rd×d′

).

Parameter Selection Let SMHA be the total selected attention heads for MHA module and we
denote | · | as the cardinality of a set. Then, let RMHA denotes the randomly selected heads with
size α|SMHA| and HMHA denotes the heads selected as top-{(1 − α)|SMHA|} gradient projection
norm summed over dh, where RMHA,HMHA ⊆ [h] and SMHA = RMHA ∪ HMHA. Similarly, SMLP
indicates the set of total selected channels for MLP module. ThenRMLP is a set of randomly selected
channels with set size β|SMLP| and HMLP is the set that consists of top-{(1 − β)|SMLP|} channels
based on gradient projection norm, where SMLP = RMLP ∪ HMLP. Here both α, β ∈ [0, 1] are the
hyperparameters that control the balance between the two subsets for each module. By adjusting the
magnitude of α, β, we can adaptively control the disalignment driven by random parameter selection.
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5 EXPERIMENTS

Here we present the performance improvements achieved by DARS across commonsense and
arithmetic reasoning tasks on two pre-trained models, LLaMA-7B and LLaMA2-7B.

Commonsense Reasoning The commonsense reasoning dataset comprises 8 sub-tasks: BoolQ
, PIQA, SocialQA, HellaSwag, WinoGrande, ARC-challenge, ARC-easy, and OpenbookQA. We
firstly extracted 1% subset of the training data for each sub-task and utilized it to fit the parameter
subset H for that specific task. Then we combined the rest training data from all eight tasks into
a single fine-tuninig dataset to train the subsetR and evaluated performance on the individual test
dataset for each task. Further details, including the hyperparameters, in Appendix D.

Table 1: Comparison among various fine-tuning methods for the LLaMA-7B, LLaMA2-7B models
on eight commonsense reasoning tasks. (1 from Liu et al. (2024), 2 from Yang et al. (2024))
Model Method # Param(%) BoolQ PIQA SIQA HellaSwag Wino ARC-e ARC-c OBQA Avg. ↑

LLaMA-7B LoRA1 0.83 69.2 81.7 78.4 83.4 80.8 79.0 62.4 78.4 76.7
DoRA1 0.84 68.5 82.9 79.6 84.8 80.8 81.4 65.8 81.0 78.1
S2FT2 0.81 72.7 83.7 79.6 93.4 83.5 86.1 72.2 83.4 81.8
DARS 0.81 71.2 84.3 80.1 93.6 83.7 85.9 73.6 83.6 82.0

LLaMA-2-7B LoRA1 0.83 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
DoRA1 0.84 71.8 83.7 76.0 89.1 82.6 83.7 68.2 82.4 79.7
S2FT2 0.81 72.9 86.1 80.2 94.3 85.5 87.2 74.6 83.4 83.0
DARS 0.82 73.3 85.0 80.6 93.9 86.0 89.1 75.4 85.8 83.6

As shown in Table 1, DARS consistently achieves superior accuracy over other PEFT methods,
including LoRA, DoRA, and S2FT. In average across LLaMA-7B and LLaMA2-7B, the performance
gain is 5.6% over LoRA, 3.9% over Dora, and 0.2% over S2FT.

Arithmetic Reasoning We also evaluated DARS on seven math reasoning tasks, including Mul-
tiArith, GSM8K, AddSub, AQuA, SingleEq, SVAMP and MAWPS. We used Math-10K dataset
for fine-tuning, which combines training sets from GSM8K, MAWPS, and AQuA, augmented with
LM-generated chain-of-thought steps. Unlike commonsense reasoning tasks, we didn’t divide the
Math-10K into multiple sub-tasks for fittingH separately for each of them. For training bothH and
R, we simply follow the experimental setup same as done in Hu et al. (2023).

Table 2: Comparison among various fine-tuning methods for different models on seven math reasoning
tasks. (1 from Yang et al. (2024))
Model Method # Param (%) MultiArith GSM8K AddSub AQuA SingleEq SVAMP MAWPS Avg. ↑

LLaMA-7B LoRA1 0.83 98.0 40.0 91.2 21.7 93.1 56.7 85.3 69.7
DoRA1 0.84 97.3 38.9 89.6 22.4 93.9 58.4 85.3 69.4
S2FT1 0.81 98.8 41.3 91.4 21.3 93.5 58.4 86.1 70.1
DARS 0.81 98.8 37.8 90.9 24.8 95.5 56.3 89.5 70.5

LLaMA-2-7B LoRA1 0.81 97.5 44.0 91.2 20.9 94.1 59.2 85.7 70.4
DoRA1 0.84 98.2 44.8 90.1 24.4 94.5 59.1 89.1 71.3
S2FT1 0.81 98.5 44.3 91.1 25.2 94.7 61.8 88.2 72.0
DARS 0.81 99.0 45.9 91.6 22.8 95.5 61.5 89.3 72.2

Table 2 demonstrates that DARS also exceeds other existing methods, 1.3% over LoRA, 1% over
DoRA, and 0.3% over S2FT.

6 CONCLUSION

This paper introduces a novel sparse fine-tuning approach that regularizes the disalignment to ensure
OOD-robust and efficient performance on various tasks. We believe that our approach provides a
promising start for considering structural alignment across networks into fine-tuning strategies. By
highlighting the importance of regularizing disalignment during task-specific adaptation, we hope
this work inspires further exploration of alignment-aware methods to improve generalization and
efficiency in sparse fine-tuning.
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A GRADIENT UPDATES LYING IN THE SPAN OF INPUT

In this section, we provide a mathematical proofs of how the gradient updates for two most general
loss functions, Cross-Entropy and MSE, lie in the span of input data, following the derivations given
by Behpour et al. (2024).

A.1 CROSS-ENTROPY LOSS AND GRADIENT UPDATES

Consider a single-layer linear neural network in a supervised learning setting, where each training
data pair (x, y) is drawn from a training dataset D. Here, x ∈ Rd, y ∈ Rm represents the input
vector and label and θ ∈ Rm×d represents the learnable parameters of the network. The model’s
prediction on input x is denoted by f(x; θ). For classification problems, f(x; θ) = θx, where fk(x; θ)
represents the k-th logit associated with the k-th class among m classes.

The total loss on the training set is denoted by:

LD(θ) =
∑

(x,y)∈D

L(x,y)(θ), (9)

where the per-example loss is defined as:

L(x,y)(θ) = ℓ(y, f(x; θ)), (10)

and ℓ(·, ·) represents a differentiable non-negative loss function.

For classification problems, the softmax cross-entropy loss is commonly used, given by:

ℓ(y, f(x; θ)) = −
m∑

k=1

yk log ak, (11)

where ak =
exp(fk(x; θ))∑
k exp(fk(x; θ))

represents the softmax output for the k-th class.

Using the chain rule, the gradient of the loss can be expressed as:

∇L(x,y)(θ) = ∇f(x; θ) ℓ′(y, f(x; θ)), (12)

7

https://arxiv.org/abs/2201.01806
https://arxiv.org/abs/2201.01806
https://arxiv.org/abs/2109.05687
https://arxiv.org/abs/2401.07085
https://arxiv.org/abs/2412.06289
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2403.03507
https://arxiv.org/abs/2403.03507


Published as a workshop paper at SCOPE - ICLR 2025

where ℓ′(·, ·) ∈ Rm denotes the derivative of ℓ(·, ·) with respect to its second argument, and∇f(x; θ)
represents the gradient of the model f with respect to the parameters θ. For the classification problem
with softmax loss, we have:

∇f(x; θ) = [∇f1(x; θ), . . . ,∇fm(x; θ)]. (13)

For simplicity, equation 13 can be re-expressed as,

∇f(x; θ) = x⊤. (14)

Considering that the derivative of the cross-entropy loss is given by:

∂ℓ

∂fj
=

∂ℓ

∂ak
· ∂ak
∂fj

, where
∂ak
∂fj

=

{
ak(1− ak), if k = j,

−akaj , if k ̸= j.

ℓ′(y, f(x; θ)) = [a1 − y1, . . . , am − ym]⊤ = ρ, (15)
where ρ denotes the error vector. Considering equations 12, 14, and 15, we can write equation 12 as:

∇L(x,y)(θ) = ρx⊤. (16)

As a result, the gradient update against the cross-entropy loss is confined within the input span
(x), where the elements in ρ display heterogeneous magnitudes, thereby impacting the scaling of x
correspondingly.

A.2 MSE LOSS AND GRADIENT UPDATES

Considering that the batch loss as the summation of losses from each example, the overall batch loss
for n samples can be represented as:

Lbatch =

n∑
i=1

Li, (17)

where Li represents the loss of sample (xi, yi).

mean-squared error (MSE) loss of a batch is computed as the sum of the losses of individual samples,
which can be expressed as:

Lbatch =

n∑
i=1

Li =

n∑
i=1

1

2
∥θxi − yi∥22. (18)

Following stochastic gradient optimization, we can present the gradient of this loss (per sample) with
respect to weights as:

∇θL = (θx− y)x⊤ = Ωx⊤, (19)
where Ω ∈ Rm denotes the error vector. Therefore, the gradient of the batch loss with respect to the
weights is as:

∇θLbatch = Ω1x
⊤
1 +Ω2x

⊤
2 + · · ·+Ωnx

⊤
n . (20)

From the result, we can conclude that gradient update against the MSE loss also remains constrained
within the subspace spanned by the n input examples.

B DISALIGNMENT LEARNING DURING OOD FINE-TUNING

Given the same two-layer neural network as in Section 2, consider a fine-tuning setting that only
unfreezes the first weight matrix W while weight matrix U in the second layer remains frozen during
training. Let the fine-tuning dataset D be a far OOD data embedded in orthogonal space to pre-trained
dataset D as follows,

D ⊂ S, D ⊂ S∗, (8)

where S ⊥ S∗, meaning any vector from S is orthogonal to any vector from S∗. Initializing from
pre-trained weight W ∈ S, fine-tuning to OOD data D results in a new weight W̃ = W +W where

8
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W converges to the space S∗ through iterative gradient updates with SGD. Since U remains frozen
throughout the fine-tuning, U ∈ S, which then satisfies following relationship for all j, k ∈ [1 : d],

⟨w̃j , uk⟩ = ⟨wj + wj , uk⟩
= ⟨wj , uk⟩,

(9)

where ⟨ · , · ⟩ indicates the inner-product between two vectors. Given this setting, the new alignment
ζ̃ for fine-tuninig evolves as,

ζ̃ =
∥UW∥

∥U∥∥W +W∥
, (10)

which decreases as the norm of updated weight W increases. This results in the model requiring
additional updates to recalibrate the reduced alignment at the cost of potential overfitting.

Figure 1: Evolution of alignment and norm during fine-tuning. Alignment is measured between two
linear projections in the MLP module, Up (frozen) and Down (unfrozen), averaged across all layers
of LLaMA-2-7B during fine-tuning on each sub-task of commonsense reasoning dataset. Norm
measured as the L2-norm of selected unfrozen channels of weight matrix of Down projection.

Fig. 1 show that fine-tuning actually decreases the alignment while compensating this with increased
update norms to maintain the overall feature scale. For the experiment, we used commonsense
reasoning tasks as fine-tuning dataset and choosed LLaMA-2-7B as a pre-trained mode. While only
unfreezing a smaller subset of columns channels of the weight matrix of Down projection in the MLP
module for all layers, we let the rest of the parameters remain frozen throughout the fine-tuning. Then
we track how the alignment, defined as ζ := ∥UW∥

∥U∥∥W∥ , between two consecutive linear layers (Up
and Down projections of MLP module) and the L2-norm of selected channels of Down projection
change across steps during one epoch of training. The results show consistent decay of alignment and
increase of norm size as a compensate for the reduced alignment across all sub-tasks, verifying that
alignment and weight norm are in a trade-off relationship, balancing the overfitting and generalization.

C PRINCIPAL SUBSPACE COMPUTATION

Here we present the full algorithm to compute the principal subspace of the pre-trained network,
which is inspired by GradOrth (Behpour et al., 2024) that implements a graident-based OOD detection
mechanism. Given a L-layered pre-trained network fθ fitted to ID data D = {(xi, yi)}Mi , we form
a matrix of hidden representation I l per each l-th layer, consisting of n representations generated
by a forward-pass of fθ[1:l] on n ≪ M mini-batch Bn from D. Then we perform singular vector
decomposition (SVD) on this representation matrix as,

SV D(I l) = U lΣl(V l)T .

9
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To construct principal subspace Sl, we compute lower-rank approximation of the space spanned by
U l as the top-k left singular vectors where k is the smallest index such that the cumulative energy of
the top-k singular values, denoted as ∥(Σl)k∥2, exceeds the certain threshold ϵth of total cumulative
singular energy ∥Σl∥2. Then we repeat the same process for all layers from 1 to L.

Algorithm 1 Principal Subspace Computation
1: Pre-trained network : fθ,D, ϵth
2: Bn ← Sample a mini-batch of size n ≪ M from ID

data D = {(xi, yi)}Mi
3: for Sl ∈ [1, L] do
4: Initialization
5: Sl ← ∅
6: Subspace Computation
7: Il ← forward-Pass(Bn, fθ[1:l])

8: U l ← SVD(Il) = U lΣl(V l)T

9: k ← argmin
k

(
∥(Σl)k∥2 ≥ ϵth∥Σl∥2

)
10: Sl ← U l[0 : k]
11: end for
12: return S = [S1, S2, ..., SL]

D EXPERIMENTAL DETAILS

This section provides experimental details, including the hyperparameters used for all experiments
done in Section 5.

D.1 SPARSE PARAMETER SELECTION

Baed on the significance analysis for fine-tuning components given by Yang et al. (2024), we targeted
two linear projections for sparse fine-tuning, Output projection in MHA module and Down projection
in MLP module for both LLaMA-7B and LLaMA2-7B. Throughout the fine-tuning, we unfreeze
5.2% of parameters for Output weight matrix and 2% of parameters for Down projection. These
trainable parameters are then divided into two subsets: R, a random subset, andH, a subset serving
as a subspace regularizer. The relative proportion between these two subsets is specified by the
hyperparameters α and β.

D.2 HYPERPARAMETERS

We maintain the same hyperparameter settings across the LLaMA-7B and LLaMA2-7B models.

Table 3: Common Hyperparameter Configurations
Hyperparameters Commonsense Reasoning Arithmetic Reasoning

Optimizer AdamW AdamW
LR 2e-4 1e-3

LR Scheduler linear linear
Batch size 16×4 16×4

Warmup Steps 100 100
Epochs 3 3

10
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Table 4: α and β for commonsense reasoning tasks
Hyperparameter BoolQ PIQA SIQA HellaSwag Wino ARC-e ARC-c OBQA

α 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
β 0.7 0.9 0.7 0.8 0.9 0.7 0.9 0.7

Table 5: α and β for arithmetic reasoning tasks
Hyperparameter Math-10k

α 1.0
β 0.8
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