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ABSTRACT

Measuring the discrepancy between data distributions in heterogeneous metric
spaces is a fundamental challenge. Existing methods, typically based on geo-
metric structures, address this by embedding distributions into a shared space.
However, these approaches face fundamental limitations, including the loss of ge-
ometric information, computationally intractable representations, and inability to
preserve essential structural features. In this work, we introduce the Quantile-
weighted Distance Optimal Transport (QDOT), a novel and efficient metric for
geometric comparison. QDOT constructs a family of isometry-invariant distance
representations by leveraging distance quantiles as structural weights in Euclidean
space, thereby preserving essential geometric characteristics and enabling optimal
transport coupling within a common space. We prove that, under mild conditions,
QDOT is a well-defined metric with a convergence rate no slower than the classi-
cal Wasserstein distance. Moreover, we present an integral version that computes
the loss in complexity of O(n log n). Extensive experiments demonstrate that
our methods achieves strong performance across diverse applications, including
cross-space comparison, transfer learning, and molecule generation, while also
achieving state-of-the-art results on several key metrics.

1 INTRODUCTION

The Wasserstein distance is a powerful metric for comparing probability distributions defined on a
same metric space. It has found widespread adoption in a diverse range of machine learning tasks,
such as generative models(Arjovsky et al., 2017; De Bortoli et al., 2021; Tong et al., 2024), language
models(Kusner et al., 2015; Melnyk et al., 2024), multimodal learning(Xu & Chen, 2023; Alatkar
& Wang, 2023; Shi et al., 2024) and reinforcement learning(Klink et al., 2022; Asadulaev et al.,
2024). However, a notable limitation of the Wasserstein distance is its sensitivity to the spatial
separation of the distributions’ supports, meaning that two distributions with similar shapes but far-
apart supports can still have a large Wasserstein distance. Furthermore, the applicability of optimal
transport is predicated on a pre-defined ground metric between the supports of the distributions. This
requirement renders it intractable for comparing distributions in heterogeneous spaces where such a
metric is not readily available.

To address these challenges, metrics based on shape features have emerged (Gromov, 1981; Sturm,
2006; Mémoli, 2011). These methods leverage the distribution of distances within a metric space
to compare distributions. Among these, the Gromov-Wasserstein (GW) distance (Sturm, 2006;
Mémoli, 2011) stands out as a canonical example. It resolves the issue of comparing distributions
in disparate spaces by seeking an optimal coupling of points in a shared, albeit implicitly defined,
metric space. However, this formulation is a non-convex optimization problem, the structure of the
latent space is not explicitly constructed, and its computation is prohibitively expensive, hindering
its use on practical datasets. A related approach, EMD under Transformation Sets (EMDG) (Co-
hen & Guibasm, 1999), extends the GW concept to Euclidean spaces of the same dimension by
finding an optimal orthogonal transformation. However, it is not applicable for cross-space compar-
isons and is susceptible to converging to local optima. Faster approximations, such as the Invari-
ant Sliced Gromov-Wasserstein (RISGW) (Titouan et al., 2019), achieve a favorable O(n log n)
complexity, but at the cost of sacrificing theoretical guarantees, such as key metric properties.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Cross 

Space( )

QDOT GW RISGW EMDG TBR

Memory( )

Time

Cost( )

Convergence

rate( )

Metric

Properity( )

Figure 1: Comparison of various geometric
metrics. Lower is better for memory, time
cost, and convergence rate. We also evaluate
metric properties and cross-space capabili-
ties.

Another line of work focuses on extracting shape-
invariant features (Belongie et al., 2002; Sun et al., 2019;
Yang et al., 2016). These methods map distributions from
different spaces into a common feature space for compar-
ison. However, they often suffer from unavoidable infor-
mation loss due to the unidirectional nature of the fea-
ture mapping. To capture richer information, subsequent
approaches have employed deep neural networks (Chen
et al., 2019; Kim et al., 2020) or transformer based rep-
resentations (Fuchs et al., 2020; Yu et al., 2023, TBR)
for comparison. A key limitation is that these models are
typically trained for specific tasks and thus lack general-
izability.

To the best of our knowledge, the existing geometric
comparison methods can be unified under a common
paradigm: they map distributions into a shared space for
comparison. However, the mappings employed by these
methods often suffer from critical issues: (1) they lack
an explicit form; (2) they lead to significant information loss; or (3) they introduce non-geometric
artifacts that can corrupt the comparison.

To overcome these challenges, we introduce QDOT, a novel framework that constructs an explicit,
geometry-based representation derived from quantile-weighted distances. This principled construc-
tion guarantees the integrity of the intrinsic distance information. As illustrated in Figure 1, QDOT
strikes a highly effective balance between theoretical properties, generalization capability, time com-
plexity, and computational resource usage, addressing the key trade-offs that limit existing methods.
The key contributions of QDOT can be summarized as follows:

Theoretical Guarantees. We prove that QDOT and its integral version constitute a metric on the
space of isometry classes under certain conditions. Furthermore, we establish that their sample
convergence rate is at least as fast as that of the Wasserstein distance.
Computational Efficiency. We propose a highly efficient algorithm. The computation of our repre-
sentations has a complexity of onlyO(n log n). The subsequent comparison step for the full QDOT
requires an additional O(n2 log n) for a standard Wasserstein distance calculation. In contrast, its
integral variant, IQDOT, leverages the closed-form solution of one-dimensional OT to achieve an
overall complexity of justO(n log n). Consequently, our family of methods offers a highly efficient,
quasi-linear time solution.
Versatility and Strong Performance. Our method achieved strong performance across a diverse
range of experiments. In point cloud comparison tasks, it accurately captured the geometric dis-
similarities between distributions and produced high-quality alignments, showcasing its powerful
cross-space capabilities. Furthermore, leveraging its computational efficiency, our method achieved
excellent results in a large-scale transfer learning scenario. Finally, when integrated as a loss func-
tion for a molecular generation model, the QDOT loss significantly enhanced model generalization
and achieved state-of-the-art performance on multiple key metrics.

2 PRELIMINARY

To establish a rigorous framework, we begin with the fundamental definitions. For any metric space
(X, dX), we can define its Borel σ-algebra, denoted B(X). For any probability measure µX defined
on the measurable space (X,B(X)), its support, written as supp(µX), is the smallest closed set
C ⊆ X such that µX(C) = 1. For a measurable map f : X → Y , the push-forward measure f#µX

on (Y,B(Y )) is defined by f#µX(A) := µX(f−1(A)) for any set A ∈ B(Y ). For two measures
µX and µY in spaces X and Y , a joint probability π on the product space X × Y is a coupling if
its marginals satisfy (projX)#π = µX and (projY )#π = µY . When µX and µY are defined on
the same metric space (Ω, d), they can be compared using the Wasserstein distance (Villani et al.,
2008), which is defined as:

Wp(µX , µY ) :=

(
inf

π∈Π(µX ,µY )

∫
Ω×Ω

d(x, y)p dπ(x, y)

) 1
p

. (1)
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The primary challenge arises when comparing distributions defined on different metric spaces. To
handle this scenario, the measurable metric space(Mémoli, 2011, mm-space) is defined as the triplet
X = (X, dX , µX). For two distinct mm-spaces, X = (X, dX , µX) and Y = (Y, dY , µY ), Sturm
(2006) proposed the Gromov-Wasserstein distance, extending the concept from equation 1:

Sp(X ,Y) := inf
Z
Wp(f(X ), g(Y)), (2)

where the maps f : X → Z and g : Y → Z are isometric embeddings, satisfying
dZ(f(x), f(x

′)) = dX(x, x′),∀x, x′ ∈ supp(µX) and dZ(g(y), g(y
′)) = dY (y, y

′),∀y, y′ ∈
supp(µY ). Intuitively, the definition in equation 2 can be understood as finding an optimal ”loss-
less” projection of the two disparate spaces X and Y into a common latent space Z, within which
their Wasserstein distance can be computed. A significant contribution of the Gromov-Wasserstein
distance is that it provides a complete metric on the space of mm-spaces. This metric is formally
defined as follows.

Definition 1 (Metric on Isometry Classes of mm-spaces) For two mm-spaces X = (X, dX , µX)
and Y = (Y, dY , µY ), a map f : X → Y is called an isometry if it is a surjection satisfying
dY (f(x), f(x

′)) = dX(x, x′),∀x, x′ ∈ supp(µX). Two mm-spaces are considered isometric if
such an isometry exists between them. A function L that measures the dissimilarity between two mm-
spaces is a metric on the isometry classes of mm-spaces if it satisfies: (1) Identity of Indiscernibles:
L(X ,Y) ≥ 0, and L(X ,Y) = 0 iff X and Y are isometric; (2) Symmetry: L(X ,Y) = L(Y,X );
(3) Triangle Inequality: L(X ,Y) ≤ L(X ,Z) + L(Y,Z).

Inspired by the structure of the Gromov-Wasserstein distance in equation 2, we summarized those
methods for comparing two mm-spaces can be expressed in a general form:

Lp(X ,Y) =Wp(f(X ), g(Y)) (3)
where f : X → Z and g : Y → Z are mapping functions into a common space Z. However,
constructing such maps f and g that yield a valid metric satisfying Definition 1 imposes two key
requirements. First, the maps must be isometry-invariant. That is, if mm-spaces X1 and X2 are
isometric, their representations must be identically distributed, i.e., f#µX1

= f#µX2
. Second, to

satisfy the identity of indiscernibles property, the representation must be information-preserving;
it must uniquely encode the metric structure of the original space such that non-isometric spaces
map to distinct distributions.

However, the requirement of isometry invariance often entails an unavoidable loss of structural
information, and existing methods conforming to the structure of equation 3 fail to meet both re-
quirements simultaneously, thereby falling short of constituting a well-defined metric.

Anchor 1
Anchor 2

Anchor 3

Target

Figure 2: Illustration of
trilateration

Our work introduces a novel framework designed to explicitly resolve
this conflict. To achieve isometry-invariance, we introduce the Quantile-
weighted Distance Mean (QDM). Its quantile-based weighting scheme is
inherently invariant to isometries, ensuring that any two isometric mm-
spaces will produce the same canonical mean representation. To preserve
information, , we draw inspiration from the principle of trilateration. As
illustrated in Figure 2, this principle dictates that the location of a target
point can be uniquely determined from its distances to a sufficient num-
ber of known anchor points. We leverage this concept in our framework
by treating the QDMs as a set of canonical, isometry-invariant anchors.
Consequently, the collection of distances from all points in the support
to these QDMs forms a new representation that effectively captures the
intrinsic distance information of the entire distribution. In the following
sections, we will formally define the QDM and QDOT and detail their
theoretical properties.

3 PROPOSED METHOD

3.1 QUANTILE DISTANCE-WEIGHTED OPTIMAL TRANSPORT

When comparing the metric properties of distributions, their absolute positions in space are typi-
cally irrelevant. Therefore, throughout our analysis, we will assume that any mm-space X and Y

3
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Figure 3: Illustration of the QDOT framework. The method first computes canonical QDM anchors for each
distribution, then generates QDMD vector representations based on distances to these anchors. The final QDOT
distance is the Wasserstein distance between these two resulting representation distributions.

embedded in a Euclidean space has been centered (i.e., has a zero mean). A key intuition follows
from this: if two centered mm-spaces X and Y are isometric, then the distributions of their norms,
∥ · ∥2#µX

and ∥ · ∥2#µY
, must be identical.

Motivated by this observation, we use a Gaussian kernel to construct a weighting scheme based on
the norm-quantiles, which leads to the definition of the Quantile-weighted Distance Mean:

Definition 2 (Quantile-weighted Distance Mean (QDM)) Given a centered mm-space X =
(X, dX , µX), where X ⊆ Rp and the metric is the standard Euclidean distance, dX(x1,x2) =
∥x1−x2∥2, we can derive the distribution of its norms, denoted by µ∥X∥2

= ∥ · ∥2#µX
. Let F∥X∥2

denote the cumulative distribution function (CDF) of µ∥X∥2
, and let F−1

∥X∥2
be its associated quan-

tile function. For any quantile level q ∈ (0, 1), we define the Quantile Distance Weight function
w : X × (0, 1)→ R as

wX(x, q) := e
−σ

(
∥x∥2−F−1

∥X∥2
(q)

)2

, (4)
where σ is a bandwidth parameter. Based on these weights, the corresponding QDM mX : (0, 1)→
Rp is defined as the weighted mean:

mX(q) :=
EµX

[wX(X, q)X]

EµX
[wX(X, q)]

. (5)

Intuitively, for a given quantile level q, the weight function wX(x, q) is concentrated on points
whose norms are close to the q-th quantile of the norm distribution. Therefore, the QDM can be
served as a canonical, isometry-invariant anchor point. We use it to define the Quantile Distance-
weighted Mean Distance (QDMD), which is a function ϕ : X × (0, 1) → R that measures the
distance from a point to the QDM:

ϕX(x, q) = dX(x,mX(q)). (6)
Given a quantile level vector q = (q1, . . . , qk) ∈ (0, 1)k. The corresponding QDMD maps each
point x to a feature vector in Rk+1:

ϕX(x,q) := [ϕX
0 (x), ϕX(x, q1), ϕ

X(x, q2), . . . , ϕ
X(x, qk)],

where ϕX
0 (x) = ∥x∥2 is the original norm, included as a fundamental reference distance to the

origin. This mapping transforms the measure µX into a push-forward measure on Rk+1. Based on
this transformation, we define the Quantile-weighted Distance Optimal Transport as follows:

Definition 3 (Quantile-weighted Distance Optimal Transport (QDOT)) Let X = (X, dX , µX)
and Y = (Y, dY , µY ) be two mm-spaces, where X ⊆ Rd and Y ⊆ Rq , and their metrics dX
and dY are the standard Euclidean distances. For a given vector of quantile levels q ∈ (0, 1)k,
we compute their corresponding QDMD representations, ϕX and ϕY . The QDOT distance is then
defined as the Wasserstein distance between the resulting push-forward measures:

QDp(X ,Y) =Wp(ϕ
X
#µX

,ϕY
#µY

). (7)

The overall procedure of the QDOT framework is illustrated in Figure 3.
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3.2 THEORETICAL RESULTS

We will now establish the key theoretical properties of our proposed QDOT framework, demonstrat-
ing that it is a well-defined metric with favorable sample convergence guarantees.

Theorem 1 (Metric Property on Isometry Classes) Let X = (X, dX , µX) and Y = (Y, dY , µY )
be two mm-spaces embedded in Euclidean spaces. For a given quantile level vector q ∈ (0, 1)k,
suppose their corresponding QDMs satisfy the dimensionality condition dim({mX(qi)}1≤i≤k) =
dim(X) or dim({mY (qi)}1≤i≤k) = dim(Y ). Then, the p-QDOT distance, QDp, defines a metric
on the isometry classes of these mm-spaces.

The condition on dimensionality is inspired by the principle of trilateration (Thomas & Ros, 2005)
and is generally satisfied in practical scenarios. The proof for Theorem 1 is provided in Ap-
pendix B.1. In addition to its metric properties, we also prove that QDOT has an empirical con-
vergence rate.

Theorem 2 (Empirical Convergence Rate) Let X = (X, dX , µX) be an mm-space where X ⊆
Rd. Let {xi}ni=1 be i.i.d. samples drawn from µX , and let the empirical measure be defined as µn :=
1
n

∑n
i=1 δxi

. If we denote the corresponding empirical mm-space as Xn = ({x1, . . . , xn}, dX , µn),
then we have QDp(X ,Xn)→ 0, as n→∞.

Moreover, under additional regularity conditions, namely (1) the distribution has a finite fourth
moment and (2) its CDF is continuous at the chosen quantile levels and has a strictly positive
density, the convergence rate of QDp is at least as fast as the standard rate for the Wasserstein
distance (Fournier & Guillin, 2015). Specifically, for the common case where d ≥ 2, the expected
error is bounded by:

E[QDp(X ,Xn)] = O(n−1/d).

The finite moment requirement is a standard condition inherited fromFournier & Guillin (2015),
while the continuity condition is a classical assumption that ensures the consistency of empirical
quantiles. Both of these conditions are mild and hold for the vast majority of practical data distribu-
tions. For a detailed discussion and rates under other conditions, we refer the reader to Fournier &
Guillin (2015) and our proof in Appendix B.2.

Based on the preceding theoretical results, we can summarize several key properties of the QDOT.

Corollary 1 Let X = (X, dX , µX) and Y = (Y, dY , µY ) be two mm-spaces embedded in Eu-
clidean spaces, where X ⊆ Rd and Y ⊆ Rq . The QDOT distance exhibits the following properties:

(1) Location Invariance. For any translation vector z ∈ Rd, let the translated mm-space be
denoted by Xz = (X + z, dX , µX+z), we have QDp(Xz,Y) = QDp(X ,Y).

(2) Rotation and Reflection Invariance. For any orthogonal transformation R : Rd → Rd, let
XR = (R(X), dR(X), R#µX

), we have QDp(XR,Y) = QDp(X ,Y).

(3) Numerical Convergence. Let Xn and Yn be the empirical mm-spaces constructed from n
i.i.d. samples drawn from X and Y , respectively. The empirical QDOT distance converges
as n → ∞: QDp(Xn,Yn) → QDp(X ,Y). Furthermore, under the condition in2, its
expectation convergence rate is given by E|QDp(Xn,Yn)−QDp(X ,Y)| = O(n− 1

max(d,q) ).

3.3 NUMERICAL IMPLEMENTATION

In the numerical setting, we consider discrete probability measures. Let ∆n−1 denote the (n − 1)-
simplex. Given two sets of samples, X = {xi}1≤i≤n in Rd and Y = {yj}1≤j≤m in Rq , with
corresponding probability vectors pX ∈ ∆n−1 and pY ∈ ∆m−1, their associated discrete measures
are µX =

∑n
i=1 p

X
i δxi

and µY =
∑m

j=1 p
Y
j δyj

, respectively. We represent the sample sets as data
matrices X = (x1,x2, · · · ,xn)

⊤ ∈ Rn×d and Y = (y1,y2, · · · ,ym)⊤ ∈ Rm×q . For a given
quantile level vector q ∈ (0, 1)k, the procedure for computing the QDOT distance is detailed in
Algorithm 1.
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Algorithm 1 QDOT

Require: X,Y,pX,pY, q
1: Initialize the data matrices X and Y.
2: Compute the sample norms of X and Y: ϕX

0 ← (∥xi∥)1≤i≤n, ϕY
0 ← (∥yj∥)1≤j≤m.

3: Compute the q-quantiles of the sample norms: ▷ O(n log n+m logm)
rX ← (F−1

∥X∥(q1), . . . , F
−1
∥X∥(qk)), rY ← (F−1

∥Y∥(q1), . . . , F
−1
∥Y∥(qk)).

4: for i← 1 to k do ▷ O(knd+ kmq)
5: Compute the quantile weights:

wX
ij ←

pX
j exp{−σ(dX

j −rX
i )2}∑n

j′=1
pX
j′ exp{−σ(dX

j′−rX
i )2} , wY

ij ←
pY
j exp{−σ(dY

j −rY
i )2}∑m

j′=1
pY
j′ exp{−σ(dY

j′−rY
i )2}

6: Compute the qi-quantile means: mX
i ← X⊤wX

i , mY
i ← Y⊤wY

i
7: Compute the distances to quantile means:

ϕX
i ← (∥xj −mX

i ∥)1≤j≤n, ϕY
i ← (∥yj −mY

i ∥)1≤j≤m

8: end for
9: Concatenate representations: ΦX ← [ϕX

0 ,ϕX
1 , . . . ,ϕX

k ], ΦY ← [ϕY
0 ,ϕY

1 , . . . ,ϕY
k ]

10: Calculate theWp distance: QDp ←Wp

(
(ΦX)#µX , (ΦY)#µY

)
▷ O(n2 log n+m2 logm)

11: return QDp

Computational Cost. For simplicity, we assume m ≤ n and q ≤ d. The initial norm computation
requires O(nd) operations. Computing the quantiles takes O(n log n) time. The main loop for
computing the QWs, QDMs, and QDMDs has a total cost of O(knd). It is noteworthy that the final
representations are generated in nearly linear time with respect to n. The final step of calculating
the Wasserstein distance has a complexity of O(n2 log n) by Sinkhorn Algorithm(Cuturi, 2013) or
Earth Moving Distance(Rubner et al., 2000).

To mitigate the high complexity of the final step, we also propose an Integral-QDOT approach.

3.4 INTEGRAL-QDOT

To address the high computational cost of the standard Wasserstein distance, methods based on slic-
ing(Bonneel et al., 2015; Deshpande et al., 2019) and the closed-form solution of one-dimensional
Optimal Transport have become increasingly popular. We observe that the QDMD representation,
ϕX(x, q), defined in the previous section, is a scalar value for any given quantile level q. This
structure naturally inspires an alternative approach: instead of comparing the multi-dimensional
representations in Rk+1, we can compare the one-dimensional distributions of the QDMD scalars
for each q and then aggregate the results. This leads to the Integral-QDOT(IQDOT) approach.

Definition 4 (Integral-QDOT) Given two mm-spaces X = (X, dX , µX) and Y = (Y, dY , µY ),
where X ⊆ Rd, Y ⊆ Rq , and dX , dY are the standard Euclidean distances. For any quantile level
q ∈ (0, 1), we can obtain their corresponding scalar QDMD representations, (ϕX(·, q))#µX

and
(ϕY (·, q))#µY

. The Integral-QDOT distance is then defined as the Lp-norm of the 1-D Wasserstein
distances between these push-forward measures, integrated over all q ∈ (0, 1):

IQDp(X ,Y) := inf
π∈Π(µX ,µY )

(∫
(0,1)

∫
X×Y

|ϕX(x, q)− ϕY (y, q)|p dπ(x, y) dq
)1/p

. (8)

We further establish that IQDOT also constitutes a well-defined metric.

Theorem 3 (Metric Property of IQDOT) Let X = (X, dX , µX) or Y = (Y, dY , µY ) be two mm-
spaces embedded in Euclidean spaces. If the set of QDMs satisfies the dimensionality condition
dim({mX(q)}q∈(0,1)) = dim(X) and dim({mY (q)}q∈(0,1)) = dim(Y ), then IQDp defines a
metric on the isometry classes of these mm-spaces.

As for the numerical implementation of IQDOT, we consider computing the mean of the one-
dimensional Wasserstein distances for the QDMD representations corresponding to k quantiles.
Since the 1d Wasserstein distance has a closed-form solution, the computational cost of the final
step in Algorithm 1 is reduced to O(kn log n), thereby achieving highly efficient computation.
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4 EXPERIMENTS

We next present a series of experiments designed to empirically validate several key properties of
our proposed framework. The evaluation aims to demonstrate QDOT’s: (1) effectiveness in cross-
space tasks; (2)fast computational efficiency; (3) transferability and versatility in comparing diverse
distributions; and (4) strong performance in complex models. All CPU-based experiments were
conducted on an Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz with 256GB RAM. All GPU-
based experiments were performed on a single NVIDIA RTX 4090 GPU with 24GB VRAM.

4.1 CROSS SPACE TASKS

To evaluate the cross-space alignment capability and the metric accuracy of our proposed method,
we conduct experiments on the camel-gallop data(Sumner & Popović, 2004). This data consists of
a reference 3D point cloud model and a corresponding 48-frame sequence of a galloping camel. For
our tests, we subsample the point clouds to 10,000 points. The experimental task is to match each
frame of the 3D sequence against projections of the static reference model onto three distinct 2D
subspaces. We assess alignment quality using the Transformed Mean Squared Error (TMSE) and
the Inlier Ratio (IR), formally defined in Appendix D.2. TMSE measures the alignment cost in the
original 3D space, while IR quantifies the percentage of correctly matched points within a given
tolerance. Our comparisons are structured as follows: First, we evaluate our QDOT by Sinkhorn
algorithm, against Entropic Gromov-Wasserstein (EGW) (Peyré et al., 2016), testing both methods
with regularization parameters λ = 0.1 and λ = 0.01. Second, to assess performance with sparse
couplings, we compare QDOT by EMD against the classical GW method.

Table 1: Cross Space Results on the camel-gallop dataset

Methods Transformed MSE ↓ Inlier Ratio (%) ↑
3D 2D1st 2D2nd 2D3rd Avg. 3D 2D1st 2D2nd 2D3rd Avg. Time(×102s)

EGW(λ=0.1) 0.37 0.37 0.39 0.40 0.38 41.71 41.90 39.66 38.69 40.49 3.03
QDOT(Sink-0.1) 0.32 0.32 0.32 0.33 0.32 48.75 48.25 48.84 47.03 48.22 0.13
EGW(λ=0.01) 0.21 0.23 0.22 0.33 0.25 72.12 64.92 69.51 50.89 64.36 21.51
QDOT(Sink-0.01) 0.22 0.24 0.23 0.25 0.24 71.15 63.75 68.48 63.20 66.65 0.74
GW 0.26 0.25 0.30 0.35 0.29 61.29 63.04 56.78 49.16 58.06 14.63
QDOT(EMD) 0.25 0.27 0.25 0.27 0.26 63.35 58.60 63.87 60.02 61.46 0.38

As shown in Table 1, the couplings produced by QDOT achieve comparable or superior results to
those from GW and EGW. Notably, this performance is attained with a computational cost that is
up to 30 times lower, underscoring the effectiveness and efficiency of our algorithm for cross-space
alignment. Furthermore, to evaluate the ability of cross-space metrics, we plotted the dissimilarity
trends over the point-cloud sequence, and included IQDOT, SGW, and RISGW for comparison.

Steps

0.2

1

Lo
ss

3D-3D Loss

Steps

3D-2D Loss1st

Steps

3D-2D Loss2nd

Steps

3D-2D Loss3rd Our Methods
QDOT
IQDOT

Other Methods
GW
EGW
SGW
RISGW

Figure 4: Loss trends between the camel-gallop sequence and the four reference in different spaces. It is
evident that QDOT, IQDOT, GW, and EGW successfully capture the four periodic cycles of the camel’s gallop,
exhibiting consistent fluctuation amplitudes and trends across all reference spaces. In contrast, SGW and
RISGW fail to reveal a clear, meaningful pattern.

The results, visualized in Figure 4, demonstrate that methods possessing well-defined metric proper-
ties consistently produce effective and meaningful dissimilarity curves. In stark contrast, SGW and
RISGW, which lack these theoretical guarantees, fail to reveal this underlying geometric pattern,
underscoring the importance of sound metric properties.
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4.2 TIME COST

102 103 104 105 106

Number of support points

10− 3

10− 1

101

103

Ti
m

e(
s)

Running Time

Methods
IQDOT-5
IQDOT-50
QDOT-50
GW
EGW
SGW-50
RISGW-50

Figure 5: Runtime comparison of various
methods. All experiments were conducted
in a CPU environment.

To benchmark the practical runtime performance of our
methods, we conduct an experiment using randomly gen-
erated 2D point clouds, with the number of support points
ranging from 102 to 106. We compare our methods
against GW, EGW, SGW, and RISGW. For this test, all
methods are configured with 50 projections (or quantiles);
IQDOT is additionally implemented using 5 quantiles,
and QDOT uses an EMD solver. The results are visu-
alized in Figure 5. The plot clearly shows that for smaller
sample sizes, the QDOT family of methods is faster
than all baselines. In large-scale scenarios involving tens
of thousands of points, IQDOT achieves a remarkable
speedup, running up to thousands of times faster than the
classic GW method. QDOT also maintains a significant
advantage. The overall trends in the log-log plot confirm
our complexity analysis: IQDOT exhibits a quasi-linear
time complexity, whereas QDOT scales quadratically.

4.3 TRANSFER LEARNING

Leveraging the robust cross-domain behavior of QDOT, we propose a parameter-free transfer learn-
ing approach for point cloud classification. We evaluate it on ModelNet40 (Wu et al., 2015) and
ShapeNetPart (Fan et al., 2017), focusing on the seven shared classes (3,072 samples from ModelNet
and 15,402 from ShapeNet). This setting entails tens of millions of pairwise comparisons, making
computationally intensive approaches infeasible; we therefore restrict our baselines to linear-time
methods. To test rotational robustness, random vertical-axis rotations are applied, and experiments
are conducted with point clouds subsampled to n = 1024 and n = 2048. The task treats one dataset
as the source and the other as the target: each target cloud is classified via 1-Nearest Neighbor using
distances to all source clouds computed by our metric. Results are reported below.

Table 2: Point Cloud Transfer Learning Classification Accuracy (%)

Methods (Mo→Sh) airplane car chair guitar lamp laptop table Avg. Time(h)

SGW-1024 96.69 99.10 60.67 0.00 71.29 98.66 94.25 79.77 13.11
SGW-2048 96.98 99.10 60.24 0.00 71.62 98.66 94.47 79.83 21.84
IQDOT-1024 94.86 84.18 83.82 96.56 51.13 96.45 84.95 83.89 1.59
IQDOT-2048 95.35 87.86 85.01 96.44 52.55 98.00 87.15 85.42 5.98

Methods (Sh→Mo) airplane car chair guitar lamp laptop table Avg. Time(h)

SGW-1024 89.66 37.03 43.68 0.00 80.55 20.11 99.59 59.66 13.11
SGW-2048 91.18 37.03 44.08 0.00 83.33 20.11 99.79 60.31 21.84
IQDOT-1024 98.89 87.20 91.10 98.43 81.94 97.04 96.74 93.97 1.59
IQDOT-2048 98.89 91.91 93.22 98.03 77.77 97.63 97.56 95.05 5.98

As shown in Table 2, IQDOT demonstrates more consistent performance compared to SGW. In
the ModelNet-to-ShapeNet transfer task, IQDOT achieves superior overall results. Furthermore, its
performance in the ShapeNet-to-ModelNet direction is exceptionally strong, improving the average
accuracy by 35% over the SGW method. Notably, IQDOT completed this large-scale task in just a
few hours, highlighting its remarkable efficiency.

4.4 MOLECULE GENERATION

Molecular generation is a central challenge in drug discovery and molecular science. Recent ad-
vances show that diffusion models with equivariant neural architectures have become the dominant
paradigm (Hoogeboom et al., 2022; Xu et al., 2023; Song et al., 2024; Feng et al., 2025). Since
molecular properties are invariant to absolute position and orientation, prior works attempted to en-
force stability through explicit structural alignment during training (Song et al., 2023; Hassan et al.,
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2024), but such procedures incur high computational cost. We instead integrate the QDOT distance
directly into the diffusion loss, providing an alignment-free learning signal that is inherently invari-
ant and emphasizes geometric fidelity. This encourages physically stable and generalizable molecule
generation without the overhead of explicit alignment.

We evaluate this approach on QM9 (Ramakrishnan et al., 2014) by adapting the classic model
EDM (Hoogeboom et al., 2022) and a recently model UniGEM (Feng et al., 2025), with QDOT-
augmented loss functions. Both are trained for 3000 epochs, and the results are reported below.

Table 3: Molecule Generation Results on QM9 Dataset

Methods Atom sta(%) Mol sta(%) Valid(%) V * U(%)

Data 99.0 95.2 97.7 97.7

EDM 98.70±0.01 86.56±0.27 93.73±0.12 92.04±0.03
→MSE0.1 98.81±0.04 87.63±0.21 94.54±0.15 92.81±0.20
→MSE0.3 98.68±0.07 86.04±0.74 93.83±0.43 92.39±0.55
→QDOT0.1 99.15±0.01 90.91±0.21 96.75±0.33 89.06±0.19
→QDOT0.3 99.35±0.06 93.29±0.81 97.80±0.22 81.21±2.03

UniGEM 98.90±0.03 89.40±0.02 94.58±0.07 92.75±0.11
→MSE0.1 98.91±0.04 89.00±0.22 95.00±0.16 93.13±0.10
→MSE0.3 99.00±0.07 89.48±0.70 95.16±0.16 93.34±0.18
→QDOT0.1 99.24±0.03 92.73±0.09 96.85±0.11 93.42 ±0.23
→QDOT0.3 99.44±0.01 95.23±0.18 97.94±0.06 83.88±0.30
1 The notation ”QDOT0.1” indicates that the error function L ← 0.1LQDOT +
0.9LMSE; ”MSE0.1” indicates that L ← 0.9LMSE.
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Figure 6: Stability trends
across epochs.

As shown in Table 3, our QDOT loss significantly enhances both EDM and UniGEM baselines. For
UniGEM, a mere 10% QDOT weight (QDOT0.1) improves all four metrics, while a 30% weight
(QDOT0.3) establishes a new state-of-the-art, boosting Atom and Molecule Stability to 99.44% and
95.23%, respectively. An ablation study confirms these gains stem from QDOT’s geometric guid-
ance, not merely from re-weighting the original loss. Furthermore, as illustrated in Figure 6, QDOT
accelerates training, halving the convergence time for UniGEM to just 1000 epochs and thereby
improving training efficiency and stability.

Table 4: Fine-tuning Results on GEOM-Drugs

Methods Atom sta(%) Mol sta(%) Valid(%)

UniGEM 84.84 1.20 98.29

→MSE 84.39 1.13 99.01
→QDOT0.1 87.94 6.04 98.46
→QDOT0.2 91.87 17.14 97.86
→QDOT0.3 91.73 22.05 94.62

To assess the fine-tuning capability of the
QDOT loss, we conducted an additional ex-
periment on GEOM-Drug (Axelrod & Gomez-
Bombarelli, 2022). Starting from a UniGEM
model pre-trained for 13 epochs (Feng et al.,
2025), we introduced QDOT into the loss and
fine-tuned for 3 more epochs with a learning
rate of 10−4. The results in Table 4 show
that while continued training with the original
MSE loss yields no further gains, incorporat-
ing QDOT leads to substantial improvements in
Atom Stability and Molecule Stability, with only a negligible drop in validity.

5 CONCLUSION

This work introduces QDOT, a novel geometric metric. By constructing isometry-invariant an-
chors from distance quantiles and deriving a lossless distance representation through trilateration
theory, QDOT establishes a rigorous metric on isometry classes of mm-spaces. Experimental re-
sults demonstrate its effectiveness across cross-space alignment and comparison, computational ef-
ficiency, transfer learning, and molecular generation tasks. Future directions include: (1) extending
QDOT to hyperbolic and spherical spaces; (2) developing more general approaches for constructing
isometry-invariant anchors and representations; and (3) applying QDOT-based alignment techniques
and QDOT as a loss function in complex models.
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. The source code for all ex-
periments is provided in the supplementary materials, which can be used to reproduce the results
presented in this paper. For the molecule generation experiment, we have included the evaluate
checkpoint of QDOT-0.3. This checkpoint can also be reproduced using the provided training code.
Furthermore, we have explicitly stated all key assumptions for the theorems presented. The sources
and preprocessing scripts for all datasets used in this work are also provided.
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Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and Radon Wasserstein
barycenters of measures. Journal of Mathematical Imaging and Vision, 51:22–45, 2015.

Chao Chen, Guanbin Li, Ruijia Xu, Tianshui Chen, Meng Wang, and Liang Lin. Clusternet: Deep
hierarchical cluster network with rigorously rotation-invariant representation for point cloud anal-
ysis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 4994–5002, 2019.

Scott Cohen and L Guibasm. The earth mover’s distance under transformation sets. In Proceedings
of the Seventh IEEE International Conference on Computer Vision, volume 2, pp. 1076–1083.
IEEE, 1999.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in neural information
processing systems, 34:17695–17709, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ishan Deshpande, Yuan-Ting Hu, Ruoyu Sun, Ayis Pyrros, Nasir Siddiqui, Sanmi Koyejo, Zhizhen
Zhao, David Forsyth, and Alexander G Schwing. Max-sliced Wasserstein distance and its use for
GANs. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 10648–10656, 2019.

Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object recon-
struction from a single image. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 605–613, 2017.

Shikun Feng, Yuyan Ni, Lu yan, Zhi-Ming Ma, Wei-Ying Ma, and Yanyan Lan. UniGEM: A unified
approach to generation and property prediction for molecules. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=Lb91pXwZMR.
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A ADDITIONAL BACKGROUND

Here we introduce additional background concepts that are related to our work.

One-Dimensional Wasserstein Distance. A key special case of the Wasserstein distance defined
in equation 1 occurs in one dimension, where it admits a convenient closed-form solution. For two
one-dimensional distributions µX and µY , let FX and FY be their respective cumulative distribu-
tion functions , and let F−1

X and F−1
Y be the corresponding quantile functions. The p-Wasserstein

distance is then given by:

Wp(µX , µY ) =

(∫ 1

0

|F−1
X (u)− F−1

Y (u)|p du
) 1

p

. (9)

For discrete distributions, the empirical quantile functions are readily obtained by sorting, making
the computation of the 1D Wasserstein distance explicit and efficient.

Gromov-Wasserstein Distance(Mémoli, 2011). While the original formulation of the Gromov-
Wasserstein distance in equation 2 is theoretically elegant, its computation is NP-hard. Conse-
quently, an alternative and more commonly used formulation was introduced. Given two mm-spaces
X = (X, dX , µX) and Y = (Y, dY , µY ), for p ≥ 1, the p-Gromov-Wasserstein distance is defined
as:

GWp(X ,Y) :=
(

inf
π∈Π(µX ,µY )

∫
X×Y

∫
X×Y

|dX(x, x′)− dY (y, y
′)|p dπ(x, y) dπ(x′, y′)

) 1
p

.

(10)
Mémoli (2011) proved that the formulation in equation 10 is bi-Hölder equivalent to the one in equa-
tion 2. Moreover, equation 2 constitutes a metric in the sense of Definition 1.

Computational Costs. We now briefly review the computational complexity of these OT-based
methods for discrete distributions supported on n points. Computing the standard Wasserstein
distance in equation 1 using a classic EMD solver has a worst-case complexity of O(n3) and
an average-case complexity of O(n2) (Bonneel et al., 2011). Alternatively, solving the entropy-
regularized OT problem with the Sinkhorn algorithm (Cuturi, 2013) has a complexity of up to
O(n2 log n). While some targeted algorithms may achieve faster runtimes (Altschuler et al., 2019;
Li et al., 2023a), this often comes at the cost of sacrificing metric properties. Computing the
Gromov-Wasserstein distance in equation 10 involves solving a non-convex quadratic program,
which has a complexity of at least O(n3 log n) (Xu et al., 2019). Faster algorithms, such as those
employing entropic regularization (Peyré et al., 2016; Scetbon et al., 2022; Li et al., 2023b), typ-
ically represent a trade-off between speed and accuracy. As for the one-dimensional Wasserstein
distance in equation 9 , the computation is significantly faster, requiring only O(n log n) time via
sorting. This efficiency has motivated many methods that project higher-dimensional distributions
onto one-dimensional lines for comparison (Bonneel et al., 2015; Deshpande et al., 2019; Le et al.,
2019; Li et al., 2024; 2025). However, for the Gromov-Wasserstein distance, the development of
sliced variants is less mature, with Sliced Gromov-Wasserstein (SGW) (Titouan et al., 2019) being
the most prominent example that has achieved empirical success.

B PROOFS

B.1 PROOF OF THEOREM 1

The proof for the symmetry and triangle inequality properties is straightforward, as they are directly
inherited from the Wasserstein distance Wp. We focus on proving the Identity of Indiscernibles,
which is the most involved part.

To do so, we first recall an equivalent characterization of isometry from (Sturm, 2023, Lemma 1.10):

(i) X ,Y are isometric.
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(ii) There exists a coupling π ∈ Π(µX , µY ) such that dX(x0,x1) = dY (y0,y1) holds for
π ⊗ π-almost every pair of points ((x0,y0), (x1,y1)).

The ”if” part is straightforward: if X and Y are isometric, their QDMD representations will be
identically distributed by construction, making their QDOT distance zero. We now prove the ”only
if” part: if QDp(X ,Y) = 0, then X and Y are isometric by satisfying condition (ii).

Proof. By definition, the condition QDp(X ,Y) = 0 implies that there exists an optimal coupling
π between the pushforward measures on the representation space, such that ϕX(x) = ϕY (y) holds
for all (x,y) in the support of the corresponding coupling on X × Y .

For a given quantile level vector q ∈ (0, 1)k, let us denote the corresponding QDMs as mX
i =

mX(qi) and mY
i = mY (qi) for i = 1, 2, . . . , k. The equality of the representations implies:{

∥x−mX
i ∥2 = ∥y −mY

i ∥2,
∥x∥2 = ∥y∥2,

∀(x,y) ∈ supp(π).

From ∥x∥2 = ∥y∥2 and the fact that isometric spaces have identical norm distributions (and thus
identical quantile functions), it directly follows that the weights are equal for coupled points:

wX(x, qi) = wY (y, qi), ∀(x,y) ∈ supp(π), i = 1, 2, . . . k.

For any (x,y) ∈ supp(π), expanding the squared distance equality yields:

∥x−mX
i ∥22 = ∥y −mY

i ∥22
⇒x⊤x+mX

i

⊤
mX

i − 2x⊤mX
i = y⊤y +mY

i

⊤
mY

i − 2y⊤mY
i

⇒mX
i

⊤
mX

i − 2x⊤mX
i = mY

i

⊤
mY

i − 2y⊤mY
i ,

where the last step uses ∥x∥22 = ∥y∥22. Integrating this equality against the weight function w(·, qj)
over the respective spaces gives:∫

X

wX(qj ,x)(m
X
i

⊤
mX

i − 2x⊤mX
i )dµX(x)

=

∫
Y

wY (qj ,y)(m
Y
i

⊤
mY

i − 2y⊤mY
i )dµY (y)

=EX(wX(qj , X))mX
i

⊤
mX

i − 2EX(wX(qj , X)X)

=EY (w
X(qj , Y ))mY

i

⊤
mY

i − 2EY (w
Y (qj , Y )Y ).

By the definition of QDM in Eq. equation 5, this simplifies to:

mX
i

⊤
mX

i − 2mX
i

⊤
mX

j = mY
i

⊤
mY

i − 2mY
i

⊤
mY

j .

By setting i = j, we find ∥mX
i ∥22 = ∥mY

i ∥22, which implies ∥mX
i ∥2 = ∥mY

i ∥2. Substituting this
back, we obtain the key result that the Gram matrices of the QDM sets are identical: mX

i
⊤
mX

j =

mY
i
⊤
mY

j .

Now, for any (x,y) ∈ supp(π), the relation ∥x−mX
i ∥22 = ∥y −mY

i ∥22 simplifies further:

x⊤x+mX
i

⊤
mX

i − 2x⊤mX
i = y⊤y +mY

i

⊤
mY

i − 2y⊤mY
i

⇒x⊤mX
i = y⊤mY

i .

Due to the dimensionality condition dim({mX(qi)}1≤i≤k) = dim(X), any point x ∈ supp(µX)

can be written as a linear combination x =
∑k

i=1 αim
X
i for some coefficients α1, . . . , αk. We

can show that its coupled counterpart y must be the same linear combination of the corresponding
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QDMs in Y :

∥y −
k∑

i=1

αim
Y
i ∥22

=∥y∥22 + ∥
k∑

i=1

αim
Y
i ∥22 − 2

k∑
i=1

αiy
⊤mY

i

=∥y∥22 +
k∑

i=1

k∑
j=1

αiαjm
Y
i

⊤
mY

j − 2

k∑
i=1

αix
⊤mX

i

=∥y∥22 +
k∑

i=1

k∑
j=1

αiαjm
X
i

⊤
mX

j − 2x⊤
k∑

i=1

αim
X
i

=∥y∥22 + x⊤x− 2x⊤x = 0,

where the last equality uses ∥x∥22 = ∥y∥22. This implies y =
∑k

i=1 αim
Y
i .

Finally, for any two pairs (x1,y1), (x2,y2) ∈ supp(π), let x1 =
∑k

i=1 αim
X
i and x2 =∑k

j=1 βjm
X
j . It follows that their distances are preserved:

∥x1 − x2∥22 − ∥y1 − y2∥22
=(∥x1∥22 − ∥y1∥22) + (∥x2∥22 − ∥y2∥22)− (2x⊤

1 x2 − 2y⊤
1 y2)

=− 2

k∑
i=1

k∑
j=1

αiβj(m
X
i

⊤
mX

j −mY
i

⊤
mY

j ) = 0.

Thus, dX(x1,x2) = dY (y1,y2) holds for π ⊗ π-a.e. pairs, fulfilling condition (ii) and completing
the proof. □

B.2 PROOF OF THEOREM 2

This section provides the proof for Theorem 2. We begin by establishing the necessary notation and
preliminary lemmas. Let rq = F−1

∥X∥2
(q) be the true q-th quantile of the norm distribution, and let

r̂q = F̂−1
∥Xn∥2

(q) be its empirical counterpart estimated from the sample set Xn = {x1, . . . , xn}.
For brevity, we denote the weight functions as wX

i (x) = wX(x, qi) and its empirical version as
ŵXn

i (x) = e−σ(∥x∥2−r̂q)
2

.

Our proof relies on the well-established convergence rates for the Wasserstein distance, summarized
in the following lemma.

Lemma 1 (Convergence Rate of Wasserstein Distance (Fournier & Guillin, 2015)) For a dis-
tribution µ defined on a vector measure space (X,B(X)) and its empirical version µn, if the q-th
momentMq(µ) is finite, i.e.,Mq(µ) =

∫
X
∥x∥qdµ(x) <∞, then the following holds:

E (Wp (µn, µ)) ≤ CMp/q
q (µ)

×


n−1/2 + n−(q−p)/q if p > d/2 and q ̸= 2p

n−1/2 log(1 + n) + n−(q−p)/q if p = d/2 and q ̸= 2p

n−p/d + n−(q−p)/q if p ∈ (0, d/2) and q ̸= d/(d− p)

As discussed in (Fournier & Guillin, 2015), for a sufficiently large moment order q, the term
n−(q−p)/q becomes negligible compared to the leading term. For the common case of p = 2,
this holds for q ≥ 4. We will assume this condition holds in our subsequent analysis.

Next, we state the standard convergence rate for empirical quantiles.

Lemma 2 (Convergence Rate of Quantiles) Let FX be the CDF of a distribution µX , and assume
it is continuous on rq and has a strictly positive density. Then, the mean squared error of the
empirical quantile converges as follows:

E|rq − r̂q|2 = O(n−1).
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This is a classical result in asymptotic theory, which can be found in (Serfling, 1980, Chap 2.3).

Furthermore, our proof requires the following bounds. The first lemma ensures that the denominator
in the QDM definition is well-behaved.

Lemma 3 If E∥X∥2 < ∞, then for any given quantile level qi, the expected weight is bounded
away from zero, i.e., 1

EµX
(wX

i (X))
<∞.

Proof. Since EµX
(∥X∥2) < ∞, for any given p0 < 1, there exists an M0 such that Pr(∥X∥2 ≤

M0) ≥ p0. Therefore, we have:

EµX
(wX

i (X)) ≥
∫
∥x∥2<M0

e−σ(x−rqi )
2

dµX(x) ≥
∫
∥x∥2<M0

e−σmax{x,rqi}
2

dµX(x)

≥
∫
∥x∥2<M0

e−σmax{M0,rqi}
2

dµX(x) ≥ p0e
−σmax{M0,rqi}

2

.

This implies that the expectation is strictly positive, and thus 1
EµX

(wX
i (X))

<∞. □

Lemma 4 For any quantile level qi, let the normalized empirical weights be p̂j =
ŵXn

i (xj)∑n
j′=1

ŵXn
i (x′

j)
.

Then for any power 1 ≤ α <∞, we have the following bound:
n∑

j=1

E(p̂αj )1/α <∞.

Proof. Let Mα(ŵi) = E(ŵXn
i (xj)

α). Since ŵXn
i (xj) < 1, it is clear that Mα(ŵi) < 1. Define

the sample mean of the weights as w̄(r) = 1
n

∑n
j=1 e

−σ(∥xj∥2−r)2 . We then have E(w̄(r̂qi)) =

M1(ŵi). Now, consider the following probability:

P
(
w̄i(r̂qi) <

1
2M1(ŵi)

)
≤P

(
w̄i(rqi) <

3
4M1(ŵi)

)︸ ︷︷ ︸
P1

+P
(
|w̄i(rqi)− w̄i(rqi)| > 1

4M1(ŵi)
)︸ ︷︷ ︸

P2

.

For the first term, P1, we note that E(w̄i(rqi)) = M1(ŵi) and the terms in the sum are i.i.d. Applying
Hoeffding’s inequality yields:

P1 =P
(
E(w̄i(rqi))− w̄i(rqi) >

n
4M1(ŵi)

)
=P

( n∑
j=1

E(wX
i (xj))−

n∑
j=1

wX
i (xj) >

n
4M1(ŵi)

)
≤ exp(−n

8M
2
1 (ŵi)).

For the second term, P2, we first bound the difference by applying the Mean Value Theorem:∣∣w̄i(rqi)− w̄i(rqi)
∣∣ ≤ 1

n

n∑
j=1

∣∣e−σ(∥xj∥2−rqi ) − e−σ(∥xj∥2−r̂qi )
∣∣

≤ 1
n

n∑
j=1

∣∣2σ(∥xj∥2 − rj0)e
−σ(∥xj∥2−−rj00)

2∣∣ |rqi − r̂qi |

≤
√
2σe−1/2 |rqi − r̂qi | (since sup

t≥0
2σte−σt2 ≤

√
2σe−1/2).

(11)

Consequently, we have:

P2 ≤ P
(
|rqi − r̂qi | >

√
e

32σM1(ŵi)
)
≤ 2 exp(−2nδ),

where δ = min{FX(rpi
+

√
e

32σM1(ŵi)) − pi, pi − FX(rpi −
√

e
32σM1(ŵi))} > 0. The fi-

nal inequality follows from a standard result on the concentration of empirical quantiles, see, e.g.,
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(Serfling, 1980, Theorem 2.3.2). By the symmetry of the i.i.d. samples, E(p̂αj ) = E(p̂αl ) for all
j, l ∈ {1, . . . , n}. Thus we can write:

n∑
j=1

E(p̂αj )1/α =nE(p̂α1 )1/α

=E
( ŵXn

i (x1)
α

w̄i(r̂qi)
α

)1/α
≤E

{w̄i(r̂qi )≥
1
2M1(ŵi)}

( ŵXn
i (x1)

α

w̄i(r̂qi)
α

)1/α
+ nP(w̄i(r̂qi) <

1
2M1(ŵi))

≤2E(ŵXn
i (x1)

α)1/α

M1(ŵi))
+ n exp(−n

8M
2
1 (ŵi)) + 2n exp(−2nδ)

≤2Mα(ŵi)
1/α

M1(ŵi))
+

8e−1

M2
1 (ŵi)

+
e−1

δ
<∞.

The final line is finite, leveraging the result from Lemma 3 which ensures M1(·) is bounded away
from zero. This completes the proof. □

Lemma 5 If the fourth moment of the norm is finite, i.e., E∥X∥42 < ∞, then the expected squared
norm of the empirical QDM is also finite: E∥m̂Xn

i ∥22 <∞.

Proof. The proof follows from applying the Cauchy-Schwarz or Hölder’s inequality and leveraging
the result from Lemma 4.

E
∥∥m̂Xn

i

∥∥2
2
=

n∑
j=1

n∑
l=1

E
(
p̂j p̂lx

⊤
j xl

)
≤

n∑
j=1

n∑
l=1

E
(
p̂4j
)1/4E(p̂4l )1/4E((x⊤

j xl)
2
)1/2

≤
n∑

j=1

E
(
p̂4j
)1/2E(∥xj∥42

)1/2
+

∑
j ̸=l

E
(
p̂4j
)1/4E(p̂4l )1/4E(∥xj∥22∥xl∥22

)1/2
=E

(
∥X∥42

)1/2 n∑
j=1

E
(
p̂4j
)1/2

+ E
(
∥X∥22

)( n∑
j=1

E
(
p̂4j
)1/2)2

<∞.

□

Lemma 6 If E∥X∥42 < ∞, then the expectation of the product of the empirical QDM norm, a
sample norm, and the quantile error converges at the rate of O(n−1/2): E

(
∥m̂Xn

i ∥2∥x1∥|rqi −
r̂qi |

)
= O(n−1/2).

Proof. This proof also relies on the Cauchy-Schwarz inequality and the results from Lemma 2 and
Lemma 4.

E
(
∥m̂Xn

i ∥2∥x1∥2|rqi − r̂qi |
)
≤E

(
q̂1∥x1∥22|rqi − r̂qi |

)
+

n∑
j=2

E
(
q̂j∥x1∥2∥xj∥2|rqi − r̂qi |

)
≤E

(
∥X∥42

)1/2E(|rqi − r̂qi |2
)1/2

+

n∑
j=2

E
(
q̂4j
)1/4E(∥x1∥42∥xj∥42

)1/4E(|rqi − r̂qi |2
)1/2

=E
(
|rqi − r̂qi |2

)1/2E(∥X∥42)1/2(1 + n∑
j=2

E
(
q̂4j
)1/4)

.

From Lemma 2, we know that E
(
|rqi − r̂qi |2

)1/2
= O(n−1/2). Since E

(
∥X∥42

)
< ∞ is assumed,

and Lemma 4 ensures that
∑n

j=2 E
(
q̂4j
)1/4

<∞, the result follows. □
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Proof of Theorem 2. First, we use a property derived from the triangle inequality:
|d(x,x′)− d(y,y′)| ≤ |d(x,x′)− d(x,y′)|+ |d(x,y′)− d(y,y′)|

≤ d(x,y) + d(x′,y′).

This allows us to bound the QDOT distance.

QDp(X ,Y)p = inf
π∈Π(µX ,µY )

∫ ∥∥ϕX(x, q)− ϕY (y, q)
∥∥p
p
dπ(x, y)

≤ inf
π∈Π(µX ,µY )

∫ k∑
i=0

∣∣ϕX
i − ϕY

i

∣∣p dπ(x, y)

≤ inf
π∈Π(µX ,µY )

∫ k∑
i=0

∣∣d(x,y) + d(mX
i ,mY

i )
∣∣p dπ(x, y)

≤ inf
π∈Π(µX ,µY )

∫
(k + 1)2p−1d(x,y)p + 2p−1

k∑
i=0

d(mX
i ,mY

i )
p dπ(x, y)

= (k + 1)2p−1 inf
π∈Π(µX ,µY )

∫
d(x,y)p dπ(x, y) + 2p−1

k∑
i=0

d(mX
i ,mY

i )
p

= C0 Wp

(
µX , µY

)p
︸ ︷︷ ︸

Wasserstein Discrepancy

+C1

k∑
i=1

d(mX
i ,mY

i )
p

︸ ︷︷ ︸
QDM Discrepancy

(12)

where mX
0 = 0,mY

0 = 0, and the constants C0 = (k + 1)2p−1 and C1 = 2p−1 are finite. From
(Fournier & Guillin, 2015, Theorem 1), we have the bound for the Wasserstein Discrepancy between
the true measure and its empirical version:

E(Wp(µX , µn)
p) ≤ Cn−p/d.

Next, we analyze the QDM Discrepancy term, d(mX
i , m̂Xn

i ).

d(mX
i , m̂Xn

i ) =

∥∥∥∥∥
1
n

∑n
j=1 ŵ

Xn
i (xj)xj

1
n

∑n
j=1 ŵ

Xn
i (xj)

− EµX
(wX

i (X)X)

EµX
(wX

i (X))

∥∥∥∥∥
2

=

∥∥∥∥∥
1
n

∑n
j=1 ŵ

Xn
i (xj)xjEµX

(wX
i (X))− EµX

(wX
i (X)X) 1n

∑n
j=1 ŵ

Xn
i (xj)

1
n

∑n
j=1 ŵ

Xn
i (xj)EµX

(wX
i (X))

∥∥∥∥∥
2

≤C2

∣∣∣EµX

(
wX

i (X)
)
− 1

n

n∑
j=1

wX
i (xj)

∣∣∣︸ ︷︷ ︸
Term (I)

+C2

∥∥m̂Xn
i

∥∥
2

∥∥∥ 1
n

n∑
j=1

ŵXn
i (xj)xj − EµX

(
wX

i (X)X
) ∥∥∥

2︸ ︷︷ ︸
Term (II)

.

(13)
Here, C2 = 1

EµX
(wX

i (X))
. By Lemma 3, under the condition that q ≥ 4, C2 is a finite constant. We

now focus on the two main terms. Term (I) can be decomposed as:

Term (I) ≤
∣∣∣EµX

(
wX

i (X)
)
− 1

n

n∑
j=1

wX
i (xj)

∣∣∣︸ ︷︷ ︸
Term (I.1)

+
∣∣∣ 1n n∑

j=1

wX
i (xj)− 1

n

n∑
j=1

ŵXn
i (xj)

∣∣∣︸ ︷︷ ︸
Term (I.2)

. (14)

For Term (I.1), standard results for the mean of i.i.d. variables give:

E(Term (I.1)) ≤

√√√√E
(
EµX

(
wX

i (X)
)
− 1

n

n∑
j=1

wX
i (xj)

)2

=
√

1
n Var

(
wX

i (x1)
)
= O(n−1/2).
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Using the bound from equation 11, we have:

Term (I.2) ≤
√
2σe−1/2 |rqi − r̂qi | .

Since E |rqi − r̂qi | = O(n−1/2), it follows that E(Term (I)) = O(n−1/2). For Term (II), we use a
similar decomposition:

Term (II) ≤
∥∥m̂Xn

i

∥∥
2

∥∥∥ 1
n

n∑
j=1

ŵXn
i (xj)xj − 1

n

n∑
j=1

wX
i (xj)xj

∥∥∥
2︸ ︷︷ ︸

Term (II.1)

+
∥∥m̂Xn

i

∥∥
2

∥∥∥ n∑
j=1

wX
i (xj)xj − EµX

(
wX

i (X)X
) ∥∥∥

2︸ ︷︷ ︸
Term (II.2)

.

For Term (II.1), we have:

Term (II.1) =
∥∥m̂Xn

i

∥∥
2
·
∥∥∥ 1
n

n∑
j=1

xj

(
e−σ(∥xj∥2−rqi ) − e−σ(∥xj∥2−r̂qi )

)∥∥∥
2

≤ 1
n

∥∥m̂Xn
i

∥∥
2

n∑
j=1

(
∥xj∥2

∣∣e−σ(∥xj∥2−rqi ) − e−σ(∥xj∥2−r̂qi )
∣∣)

≤
√
2σe−1/2

n

n∑
j=1

∥∥m̂Xn
i

∥∥
2
∥xj∥2|rqi − r̂qi |.

From Lemma 6, we know E(∥m̂Xn
i ∥2∥xj∥2|rqi − r̂qi |) = O(n−1/2), which implies

E(Term (II.1)) = O(n−1/2). For Term (II.2), since wX
i (x) ≤ 1, we have E∥w(X)X∥22 < ∞.

Using the Cauchy-Schwarz inequality, we get:

E(Term (II.2)) ≤

√√√√E
∥∥m̂Xn

i

∥∥2
2
· E

(
EµX

∥∥wX
i (X)X

)
− 1

n

n∑
j=1

wX
i (xj)xj

∥∥2
2

)
=

√
E
∥∥m̂Xn

i

∥∥2
2

√
1
n tr Cov

(
wX

i (x1)x1

)
= O(n−1/2).

Thus, we also have E(Term (II)) = O(n−1/2). In summary, we have shown that
E(d(mX

i , m̂Xn
i )) = O(n−1/2), which means the convergence rate for the QDM Discrepancy is

O(n−p/2). For typical cases where d ≥ 2, this rate is faster than the Wasserstein rate, so the overall
convergence is dominated by the Wasserstein Discrepancy. Therefore, we obtain the final rate:

E(QDp(X ,Xn)) = O(n−1/d).

□

B.3 PROOF OF THEOREM 3

The proof for the Identity of Indiscernibles is analogous to that of Theorem 1, and symmetry holds
trivially by definition. Therefore, we focus on proving the Triangle Inequality. We begin by intro-
ducing the following well-known Gluing Lemma.

Lemma 7 (Gluing Lemma) For three mm-spaces X ,Y,Z with corresponding measures
µX , µY , µZ , and given couplings πX,Z ∈ Π(µX , µZ) and πY,Z ∈ Π(µY , µZ), there exists a
joint coupling πX,Y,Z ∈ Π(µX , µY , µZ) such that its marginals satisfy

(proj(X,Z))#πX,Y,Z = πX,Z , (proj(Y,Z))#πX,Y,Z = πY,Z ,

and its (X,Y )-marginal, (proj(X,Y ))#πX,Y,Z , is a coupling in Π(µX , µY ).
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A proof of this lemma can be found in (Villani et al., 2008, Chap 1).

Proof of Triangle Inequality. Consider three mm-spaces X = (X, dX , µX), Y = (Y, dY , µY ),
andZ = (Z, dZ , µZ). Let π⋆

X,Y ∈ Π(µX , µY ), π⋆
X,Z ∈ Π(µX , µZ), and π⋆

Y,Z ∈ Π(µY , µZ) denote
the respective pairwise optimal couplings for the IQDOT distance. According to Lemma 7, we can
find a joint coupling πX,Y,Z ∈ Π(µX , µY , µZ) such that

(proj(X,Z))#πX,Y,Z = π⋆
X,Z , (proj(Y,Z))#πX,Y,Z = π⋆

Y,Z .

Let πX,Y := (proj(X,Y ))#πX,Y,Z . By construction, πX,Y ∈ Π(µX , µY ). We can now bound the
IQDOT distance as follows:

IQDp(X ,Y) =E(0,1)×π⋆
X,Y

(
|ϕX(x, q)− ϕY (y, q)|p

)1/p
≤E(0,1)×πX,Y

(
|ϕX(x, q)− ϕY (y, q)|p

)1/p
≤E(0,1)×πX,Y,Z

(
(|ϕX(x, q)− ϕZ(z, q)|+ |ϕZ(z, q)− ϕY (y, q|)p

)1/p
≤E(0,1)×π⋆

X,Z

(
|ϕX(x, q)− ϕZ(z, q)|p

)1/p
+ E(0,1)×π⋆

Y,Z

(
|ϕZ(z, q)− ϕY (y, q)|p

)1/p
=IQDp(X ,Z) + IQDp(Z,Y),

where the last inequality follows from Minkowski’s inequality. This completes the proof. □

C IMPLEMENTATION DETAILS

C.1 DETAILS OF ALGORITHM 1

The following provides further details on some of the operations and parameter choices in Algo-
rithm 1.

Data Initialization. While optional, we recommend centering the data as a pre-processing step.
The intuition for this is rooted in both theory and practice. Theoretically, it is known that a surjective
isometry between real normed spaces that maps the origin to the origin also preserves the mean of
a distribution (Narici & Beckenstein, 2010, Theorem 9.1.2). This implies that the distributions of
norms for two centered, isometric spaces must be identical, which aligns with the foundational
principles of our method. From a practical standpoint, centering is a common alignment technique
used in numerical implementations of Gromov-Wasserstein (Flamary et al., 2021). However, this
initialization step is not necessary for intra-space comparisons or in cases where a correspondence
between the origins is already known.

Quantile Level Vector q. The quantile levels in the vector q are theoretically chosen from the
open interval (0, 1). In practice, we select these levels by taking equispaced points within a truncated
interval [δ, 1 − δ]. The default value for δ is 0.1, which avoids numerical instability at the extreme
tails of the distribution. For larger datasets where the empirical quantiles are more stable, a smaller
δ may be used to satisfy the theoretical conditions more closely.

Choice of the Number of Quantiles k. A large number of quantiles, k, is often not required
to achieve strong performance. For low-dimensional data (e.g., 3D point clouds), the trilateration
condition is readily satisfied, and a small value such as k = 5 can be sufficient. For high-dimensional
data, which often exhibits low-rank structure, a value of k smaller than the ambient dimension can
also be effective. While a larger k can lead to improved numerical stability, we find that k = 50
provides a robust default choice across most applications.

Bandwidth Parameter σ. The choice of the bandwidth parameter σ in the Gaussian kernel is
related to the number of support points, n. A very small σ will cause the weights to concentrate on a
single point, while a very large σ will lead to nearly uniform weights across all samples. Empirically,
we recommend choosing σ such that the maximum weight is on the order of the average weight,
i.e., maxi{wi} ∼ n−1/2. In practice, a default value of σ = 10 provides robust and effective
performance across most of our experiments.

We analyze the robustness of our method to these parameters through a toy example detailed in
Appendix D.1.
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C.2 ALGORITHM OF IQDOT

For numerical inputs, given by discrete sample matrices X ∈ Rn×d and Y ∈ Rm×q with corre-
sponding probability vectors pX ∈ ∆n−1 and pY ∈ ∆m−1, we now detail the numerical implemen-
tation of the IQDOT, as introduced in Definition 4. The procedure is summarized in Algorithm 2.

Algorithm 2 Intergal-QDOT

Require: X,Y,pX,pY, q
1: Initialize the data matrices X and Y.
2: Compute the sample norms of X and Y: ϕX

0 ← (∥xi∥)1≤i≤n, ϕY
0 ← (∥yj∥)1≤j≤m.

3: Compute the q-quantiles of the sample norms: ▷ O(n log n+m logm)
rX ← (F−1

∥X∥(q1), . . . , F
−1
∥X∥(qk)), rY ← (F−1

∥Y∥(q1), . . . , F
−1
∥Y∥(qk)).

4: for i← 1 to k do ▷ O(knd+ kmq)
5: Compute the quantile weights:

wX
ij ←

pX
j exp{−σ(dX

j −rX
i )2}∑n

j′=1
pX
j′ exp{−σ(dX

j′−rX
i )2} , wY

ij ←
pY
j exp{−σ(dY

j −rY
i )2}∑m

j′=1
pY
j′ exp{−σ(dY

j′−rY
i )2}

6: Compute the qi-quantile means: mX
i ← X⊤wX

i , mY
i ← Y⊤wY

i
7: Compute the distances to quantile means:

ϕX
i ← (∥xj −mX

i ∥)1≤j≤n, ϕY
i ← (∥yj −mY

i ∥)1≤j≤m

8: Calculate the 1D-Wp loss: Li ←Wp

(
(ϕX

i )#µX, (ϕY
i )#µY

)
▷ O(n log n+m logm)

9: end for
10: Set the final loss : IQDp ← 1

k

∑k
i=1 Li

11: return IQDp

Computational Cost. Similar to the analysis for QDOT, the pre-computation of QDMs and QD-
MDs is highly efficient. The final one-dimensional Wasserstein distances can also be computed
in O(n log n) time by North-West corner rule(Peyré et al., 2019). Consequently, the overall time
complexity of the IQDOT algorithm is O(n log n), assuming k and the data dimensions are small
constants.

D ADDITIONAL EXPERIMENT RESULTS

D.1 TOY EXAMPLE AND PARAMETER ANALYSIS

Step 40 Step 50Step 0 Step 10 Step 20 Step 30

Figure 7: Illustration of the Wasserstein flow from a spiral point cloud to a random Gaussian noise distribution
over 50 steps.

To provide an intuitive visualization of QDOT’s behavior and to analyze its sensitivity to key param-
eters, we present a toy example. As illustrated in Figure 7, the experiment consists of a Wasserstein
flow sequence that interpolates between a 2D spiral distribution and a random Gaussian noise distri-
bution. Each point cloud in the 50-step sequence comprises n = 200 points. We conduct a series of
tests to: (1) compare the dissimilarity trends produced by different geometric metrics as the spiral
deforms into noise; (2) analyze the effect of varying the bandwidth parameter σ; (3) analyze the ef-
fect of varying the quantile interval parameter δ; and (4) assess the impact of different initialization
and scaling strategies.

The results, presented in Figure 8, reveal several key insights. First, when compared to baselines
such as GW, EGW, SGW, and RISGW, both QDOT and IQDOT produce significantly smoother
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Figure 8: Results from the four experimental settings. The x-axis represents the step in the Wasserstein flow
sequence, and the y-axis represents the computed dissimilarity (loss).

and more stable dissimilarity curves. Second, the analysis of the bandwidth parameter shows that
for σ = 1 and σ = 10, the resulting curves are stable and smooth. A larger value of σ = 100
introduces some volatility, which can be attributed to the interaction between a high bandwidth and
the relatively small sample size. Third, the dissimilarity curve is largely insensitive to the choice
of the quantile interval parameter δ in this experiment, indicating good robustness. Finally, while
different initialization and scaling strategies affect the absolute values of the dissimilarity, they all
produce smooth, monotonically increasing curves that preserve the overall trend, demonstrating the
robustness of the underlying geometric representation.

D.2 CROSS SPACE TASKS

Evaluation Metrics. For the numerical experiments, the inputs are a 3D point cloud sequence,
represented by sample matrices X ∈ Rn×3, and a reference shape. The reference is provided both
in its original 3D form, Y ∈ Rm×3, and as a 2D projection, Ŷ ∈ Rm×2. Both distributions
have corresponding probability vectors, pX and pY, we assume access to a ground-truth alignment
between the sequence frame X and the reference shape Y, denoted by a map T , i.e., X = T (Y).
Algorithm 1 computes a coupling matrix Π ∈ Rn×m between the input distributions, which satisfies
the marginal constraints Π1m = pX and Π⊤1n = pY. To evaluate the quality of the resulting
match, we define the following metrics.

The Transformed Mean Squared Error (TMSE) evaluates the alignment cost in the original 3D
ambient space. Even when the coupling Π is computed between a 3D shape X and a 2D projection
Ŷ, the error is measured by using the original 3D coordinates of the reference shape, Y:

TMSE =

n∑
i=1

m∑
j=1

ΠijdX(xi, T (yj));
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The Inlier Ratio (IR) then measures the total probability mass of the coupling Π that is placed on
geometrically correct matches. A match between xi and yj is considered correct if xi is close to
the ground-truth location corresponding to yj :

IR =

n∑
i=1

m∑
j=1

Πij1(dX(xi, T (yj)) < τ)× 100%;

where the threshold τ is set to the 0.2-quantile of the intra-point distance distribution within X, i.e.,
τ = F−1

dX
(0.2).

D.3 MOLECULE GENERATION

For the molecular generation experiment, we present the complete results in Table 5.

Table 5: Molecule Generation Results on QM9 Dataset.

Methods Atom sta. (%) Mol sta. (%) Validity (%) Uniqueness (%) V * U (%)

Data 99.0 95.2 97.7 100.0 97.7

EDM 98.70±0.01 86.56±0.27 93.73±0.12 98.19±0.14 92.04±0.03
→MSE0.1 98.81±0.04 87.63±0.21 94.54±0.15 98.17±0.08 92.81±0.20
→MSE0.2 98.78±0.01 87.60±0.30 94.18±0.15 98.25±0.10 92.54±0.19
→MSE0.3 98.68±0.07 86.04±0.74 93.83±0.43 98.47±0.22 92.39±0.55
→MSE0.4 98.80±0.02 87.44±0.35 94.59±0.25 98.38±0.07 93.05±0.31
→QDOT0.1 99.15±0.01 90.91±0.21 96.75±0.33 92.06±0.15 89.06±0.19
→QDOT0.2 99.30±0.03 92.73±0.21 97.63±0.11 84.48±0.59 82.48±0.49
→QDOT0.3 99.35±0.06 93.29±0.81 97.80±0.22 83.05±2.27 81.21±2.03
→QDOT0.4 99.48±0.01 94.37±0.18 98.16±0.13 79.42±0.27 77.96±0.17

UniGEM 98.90±0.03 89.40±0.02 94.58±0.07 98.07±0.05 92.75±0.11
→MSE0.1 98.91±0.04 89.00±0.22 95.00±0.16 98.04±0.07 93.13±0.10
→MSE0.2 98.65±0.06 85.27±0.35 93.93±0.50 98.05±0.13 92.15±0.42
→MSE0.3 99.00±0.07 89.48±0.70 95.16±0.16 98.09±0.23 93.34±0.18
→MSE0.4 99.03±0.05 90.09±0.53 95.17±0.30 98.06±0.13 93.32±0.18
→QDOT0.1 99.24±0.03 92.73±0.09 96.85±0.11 96.45±0.21 93.42 ±0.23
→QDOT0.2 99.35±0.07 94.06±0.43 97.42±0.28 92.59±0.13 90.20±0.36
→QDOT0.3 99.44±0.01 95.23±0.18 97.94±0.06 85.64±0.28 83.88±0.30
→QDOT0.4 99.38±0.02 94.81±0.25 97.66±0.24 78.67±0.38 76.83±0.39

1 The notation→QDOT0.2 indicates that the objective function L = 0.2LQDOT + 0.8LEDM.

As shown in Table 5, simply reducing the weight of the MSE loss does not yield significant im-
provements for the baseline models. We also observe that the benefits of the QDOT loss do not
necessarily increase monotonically with its proportion in the final objective. Overall, these results
suggest that the standard MSE loss primarily captures information about absolute atomic positions,
while the QDOT loss focuses on the intrinsic molecular structure. The strongest performance is
achieved when these two complementary objectives are fused, indicating that they provide a more
comprehensive learning signal.

As illustrated in Figure 9, models trained with the QDOT loss achieve stable convergence on both
Atom and Molecule Stability metrics in just 1000 epochs, for both the EDM and UniGEM architec-
tures. In contrast, the baseline models and those fine-tuned by simply adjusting the MSE loss weight
require significantly more training: approximately 2500 epochs on EDM and over 2000 epochs on
UniGEM to reach a similar level of stability. This ablation confirms that simply reducing the MSE
loss weight does not accelerate convergence, highlighting the efficiency gains are a direct result of
the structural guidance provided by the QDOT loss.

THE USE OF LARGE LANGUAGE MODELS

We acknowledge the use of Large Language Models in the preparation of this manuscript. Their
role was strictly limited to functioning as a tool for language polishing and improving readability.
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(a) Stability trends across epochs on the EDM model
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(b) Stability trends across epochs on the UniGEM model

Figure 9: Convergence trends of Atom Stability and Molecule Stability for various methods on the EDM and
UniGEM models. The horizontal axis represents the number of training epochs, and the vertical axis represents
the stability percentage. The comparison includes the baseline models and variants with different weights for
the MSE and QDOT loss terms (MSE-0.1 to MSE-0.4 and QDOT-0.1 to QDOT-0.4).

We affirm that all definitions and theorems presented in this paper are the original intellectual con-
tributions of the authors. The core code is intricately linked to the algorithm we propose, and the
experiments were designed specifically to investigate the properties of our method. We take full
responsibility for the integrity of this work, which is free from any form of academic misconduct.
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