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Abstract

Currently, the in-context learning method based001
on large language models (LLMs) has become002
the mainstream of text-to-SQL research. Previ-003
ous works have discussed how to select demon-004
strations related to the user question from a005
human-labeled demonstration pool. However,006
human labeling suffers from the limitations of007
insufficient diversity and high labeling over-008
head. Therefore, in this paper, we discuss how009
to measure and improve the diversity of the010
demonstrations for text-to-SQL. We present a011
metric to measure the diversity of the demon-012
strations and analyze the insufficient of the ex-013
isting labeled data by experiments. Based on014
the above discovery, we propose fusing iter-015
atively for demonstrations (FUSED) to build016
a high-diversity demonstration pool through017
human-free multiple-iteration synthesis, im-018
proving diversity and lowering label cost. Our019
method achieves an average improvement of020
3.2% and 5.0% with and without human la-021
beling on several mainstream datasets, which022
proves the effectiveness of FUSED.1023

1 Introduction024

Text-to-SQL is an important task that garners025

widespread attention for reducing the overhead of026

accessing databases by automatically generating027

SQL queries in response to user questions (Qin028

et al., 2022). Currently, in-context learning based029

on large language models (LLMs) has become030

the predominant approach to the text-to-SQL task,031

which can significantly enhance performance while032

reducing the need for fine-tuning (Pourreza and033

Rafiei, 2023; Nan et al., 2023; Chang and Fosler-034

Lussier, 2023a). Regarding in-context learning for035

text-to-SQL, in addition to the user question and036

the database, the LLM is also provided with sev-037

eral demonstrations, guiding the LLM in accurately038

generating SQL corresponding to the user question.039

1Our data and code will be released after review.

Database
TABLE wine (price, year, name, …)
TABLE grapes (color, grape, id, …)

Demonstration Pool (Database / Question / SQL)
{database} / The max price of wines? / SELECT max(price) FROM wine
{database} / Grapes per color? / SELECT count(*) FROM grapes GROUP BY color

Fused Demonstration Pool
… …
{database} / Max price per year? / SELECT 
max(price) FROM wine GROUP BY year

Answer
SELECT max(pop) FROM country

Answer
SELECT max(pop) FROM country GROUP 
BY code

Selected Demonstration
{database} / The max price of wines? / 
SELECT max(price) FROM wine

Selected Demonstration
{database} / Max price per year / SELECT 
max(price) FROM wine GROUP BY year

User Database / User Question
TABLE country (pop, code, …); …  / Most commonly used languages in each country?

SynthesizeLabel

Fuse

Select

Select

Lower-Cost

Higher-Diversity

Figure 1: The comparison between the baseline (left)
and FUSED (right) of obtaining the demonstration pool
for text-to-SQL.

Currently, there are many works (Chang and 040

Fosler-Lussier, 2023b; Su et al., 2023; Luo et al., 041

2024) explore how to select demonstrations rel- 042

evant to user questions from a human-labeled 043

demonstration pool. However, in such works, the 044

demonstration pool that relies entirely on human 045

labels limits the performance of text-to-SQL based 046

on in-context learning because of two problems: 1. 047

Regarding quality, human-labeled data has short- 048

comings in the diversity (Ramalingam et al., 2021; 049

Guo, 2023). 2. Considering the cost, human la- 050

beling demands a high labor overhead. To solve 051

the above problems, enhancing text-to-SQL perfor- 052

mance, in this paper, we discuss: 1. Theoretically, 053

how to measure the diversity of the demonstration 054

pool (§2); 2. Practically, how to build a diverse 055

demonstration pool without human labeling (§3). 056
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First, we discuss the diversity insufficient of057

human labeling from the perspective of theoreti-058

cal analysis. We first discuss the necessity of the059

demonstration of diversity, of which we present a060

formal definition. Then, based on this definition,061

we put forward to measure the diversity to prove062

the diversity insufficient of existing text-to-SQL063

labeled data, demanding enhancing data diversity.064

Based on the analysis above, we present FUSing065

itEratively for Demonstrations (FUSED), which066

synthesizes demonstrations iteratively using LLMs.067

An illustration of our method is shown in Fig-068

ure 1. About the problem of high labeling cost,069

our method employs LLMs to synthesize demon-070

strations, reducing the human labeling overhead.071

For the problem of low diversity, in each iteration,072

FUSED fuses the demonstrations of the previous073

iteration, ensuring that the fused demonstrations074

are dissimilar from the previous demonstrations,075

thereby improving the diversity.076

To prove the effectiveness of our method, we077

adapt FUSED to several mainstream text-to-SQL078

datasets: Spider (Yu et al., 2018) and KaggleD-079

BQA (Lee et al., 2021). The experimental results080

show that our method brings an average improve-081

ment of 3.2% and 5.0% with and without label-082

ing data, proving the effectiveness of our method.083

Further analysis experiments show that FUSED ef-084

fectively improves the metric we present, demon-085

strating that our method can indeed enhance the086

diversity of the demonstration pool.087

The contributions of our work are as follows:088

• To theoretically analyze the diversity of the exist-089

ing labeled demonstrations for text-to-SQL, we090

present a metric to measure the diversity, proving091

that the insufficiency of the diversity.092

• To practically obtain a high-diversity demonstra-093

tion pool without human labeling, we propose094

FUSED, which enhances the diversity by human-095

free synthesis with multiple iterations.096

• To validate FUSED, we adapt our method on097

multiple mainstream text-to-SQL datasets, which098

achieves 3.2% and 5.0% performance improve-099

ments with and without human labeling, demon-100

strating the effectiveness of our method.101

2 Analysis: Insufficient Diversity of102

Labeled Text-to-SQL Demonstrations103

In this section, we present that the diversity of the104

existing labeled text-to-SQL demonstrations is105

insufficient. First, we discuss the necessity of the106

high diversity of the demonstration pool, of which 107

we present a formal definition. Then, we present 108

a metric for measuring the diversity of the demon- 109

stration pool and explore the insufficient labeling 110

diversity with the experiment results. 111

2.1 Necessity of Diversity 112

About the in-context learning, since LLMs imi- 113

tate the provided demonstrations to generate the 114

answer (Xun et al., 2017), it is required to ensure 115

the selected demonstration is as similar to the user 116

question as possible. However, the user question 117

is unpredictable, leading to that the demonstration 118

pool should contain as diverse demonstrations as 119

possible to cover various user questions. That is, 120

for any user question, there should be a demonstra- 121

tion with no difference from the user question. 122

Formally, we define u as the user question and 123

D = {di} as the demonstration pool, where di is 124

each demonstration. The above analysis can be 125

summarized as that D should satisfy Equation 2.1, 126

where diff denotes the difference between the 127

demonstration and the user question (e.g., SQL 128

structure, domain knowledge). We discuss how to 129

calculate diff in Appendix A. 130

max
u

min
di∈D

diff(di, u) = 0 (2.1) 131

2.2 Insufficient of Labeling Diversity 132

To discuss whether the diversity of the existing text- 133

to-SQL labeling demonstrations is sufficient, in this 134

part, we present a metric to measure the diversity. 135

Although the demonstration is hard to be the same 136

as the user question since it is unpredictable, to 137

ensure the performance, the difference between 138

the user question and the demonstration should 139

be as small as possible, which satisfaction can be 140

formally represented as Equation 2.2. 141

D∗ = argmin
D

max
u

min
di∈D

diff(u, di) (2.2) 142

143From the equation, it can be seen that the ex- 144

pression maxumindi∈D diff(u, di) in the argmin 145

changes only depending on D and determines 146

whether D satisfy Equation 2.1. Therefore, we 147

use Equation 2.3 to measure the diversity of the 148

demonstration pool, which we call diversity mea- 149

surement, where taking the multiplicative inversion 150

is to make this metric increase as the diversity in- 151

creases. We discuss how to calculate the diversity 152

measurement in Appendix A. 153

DM = (max
u

min
di∈D

diff(u, di))
−1 (2.3) 154
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Demonstration Pool

⋯d1 d2 dndn-1 1.1 Cluster

Clusters Sampled Demonstrations

{database} / The max 
… / SELECT … 

di
{database} / Grapes 
of … / SELECT … 

dj
1.2 Sample

2 Demonstration Fuse
Fused Demonstration
{database} / Max price per year? / 
SELECT max(price) FROM wine ORDER 
BY year

Sampled Demonstrations

{database}  / Grapes per color? / SELECT 
* FROM grapes GROUP BY color

{database} / The max price of wines? / 
SELECT max(price) FROM wine 

Database

2. Fuse

1 Demonstration Sample

TABLE grapes(id, grape…)

TABLE wine(price, year, …)

⋅⋅⋅

Figure 2: The pipeline of FUSED, which consists of two steps: 1. Demonstration Sample: Sample demonstrations
to be fused from the demonstration pool; 2. Demonstration Fuse: Fuse the sampled demonstrations. The
representation of {database} is discussed in Appendix C.

1.34 1.36 1.38 1.4 1.42
74

76

78

Diversity Measurement

E
X

Figure 3: The performance with the change of diver-
sity measurement on Spider. x denotes the original
label data of Spider and · denotes the data under differ-
ent synthesized scales introduced in §3. Blue denotes
human-free synthesized data, and red denotes that is
based on human-labeled data.

With the metric to measure the diversity, we then155

discuss the diversity of the existing text-to-SQL la-156

beling demonstrations. The performance of the157

demonstration pool with different diversity mea-158

surements is shown in Figure 3. From the figure,159

we can see that, although the diversity of labeled160

data is relatively high, the diversity can still be161

improved and insufficient. Therefore, in the follow-162

ing, we discuss how to synthesize demonstrations163

to improve the diversity of the demonstration pool.164

3 Method165

Our method focuses on how to synthesize new166

demonstrations given databases to improve the di-167

versity. Considering the poor diversity of directly168

generating demonstrations only relying on the sam-169

pling generation (Cegin et al., 2024), we present to170

improve the diversity of the demonstration pool by171

fusing different demonstrations iteratively. In each172

iteration, we guide the model to generate demon-173

strations that are not similar to the previous itera- 174

tions, thereby improving the diversity. An illustra- 175

tion of FUSED is shown in Figure 2. 176

A simple example of our method is clustering 177

the demonstrations based on the SQL keywords 178

(e.g., WHERE, ORDER BY). Then, we sample and fuse 179

demonstrations from the clusters corresponding to 180

keywords WHERE and ORDER BY. The fused demon- 181

stration contains both WHERE and ORDER BY that are 182

different from the sampled demonstrations, improv- 183

ing the demonstration diversity. 184

3.1 Overview 185

The fusion process of FUSED starts with an initial 186

demonstration pool, which can be human-labeled 187

or synthesized by LLMs (see Appendix B). FUSED 188

includes multiple iterations of fusion, where the 189

synthesis of each iteration is based on the demon- 190

stration pool of the previous iteration. Each itera- 191

tion consists of demonstration sample (§3.2) and 192

demonstration fuse (§3.3) two steps, which sample 193

and fuse the demonstrations of the demonstration 194

pool separately. The fused demonstrations of each 195

iteration are then added to the demonstration pool, 196

preparing for the next iteration. 197

After all iterations of fusion, we use the final 198

demonstration pool for the text-to-SQL based on 199

the in-context learning. We generate the SQL of 200

each user question with LLMs directly following 201

Chang and Fosler-Lussier (2023b) since this is not 202

the main topic of this paper. 203

3.2 Demonstration Sample 204

This step is to sample the demonstrations to be 205

fused, which consists of: 1. Cluster: dividing the 206

demonstrations into multiple clusters; 2. Sample: 207

sampling demonstrations from clusters to be fused. 208
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3.2.1 Cluster209

Before the fusion to get new demonstrations, it is210

required that the demonstrations sampled for fus-211

ing are not similar to ensure that the fused demon-212

stration is not similar to the sampled demonstra-213

tions, thereby enhancing the diversity. The pre-214

vious work (Zhang et al., 2023b) has shown that215

similar demonstrations are in the same cluster af-216

ter encoding and then clustering. That is because217

the encoded vectors can reflect the attributes of218

the demonstrations (e.g., SQL structure, domain219

knowledge), where the closer the vector distance,220

the more similar the attributes.221

Inspired by this, we empirically use Sentence-222

BERT (Reimers and Gurevych, 2019) to encode the223

concatenation of the question and the SQL of all224

demonstrations in the pool, and then use K-means225

to cluster encoded results into multiple clusters.226

Compared with not using the cluster, our method227

can ensure that the corresponding encoding vectors228

of the sampled demonstrations from different clus-229

ters are far away, leading to the demonstration used230

for fusion is not similar and diverse.231

3.2.2 Sample232

After obtaining different clusters of the demonstra-233

tion pool, we then sample demonstrations from234

different clusters for fusing. Considering that even235

in the same cluster, the demonstrations are not the236

complete same, such as domain knowledge and237

question semantics, which could affect the similar-238

ity with the user question. To improve diversity,239

during the demonstration sampling, we randomly240

choose several clusters, and then randomly sample241

demonstrations from each cluster separately, mak-242

ing the fused demonstration reflect the difference243

between different demonstrations.244

3.3 Demonstration Fuse245

We employ LLM synthesize to fuse demonstra-246

tions as the discussion in Appendix B, where we247

add the sampled demonstrations to guide the syn-248

thesis as in-context learning. Adding the sampled249

demonstrations comes up because LLMs imitate250

the demonstrations to generate results, whereas the251

fused demonstration is generated by imitating the252

sampled demonstration, thereby achieving the fu-253

sion effect. Thus, the fused demonstrations can254

reflect the attributes of and be different from all255

sampled demonstrations, thereby improving the256

diversity of the demonstration pool.257

4 Experiments 258

4.1 Experiment Setup 259

Dataset We evaluate FUSED on two text-to-SQL 260

datasets: Spider (Yu et al., 2018) and KaggleD- 261

BQA (Lee et al., 2021). Spider, a multi-domain 262

text-to-SQL dataset, is one of the most widely used 263

datasets currently. KaggleDBQA is smaller in scale 264

but involves more complex database and SQL struc- 265

tures, presenting higher hardness. In the following, 266

for simplicity, we refer to KaggleDBQA as Kaggle. 267

Metric Following previous works (Yu et al., 268

2018; Pourreza and Rafiei, 2023; Li et al., 2023), 269

we employ execution match (EX) as our evaluation 270

metric. EX measures the accuracy by comparing 271

the execution results of the generated SQL on the 272

database. There are two ways to evaluate EX: di- 273

rectly using the predicted SQL conditional value 274

(with value) and using the conditional value in the 275

correct answer (without value). 276

Model In our experiments, we use CodeL- 277

lama (Rozière et al., 2023) and GPT3.5 2 to synthe- 278

size demonstrations and convert user questions into 279

SQLs. We also apply FUSED to ACT-SQL (Zhang 280

et al., 2023a) and ODIS (Chang and Fosler-Lussier, 281

2023b). The detailed introduction of the above 282

models can be seen in Appendix D. 283

Implementation Details About KaggleDBQA, 284

since it only contains 8 databases, we use Spider 285

databases to synthesize demonstrations. For each 286

database, we generate 8 SQLs separately, set the 287

generation temperature to 0.3, and synthesize in 288

turns of 3. The prompts for synthesizing demonstra- 289

tions and text-to-SQL are shown in Appendix C. 290

4.2 Main Result 291

The main experimental results are shown in Table 1, 292

where FUSED brings 2.6% performance improve- 293

ment on average across different settings, showing 294

the effectiveness of our method. Besides, from the 295

table, we can also see that: 296

Model Scale Our method brings significant per- 297

formance improvements on models of different 298

scales. However, our method brings performance 299

degradation with CodeLlama-7b, because of the 300

low quality of the synthesized demonstrations due 301

to its relatively poor performance. 302

2https://platform.openai.com/docs/models/
gpt-3-5

4

https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5


Dataset Prompt
CodeLlama GPT3.5 ∆

7b 13b 34b - -
w. w/o. w. w/o. w. w/o. w. w/o. w. w/o.

Spider

Zero 48.5 59.8 54.9 67.6 56.9 72.2 57.9 74.9
+3.4 +3.4+ FUSED 54.4 66.4 58.8 70.9 59.7 75.1 58.7 75.8

Label 55.3 67.5 58.8 72.1 61.6 76.7 61.6 80.3
+1.6 +1.4+ FUSED 56.8 69.0 60.4 74.2 63.2 78.4 63.2 80.7

ACT-SQL† 62.1 63.2 67.5 69.1 71.0 72.8 75.8 77.6
+0.7 +0.9+ FUSED 60.3 61.7 68.4 69.8 74.6 76.7 76.0 78.0

ODIS† 58.2 71.8 61.9 76.6 64.3 80.9 63.9 81.1
+0.8 +0.9+ FUSED 58.0 71.0 62.9 78.0 65.6 82.1 64.8 83.0

Kaggle

Zero 9.9 18.0 13.2 23.5 13.2 23.2 14.0 25.4
+6.1 +7.2+ FUSED 22.8 32.0 19.1 29.0 18.0 30.1 14.7 27.6

Label 27.9 39.7 32.4 44.1 26.5 38.6 26.5 40.4
+5.4 +4.2+ FUSED 35.3 47.1 34.6 46.0 32.4 45.6 32.4 40.8

ACT-SQL† 27.6 30.5 30.5 33.8 33.8 38.2 29.4 31.6
+0.4 +0.5+ FUSED 27.6 30.9 30.5 33.8 33.8 38.6 30.9 32.7

ODIS† 33.8 43.4 34.6 47.1 31.6 46.3 34.6 48.9
+2.3 +3.0+ FUSED 35.7 47.1 36.0 48.5 35.3 50.4 36.8 51.5

Table 1: The main experimental results of FUSED. Zero denotes zero-shot inference, and Label denotes using
human-labeled data. About the metric, w. denotes with values and w/o. denotes without values. † denotes the
reproduction results by us since the performance differences brought by the API version of GPT3.5. The improved
results led by FUSED are marked green, performance degradation is marked in red, and unchanged results are
marked in black. The best results of different models and datasets are annotated in underline. ∆ denotes the average
improvement of different prompt methods leading by FUSED.

Model Type Our method continues to improve303

performance based on the labeled data and two304

well-designed methods (ACT-SQL and ODIS) un-305

der most settings, proving the generalization and306

effectiveness of FUSED. In addition, the results307

also prove that with a fixed demonstration selec-308

tion method, modifying the demonstration pool can309

further enhance the performance.310

Dataset FUSED brings significant performance311

improvements on all experimental datasets and312

even achieves results close to labeled data on Spi-313

der under the zero setting, demonstrating the ef-314

fectiveness of our method under different domains.315

Besides, our method achieves more significant im-316

provement on KaggleDBQA than Spider, showing317

that the demonstrations synthesized by FUSED are318

more effective for complex text-to-SQL questions.319

4.3 Ablation Studies320

To verify the effectiveness of the iteration and the321

cluster designed by our method, we perform ab-322

lation experiments on each part separately. The323

experimental results are shown in Table 2. Based324

on such results, we discuss the impact of different325

parts on the performance of our method.326

Dataset Prompt 7b 13b 34b

Spider
FUSED 66.4 70.9 75.1
- Iteration 66.2(−0.2) 69.9(−1.0) 73.9(−1.2)
- Cluster 65.3(−1.1) 69.9(−1.0) 74.6(−0.5)

Kaggle
FUSED 32.0 29.0 30.1
- Iteration 30.1(−1.9) 28.8(−0.2) 28.7(−1.4)
- Cluster 26.5(−5.5) 26.5(−2.5) 30.0(−0.1)

Table 2: EX without values of FUSED under the ablation
of validation, cluster, and iteration with CodeLlama
without human-labeled data.

4.3.1 Ablation of Iteration 327

To demonstrate that iterations work by improving 328

the quality rather than quantity of the demonstra- 329

tions, we conduct experiments that generate the 330

same number of data as our method without iter- 331

ations. From Table 2, we can see that: 1. FUSED 332

achieves significant performance gains compared 333

with generation without iterations, proving that our 334

method indeed enhances the model performance 335

by improving the quality of the generated demon- 336

strations. 2. For larger-scale models, iteration has 337

a more significant impact on performance, indicat- 338

ing that larger-scale models can more effectively 339

synthesize diverse demonstrations through multiple 340

iterations, improving performance more effectively. 341

5



0 10 100 1000 ALL
70

72

74

76

78

80

Label Scale

Sp
id

er
E

X

Spider Spider + FUSED

KaggleDBQA KaggleDBQA + FUSED

20

26

32

38

44

50

K
ag

gl
eD

B
Q

A
E

X
Figure 4: The EX without values of CodeLlama-34b
with and without FUSED under different initial labeling
scales. The X-axis represents the labeled data scale used
for synthesis. The Y-axis on the left and right represent
the results of Spider and KaggleDBQA respectively.

4.3.2 Ablation of Cluster342

To demonstrate the effectiveness of the cluster, we343

perform ablation experiments on it. We compare344

our method with randomly selecting demonstra-345

tions during the demonstration fuse step. From346

Table 2, we can find: 1. Synthesis without cluster-347

ing brings performance degradation in all settings,348

proving the effectiveness of the cluster. 2. The349

performance degradation of KaggleDBQA is more350

obvious compared to Spider, indicating that the351

more complex text-to-SQL questions are more sen-352

sitive to the demonstration diversity.353

4.4 Analysis354

In this part, we adapt analysis experiments to dis-355

cuss how different factors affect the performance356

of FUSED. The reason for the experimental settings357

we used can be seen in Appendix E.358

4.4.1 Turn Number359

To analyze the effectiveness of the iteration, we360

adapt experiments with different iterative turns,361

which are summarized in Figure 5 and Figure 6.362

From the table, we can see that: 1. When turn ≤ 4,363

as the turn increases, diversity measurement and364

the performance of our method improve steadily,365

indicating that multiple iterations can enhance the366

diversity, thereby enhancing performance. 2. When367

turn > 4, with the number of turns increasing, di-368

versity and performance improvement brought by369

FUSED becomes less and less, indicating the diver-370

sity can not be infinitely improved.371
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Figure 5: Diversity measurement of CodeLlama-34b
across different iteration turns with FUSED.
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Figure 6: EX without values of CodeLlama-34b across
various turns with FUSED. The X-axis denotes the turns
of FUSED. The Y-axis on the left and right represent the
results of Spider and KaggleDBQA respectively.

4.4.2 Label Scale 372

Although the main experiments of Table 1 demon- 373

strate the effectiveness of our method on labeled 374

data, the practical applications could lack labeled 375

data with the same scale as the Spider training data. 376

Therefore, to validate the effectiveness of FUSED 377

across varying scales of labeled data, we randomly 378

sample different scales of initial labeled data from 379

Spider training data and conduct experiments on 380

these subsets. The experimental results with differ- 381

ent labeling scales are present in Figure 4. 382

From the figure, we can see that: 1. Under most 383

settings, our method brings performance improve- 384

ment, indicating its widespread effectiveness under 385

different initial label scales. 2. With the increase 386

of the initial label scale, the performance demon- 387

strates a consistent upward trend, suggesting that 388

expanding the scale of label scale can reliably en- 389

hance model capabilities. 390
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Database 7b 13b 34b

None 18.0 23.5 23.2
Kaggle 29.0 24.3 27.6
Kaggle + Spider 32.0 29.0 30.1

Table 3: EX without values of FUSED using CodeLlama
evaluated on KaggleDBQA with different synthesizing
databases. Database denotes the databases used for
synthesizing. None denotes not synthesizing, Kaggle
denotes only using the KaggleDBQA databases, and
Kaggle + Spider denotes mixing Spider databases.

Dataset Prompt Easy Medium Hard Extra

Spider Zero 88.7 80.7 57.5 40.4
FUSED 87.5 81.2 63.8 52.4

Kaggle Zero 53.1 30.3 5.1 1.9
FUSED 59.4 32.9 11.4 1.9

Table 4: EX without values of CodeLlama-34b under
different SQL hardness with and without FUSED. Zero
denotes results under the zero-shot setting. The best
result of each setting is annotated in bold.

4.4.3 Database Domain391

In this part, we evaluate that FUSED can improve392

the text-to-SQL performance across different do-393

mains without human labeling. We only use the394

databases of KaggleDBQA to synthesize demon-395

strations for KaggleDBQA, while we use the Spi-396

der databases in the main experiment following the397

previous work (Chang and Fosler-Lussier, 2023b).398

Since KaggleDBQA only has 8 databases, for each399

database, we generate 128 SQLs to ensure to obtain400

high diverse demonstrations.401

The experimental results are shown in Table 3.402

From the table, we can see that: 1. Compared with403

not synthesizing demonstrations, FUSED can bring404

performance improvements when only using Kag-405

gleDBQA databases, proving the effectiveness of406

our method adapted to a new domain without la-407

beling. 2. Compared to using only KaggleDBQA408

databases, the demonstrations obtained by mixing409

Spider databases can bring greater performance410

improvements, indicating that increasing the diver-411

sity of databases can also improve the diversity of412

synthesized demonstrations.413

4.4.4 SQL Hardness414

To analyze the effectiveness of FUSED on ques-415

tions with different complexity, we evaluate our416

method on SQL categorized by different hardness.417

The category criteria follows Yu et al. (2018). The418

experimental results are shown in Table 4.419

Template (%)

SELECT * FROM * WHERE * <op> * (25.7)
SELECT * FROM * WHERE * <op> * AND * <op> * (13.9)
SELECT * FROM * JOIN * JOIN * WHERE * <op> * (5.2)
SELECT * FROM * JOIN * WHERE * <op> * (4.9)
SELECT * FROM * WHERE * IN (SELECT * FROM * WHERE
* <op> *) (4.3)

Table 5: Top five SQL templates synthesized by FUSED
using CodeLlama-34b. The numbers in the brackets
denote the proportion of each template.

From the table, we can see that: 1. On most hard- 420

ness, our method can bring significant performance 421

improvements, which proves the effectiveness of 422

FUSED. 2. On Spider, the more difficult SQL, the 423

more significant the improvement, showing that 424

synthesized demonstrations can more effectively 425

guide complex SQL generation. 3. For the easy 426

questions of Spider, our method brings a slight per- 427

formance degradation because the model already 428

performs well under the zero-shot setting for this 429

hardness, and the additional demonstrations could 430

mislead the model. 4. On the extra questions of 431

KaggleDBQA, our method does not bring perfor- 432

mance improvement, which could be because it is 433

too hard to synthesize too complex demonstrations 434

(harder than Spider extra questions), resulting in 435

the selected demonstrations being unable to effec- 436

tively guide the generation of the extra hardness. 437

4.4.5 Synthesized Template 438

To guide future works in generating more diverse 439

demonstrations, in this part, we analyze the pro- 440

portion of demonstrations with different SQL tem- 441

plates synthesized by our method. We replace table 442

names, column names, and values with * and oper- 443

ators with <op> as the templates corresponding to 444

each SQL. Our method synthesizes 175 different 445

SQL templates, showing the diversity of the syn- 446

thesized demonstrations. The five most frequent 447

template types are shown in Table 5. 448

From the table, we can find: 1. The current 449

model is most inclined to generate SELECT and 450

WHERE, which is nearly 40%, indicating that such 451

types of SQL occur more frequently in the pre- 452

training data of LLMs we use and, thereby, are 453

more frequently used in real-world scenarios. 2. 454

Existing models hardly generate complex SQL that 455

contains nested SQL (less than 5% of synthetic 456

data), indicating that future methods should specif- 457

ically pay attention to guide the model to generate 458

results that contain two or more sub-SQLs or even 459

more complex structures. 460
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Demonstration 1
SELECT t1.id, count(*) 
FROM stadium JOIN game

Demonstration 2
SELECT name FROM 
stadium WHERE capacity < 
(SELECT avg(capacity) 
FROM stadium)

SQL
SELECT count(*), max(
capacity) FROM concert

Fused Demonstration
SELECT count(*) FROM 
stadium WHERE capacity < 
(SELECT avg(capacity) 
FROM stadium)

SQL
SELECT count(*) FROM 

concert WHERE capacity = 
(SELECT max(capacity) 

FROM stadium)

Question
Find the number of concerts that happened in the stadium with the 
highest capacity.

Figure 7: The case study of demonstrations by human-
labeling (left) and FUSED (right) from Spider. The
corresponding SQL keywords between demonstrations
and the answer are annotated in bold.

4.4.6 Case Study461

Although the above analysis proves the effective-462

ness of FUSED, how our method improves the per-463

formance of the text-to-SQL using in-context learn-464

ing remains to be discovered. In order to analyze465

how our method improves the model performance466

more specifically, in this part, we conduct a case467

study. A comparison between results based on la-468

beled data and the demonstrations obtained using469

FUSED is shown in Figure 7.470

From the figure, we can see that the results using471

only labeled data do not combine the SQL key-472

words of the two demonstrations well. The demon-473

stration obtained with our method, on the other474

hand, has already combined the SQL keywords of475

the two demonstrations, which guides the model to476

successfully generate the correct SQL.477

5 Related Works478

5.1 Text-to-SQL479

Text-to-SQL is a vital task that generates SQL480

based on the user question and the provided481

databases. Recent research shows that text-to-482

SQL based on LLMs can approach or exceed the483

performance of fine-tuned models without fine-484

tuning, which greatly advances research on this485

task while reducing labeling overhead (Chang and486

Fosler-Lussier, 2023b; Zhang et al., 2023a; Li and487

Xie, 2024). For example, DIN-SQL (Pourreza and488

Rafiei, 2023) decomposes the text-to-SQL task into489

multiple sub-tasks and solves these sub-tasks sep-490

arately. DAIL-SQL (Gao et al., 2023) evaluates491

different formats of prompts to find the best perfor-492

mance combination for the text-to-SQL task.493

However, existing LLM-based methods entirely 494

rely on human-labeled demonstrations, and de- 495

mand high labeling costs be adapted to a new do- 496

main. Therefore, we propose FUSED to synthesize 497

text-to-SQL demonstrations based on LLMs using 498

provided domain databases without human label- 499

ing, effectively reducing the labor cost. 500

5.2 In-Context Learning 501

In-context learning is an effective method to en- 502

hance the reasoning ability of LLMs by providing 503

several demonstrations to guide reasoning (Xun 504

et al., 2017). Some works propose to automatically 505

select relevant demonstrations for each user ques- 506

tion to improve the performance of LLMs (Zhang 507

et al., 2023b; Shum et al., 2023). Another kind of 508

work enhances in-context learning by synthesizing 509

relevant fine-tuning data (Wang et al., 2023). 510

However, existing methods only demonstrate 511

that increasing the diversity of the demonstrations 512

can enhance performance but do not discuss if the 513

diversity of the existing labeling data is sufficient, 514

and how to increase the diversity of the demonstra- 515

tions (Su et al., 2023; Levy et al., 2023). Therefore, 516

we present a diversity measurement metric to show 517

that the existing labeling data of the text-to-SQL 518

task is insufficient and propose FUSED to enhance 519

the diversity by iterative synthesis. 520

6 Conclusion 521

In this paper, we improve the performance of the 522

text-to-SQL task using in-context learning from the 523

perspectives of insufficient diversity and the high 524

labeling overhead of the human-labeled demonstra- 525

tion pool. We first present a metric to measure 526

the diversity of the demonstration pool, based on 527

which we analyze the diversity insufficient of the 528

existing human-labeled text-to-SQL data. Based 529

on the above analysis, we present FUSED, which 530

synthesizes demonstrations using LLMs, thereby 531

lowering the human labeling overhead. Besides, 532

our method synthesizes demonstrations in multiple 533

iterations, where each iteration fuses the demon- 534

strations of the previous iteration to obtain new 535

demonstrations that are dissimilar from the gen- 536

erated demonstrations, effectively enhancing the 537

diversity. We adapt our method to two mainstream 538

text-to-SQL datasets: Spider and KaggleDBQA. 539

Experiments show that FUSED brings an average 540

improvement of 3.2% and 5.0% with and without 541

labeling data, proving the effectiveness. 542
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Limitations543

FUSED has two limitations, including: 1. About the544

encoding of the demonstration sample step, directly545

splice the user question and the SQL could not fully546

reflect the attributes of them. In future work, we547

will try to encode the question and SQL according548

to the attributes separately. 2. For the synthesized549

demonstration pool, we only improve the diversity,550

while ignoring the effect of the scale on the demon-551

stration selection. Our future work will filter the552

synthesized results, reducing the scale of synthesis553

under the premise of ensuring diversity.554

Ethics Statement555

All datasets and models used in this paper are pub-556

licly available, and our usage follows their licenses557

and terms.558
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SQL Synthesize
Synthesize one SQL query for the given database.

{database}
– Synthesize a new single SQL for the above database
imitating {SQL1} and {SQL2}.
SELECT

Table 6: The prompt for the SQL synthesis.

A How to Calculate Diversity751

Measurement752

max
u

mindi∈D dist(u, di)

s.t. u ∈ Convex(D)
(A.1)753

As the discussion in §2, we define the diversity754

measurement as (maxumindi∈D diff(u, di))
−1.755

The process of calculating the diversity measure-756

ment can be formulated as Equation A.1, where757

dist(u, di) denotes the Euclidean distance be-758

tween the embedding vectors corresponding to759

the user question and the demonstration, and760

Convex(D) denotes the convex hull of the demon-761

strations.762

We use dist to represent diff since the closer763

the distance between the embedding question and764

the embedding demonstration, the more similarity765

between the question and the demonstration. The766

user question u should be in the area surrounded767

by the convex corresponds to the question-related768

domain, and the user questions are highly related to769

the domain and have a high probability of locating770

in the convex.771

We use SciPy (Virtanen et al., 2020) to solve772

Equation A.1. Since the solution of this optimiza-773

tion process is greatly affected by the initial value,774

we repeatedly sample the initial value until the775

difference between the result and the previous max-776

imum value is less than 1e−3.777

B Synthesize Text-to-SQL778

Demonstrations with LLMs779

In this section, we discuss how to employ LLMs to780

obtain the initial demonstration pool with the given781

database, lowering the human-labeled overhead.782

The prompts we used are shown in Appendix C.783

SQL Synthesize Following the previous784

work (Chang and Fosler-Lussier, 2023b), we785

synthesize SQL based on the linearized schema of786

the given database with LLMs. During synthesis,787

we ask LLMs to generate multiple SQLs for each788

database to enhance the diversity of the results789

Question Synthesize
Using natural language, generate a question correspond-
ing to the given SQL.
Different examples are separated with ‘\n\n’.

{demonstration1}

{demonstration2}

{database}
– Using natural language, generate a question corre-
sponding to the given SQL: {SQL}.
Question:

Table 7: The prompt for the question synthesis.

with the sampling generation. The prompt we used 790

is shown in Table 6. 791

Question Synthesize We synthesize the corre- 792

sponding questions of the generated SQL with the 793

linearized schema of the. We first synthesize SQL 794

instead of questions because LLMs could gener- 795

ate questions that are hard to answer using SQL 796

(Cheng et al., 2023), and it is harder to validate 797

the semantic consistency between the SQL and the 798

question for generating questions first. The prompt 799

of this step is shown in Table 7. 800

Validate Due to the limitation of the model per- 801

formance, it is hard to guarantee that the seman- 802

tics of all synthesized SQL-question pairs are com- 803

pletely consistent, resulting in a decrease in the 804

quality of the synthesized demonstration. To im- 805

prove the quality of the synthesized results, we 806

verify the semantic consistency between the synthe- 807

sized questions and SQL. We generate SQL based 808

on the question and then evaluate if the generated 809

SQL is the same as the synthesized SQL, for which 810

we use LLMs to reduce the cost of fine-tuning. The 811

prompts for text-to-SQL follow Chang and Fosler- 812

Lussier (2023b). 813

C Prompts 814

The prompts of the SQL generation and the ques- 815

tion generation are shown in Table 6 and Table 7. 816

The formats of {database} and {demonstration} 817

are same as Chang and Fosler-Lussier (2023b). 818

D Baseline Model 819

CodeLlama CodeLlama is a model based on 820

Llama2 (Touvron et al., 2023), which is fine-tuned 821

on a large amount of code data and can better solve 822

code-related problems (including SQL). 823
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GPT3.5 GPT3.5 is an improved model based824

on GPT3 (Brown et al., 2020), which further825

enhances performance through additional task-826

specific fine-tuning. We use Azure OpenAI API of827

gpt-3.5-turbo of GPT3.5 for our experiments 3.828

ACT-SQL ACT-SQL (Zhang et al., 2023a) is a829

method to construct the chain-of-thought rationales830

based on SQL automatically. This method syn-831

thesizes reasoning steps with table names, column832

names, and values used in the SQL.833

ODIS ODIS (Chang and Fosler-Lussier, 2023b)834

is an automatic demonstration selection method835

designed for the text-to-SQL task. This method se-836

lects out-domain demonstrations from the labeled837

data and synthesizes in-domain demonstrations838

based on the databases related to the user question.839

E Settings of Analysis Experiments840

We adapt analysis experiments under the setting of:841

CodeLlama-34b CodeLlama is one of the most842

mainstream code generation models at present,843

which achieves near the performance of the closed-844

source model (as shown in Table 1) in the open-845

source model with less inference cost (no need to846

call API), of which CodeLlama-34b is the best per-847

formance in this series of models.848

Evaluating without values Regarding the text-849

to-SQL task, current research mainly focuses on850

how to generate SQL with the correct structure,851

while paying less attention to extracting the condi-852

tion values exactly, since this requires the memoriz-853

ing ability rather than the semantic parsing ability.854

3https://azure.microsoft.com/en-us/products/
cognitive-services/openai-service
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