
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

ExpressPQDelivery : Toward Efficient and Immediately
Deployable Post-Quantum Key Delivery for Web-of-Things

Anonymous Author(s)

ABSTRACT

Post-quantum cryptography (PQC) aims to develop quantum-safe
algorithms against attacks by a quantum computer. As quantum-
safe algorithms require much larger keys in their operation com-
pared to the current RSA/ECC practice, the networking latency
significantly increases when executing the protocols with sending
such large keys. This problem gets more challenging in the era
of Web-of-Things (WoTs) with low-memory devices. To tackle the
problem, we propose ExpressPQDelivery, which is, to the best of
our knowledge, the first immediately deployable protocol to effi-
ciently transport large keys. It leverages the DNS infrastructure, as
DNS is close to clients, guaranteeing express key delivery with a
short round-trip time (RTT). We split a large PQ key along with a
server’s signature and feed them into several DNS records. To show
the feasibility of ExpressPQDelivery, we instantiate it with TLS
1.3 [40] and demonstrate that it reduces 27% of network latency
between a server and a client on average compared to the standard
TLS 1.3. We deploy ExpressPQDelivery on a low-capability board
with 256 KB RAM, showing a significant high gain (34%).

CCS CONCEPTS

• Networks→ Cross-layer protocols;

KEYWORDS

large key delivery, post-quantum cryptography, DNS
ACM Reference Format:

Anonymous Author(s). 2024. ExpressPQDelivery : Toward Efficient and
Immediately Deployable Post-Quantum Key Delivery for Web-of-Things.
In Proceedings of ACM Conference, Washington, DC, USA, July 2017 (Confer-

ence’17), 14 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Recent advances in quantum computing pose a significant threat
to the security of asymmetric cryptographic algorithms, such as
RSA [23] and Diffie-Hellman (DH) [33], which are integral to Trans-
port Layer Security (TLS) [40] and Public Key Infrastructure (PKI) [11].
This is because quantum computers can solve underlying hard
problems, such as discrete logarithm problems and factoring prob-
lems, upon which the security of these algorithms relies, by using
Shor’s algorithm [48]. In response, the academic and industrial

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA

© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

sectors have been actively studying quantum-safe algorithms to
mitigate the aforementioned issues. NIST1 has spearheaded efforts
to standardize such algorithms through its PQC project. In 2022,
NIST selected the three signature schemes DILITHIUM [16], FAL-
CON [38], and SPHINCS+ [7] as well as the Key Encapsulation
Mechanism (KEM) KYBER [9]. Since then, many governments and
organizations have also announced their roadmaps for migrating
to PQC [24, 57, 64].

Networking delay due to PQC. PQC requires much larger keys
in operation compared to the current RSA/ECC practices; thus,
migrating to PQC is challenging. As the size of PQ keys typically
exceeds the maximum transmission unit (MTU), it requires multi-
ple packets to deliver the PQ keys. There are three factors, leading
to significant networking delay due to PQC, that academic and
industrial communities have been identified. They are 1) the initial
congestion window size [50], 2) the bandwidth [26], and 3) the
packet loss rate [26, 36]. Note that these factors are more impact-
ful when considering WoTs with low-capability devices. Due to
the resource-constraints in WoT, the TCP receive buffer size is an
important factor in addition to the initial congestion window size.

Our solution. We propose ExpressPQDelivery, a one-size-fits-all
solution to the three networking issues above. It is an immediately
deployable protocol designed to efficiently deliver large PQ keys
in a subsequent protocol-independent fashion. ExpressPQDeliv-
ery uses the DNS infrastructure to deliver keys since DNS resolvers
are usually near clients; thus, this protocol guarantees express de-
livery with a short RTT. To this end, we design an E-Box, which
contains a large PQ key signed by a server, and is split into several
TXT/TLSA DNS records with their unique names. One who intends
to have a PQ key can get the key by sending query messages with
the names of the records and assembling the received records.

Instantiation. We implement ExpressPQDelivery by applying
it to TLS 1.3 [40] as TLS is the most widely deployed protocol on the
Internet [30]. We show a dramatic decrease, 27% in the execution
of TLS 1.3, with and without E-Box. We employ our procedure on
Nucleo-F439ZI with 256 KB RAM, showing 34% of a dramatic gain.
Contributions. We make the following contributions:
• We design ExpressPQDelivery, an immediately deployable pro-
tocol that aims to deliver large PQ keys efficiently in a subsequent
protocol-independent way (see §4 and §5).

• We implement ExpressPQDelivery while applying it to TLS
1.32 (see §6).

• We conduct a comprehensive experiment considering receive
window size, bandwidth, loss rate, and network latency between
the server and client, and show a dramatic decrease (27%) in the
execution of TLS 1.3 (see §7).

1The U.S. National Institute of Standards and Technology
2We publicly release the source code at https://github.com/ExpressPQDelivery

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/ExpressPQDelivery

Table 1: Total size of messages used in TLS

Algorithm Size Algorithm Size

ECDH+ECDSA(P-256) 224 DH+RSA (2048) 1,280
KYBER512+DILITHIUM2 7,720 KYBER512+FALCON512 3,797
KYBER768+DILITHIUM3 10,810 KYBER1024+FALCON1024 7,489
KYBER1024+DILITHIUM5 14,918

2 BACKGROUND

2.1 Post-Quantum Cryptography

PQC has been developed in response to potential threats from quan-
tum computing against currently used public key cryptographic al-
gorithms, such as RSA and ECC. NIST standardizes four algorithms
– KYBER [9], FALCON [38], DILITHIUM [16], and SPHINCS+ [7].
As SPHINCS+ relies on large keys and consumes lots of energy
not relevant for low-capability devices [5, 37, 47], we only focus
on FALCON and DILITHIUM in this paper. The sizes of a public
key, a private key, a ciphertext, and a signature of PQC algorithms
are much longer than those of classical public key algorithms (see
Table 6). For instance, the public key size of KYBER is 25 to 49 times
larger than that of ECDH. Due to these large sizes, when PQC is
integrated into TLS 1.3, it requires 17 to 369 times larger messages
than classical public key cryptographic algorithms (see Table 1).

2.2 Web-of-Things

Web-of-Things (WoT) [60] is Internet-of-Things (IoT) that connects
to the web architecture to facilitate interoperability, fragmentation,
and usability. It relies on web protocols such as REST, HTTP, and
URIs to communicate with each other. The primary use cases are
smart cities and smart grids. These use cases rely on low-capability
devices such as sensors. One such device is the M4 board series,
which is widely used as cellular modules and smart meters [17, 56].
Those devices, used in previous PQC for IoT work [4, 28, 44, 54, 55],
are typically equipped with small RAM ranging from 16 KB to 640
KB (196 KB on average). Note that the receive buffer size is also
small in these devices. For instance, those boards use FreeRTOS,
where the receive buffer size is set to 2 KB by default. Furthermore,
these devices use diverse connectivity technologies like LoRa or
LTE-M. These technologies work on low bandwidth. For example,
LoRa operates at bandwidths between 0.3 Kbps and 50 Kbps [63],
and LTE-M can support up to 1 Mbps [8].

2.3 Domain Name System

The domain name system (DNS) [34] is a large and distributed
infrastructure that maintains information about domain names. A
server uploads its associated attributes, such as its IP addresses or
certificates, using various types of resource records (RRs) to DNS.
Examples of RRs are as follows:
• A: It contains an IP address.
• TXT: It provides arbitrary base64-encoded text.
• TLSA: It stores a DER-formatted certificate or public key [21].

With an RR type and the domain name, a client can query spe-
cific information about the domain, and DNS responds with the
corresponding records. For instance, when a client queries the name
to DNS with an RR A, DNS responds with one or more IP addresses

Figure 1: PQC certificate delivery time.

for the name. There is a DNS resolver (or a resolver), which is an
interface between DNS and a client. A client asks a resolver to
retrieve records on their behalf within DNS. At least 10M resolvers
distributed worldwide are close to clients [1]. For the rapid retrieval
service, resolvers typically cache retrieved records for a specified
period. The DNS protocol originally relies on UDP for its transport.
Considering UDP is unreliable, a DNS response should be delivered
in one packet. As the maximum transmission unit (MTU) is usually
1.5 KB, the length of a DNS response is limited to 1.2 KB due to other
headers. When a DNS response exceeds 1.2 KB, a resolver falls back
to TCP for the underlying transport with a client according to its
fallback mechanism. We call this mechanism TCP fallback [13, 32].

3 LARGE PQ KEY DELIVERY PROBLEM

This section reviews the previous benchmarking work that has
identified networking issues due to the large PQ key and defines
the issues in the context of WoT.

Previous works on networking issues. From a networking per-
spective, delivering a large PQ key is not trivial because a key cannot
be delivered in a single packet, as in RSA or ECC. Considering the
MTU size is 1.5 KB, the number of packets required for delivery is
at least two packets for all signature algorithms except FALCON512.
To analyze the impact of a large PQ key in networking, there have
been PQ benchmarking studies in the general network, considering
the following three aspects:
• Initial congestion window size (cwnd): It defines the number
of packets that a sender can transmit at first in TCP. Christian et

al. [20] show additional round-trips when the key size exceeds
the size of the congestion window, resulting in a significant delay.
Panos et al. [26] show that the networking latency decreases
when increasing cwnd .

• Bandwidth: It specifies the number of bits that a device can
receive per second. Panos et al. [26] demonstrate the elapsed
time of the TLS handshake highly increases in LTE-M [8].

• Packet loss rate: It refers to the percentage of packets that fail to
reach the destination due to events such as network congestion.
The packet loss results in a significant delay due to retransmis-
sions. Several studies [26, 36] report that the elapsed time is more
sensitive to the packet loss rate if the TLS handshake is executed
with the larger PQ key.

Consideration of WoT. The aforementioned problems become
much more challenging in the era of WoT with low-capability de-
vices. First, we find that the network delay time due to the small
TCP receive buffer (rwnd) of the low-capability device is greater
than the delay time due to the cwnd . Our experiment measuring

2

Table 2: Average ping time test.

Location Top 1m Server

DNS

Google (8.8.8.8) Cloudflare (1.1.1.1)
North America 50.26 ms 1.23 ms 0.95 ms
Western Europe 51.61 ms 0.83 ms 0.64 ms

East Asia 103.42 ms 38.14 ms 10.10 ms
Oceania 108.63 ms 1.72 ms 1.68 ms

the key delivery time varying the receive buffer size shows the
delivery time increases as a step graph with regard to the number
of bytes sent by a server in TCP (see Figure 1). The increment in
TCP is mainly due to the TCP window size and the ACKmechanism.
We detail the experiment to analyze the networking delay due to
transport layer services in Appendix D. Second, there are many
low-bandwidth connectivity technologies (e.g., LoRa, LTE-M) used
in WoT, which have bandwidths below 1 Mbps (see §2.2) compared
with the conventional network. Finally, WoT devices tend to be sus-
ceptible to the packet loss rate as mobile and wireless networking
is prevalent [12].

4 OVERVIEW

This section presents the overview of ExpressPQDelivery.

4.1 Design Goals and Threat Model

Design goals. To address the large PQ key delivery problem, we
consider the following goals:
• (G1) Efficiency: The solution should not incur high network-
ing latency. It should not introduce additional round-trips for
delivering PQ keys.

• (G2) Universality: The solution should be independent of spe-
cific protocols; thus, it can be applied to diverse protocols.

• (G3) Immediate deployability: The solution should be com-
patible with the current practice without requiring any change
in the existing infrastructure.

Threat model. We assume the Dolev-Yao attack model [15] in
which an attacker can view, record, insert, block, and modify all
messages on public network channels. Therefore, an attacker can
perform DNS poisoning attacks to insert arbitrary messages in DNS
caches [61]. However, an attacker is computationally bounded;
thus, the attacker cannot break cryptographic assumptions. For
instance, the attacker cannot decrypt encrypted messages without
corresponding keys. Furthermore, we do not consider attacks that
disrupt the DNS service, such as denial of service attacks [3]; that
is, we assume DNS always properly works.

4.2 Solution Overview

We design ExpressPQDelivery that leverages the DNS infrastruc-
ture, achieving the aforementioned goals (see Figure 2). When using
DNS, we encounter two challenges that are detailed below.

Leverage of the DNS infrastructure. To achieve design goals,
we utilize the properties of the DNS infrastructure:
• (P1) Distributed worldwide: As DNS resolvers that cache the
DNS records are distributed globally closer to a client than a
server, the DNS resolvers can deliver PQ keys efficiently. We
measure the round-trip times to the top 1 million sites listed

in Cisco Umbrella [58] and the popular public DNS resolvers –
Cloudflare DNS and Google DNS – from four continents (i.e.,
North America, Western Europe, East Asia, and Oceania) and
show that the round-trip times to DNS are about 3 to 60 times
faster than the average round-trip times to the top 1 million
servers (see Table 2).

• (P2) Independence:TheDNSmechanism is independently used;
thus, delivering PQ keys through DNS guarantees universality.
In general, a client uses the DNS mechanism to look up IP ad-
dresses or other information about the domain before executing
the specific protocols to establish connections with a server.

• (P3) Flexible RRs: DNS provides the records for keys (TLSA)
and texts (TXT); thus, we can simply use such records to imme-
diately deploy our solution without requiring any modifications
to the existing infrastructure. Furthermore, we can negotiate the
use of the solution according to the values in such RRs and in-
troduce the fallback mechanism to guarantee compatibility with
the current practice.

Challenges. To benefit from DNS in delivering E-Box , we should
address the following two challenges:

• (C1) TCP fallback: A PQ key generally exceeds the size limit
of a single DNS packet, which is 1,232 bytes. Therefore, when
we deliver a PQ key via DNS record, the DNS mechanism falls
back to TCP instead of UDP as its transport according to its TCP
fallback mechanism [13, 32]. The network latency increases sig-
nificantly in TCP as the PQ key size grows. Furthermore, 11% of
DNS resolvers do not support TCP [35]. Therefore, it is neces-
sary to fragment the PQ key within the size limit to avoid using
TCP and to support our solution. However, this fragmentation
is challenging since only one record of the same type can exist
under a single domain name.

• (C2) Unreliable connection: The mechanism to guarantee re-
liable key delivery should be considered if we want to deliver the
PQ key over UDP, as UDP is based on the best-effort delivery, not
providing reliability. Note that the solution becomes unavailable
even if a single UDP packet is lost. Therefore, we should consider
ways to ensure the reliability of the key delivery. In other words,
it is necessary for clients to deploy a mechanism to re-deliver a
fragmented key when it turns out to be lost.

Our solution. ExpressPQDelivery introduces E-Box to facili-
tate the delivery of a server’s PQ key to clients using existing RRs.
E-Box not only contains a server’s PQ key but also includes at-
tributes for operational purposes such as the version and protocol
identifier. E-Box can also contain additional public keys required
to execute the subsequent protocol. E-Box is split into multiple
existing DNS records to guarantee immediate deployability, ensur-
ing that each does not exceed the limit size of a DNS packet. We
call each record the E-Box fragment that is assigned its own name
under the domain. ExpressPQDelivery transmits E-Box through
DNS, addressing two aforementioned challenges. To address (C1),
ExpressPQDelivery provides the (S1) optimized fragmentation and
the (S2) query-based delivery. To address (C2), ExpressPQDeliv-
ery provides the (S3) re-delivery mechanism, described as follows:

3

Figure 2: ExpressPQDelivery procedure.

Figure 3: High-level design structure of E-Box

• (S1) Optimized fragmentation:We use TLSA and TXT records
to encode E-Box. As TLSA that is for a certificate is morememory-
efficient than TXT, we use TLSA for a PQ key and TXT for others.

• (S2) Query-based delivery: A client finally fetches E-Box by
querying E-Box fragments with their names, assembling them,
and verifying the signature.

• (S3) Re-delivery mechanism: It enables a client to re-query
for the packets that a client does not receive for a timeout.

The procedure of ExpressPQDelivery, which consists of the
E-Box setup and delivery phases, is depicted in Figure 2.

Phase 1. E-Box setup. A server creates an E-Box and uploads it
in advance before communications between a client and a server.

• Upload E-Box (❶): A server packages its large PQ key(s) re-
quired for the subsequent protocol it supports and uploads an
E-Box to the DNS infrastructure.

Phase 2. E-Box delivery. Delivering an E-Box to a client follows
the procedure below:

• CacheE-Box (❷):ADNS resolver caches a server’s E-Box when
it is requested by a client.

• Fetch E-Box (❸): A client simultaneously queries an IP address
and an E-Box with A, TXT, and TLSA records.

• Execute a protocol (❹):A client executes a subsequent protocol
with a server using E-Box. Note that a server does not send its
large PQ key during the protocol execution.

5 DETAIL OF EXPRESSPQDELIVERY

This section provides the details of ExpressPQDelivery.We present
attributes of E-Box, followed by mechanisms to deliver an E-Box.

5.1 E-Box

A server generates an E-Box with its cryptographic information.
It consists of three main fields as follows (see Figure 3):

E-Box header. This field contains information about the E-Box to
facilitate the operation of ExpressPQDelivery as follows:
• version: the version of ExpressPQDelivery.
• validity: the validity period of an E-Box .
• totalRecordsNumber : the number of TLSA/TXT fragments.

PQ key. This field is the main field of E-Box used to contain one
or multiple PQ keys. It has two subfields:
• certificate: a certificate of a PQ key used to sign an E-Box.
• addPQKey (optional): an additional PQ key with its algorithm.
Note that a PQ key to verify a signature must be encoded in E-
Box in the form of a certificate, which specifies the subject name
of a key holder. Otherwise, there is no guarantee that a signature is
generated by a server.

E-Box signature. This field contains the server’s signature over
E-Box with the following two fields:
• algorithmId: a signature algorithm.
• signature: a signature
One can verify the signature using a public key from the certificate
in the PQ key field, which validates the integrity and the generator
(i.e., a server) of the E-Box.

5.2 Optimized Fragmentation

When dividing E-Box into multiple records, a server strategically
utilizes TXT/TLSA records because a TXT record can contain any
value in the form of the text, i.e., providing flexibility, and a TLSA
record can have a PQ key in a compact way, i.e., optimizing key
encoding. Therefore, we use a TLSA record to encode the values
of the certificate and the publicKey , while the values in the
other fields are encoded as a TXT record.

5.3 Delivery Mechanism

The E-Box fragments are delivered through the DNS mechanism.
Below, we describe 1) how we assign names for E-Box fragments
and 2) how we request E-Box fragments.

Naming convention for E-Box fragments. We assign a name
to each fragment so that a client can get E-Box by requesting the
fragments using their names and finally assembling them. Since a

4

single record of the same type can only exist under one name, we
establish a naming convention to identify each fragment:

ebox-{fragmentNumber}.{domainName}, where the fragment
number begins at 0. For instance, when a server example.com has
a DILITHIUM3 PQ key, the size of E-Box is 11,755 bytes encoded
as 5 TXT records and 6 TLSA records (see Table 3). Therefore, a
server should prepare for 6 names (ebox-0, ... , ebox-5) to assign
a name to each record. Then, a server assigns ebox-0 to the first
TXT record and the first TLSA record, ebox-1 to the second TXT
record and the second TLSA record, and similarly to other records
one by one. Note that there is no TXT record with regard to the
name ebox-5 because the E-Box contains only 5 TXT records.

Query-based delivery. With the naming convention to indicate
a specific E-Box fragment, a client should be able to fetch an
E-Box through the DNS query-response mechanism. However,
a client is unable to determine the signature algorithm a server
uses to generate the E-Box or the number of fragments it has
in advance. Therefore, our delivery mechanism consists of two
round-trips to DNS. In detail, a client queries a TXT record of
ebox-0 (e.g., ebox-0.example.com) from which A client gets the
total number of TLSA/TXT records. Then, the client simultaneously
sends totTXT number of TXT queries and totTLSA number of
TLSA queries to receive all the E-Box fragments. Finally, a client
assembles the received fragments into the original E-Box. Recall
that the RTT between a client and a DNS resolver is typically much
shorter than the RTT between a client and a server; therefore,
2RTT between a client and a DNS resolver would be marginal even
compared to RTT between a client and a server.

Backward compatibility. ExpressPQDelivery is backwards
compatible. That is, a client has no problem with a server that
does not support ExpressPQDelivery. A client receives NXDOMAIN
instead of E-Box fragments when a client sends query messages.
Then, a client can execute the standard protocol with a server. There-
fore, ExpressPQDelivery does not cause side effects to existing
servers; thus, ExpressPQDelivery is immediately deployable.

5.4 Re-delivery Mechanism

To guarantee reliability in delivering a PQ key, we devise the re-
delivery mechanism. We define re-delivery timeout as the time inter-
val to send the repeated DNS query message. We set the timeout to
be double the round-trip time for the first received E-Box fragment.
When the timeout occurs, it triggers a client to send query messages
that correspond to unreceived E-Box fragments (see algorithm 1).

6 APPLICATION

TLS is the de facto standard security protocol in current practice [30]
and has been widely studied across various environments [37, 50,
51, 54] for PQC. Thus, this section presents how ExpressPQDeliv-
ery can be integrated with the PQC version of the TLS 1.3 protocol
(PQC-TLS 1.3) [10, 54, 55].

ExpressPQDelivery-applied PQC-TLS 1.3. ExpressPQDeliv-
ery is integrated with PQC-TLS 1.3 in two parts: the 1) E-Box setup
and the 2) E-Box delivery, as depicted in Figure 4.

Algorithm 1: Re-delivery mechanism
1 Input: domainName, fragmentNumber, totTXT or

totTLSA , timeout
2 Output: E-Box

3 set timeout = 2 × (duration for the first response)
4 int i = fragmentNumber
5 if 𝑖 < totTXT then

6 query TXT of ebox-[i].domainName
7 waitFor(timeout)
8 if TXT lookup failed then

9 query again for 2 times

10 if 𝑖 < totTLSA then
11 query TLSA of ebox-[i].domainName
12 waitFor(𝑡𝑖𝑚𝑒𝑜𝑢𝑡)
13 if TLSA lookup failed then

14 query again for 2 times

15 It functions for all non-responsive queries.

Figure 4: ExpressPQDelivery-applied PQC-TLS 1.3.

1) E-Box setup: As a PQC-TLS 1.3 server uses its digital signature
algorithm (DSA) certificate, the server stores its DSA certificate in
the PQ key field of the E-Box.

2) E-Box delivery: Two phases are different compared to PQC-
TLS 1.3. One is the DNS lookup phase, and the other is ServerHello:
• DNS lookup: A client fetches the first E-Box fragment and
simultaneously queries TLSA, TXT, and A records after finding the
numbers of records from the first fragment. If the client receives
NXDOMAIN or fails to verify the signature in E-Box, it falls back
to the PQC-TLS 1.3 protocol.

5

• ClientHello: A client generates an ephemeral key encapsula-
tion mechanism (KEM) key pair, i.e., (𝑝𝑘𝑐 , 𝑠𝑘𝑐) and sends the
ClientHello message with 𝑝𝑘𝑐 and other parameters.

• ServerHello: When a server sends ServerHello i.e., 𝑐𝑡𝑝𝑘𝑐 , the
server sends its heavy PQ certificate along with the ServerHello,
CertificateVerify, and Finished. When using ExpressPQDe-
livery, the server does not need to send the server’s certificate
because it has already been delivered to the client via the PQ key
field of an E-Box.

• Finished: The client verifies the CertificateVerify using the
server’s public key from the certificate, then decapsulates shared
secret 𝑠𝑠 from the 𝑐𝑡𝑝𝑘𝑐 with its private key 𝑠𝑘𝑐 . From the 𝑠𝑠 , the
client derives the session key, then verifies the finished message.

Universality. As discussed, ExpressPQDelivery is designed to
provide universality. ExpressPQDelivery can be applied to all the
subsequent protocols that require large PQ keys. We describe how
ExpressPQDelivery can be integrated with DTLS 1.3 [42] and
KEMTLS [46] in Appendix E.

7 EVALUATION

7.1 E-Box Analysis

We use five signature algorithms in experiments – DILITHIUM
(2, 3, and 5) and FALCON (512 and 1024). Each E-Box contains a
DSA certificate (cert) in its PQ key field with a signature in the
E-Box signature field. In practice, a server sends a certificate chain
that includes a leaf cert, one or two intermediate certs (ICAs) [43],
and optionally a root cert [14]. Therefore, we calculate E-Box sizes
based on four different cases per signature algorithm: delivering 1)
only one single leaf cert (a cert), 2) a chain of a leaf cert with 1
ICA cert (1 ICA), and 3) a chain of a leaf cert with 2 ICA certs
(2 ICA). So, there are 15 cases in total.

Comparison in delivery size. We compare the size of E-Box and
the total number of queries required to fetch the E-Box when using
only TXT records and when using the optimized fragmentation (see
Table 3). The size difference between the E-Box and PQ key varies
by algorithm and scenario, ranging from 1.4 KB (a FALCON512
cert) to 13.2 KB (2 ICA DILITHIUM5 certs). We calculate the
inflation rate as:

(𝑆𝑖𝑧𝑒 𝑜 𝑓 𝐸𝐵𝑜𝑥 −𝑆𝑖𝑧𝑒 𝑜 𝑓 𝑎 𝑃𝑄𝑘𝑒𝑦)
𝑆𝑖𝑧𝑒 𝑜 𝑓 𝑎 𝑃𝑄𝑘𝑒𝑦

We find that the inflation rate is 78% on average in 15 cases. These
overheads are necessary as due to additional information in E-Box.

Effect of the optimized fragmentation. To measure the effect,
we define the reduction rate as

(#𝑜 𝑓 𝑇𝑋𝑇−𝑜𝑛𝑙𝑦 𝑟𝑒𝑐𝑜𝑟𝑑𝑠) − (#𝑜 𝑓 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑟𝑒𝑐𝑜𝑟𝑑𝑠)
#𝑜 𝑓 𝑇𝑋𝑇−𝑜𝑛𝑙𝑦 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

and calculate reduction rates for all the scenarios. The reduction
rates range from 8.3% to 29.7% except in one case – a cert based
on FALCON 1024. The highest reduction rate, 29.7%, is at the sce-
nario of a certificate chain with one leaf certificate and two ICA
certificates based on DILITHIUM5. The reason for the case where
reduction rate is 0% is attributed to the size of PQ key being close to
the multiple of the maximum size of the DNS records. In this case,
the reduction amounts fall within the DNS record’s size, preventing

Table 3: Size of E-Box on the PQC digital signature algorithms

TXT-only Optimized fragmentation

DSA Scenario

totTXT

Total

(optimize rate)

totTXT totTLSA

a cert 8 7 (12.5% ↓) 4
DILITHIUM2 1 ICA 13 11 (15.4% ↓) 3 8

2 ICAs 18 14 (22.2% ↓) 11
a cert 12 11 (8.30% ↓) 6

DILITHIUM3 1 ICA 18 16 (11.1% ↓) 5 11
2 ICAs 25 21 (16.0% ↓) 16
a cert 16 13 (18.8% ↓) 7

DILITHIUM5 1 ICA 27 19 (29.6% ↓) 6 13
2 ICAs 37 26 (29.7% ↓) 20
a cert 4 3 (25.0% ↓) 2

FALCON512 1 ICA 6 5 (16.7% ↓) 1 4
2 ICAs 8 6 (25.0% ↓) 5
a cert 6 6 (0.00% ↓) 4

FALCON1024 1 ICA 10 9 (10.0% ↓) 2 7
2 ICAs 14 12 (12.5% ↓) 10

a decrease in record numbers. Note that other than these partic-
ular scenarios, we find that the optimized fragmentation highly
contributes to the size reduction.

We note that the effect of optimized fragmentation is more signif-
icant as the key size increases. For instance, the decreased number
of records is generally 3 or less for E-Box with a cert (i.e., case 1),
but in other cases, the difference increases up to 11 queries. This
shows that optimized fragmentation can help efficiently deliver
higher-security level PQ keys.

7.2 Experimental Setting

To conduct a comprehensive evaluation of ExpressPQDelivery,
we consider three factors: 1) the receive window size (rwnd), 2)
the bandwidth, and 3) the packet loss rate. For each factor, we
vary the RTTs between a client and a server by an intra-country
scenario (≈ 40𝑚𝑠), an inter-country scenario (≈ 77𝑚𝑠), and an
inter-region scenario (≈ 180𝑚𝑠). We set the RTT between a client
and a DNS resolver to be < 10𝑚𝑠 . For a server and a DNS re-
solver, we use an AWS Ubuntu 22.04 instance with Intel Xeon
E5 CPU (2.30GHz) and 1 GB RAM. For a client, we consider two
types of devices. To evaluate the factor of rwnd, we implement
an ExpressPQDelivery client on a Nucleo-F439ZI [52] board
with ARM Cortex-M4 and 256 KB RAM. We also implement a
client on an AWS instance for the factors of the bandwidth and
the packet loss rate. We set up an authoritative name server and a
DNS resolver using bind9. We implement a prototype of the Ex-
pressPQDelivery library by extending WolfSSL-4.7.0 [55] for a
Nucleo-F439ZI board and OpenSSL-3.3.0 in other environments,
leveraging oqs-provider-0.5.4 [45] for all the PQC algorithms.

We measure the time required to execute the PQC-TLS hand-
shake on a client considering the following four periods:
• Period 1: the elapsed time required for a DNS lookup time –
from querying all the records to completely getting an E-Box .

• Period 2: the elapsed time right after the end of Period 1 until
the time right after sending ClientHello.

• Period 3: the elapsed time right after the end of Period 2 un-
til the time right after receiving a server’s CertificateVerify
message. In PQC-TLS, a client receives a certificate at this period.

6

• Period 4: the elapsed time right after the end of Period 3 until
the time when the PQC-TLS handshake is finished.

E-Box gain. We focus on Period 1 and Period 3, where the effect
of E-Box is applied, and define the E-Box gain as:

(1 − 𝑃𝑒𝑟𝑖𝑜𝑑1𝐸𝐵𝑜𝑥+𝑃𝑒𝑟𝑖𝑜𝑑3𝐸𝐵𝑜𝑥
𝑃𝑒𝑟𝑖𝑜𝑑1+𝑃𝑒𝑟𝑖𝑜𝑑3) x 100%,

where Period 1 and Period 3 are the times for PQC-TLS without E-
Box, while Period1𝐸𝐵𝑜𝑥 and Period3𝐸𝐵𝑜𝑥 indicate the times related
to the ExpressPQDelivery.

Figure 5: Evaluation results at NUCLEO-F439ZI.

7.3 Experiment Results

We describe only the results for the inter-country scenario. Other
results, showing the similar tendency, are provided in Appendix F.

Effect on rwnd. Our experiment results on the board show that
the handshake time with E-Box significantly decreases compared
to the handshake time without E-Box (see Figure 5). With Ex-
pressPQDelivery, the handshake time for all the scenarios de-
creases by 27% on average. ExpressPQDelivery reduces 25.3%,
19.7%, and 44.5% of the handshake time on the board with 2 KB,
4 KB, and 8 KB of rwnd, respectively. In detail, it takes 13 ms on
average for a client to query an A record. An ExpressPQDeliv-
ery client queries a different number of records for each algorithm
(kyb512-dil2, kyb768-dil3, kyb512-fal512, kyb1024-fal1024) in Pe-
riod 1 for 88 ms, 136 ms, 47 ms, and 92 ms, respectively. In Period 3,
the ExpressPQDelivery client is from 25.85% (rwnd=4 KB, kyb512-
fal512) to 97.90% (rwnd=8 KB, kyb768-dil3) faster than the PQC-TLS
client. Both clients show similar tendency in Periods 2 and 4.

We calculate the E-Box gains for algorithms (see Figure 6).When
rwnd is increased (2 KB→4 KB), the handshake time is reduced
as a server can send more bytes at the same time. However, for
all algorithms except kyb512-fal512, the E-Box gains increase as
rwnd increases from 4 KB to 8 KB. We find that many packets are
dropped because the processing speed is slower than the PQ key

Figure 6: Gains from applying ExpressPQDelivery on PQC-TLS.

Figure 7: Evaluation results for 1 Mbps bandwidth.

transmission speed, resulting in many packet retransmissions. This
leads to a significant elapsed time in Period 3. When ExpressPQDe-
livery is applied, the PQ key is delivered from the nearby DNS
through the E-Box, reducing the number of retransmitted packets
in Period3𝐸𝐵𝑜𝑥 . On the other hand, in kyb512-fal512, the size of
the PQ key is only 3.7 KB (see Table 1), which is smaller than 4 KB.
Therefore, increasing the rwnd from 4 KB to 8 KB still results in a
similar gain as when it was 4 KB. The average gain we calculated
for all scenarios is 34%.

Effect on low-bandwidth. Weevaluate the effect of ExpressPQDe-
livery on the low-bandwidth. We select a bandwidth of 1 Mbps be-
tween the client and server, considering LTE-M. We set the rwnd to
4 KB. Our results show that ExpressPQDelivery effectively re-
duces the time for all PQC algorithms in establishing handshake
connections (see Figure 7). The E-Box gains are 37% (kyb512-dil2),
52% (kyb768-dil3), 47% (kyb1024-dil5), 48% (kyb512-fal512), and 26%
(kyb1024-fal1024), with an average of 42%.

Effect on packet loss rate. We set the loss rate to 5%, considering
the unstable network conditions. We fix the rwnd size at 4 KB. The
bandwidth between the client and server in our environment was
≈ 200 Mbps. Our experimental results show that ExpressPQDeliv-
ery is effective even in unstable network environments (see Fig-
ure 8). The E-Box gains are 51% (kyb512-dil2), 57% (kyb768-dil3),
60% (kyb1024-dil5), 36% (kyb512-fal512), and 26% (kyb1024-fal1024),
with an average of 46%.

7.4 Overheads on DNS

We measure the overhead on DNS in terms of its disk storage. Dur-
ing the execution of ExpressPQDelivery, DNS resolvers should
send an A record, TXT, and TLSA records. To fully benefit from
ExpressPQDelivery, those records should be cached in DNS re-
solvers, which require additional storage. We expect how much
is required to guarantee 90% of a cache hit. When a DNS resolver
caches the E-Box of a single domain, the required extra storage

7

Figure 8: Evaluation results for 5% loss rate.

Table 4: E-Box size according to the number of domains.

of domains 1 10K 100K

E-Box

size

a cert 2.2 KB – 11.7 KB 21.4 MB – 114.2 MB 0.21 GB – 1.12GB
(avg: 0.63 GB)

cert chain 4.5 KB – 22.5KB 43.9 MB – 219.7 MB 0.43 GB – 2.15GB
(avg: 1.22 GB)

is between 2.2 KB (FALCON512) and 11.7 KB (DILITHIUM5) (see
Table 4). Considering the average length of a certificate chain is
2.5 [43], 4.5 KB (FALCON512) and 22.5 KB (DILITHIUM5) are addi-
tionally needed per domain. As it is commonly accepted that the
popularity of websites follows the power-law distribution [25, 62],
90/10 law can be applied; thus, 90% of cache hit on Top-1M websites
would be guaranteed with 100K domains, which requires around
1.22 GB. As the price of the disk storage and memory keeps falling,
now solid-state drives are below $0.04 per GB, hard disk drives are
below $0.02 per GB, and DRAM memory is below $1.30 per GB);
it would not be a significant burden to cover the increment of the
cache size. To increase the cache hit rate, we can also use prefetch
techniques [53].

7.5 Security Analysis

DNS record manipulation attack. An attacker can modify the
total number of TLSA and TXT records included in the E-Box frag-
ment. For instance, in the case of a server using a single DILITHIUM2
certificate, the total numbers of TXT and TLSA records are 3 and
4, respectively. By manipulating these numbers, an attacker can
force the client to send additional queries to the DNS, which may
disrupt the DNS service. Although the impact is limited to a denial-
of-service, which is an out-of-scope attack, we can set the upper
bound of the number of packets to be simultaneously sent to miti-
gate such an attack. For instance, We can limit the total number of
records to 20, the maximum number of records per RR in Table 3.

DNS poisoning attack. An attacker may tamper with and forge
the E-Box that DNS has cached, causing a client to receive an in-
correct E-Box. However, the E-Box contains the server’s certificate
and signature over the E-Box. The certificate guarantees that the
server is the domain owner, and the signature ensures the integrity
of the E-Box. If the client detects tampering with the E-Box by
verifying the signature using the public key from the certificate, it
falls back to the original protocol.

E-Box confidentiality. The data transmitted through the E-Box
consists only of the server’s public information (i.e., certificate and
public key), which does not require confidentiality. Previous studies,

such as ZTLS [31] and DANE [21], have already explored delivering
a certificate and a public key by leveraging DNS. Note that DANE
is particularly common in email systems [29].

8 RELATEDWORK

Solution to the large PQ key delivery problem. We have dis-
cussed the analysis of the problem in §3. There have been two types
of approaches to address the problem.

• Approach 1) reducing the number of certificates in a chain:

Sikeridis et al. [49] propose an intermediate certificate suppression

method where a client indicates a list of ICA certificates that a
client already has, and a server removes ICA certificates specified
from a chain and sends the remaining certificates. Kampanakis et
al. [27] provide efficient caching mechanisms to make the ICA
suppression methods feasible and boost their performance.

• Approach 2) using a shorter algorithm: Schwabe et al. [46]
proposeKEMTLS that substitutes KEMs for handshake signatures.
The rationale behind this replacement is that the size of KEM is
much shorter than that of digital signatures; thus, it contributes to
addressing the problem by reducing the key size by an algorithm.

• Our approach: ExpressPQDelivery is the fourth approach to
address the problem by reducing the physical distance for the key
delivery by using DNS, also considering resource-constrained
WoTs. The approaches are not mutually excluded; rather, they
are independent and complementary.

Enhancing features usingDNS. There have been techniques [21,
31, 41] that leverageDNS to introduce new features.TLS Encrypted
Client Hello (ECH) [41] aims to protect the privacy of a client by
encrypting the client’s first TLS message containing a destination
name. DANE [21] is designed to handle a public key from a domain
owner through DNS. ZTLS [31] aims to reduce one round-trip of
the TLS handshake by uploading a server’s first handshake message
on DNS. Note that no approach is presented to address the large PQ
key delivery problem using DNS. ExpressPQDelivery contributes
to extending the areas of this branch of work to PQC.

Splitting large material. TurboTLS [2] initiates TLS during the
TCP handshake by exchanging the Hello messages split into several
UDP packets. Goertzen et al. [18] propose a new RR, called RRFRAG,
which contains split PQC signatures used in DNSSEC. This work,
however, only focuses on addressing the problem in the context of
DNSSEC by introducing a completely new RR without considering
deployability. Twardokus et al. [59] sends the large certificates on
multiple DSRC (Dedicated short-range communications) packets
in V2V communications.

9 CONCLUSION

We propose ExpressPQDelivery, an immediately deployable, effi-
cient, and universal protocol to deliver large PQ keys, leveraging
DNS. We design E-Box that contains large PQ keys in multiple
TXT/TLSA records. We show that the protocol reduces the latency
by an average of 27% on ExpressPQDelivery-applied PQC-TLS
1.3. In the future, we plan to optimize the key delivery from the
client side, considering the scenario of mutual authentication.

8

REFERENCES

[1] Joe Abley. 2012. Ten Million DNS Resolvers on the Internet.
https://www.icann.org/en/blogs/details/ten-million-dns-resolvers-on-the-
internet-22-3-2012-en. (2012).

[2] Carlos Aguilar-Melchor, Thomas Bailleux, Jason Goertzen, David Joseph, and
Douglas Stebila. 2023. TurboTLS: TLS connection establishment with 1 less round
trip. arXiv preprint arXiv:2302.05311 (2023).

[3] Marios Anagnostopoulos, Georgios Kambourakis, Panagiotis Kopanos, Georgios
Louloudakis, and Stefanos Gritzalis. 2013. DNS amplification attack revisited.
Computers & Security 39 (2013), 475–485.

[4] Mila Anastasova, Reza Azarderakhsh, and Mehran Mozaffari Kermani. 2021. Fast
strategies for the implementation of SIKE round 3 on ARM Cortex-M4. IEEE
Transactions on Circuits and Systems I: Regular Papers 68, 10 (2021), 4129–4141.

[5] Tanushree Banerjee andMAnwar Hasan. 2018. Energy consumption of candidate
algorithms for NIST PQC standards. University of Waterloo Centre for Applied

Cryptographic Research, Tech. Rep (2018).
[6] Richard Barnes, Subodh Iyengar, Nick Sullivan, and Eric Rescorla. 2023. RFC

9345: Delegated Credentials for TLS and DTLS. (2023).
[7] Daniel J Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost

Rijneveld, and Peter Schwabe. 2019. The SPHINCS+ signature framework. In
Proceedings of the 2019 ACM SIGSAC conference on computer and communications

security. 2129–2146.
[8] Suresh R Borkar. 2020. Long-term evolution for machines (LTE-M). In LPWAN

technologies for IoT and M2M applications. Elsevier, 145–166.
[9] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M

Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. 2018. CRYSTALS-
Kyber: a CCA-secure module-lattice-based KEM. In 2018 IEEE European Sympo-

sium on Security and Privacy (EuroS&P). IEEE, 353–367.
[10] Deirdre Connolly. 2024. ML-KEM Post-Quantum Key Agreement

for TLS 1.3. Internet-Draft draft-connolly-tls-mlkem-key-agreement-
01. Internet Engineering Task Force. https://datatracker.ietf.org/doc/
draft-connolly-tls-mlkem-key-agreement/01/ Work in Progress.

[11] David Cooper, Stefan Santesson, Stephen Farrell, Sharon Boeyen, Russell Housley,
and William Polk. 2008. Internet X. 509 public key infrastructure certificate and
certificate revocation list (CRL) profile. Technical Report.

[12] Samir Dawaliby, Abbas Bradai, and Yannis Pousset. 2016. In depth performance
evaluation of LTE-M for M2M communications. In 2016 IEEE 12th international

conference on wireless and mobile computing, networking and communications

(WiMob). IEEE, 1–8.
[13] John Dickinson, Sara Dickinson, Ray Bellis, Allison Mankin, and Duane Wessels.

2016. RFC 7766: DNS transport over TCP-implementation requirements. (2016).
[14] Tim Dierks and Eric Rescorla. 2008. RFC 5246: The transport layer security (TLS)

protocol version 1.2. (2008).
[15] Danny Dolev and Andrew C. Yao. 1983. On the security of public key protocols.

IEEE Transactions on information theory 29, 2 (1983), 198–208.
[16] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe,

Gregor Seiler, and Damien Stehlé. 2018. Crystals-dilithium: A lattice-based digital
signature scheme. IACR Transactions on Cryptographic Hardware and Embedded

Systems (2018), 238–268.
[17] Würth Elektronik. 2024. Adrastea-I. (2024). https://www.we-online.com/en/

components/products/ADRASTEA-I Retrieved 14-10-2024.
[18] Jason Goertzen and Douglas Stebila. 2023. Post-quantum signatures in DNSSEC

via request-based fragmentation. In International Conference on Post-Quantum

Cryptography. Springer, 535–564.
[19] Tatsuya Hagiwara, Hiroshi Majima, Takahiro Matsuda, and Miki Yamamoto. 2001.

Impact of round trip delay self-similarity on TCP performance. In Proceedings

Tenth International Conference on Computer Communications and Networks (Cat.

No. 01EX495). IEEE, 166–171.
[20] Johanna Henrich, Andreas Heinemann, Alex Wiesmaier, and Nicolai Schmitt.

2023. Performance Impact of PQC KEMs on TLS 1.3 Under Varying Network
Characteristics. In International Conference on Information Security. Springer,
267–287.

[21] Paul Hoffman and Jakob Schlyter. 2012. The DNS-based authentication of named

entities (DANE) transport layer security (TLS) protocol: TLSA. Technical Report.
[22] Jana Iyengar and Martin Thomson. 2021. RFC 9000: QUIC: A UDP-based multi-

plexed and secure transport. Omtermet Emgomeeromg Task Force (2021).
[23] Jakob Jonsson and Burt Kaliski. 2003. Public-Key Cryptography Standards (PKCS)

#1: RSA Cryptography Specifications Version 2.1. RFC 3447. (Feb. 2003). https:
//doi.org/10.17487/RFC3447

[24] JOSEPH R. BIDEN JR. 2022. National Security Memorandum on Promoting
United States Leadership in Quantum Computing While Mitigating Risks to
Vulnerable Cryptographic Systems. https://www.whitehouse.gov/briefing-
room/statements-releases/2022/05/04/national-security-memorandum-on-
promoting-united-states-leadership-in-quantum-computing-while-mitigating-
risks-to-vulnerable-cryptographic-systems/. (2022).

[25] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. 2001. DNS perfor-
mance and the effectiveness of caching. In Proceedings of the 1st ACM SIGCOMM

Workshop on Internet Measurement. 153–167.
[26] Panos Kampanakis and Will Childs-Klein. 2024. The impact of data-heavy, post-

quantum TLS 1.3 on the Time-To-Last-Byte of real-world connections. Cryptology
ePrint Archive (2024).

[27] Panos Kampanakis and Michael Kallitsis. 2022. Faster post-quantum TLS hand-
shakes without intermediate CA certificates. In International Symposium on Cyber

Security, Cryptology, and Machine Learning. Springer, 337–355.
[28] Matthias J Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. 2019.

pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4. (2019).
[29] Hyeonmin Lee, Md Ishtiaq Ashiq, Moritz Müller, Roland van Rijswijk-Deij, Tae-

joong Chung, et al. 2022. Under the hood of {DANE}mismanagement in {SMTP}.
In 31st USENIX Security Symposium (USENIX Security 22). 1–16.

[30] Hyunwoo Lee, Doowon Kim, and Yonghwi Kwon. 2021. TLS 1.3 in practice: How
TLS 1.3 contributes to the internet. In Proceedings of the Web Conference 2021.
70–79.

[31] Sangwon Lim, Hyeonmin Lee, Hyunsoo Kim, Hyunwoo Lee, and Taekyoung
Kwon. 2023. ZTLS: A DNS-based Approach to Zero Round Trip Delay in TLS
handshake. In Proceedings of the ACM Web Conference 2023. 2360–2370.

[32] Jiarun Mao, Michael Rabinovich, and Kyle Schomp. 2022. Assessing Support
for DNS-over-TCP in the Wild. In International Conference on Passive and Active

Network Measurement. Springer, 487–517.
[33] Ueli M Maurer and Stefan Wolf. 2000. The diffie–hellman protocol. Designs,

Codes and Cryptography 19, 2 (2000), 147–171.
[34] Paul V Mockapetris. 1987. RFC1034: Domain names-concepts and facilities.

(1987).
[35] Moritz Müller, Jins de Jong, Maran van Heesch, Benno Overeinder, and Roland

van Rijswijk-Deij. 2020. Retrofitting post-quantum cryptography in internet
protocols: a case study of DNSSEC. SIGCOMM Comput. Commun. Rev. 50, 4 (oct
2020), 49–57. https://doi.org/10.1145/3431832.3431838

[36] Christian Paquin, Douglas Stebila, and Goutam Tamvada. 2020. Benchmarking
post-quantum cryptography in TLS. In Post-Quantum Cryptography: 11th Inter-

national Conference, PQCrypto 2020, Paris, France, April 15–17, 2020, Proceedings

11. Springer, 72–91.
[37] Sebastian Paul, Yulia Kuzovkova, Norman Lahr, and Ruben Niederhagen. 2022.

Mixed certificate chains for the transition to post-quantum authentication in
TLS 1.3. In Proceedings of the 2022 ACM on Asia Conference on Computer and

Communications Security. 727–740.
[38] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-

shevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and
Zhenfei Zhang. 2022. Falcon: Fast-Fourier Lattice-based Compact Signatures
over NTRU. https://csrc.nist.gov/projects/post-quantum-cryptography/selected-
algorithms-2022. (2022).

[39] CCITT Recommendation. 1988. Specification of abstract syntax notation one
(ASN. 1). Specification of Abstract Syntax Notation One (ASN. 1) (1988).

[40] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446. (Aug. 2018). https://doi.org/10.17487/RFC8446

[41] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. 2022. TLS
Encrypted Client Hello. Internet-Draft draft-ietf-tls-esni-14. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-14 Work in
Progress.

[42] E Rescorla, H Tschofenig, and N Modadugu. 2022. RFC 9147: The Datagram
Transport Layer Security (DTLS) Protocol Version 1.3. (2022).

[43] Marcus Ringström and Anton Olivestam. 2022. Analysis of Longitudinal Changes
of Certificate Chains. (2022).

[44] Markku-Juhani O Saarinen. 2020. Mobile energy requirements of the upcom-
ing NIST post-quantum cryptography standards. In 2020 8th IEEE International

Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud).
IEEE, 23–30.

[45] Open Quantum Safe. 2024. oqs-provider. (2024). https://github.com/
open-quantum-safe/oqs-provider Retrieved 8-10-2024.

[46] Peter Schwabe, Douglas Stebila, and Thom Wiggers. 2020. Post-quantum TLS
without handshake signatures. In Proceedings of the 2020 ACM SIGSAC Conference

on Computer and Communications Security. 1461–1480.
[47] Kyung-Ah Shim. 2023. On the suitability of post-quantum signature schemes for

internet of things. IEEE Internet of Things Journal (2023).
[48] Peter W Shor. 1994. Algorithms for quantum computation: discrete logarithms

and factoring. In Proceedings 35th annual symposium on foundations of computer

science. Ieee, 124–134.
[49] Dimitrios Sikeridis, Sean Huntley, David Ott, and Michael Devetsikiotis. 2022.

Intermediate certificate suppression in post-quantum TLS: an approximate mem-
bership querying approach. In Proceedings of the 18th International Conference on

emerging Networking EXperiments and Technologies. 35–42.
[50] Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis. 2020. As-

sessing the overhead of post-quantum cryptography in TLS 1.3 and SSH. In
Proceedings of the 16th International Conference on emerging Networking EXperi-

ments and Technologies. 149–156.
[51] Markus Sosnowski, Florian Wiedner, Eric Hauser, Lion Steger, Dimitrios Schoini-

anakis, Sebastian Gallenmüller, and Georg Carle. 2023. The performance of

9

https://datatracker.ietf.org/doc/draft-connolly-tls-mlkem-key-agreement/01/
https://datatracker.ietf.org/doc/draft-connolly-tls-mlkem-key-agreement/01/
https://www.we-online.com/en/components/products/ADRASTEA-I
https://www.we-online.com/en/components/products/ADRASTEA-I
https://doi.org/10.17487/RFC3447
https://doi.org/10.17487/RFC3447
https://doi.org/10.1145/3431832.3431838
https://doi.org/10.17487/RFC8446
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-14
https://github.com/open-quantum-safe/oqs-provider
https://github.com/open-quantum-safe/oqs-provider

post-quantum tls 1.3. In Companion of the 19th International Conference on emerg-

ing Networking EXperiments and Technologies. 19–27.
[52] STMicroelectronics. 2024. STM32 Nucleo-144 development board with

STM32F439ZI MCU, supports Arduino, ST Zio and morpho connectivity. (2024).
https://www.st.com/en/evaluation-tools/nucleo-f439zi.html#overview July, 11st,
2024.

[53] Srikanth Sundaresan, Nazanin Magharei, Nick Feamster, and Renata Teixeira.
2012. Accelerating Last-Mile Web Performance with Popularity-Based Prefetch-
ing. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communication (SIG-

COMM ’12). Association for Computing Machinery, New York, NY, USA, 303–304.
https://doi.org/10.1145/2342356.2342421

[54] George Tasopoulos, Charis Dimopoulos, Apostolos P Fournaris, Raymond K
Zhao, Amin Sakzad, and Ron Steinfeld. 2023. Energy consumption evaluation of
post-quantum TLS 1.3 for resource-constrained embedded devices. In Proceedings

of the 20th ACM International Conference on Computing Frontiers. 366–374.
[55] George Tasopoulos, Jinhui Li, Apostolos P Fournaris, Raymond K Zhao, Amin

Sakzad, and Ron Steinfeld. 2022. Performance evaluation of post-quantum TLS
1.3 on resource-constrained embedded systems. In International Conference on

Information Security Practice and Experience. Springer, 432–451.
[56] Chengdu Ebyte Electronic Technology. 2024. E77-900M22S. (2024). https:

//www.cdebyte.com/products/E77-900M22S/2 Retrieved 14-10-2024.
[57] Joao Diogo Duarte Thomas Attenma, Matthieu Lequesne Vincert Dnning,

Marc Stevens Ward van der Schoot, and AIVD Cryptologists & Security Ad-
visors. 2023. The PQC Migration Handbook. (2023).

[58] Top 1 million 2016. Umbrella Popularity List. https://s3-us-west-1.amazonaws.
com/umbrella-static/index.html. (2016).

[59] Geoff Twardokus, Nina Bindel, Hanif Rahbari, and Sarah McCarthy. 2024. When
Cryptography Needs a Hand: Practical Post-Quantum Authentication for V2V
Communications.. In NDSS.

[60] W3C. 2024. Web of Things (WoT) Architecture 1.1. (2024). https://w3c.github.io/
wot-architecture/ Retrieved 14-10-2024.

[61] ZhengWang. 2014. POSTER: on the capability of DNS cache poisoning attacks. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications

Security. 1523–1525.
[62] Zheng Wang et al. 2013. Analysis of DNS cache effects on query distribution.

The Scientific World Journal 2013 (2013).
[63] LoRa Alliance Technical Committee Regional Parameters Workgroup. 2018.

LoRaWAN™ 1.0.3 Regional Parameters. (2018). https://lora-alliance.org/
wp-content/uploads/2020/11/lorawan_regional_parameters_v1.0.3reva_0.pdf Re-
trieved 14-10-2024.

[64] The ETSI Quantum-Safe Cryptographyworking group. 2020. Migration strategies
and recommendations to Quantum Safe schemes. (2020).

A E-BOX STRUCTURE DETAIL

This section describes the detailed format of E-Box . It follows
the formatting conventions outlined in the 1988 abstract syntax
notation one (ASN.1) [39] (also used in [11]).

B IOT BOARDS

We summarize the hardware specification of IoT boards used in
previous work.

Table 5: Specifications of various boards used in previous work. The
columns detail the board name, the type of ARM Cortex processor used,
RAM size, Flash memory size, and Ethernet support.

Board Processor RAM Flash memory Ethernet

Nucleo-F439ZI [54, 55] M4 256KB 2MB O
STM32F4-discovery [28] M4 192KB 1MB X
Nucleo-L4R5ZI [28] M4 640KB 2MB O
Nucleo-L476RG [28] M4 128KB 1MB X
Nucleo-F411RE [4, 44] M4 128KB 512KB O

C PQC KEY SIZES

Note that the public key size of KYBER is 25 to 49 times larger than
that of ECDH, and that of DILITHIUM5 is 81 times larger that of

Figure 9: E-box Structure

Table 6: Sizes of keys, ciphertexts, and signatures

KEM

NIST

Level

Size (byte)

public key private key ciphertext

ECDH-P256 0 32 32 32
DH-2048 0 256 256 256
KYBER512 1 800 1,632 768
KYBER768 3 1,184 2,400 1,088
KYBER1024 5 1,568 3,168 1,568

DSA

NIST

Level

Size (byte)

public key private key signature

ECDSA-P256 0 32 32 64
RSA-2048 0 259 256 256
DILITHIUM2 2 1,312 2,528 2,420
DILITHIUM3 3 1,952 4,000 3,293
DILITHIUM5 5 2,592 4,864 4,595
FALCON512 1 897 1,281 666
FALCON1024 5 1,793 2,305 1,280

ECDSA. The signature sizes of PQC algorithms are from 10.4 times
to 779 times larger than that of ECDSA.

D NETWORK DELAY DUE TO TRANSPORT

LAYER SERVICES

The problem is that transport layer services would affect the de-
livery time required to send multiple packets. In detail, the time
depends on many aspects, including a congestion window size
(cwnd) related to the congestion control mechanism (e.g., the slow

10

https://www.st.com/en/evaluation-tools/nucleo-f439zi.html#overview
https://doi.org/10.1145/2342356.2342421
https://www.cdebyte.com/products/E77-900M22S/2
https://www.cdebyte.com/products/E77-900M22S/2
https://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://w3c.github.io/wot-architecture/
https://w3c.github.io/wot-architecture/
https://lora-alliance.org/wp-content/uploads/2020/11/lorawan_regional_parameters_v1.0.3reva_0.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/lorawan_regional_parameters_v1.0.3reva_0.pdf

start) or a receive window size (rwnd) with regard to the flow con-
trol mechanism. Therefore, we evaluate how transport protocols
(i.e., TCP and UDP) affect the delivery time of PQC certificates.

Experiments on the delivery time. We conduct two experi-
ments to see how TCP and UDP affect the delivery time of PQC
certificates. First, we measure delivery time over TCP and UDP, re-
spectively, to see the effect of reliable data transfer services. Second,
we evaluate delivery time over TCP varying the size of rwnd con-
sidering low-memory devices. We set up a networking testbed with
simple client/server applications to perform the experiments. The
RTT between a server and a client is 200 ms, and both sides are
connected to the Internet through Ethernet, of which MTU is 1.5
KB. Note that both a server and a client adopt TCP CUBIC that
relies on the slow start algorithm for their congestion control mech-
anism. In our experimental setting, we fix the initial size of cwnd to
1.46 KB, which is ten times MSS. Also, we generate self-signed
PQ certificates based on DILITHIUM, FALCON, and SPHINCS+ by
OpenSSL-3.3.0, liboqs-0.10.0, and oqs-provider-0.5.4. The
server responds with the PQ certificate according to the request
sent by the client. All the results averaged over 30 trials are demon-
strated in Figure 1.

TCP vs. UDP. Our first experiment demonstrates that the deliv-
ery time increases as a step graph with regard to the number of
bytes sent by a server in TCP, while the time is stable in UDP (see
Figure 1). The increment in TCP is mainly due to the TCP window
size and the ACK mechanism. In detail, since the server can only
transmit data as much as the TCP window size, the server cannot
send the certificate in one transmission when the certificate size
exceeds the TCP window size. The server must wait for the client’s
ACK message before sending the remaining part of the certificate.
Therefore, the difference between steps in the step graph is around
the round-trip time (200 ms in our setting). This latency is not
marginal because the round-trip time is typically the dominant
factor in the networking delay [19]. For instance, the delivery time
of the SPHINCS+128f (23 KB) certificate was over 400 ms even if
the rwnd was large (e.g., 128 KB) because the size of the initial
cwnd was 14.6 KB, and thus two round-trips were required to send
23 KB. On the other hand, since UDP does not support such a mech-
anism, a UDP server sends all the fragments of the certificate in
parallel; therefore, the delivery time is similar regardless of the
certificate size.

Diverse receive window size over TCP. When we conduct an
experiment varying the size of rwnd in TCP, we find that the
networking overhead would be significant if a client could provide
a small rwnd (e.g., 4 KB). For instance, upon comparing the delivery
times for DILITHIUM5 and SPHINCS+128f certificates, we observe
that the delivery time difference was 1052.87 ms and 231.21 ms
when the rwnd size was 4 KB and 16 KB, respectively. It is mainly
because the smaller rwnd incurs more round trips to deliver the
same certificate. Therefore, resource-constrained IoT devices that
use smaller rwnd or congested devices that useminimal rwnd would
show high delivery times. Furthermore, it would not be suitable for
battery-powered wireless devices in terms of power consumption
as they cannot convert to sleep states to save their batteries while
waiting much longer for data, compared to the current practice. On

Figure 10: Overview of PQC-DTLS using ExpressPQDelivery

the other hand, we also observe that even if the size of rwnd is
larger than the certificate size, the delivery time increases because
the length of the certificates mostly exceeds the initial size of cwnd .

E UNIVERSALITY

This section provides the detailed designs of ExpressPQDeliv-
ery applications to DTLS 1.3 [42], QUIC [22], and KEMTLS [46].

E.1 Applying ExpressPQDelivery to

PQC-DTLS

DTLS (Datagram Transport Layer Security) is a protocol that oper-
ates over UDP based on TLS 1.3. We first briefly explain PQC-DTLS
and then describe PQC-DTLS using ExpressPQDelivery.

Overview of DTLS 1.3. When a client intends to connect to a
server, the client first obtains an IP address through the DNS reso-
lution with an A record. After a DNS lookup, the client immediately
sends a ClientHello message to initiate the handshake. In DTLS,
because it is UDP-based, messages can be lost, so the client sets
a timer and retransmits the ClientHello message if there is no
response (i.e., HelloVerifyRequest) from the server. Similar to
TLS 1.3, the ClientHello message includes the ephemeral KEM
public key 𝑝𝑘𝑐 and other parameters. When the server receives
a ClientHello, the server sends a HelloVerifyRequest contain-
ing a stateless cookie as an extension to prevent DoS (denial-of-
service) attacks. After the client receives the HelloVerifyRequest,
it must send a new ClientHello with the cookie added as an
extension. When the server receives a new ClientHello, it re-
sponds with the 𝑐𝑡𝑝𝑘𝑐 in ServerHello, followed by Certificate,
CertificateVerify and Finished. The client verifies the Certific
-ateVerify using server’s public key. The client derives the session
key from the 𝑐𝑡𝑝𝑘𝑐 , then verifies the Finished message.

ExpressPQDelivery-approach forDTLS 1.3. Wedescribe how
11

ExpressPQDelivery is integrated with PQC-DTLS 1.3 in the E-
Box setup and the E-Box delivery. Similar to PQC-TLS 1.3, during
the E-Box setup process, a server packages an E-Box and uploads
it to the authoritative name server. Next, two phases of E-Box deliv-
ery operation process are different compared to PQC-DTLS. One is
the DNS lookup phase, and the other is the ServerHello message:
In the DNS lookup phase, the client fetches the first E-Box fragment
and simultaneously queries TLSA, TXT, and A records after finding
the numbers of records from the first fragment. Once the client
receives an E-Box and IP address, it first verifies the signature in an
E-Box by using a PQ key in the E-Box to authenticate a server. If
the client receives NXDOMAIN or fails to verify the signature, it falls
back to the PQC-DTLS 1.3 protocol. Then, the client initiates a hand-
shake by sending the ClientHello message to the server. For the
ServerHello message phase, when the server sends ServerHello,
a PQC- DTLS 1.3 server sends its heavy PQ certificate along with
the ServerHello, but when using ExpressPQDelivery, the server
does not need to send the server’s certificate because it has already
been delivered to the client via the PQ key field of an E-Box .

E.2 Applying ExpressPQDelivery to

KEMTLS

KEMTLS is a TLS protocol proposed in 2020 by Schwabe et al. [46]
that uses only KEM instead of signatures for server authentication.
We first briefly explain the KEMTLS and then describe the KEMTLS
using ExpressPQDelivery .

Overview of KEMTLS. Similar to TLS 1.3, the client first sends
ClientHello with its ephemeral KEM public keys 𝑝𝑘𝑐 and the
ExpressPQDelivery version extension type after a TCP connec-
tion. The server checks the extension type to determine whether
it falls back to normal KEMTLS and then computes the shared
secret 𝑠𝑠𝑐 and the encapsulation 𝑐𝑡𝑝𝑘𝑐 against the 𝑝𝑘𝑐 . At this
time, the ephemeral session keys 𝐾 and 𝐾 ′ are derived from 𝑠𝑠𝑐
using HKDF. In ServerHello , the server responds to 𝑐𝑡𝑝𝑘𝑐 and
𝐴𝐸𝐴𝐷𝐾 (𝐶𝑒𝑟𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑒 [𝑝𝑘𝑠]). The latter is the server’s encrypted
KEM certificate using the key 𝐾 .

In the second client-to-server flight, the client decapsulates the
𝑐𝑡𝑝𝑘𝑐 to obtain 𝑠𝑠𝑐 and derives session keys 𝐾 and 𝐾 ′. Using these
session keys, the client first decrypts the𝐴𝐸𝐴𝐷𝐾 (𝐶𝑒𝑟𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑒 [𝑝𝑘𝑠])
using the 𝐾 , then calculates the 𝑐𝑡𝑝𝑘𝑠 and shared secret 𝑠𝑠𝑠 against
the 𝑝𝑘𝑠 . Next, the client sends the 𝐴𝐸𝐴𝐷𝐾 ′ (𝑐𝑡𝑝𝑘𝑠), which is 𝑐𝑡𝑝𝑘𝑠
encrypted with the𝐾 ′. During the same flight, the client derives the
authenticated session key 𝑠𝑠 from the combined 𝑠𝑠𝑐 and 𝑠𝑠𝑠 using
HKDF and sends the Finished message.

On the server side, the server first decrypts the 𝐴𝐸𝐴𝐷𝐾 ′ (𝑐𝑡𝑝𝑘𝑠)
with 𝑘 ′ then gets the shared secret 𝑠𝑠𝑠 as it decapsulates the 𝑐𝑝𝑝𝑘𝑠 .
Same as the client, the server combines the 𝑠𝑠𝑐 and the 𝑠𝑠𝑠 , derives
the session key 𝑠𝑠 using HKDF, and then verifies the Finished mes-
sage. In the last flight server-to-client, the server also sends a
Finished message. Finally, the client verifies the Finished mes-
sage and confirms the integrity of the handshake.

ExpressPQDelivery-approach for KEMTLS.

To implement ExpressPQDelivery, the E-Box must provide
authentication that it was created by the domain owner. However,
since a KEMTLS server uses a KEM certificate as its PQ key, it

Figure 11: Overview of KEMTLS using ExpressPQDelivery

cannot provide authentication. As previously described, TLS 1.3
provides server authentication through a CertificateVerify (a
signature over the handshake) and a certificate that contains
the digital signature algorithm (DSA) public key and signature. In
contrast, KEMTLS provides server authentication by performing
KEM twice without a signature and using a KEM certificate instead
of a DSA certificate. Thus, for applying ExpressPQDelivery, a
server signature is needed for E-Box authentication.

We describe the application of ExpressPQDelivery to KEMTLS
into two parts: the E-Box setup and the E-Box delivery operation.
During the E-Box setup process, the KEMTLS server stores its
DSA certificate and KEM publicKey in the PQ key field of
the E-Box and uploads the E-Box to its authoritative name server.
Next, in the E-Box delivery operation process, it differs from the
standard KEMTLS at two phases: 1. the DNS lookup phase; and 2.
the ServerHello message phase. In the DNS lookup phase, the
client selects a key delivery mode and queries TLSA, TXT, and
A records. Upon receiving the E-Box and IP address, the client
verifies the E-Box and checks the version field to determine if a
fallback to the normal protocol is necessary when the server does
not support ExpressPQDelivery . For the ServerHello message
phase, a normal KEMTLS server sends its KEM certificate along
with the ServerHello, whereas when using ExpressPQDelivery,
the server does not send its KEM certificate.

F EVALUATION RESULTS FOR ALL

SCENARIOS

Our experiment results at NUCLEO-F439ZI board for all scenar-
ios (i.e., intra-country, inter-country, and inter-region) show that

12

Figure 12: Evaluation results for all scenarios at NUCLEO-F439ZI.

Figure 13: Gains from applying ExpressPQDelivery on PQC-TLS 1.3. The x-axis lists the window size and the y-axis indicates the server location:
intra-country, inter-country, inter-region.

ExpressPQDelivery reduces the PQC-TLS handshake times re-
gardless of the network latency between the server and client (see
Figure 12). The E-Box gain we calculated for all scenarios ranges
from 4.6% to 97%, with an average of 34%.

G DISCUSSION

In this section, we explain how ExpressPQDelivery securely
delivers the PQ key through DNS, considering the threat model
described in Section §4.1. Then we discuss the overheads incurred
on DNS by using ExpressPQDelivery .

G.1 Networking Impact on DNS

Time-to-live (TTL) and networking within DNS. The number
of packets exchanged between a resolver and an authoritative name
server increases due to ExpressPQDelivery. It depends on the time-
to-live (TTL) value on DNS records.

First, it is fine to set the TTL value to the value until the expiration
time of the certificate if an E-Box only contains a certificate. Then,
no field needs to be periodically updated. Considering that a server
uses a long-term key for a signature, it would reduce the number

of networking a lot within the DNS infrastructure. The TTL value
should not exceed the difference between a certificate’s current
and expiration times for the operational purpose. In this case, the
networking within DNS to get DNS records from an authoritative
name server happens only when the records are evicted or the key
is expired.

Second, we suggest setting the TTL value to be less than seven
days if there is at least one public key encoded in an E-Box. The
reason for the seven days is that it is used in practice as the validity
period for a delegated credential [6], which has a similar structure,
i.e., a public key guaranteed by a signature, to an E-Box.

Networking between a resolver and a client. Due to the in-
creased number of records, DNS resolvers should exchange many
more packets between DNS resolvers and a client. Note that these
packets are to be originally exchanged between a client and a server
to deliver a PQ key. With ExpressPQDelivery, the amount of bytes
is moved from the connection between a client and a server to
the connection between a client and a resolver. Because of this
movement, the additional bytes are the bytes of the E-Box header
and one signature. Note that many techniques that are proposed

13

or deployed leveraging DNS, such as EncryptedClientHello [41]
or DANE [21] introduce similar types of overheads to DNS. Ex-
pressPQDelivery does not introduce any new type.

G.2 Congestion due to multiple UDP packets

As ExpressPQDelivery delivers an E-Box over UDP, there is no
mechanism to control congestion; thus, ExpressPQDelivery may
contribute to increasing the amount of network congestion. We
note two things regarding this issue. First, as the size of an E-Box is
less than 200 KB per domain and it is used once per session, we
believe routers can be resilient to the increments. Note that the
throughput of routers keeps increasing to cover such increments.
Second, as a client receives a PQ key not from a server but from
a resolver, the number of hops is reduced. Our simple experiment
shows that it is 17 hops on average toward servers and 8 hops to a
Google resolver; therefore, packets would be disseminated less. If a
local resolver is used, the possibility of congestion because of UDP
packets would be less.

14

	Abstract
	1 Introduction
	2 Background
	2.1 Post-Quantum Cryptography
	2.2 Web-of-Things
	2.3 Domain Name System

	3 Large PQ Key Delivery Problem
	4 Overview
	4.1 Design Goals and Threat Model
	4.2 Solution Overview

	5 Detail of ExpressPQDelivery
	5.1 E-Box
	5.2 Optimized Fragmentation
	5.3 Delivery Mechanism
	5.4 Re-delivery Mechanism

	6 Application
	7 Evaluation
	7.1 E-Box Analysis
	7.2 Experimental Setting
	7.3 Experiment Results
	7.4 Overheads on DNS
	7.5 Security Analysis

	8 Related Work
	9 Conclusion
	References
	A E-Box Structure Detail
	B IoT Boards
	C PQC Key Sizes
	D Network Delay due to Transport Layer Services
	E Universality
	E.1 Applying ExpressPQDelivery to PQC-DTLS
	E.2 Applying ExpressPQDelivery to KEMTLS

	F Evaluation Results for All Scenarios
	G Discussion
	G.1 Networking Impact on DNS
	G.2 Congestion due to multiple UDP packets

