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Abstract

Fine-tuning is an effective approach for adapting a pre-trained language model to
downstream tasks, but it incurs a high computational cost. To achieve an extremely
efficient task adaptation, [17] have proposed to use an auxiliary hypernetwork
to generate task-specific weights without any backpropagation. A hypernetwork
can generate weights for parameter-efficient fine-tuning (PEFT) modules, such
as prefixes [12] and LoRAs [7], for any unseen task based on a few task-specific
demonstration examples, at the cost of a single forward pass. However, hyper-
network training is challenging. Firstly, it is sample inefficient due to the under-
exploitation of the dependencies between PEFT weights across layers. Secondly,
it exhibits training instability due to the high diversity of few-shot demonstration
inputs. To address these limitations, we propose a novel hypernetwork training
approach, named HART. It exploits layerwise dependencies by autoregressively
generating weights for individual layers, and stabilizes the training by regularizing
the consistency between weights generated based on different demonstrations. We
train the hypernetwork on a diverse collection of tasks [23, 19] and evaluate its
performance on unseen tasks. HART notably outperforms [17] on both T5-Large
and T5-XL models.

1 Introduction

Pre-trained large language models (LLMs) have demonstrated remarkable capabilities on various
tasks [28, 16, 1, 21, 24]. While fine-tuning is an effective approach for adapting pre-trained models
to specific tasks, it incurs significant computational costs, which further escalates with the increasing
model size. In contrast, in-context learning (ICL) can quickly generalize a pre-trained model to unseen
tasks by conditioning the model’s inference on a few demonstration examples [22, 25, 29, 26, 15].
However, without fine-tuning, the model weights lack the adaptability to each task.

To achieve an extremely fast adaptation to unseen tasks, [17] have proposed a hypernetwork approach.
A hypernetwork is a text-to-weight generator, which learns a universal mapping across a large
collection of tasks from few-shot demonstration examples to parameter-efficient fine-tuning (PEFT)
module weights of a pre-trained model, such as the weights of prefixes [12], LoRAs [7] and adaptors
[6]. Consequently, when provided with several few-shot demonstration examples from an unseen
task, the hypernetwork can generate the PEFT parameters for that task. Compared to iteratively
fine-tuning task-specific parameters from scratch, generating these parameters requires only a single
forward pass, thereby facilitating an extremely fast adaptation to various unseen tasks.

The hypernetwork adopts an encoder-decoder Transformer architecture, in which the decoder gener-
ates parameters conditioned on the encoded demonstration examples. To train such a hypernetwork,
the decoder generates a hidden state at each training iteration, which is then projected, by different
MLPs, into the weight spaces of different layers in the pre-trained model (referred to as “the main
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Figure 1: The bi-directional self-attention
map averaged by attention heads in the last
layer of the hypernetwork decoder. The in-
put key/query is a sequence of hidden states,
each responsible for learning PEFT parame-
ters at a corresponding layer. Our experiment
is conducted using T5-Large model [18] on
P3 [19].

Figure 2: An illustrative comparison between non-
autoregressive (left) and autoregressive (right) param-
eter generation schemes. Hdec: the hypernetwork de-
coder; z: a learnable input state; hl: the hidden state
at the l-th decoding step; ϕl: the PEFT parameters for
the l-th layer. L: the number of layer in the pre-trained
model.

model”). Then the hypernetwork is optimized based on the main model’s prediction loss on a training
example.

However, such a training scheme faces several limitations. One limitation is its low sample efficiency
due to its heavy reliance on MLPs. Firstly, each MLP is assigned to learn parameters for a specific
layer, based on a state that is shared among all layers. This implies that the entire responsibility of
modeling the specificities of different layers fall upon the MLPs. However, the decoder, which has a
greater capacity to capture layer-specific information in high-dimensional spaces, is not utilized to
its fullest potential. Secondly, each MLP operates independently, rendering this design incapable of
leveraging the potential structured dependencies between weights at different layers, which could
serve as useful inductive biases during weight generation. In multi-layer networks, it is plausible to
expect structured dependencies between weights across layers due to the structured dependencies
between each layer’s inputs: each layer only takes inputs from its preceding layer. To validate
this hypothesis, we train the decoder to generate a sequence of hidden states using bi-directional
attention, with each state responsible for learning the weights for an individual layer. Figure 1
presents the attention map across all states, revealing that each layer primarily attends to its two
preceding layers, emphasizing its immediate predecessor. This observation confirms the existence of
strong dependencies between weights at adjacent layers, an unexploited inductive bias for weight
generation. Both the underutilization of the decoder’s capabilities and underexploitation of the
layerwise dependency impair the sample efficiency. As a result, the representation power of the
generated parameters is compromised, leading to the underfitting of the main model.

To improve the sample efficiency, we propose a novel autoregressive parameter generation scheme as
illustrated in Figure 2. Specifically, the decoder generates a sequence of hidden states autoregressively,
with each state responsible for learning PEFT parameters of a corresponding layer. This allows each
state to be learned through a layer-specific transformation modeled by the decoder. Furthermore,
since each state is generated conditioned on its preceding state, the dependencies between adjacent
layers are explicitly enforced, thereby introducing a proper inductive bias into the generation process.
By capturing the layer-specificity and exploiting the layer-dependencies, the autoregressive scheme
improves the expressiveness of the generated parameters.

Another challenge in hypernetwork training is its instability, which arises from the high diversity
of inputs. As each input is a randomly selected sequence of demonstrations, considerable variation
can occur across iterations, leading to significant variance in generated parameters. This variance
destabilizes the main model’s prediction loss and the hypernetwork training process (Figure 4). To
resolve this issue, we propose a local consistency regularization method. This method discourages
significant deviations in parameters generated between consecutive iterations, thereby stabilizing the
gradient computation and the hypernetwork training process.

Finally, we propose HART, a novel Hypernetwork training scheme that incorporates both
AutoRegressive parameter generation and local consistency regularizaTion. We train the hyper-
network on diverse tasks and evaluate its generalizability on unseen tasks. Specifically, HART
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outperforms HyperTuning [17] by 1.6 points on the Super-NaturalInstructions task collection (S-NI,
[23]) and by 3.6 points on the P3 task collection [19] using the T5-XL model [18].

2 Preliminaries

2.1 In-Context Learning

In-Context learning (ICL) considers inferencing a pre-trained model on an unseen task based on a
few demonstration examples [13, 22, 25, 29]. Such an approach significantly outperforms zero-shot
inference by leveraging the distribution of few-shot demonstrations as a task-specific prior for model
prediction [15, 26]. Specifically, the model takes a concatenated input of the few-shot demonstrations
and a query to generate the response. Each input is written in a natural language template, such as a
task-specific prompt or instruction, allowing the model to better follow the task intention.

Multi-task In-Context Fine-tuning. Due to the lack of weight adaptation, ICL significantly un-
derperforms fine-tuning. To mitigate this gap, researchers have proposed to in-context fine-tune
the pre-trained model on diverse training tasks before ICL [14, 19, 23, 2]. Formally, we consider a
pre-trained model denoted as M(·; θ) parameterized by θ, and a set of training tasks denoted as T .
At each training iteration, a task τ is sampled in proportion to the task size from T . Then, a query
denoted as x, its corresponding response denoted as y, and K > 0 demonstration input-output pairs
denoted as {(xk, yk)}Kk=1 are sampled from the task distribution Dτ . The model is optimized based
on the following objective:

min
θ

Eτ∈T ,{(xk,yk)}K
k=1,(x,y)∼Dτ ℓ(M([d : x]; θ), y), (1)

where ℓ denotes the task loss and d := [x1 : y1 : ... : xK : yK ] denotes a concatenation of K-shot
demonstrations. In prompted fine-tuning, x, y and d will be mapped to the prompted forms [19, 14].
In instruction fine-tuning, d will be appended to a task definition [23, 2].

2.2 Hypernetwork

Parameter Efficient Fine-tuning (PEFT) introduces a minimal set of parameters, termed “PEFT
parameters”, to each layer of the pre-trained model and fine-tunes only these parameters while
keeping the pre-trained model frozen [12, 7, 6]. Although PEFT attains adaptability comparable to
standard fine-tuning [4], it incurs significant costs from full-model gradient backpropagation.

Hypernetworks. A hypernetwork is an auxiliary model trained to generate weights for a main model
[20, 5]. [17] have proposed to use a hypernetwork to generate PEFT parameters for a pre-trained
model. With a few demonstration examples from a new task, the hypernetwork can generate task-
specific parameters, enabling the main model to conduct zero-shot inference on task-related queries.
In contrast to PEFT, this method requires only one forward pass for task adaptation, thereby cutting
the backpropagation costs. When weighted against ICL, this method improves task adaptability
through task-specific weight updates.

The hypernetwork is trained in the multi-task in-context fine-tuning setting. Specifically, we denote
a hypernetwork parameterized by ξ as H(·; ξ). At each training iteration, the hypernetwork takes
the K-shot demonstrations d as input and generates the PEFT parameters. The main model takes
in the query x and generates the response y using the PEFT parameters. The hypernetwork is then
optimized based on the main model’s prediction loss:

min
ξ

Eτ∈T ,{(xk,yk)}K
k=1,(x,y)∼Dτ ℓ(M(x; θ,H(d; ξ)), y). (2)

Parameter Generation in Hypernetworks. The hypernetwork employs a Transformer encoder to
encode the demonstrations and a Transformer decoder to conditionally generate parameters based on
the encoded demonstrations. Specifically, we denote the decoder as Hdec(·; ξdec). At the t-th training
iteration, the decoder takes in a learnable token z(t) ∈ R1×dm , where dm is the hypernetwork’s
hidden dimension. It then generates a hidden state h(t) ∈ R1×dm through one decoding step:

h(t) = Hdec(z
(t); ξ

(t)
dec, e

(t)), (3)
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where e(t) denotes the encoded demonstrations1. The generated hidden state is then projected into L
sets of PEFT parameters through L learnable MLP layers:

ϕ
(t)
l = MLPl(h(t)) ∀l ∈ [L], (4)

where ϕ(t)
l ∈ Rdp denotes the PEFT parameters generated for the l-th layer of the main model, which

consists L layers.

3 Method

We introduce HART, which exploits layerwise dependencies through autoregressive parameter
generation and stabilizes training through local consistency regularization.

3.1 Autoregressive Parameter Generation

We propose to autoregressively generate the PEFT parameters for different layers in the main model.
At the t-th training iteration, the hypernetwork decoder generates L hidden states through L decoding
steps. Each state is generated conditioned on its preceding state, and is responsible for learning the
weight space of the corresponding layer. At the first decoding step, the decoder takes in a learnable
token, z(t), and generates the first hidden state, h(t)

1 , following Eq. 3:

h
(t)
1 = Hdec(z

(t); ξ
(t)
dec).

At the second decoding step, the decoder takes in h
(t)
1 and generates the second hidden state, h(t)

2 .
This procedure is repeated for L decoding steps:

h
(t)
l = Hdec(h

(t)
l−1; ξ

(t)
dec) for l = 2, ..., L.

Then we learn L MLP layers to project these L hidden states into L sets of PEFT parameters,
respectively, following Eq. 4:

ϕ
(t)
l = MLPl(h

(t)
l ) ∀l ∈ [L],

where ϕ
(t)
l denotes the set of PEFT parameters generated for the l-th layer of the main model. We

can then compute the main model’s prediction loss as:

Lpred(ξ
(t)) = ℓ(M(x(t); θ, {ϕ(t)

l }
L
l=1), y

(t)). (5)

where ℓ is defined in Eq 2.

The autoregressive generation scheme allows us to leverage a powerful decoder, instead of relying
on MLPs, to model layer-specific transformations. Furthermore, this scheme exploits the strong
dependencies between weights at adjacent layers as observed in Figure 1, thereby introducing a
proper inductive bias into the generation process.

By exploiting the decoder’s capabilities and the layerwise dependencies, the autoregressive generation
scheme achieves a greater sample efficiency than the original scheme. As a result, the generated
parameters are more expressive, leading to a better-fitted main model.

3.2 Local Consistency Regularization

We further propose to encourage the PEFT parameters generated at consecutive training iterations to
not deviate significantly from each other. At the t-th iteration, we compute the local consistency loss
as:

Lcst(ξ
(t)) = MSE([h(t)

1 : . . . : h
(t)
L ], [h

(t−1)
1 : . . . : h

(t−1)
L ]),

where ℓcst(ξ
(1)) = 0, MSE(·, ·) denotes the mean squared error, and [h

(·)
1 : . . . : h

(·)
L ] ∈ RL×dm is the

concatenation of the sequence of generated hidden states. Finally, we optimize the hypernetwork
based on the sum of the prediction loss and the consistency loss using an SGD-type algorithm:

ξ(t+1) ← ξ(t) −∇ξ(t)(Lpred(ξ
(t)) + αLcst(ξ

(t))),

1We omit e(t) for the rest of the paper to simplify the notations.
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where Lpred(ξ
(t)) is defined in Eq. 5 and α > 0 is a hyperparameter.

By encouraging consistency between states generated at consecutive iterations, we mitigate drastic
changes in the generated parameters arising from highly diverse inputs. This improves the smoothness
of the main model, stabilizing both gradient computations and hypernetwork training.

4 Experiments

We evaluate HART on several commonly used large-scale multi-task NLP benchmarks. All dataset
and implementation details can be found in Appendix 6.1. Additional ablation studies validating our
proposed strategies can be found in Appendix 6.2.

4.1 Super-NaturalInstructions (S-NI)

Dataset. Super-NaturalInstructions (S-NI, [23]) consists of 1616 tasks spanning 76 diverse categories,
including translation, question answering and sentiment analysis, etc. Each task is associated with an
expert-written task definition, a set of input-output pairs as positive and negative demonstrations, and
a set of input-output pairs as training queries and responses. For each task, we construct the input to
the hypernetwork as the concatenation of the task definition and two fixed positive demonstrations,
denoted as “Def+2Pos”. This input format has been observed to outperform other formats [23].
Following [17], we select the English tasks for training and evaluation. We evaluate the generation
performance of the main model on the held-out test set using the ROUGE-L metric.

Model initialization. All our experiments are conducted based on the LM-adapted T5 models
(version 1.1, [11]). T5 models are encoder-decoder Transformer-based models pre-trained using
web-scale text-to-text corpus [18]2. We consider two model scales: T5-Large (770M) and T5-XL
(3B). For experiments on the T5-Large/XL, we initialize both the hypernetwork and the main model
with the T5-Large/XL unless otherwise stated. We only keep the first 8 decoder layers (out of 24) in
the hypernetwork for training efficiency. We randomly initialize the MLP layers.

Training. We freeze the main model and multi-task fine-tune the hypernetwork. The hypernetwork
takes in input in the Def+2Pos format and generates the prefixes for the layerwise key and value
representations [12]. We further adopt a fusion-in-decoder strategy, originally designed for question
answering tasks [9, 27]. [8] has validated its effectiveness for hypernetworks, where the main model’s
decoder attends to the concatenated outputs from both the hypernetwork’s encoder and the main
model’s encoder. We fine-tune the hypernetwork for 10k steps in T5-Large experiments and 20k
steps in T5-XL experiments. We use the Adam-8bit optimizer [10, 3] with a learning rate of 5× 10−5

and a batch size of 256. We select α ∈ {1, 5, 10, 20}. Further implementation details are deferred to
Appendix 6.1.

Inference. For each task in the held-out test set, the hypernetwork takes in input in the Def+2Pos
format and generates a set of prefixes. The main model then predicts all task queries using this single
set of prefixes and the fused output from both encoders.

Full Fine-tuning Baselines. We list as references the baselines for fine-tuning the full model:
• FT-Zero-Shot. We multi-task fine-tune a model, which predicts the response to a query.
• FT-Few-Shot. We multi-task in-context fine-tune a model, which takes the concatenation of the
task definition, two fixed positive demonstrations and a query as input, and predicts the response.
• Tk-Instruct [23] mainly differs from FT-Few-Shot in that each positive demonstration is further
followed by an expert-written explanation.
• HINT [8] is a hypernetwork approach where the hypernetwork and the main model share weights
and are jointly fine-tuned. It consists of two stages: 1) The hypernetwork is pre-trained on the C4
corpus [18]. Each input string is split into three random-length chunks. The hypernetwork takes the
first chunk as input to generate PEFT parameters. The main model takes the second chunk as input
to predict the third chunk. 2) The hypernetwork and the main model share weights and are jointly
in-context multi-task fine-tuned.

Parameter Efficient Fine-tuning (PEFT) Baselines. We compare with baselines for fine-tuning the
PEFT parameters:

2LM-adapted T5 models further improve T5 models in activation function, dropout, parameter sharing and
data filtration. We will omit “LM-adapted” when referring to the T5 models for the rest of the paper.
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• LoRA. [7] propose to add a pair of rank-decomposition weight matrices to each attention weight
matrix and only fine-tune these matrices. We apply LoRA to FT-Few-Shot.
• Prefix-Tuning. [12] propose to prepend a prefix to each key and value representation in attention
modules and only train the prefixes. We apply Prefix-Tuning to FT-Few-Shot.
• HyperTuning-PT [17] is a hypernetwork approach where the hypernetwork is fine-tuned while
the main model is frozen. Similar to HINT, HyperTuning also consists of two stages: 1) The
hypernetwork is pre-trained on the C4 corpus (“PT” stands for pre-training). Each input string is split
into four chunks of predefined length. The hypernetwork takes the first and fourth chunk as input
to generate PEFT parameters. The main model takes the second chunk as input to predict the third
chunk. 2) The hypernetwork is in-context multi-task fine-tuned (Eq. 2).
• HyperTuning is our re-implementation of HyperTuning-PT where we remove the hypernetwork
pre-training and adopt the fusion-in-decoder strategy.

Comparison of the Hypernetwork Approaches. Table 1 summarizes the differences between
HART, HyperTuning-PT and HINT. Compared with HINT, HART unties the weights between the
hypernetwork and the main model. While weight-sharing fine-tunes both models jointly and therefore
achieves performance close to full fine-tuning, weight-untying can search for better PEFT parameters
through leveraging a stronger hypernetwork (as we will see in Table 2). Furthermore, weight-freezing
retains the benefits of conventional PEFT methods, e.g., it prevents catastrophic forgetting and saves
the storage cost.

Compared with HINT and HyperTuning-PT, HART introduces autoregressive parameters generation
and local consistency regularization. HART removes the hypernetwork pre-training to accommodate
the computational budget, and adds the fusion-in-decoder approach to alleviate the resulting perfor-
mance degradation (Table 5). We remark that the hypernetwork pre-training would be complimentary
to HART.

Table 1: Comparison of HINT, HyperTuning-PT and HART.

Method Untie Autoregressive Pre-train Adopt Fusion
weights generation hypernetwork -in-decoder

HINT [8] No No Yes Yes
HyperTuning-PT [17] Yes No Yes No
HART Yes Yes No Yes

Main Results. Table 2 shows the evaluation results of the T5-Large and T5-XL main models
on the S-NI held-out test set. HART achieves an improvement of 1.6 points over HyperTuning
in both the T5-Large and T5-XL experiments, demonstrating the effectiveness of autoregressive
decoding and consistency regularization strategies. Compared with Prefix-Tuning and LoRA, HART
achieves around 3 points of gain, suggesting that the PEFT parameters learned by HART are more
generalizable than those learned by conventional PEFT methods.

Table 2: Evaluation results of the T5-Large/XL main model on the S-NI held-out test set. For all
hypernetwork approaches, we use the T5-Large/XL as the initial model to train the hypernetwork.

Avg. ROUGE-L
Method T5-Large T5-XL

Full Fine-tuning
FT-Zero-Shot 40.6 46.6
FT-Few-Shot 47.6 54.0
Tk-Instruct [23] 48.0 54.3
HINT [8] - 53.2

Parameter-Efficient Fine-tuning (PEFT)
Prefix-Tuning [12] 42.6 47.1
LoRA [7] 42.9 47.7
HyperTuning-PT [17] 43.5 48.6
HyperTuning 45.2 48.8

HART 46.8 50.4
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4.2 Public Pool of Prompts (P3)

Dataset. Public Pool of Prompts (P3, [19]) is a collection of English datasets covering 62 tasks. Each
task consists of a set of input-output pairs formatted in manually-written prompt templates. P3 was
initially collected for zero-shot settings, so it does not contain a demonstration set. Therefore, at each
iteration, we sample 16 prompts from the training set and concatenate them to form the hypernetwork
input, denoted as "16-Shots". We evaluate the main model on the held-out validation set using the
multiple-choice scoring of accuracy. All model initialization, training and inference configurations
follow Section 4.1.

Main Results. Table 3 and Table 4 show the evaluation results of T5-Large and T5-XL main models
on the P3 held-out validation set, respectively. HART achieves 2.0 and 3.6 points of improvement
over HyperTuning in the T5-Large and T5-XL experiments, respectively. However, as observed,
HyperTuning significantly underperforms HyperTuning-PT. We suspect that this is because the P3
collection is difficult to fit. In this case, the fusion-in-decoder approach becomes less effective as the
encoder is too weak to extract meaningful representations, making hypernetwork pre-training crucial
for facilitating model convergence. Despite a lower baseline, HART still outperforms conventional
PEFT methods and achieves performance comparable to the full fine-tuning baselines.

Table 3: Evaluation results of T5-Large main model on the P3 held-out validation set. For all
hypernetwork approaches, we use the T5-Large as the initial model to train the hypernetwork.

Method ANLI HSwag CB COPA RTE WiC WSC WGD Avg.

Full Fine-tuning
FT-Zero-Shot 33.4 28.0 63.0 77.9 71.1 50.8 61.0 53.4 54.8
FT-Few-Shot 35.3 27.5 68.6 70.5 75.2 51.7 62.1 52.2 55.4

Parameter-Efficient Fine-tuning (PEFT)
Prefix-Tuning [12] 33.1 26.1 53.9 67.8 60.5 49.8 54.7 51.4 49.7
LoRA [7] 31.8 26.3 48.6 61.4 71.3 51.5 63.0 51.1 50.6
HyperTuning-PT[17] 33.4 32.3 60.1 73.9 71.5 51.1 63.0 51.1 54.6
HyperTuning 33.4 28.5 59.4 68.6 67.9 50.6 62.8 52.9 53.0

HART 33.6 28.4 70.2 70.1 72.2 50.3 62.3 53.0 55.0

Table 4: Evaluation results of the T5-XL main model on the P3 held-out validation set. For all
hypernetwork approaches, we use the T5-XL as the initial model to train the hypernetwork.

Method ANLI HSwag CB COPA RTE WiC WSC WGD Avg.

Full Fine-tuning
T0-3B [19] 33.4 27.3 45.4 72.8 64.6 50.6 64.9 50.9 54.9
FT-Zero-Shot 39.9 29.4 64.5 88.0 80.8 51.7 60.7 57.9 59.1
FT-Few-Shot 37.9 30.9 67.6 90.5 76.6 51.2 63.3 61.1 59.9
HINT [8] 41.6 30.3 76.0 88.8 84.2 51.4 59.5 60.1 65.4

Parameter-Efficient Fine-tuning (PEFT)
Prefix-Tuning [12] 38.3 31.2 61.4 82.4 78.6 52.6 57.0 54.3 57.0
LoRA [7] 38.5 28.8 57.6 80.1 78.2 52.0 59.3 53.3 56.0
HyperTuning-PT [17] 38.7 33.6 69.6 88.4 79.5 53.1 57.6 56.6 59.6
HyperTuning 36.8 26.6 54.6 79.4 76.8 52.3 54.8 50.8 54.0

HART 37.8 28.5 66.7 80.8 79.4 50.5 59.5 57.1 57.6

5 Conclusion

To achieve an efficient task adaptation, we propose a novel hypernetwork training approach, HART.
HART incorporates an autoregressive decoding scheme to exploit layerwise dependencies and a
consistency regularization technique to improve training stability, allowing the hypernetwork to
generate more expressive task-specific PEFT parameters for pre-trained models.
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6 Appendix

6.1 Implementation Details

6.1.1 Hypernetwork Architecture

The hypernetwork takes the encoder-decoder LM-adapted T5 Transformer architecture [18, 11].
T5 models are encoder-decoder Transformer-based models pre-trained using web-scale text-to-text
corpus. LM-adapted T5 models further improve T5 models in activation function, dropout, parameter
sharing and data filtration.

T5-Large and T5-XL models each consists of a 24-layer encoder and a 24-layer decoder. T5-Large
has a hidden dimension of 1024 and T5-XL has a hidden dimension of 2048. For training efficiency,
we adopt the first 8 layers of the decoder to initialize the hypernetwork’s decoder.

6.1.2 Parameter Generation in Details

In Sections 2 and 3, We introduce the parameter generation schemes for HyperTuning [17] and HART
with some simplifications for presentation clarity. In this section, we provide the full details in their
prefix generation schemes.

Notations. We denote the length of the prefix to be generated as p, which is set to be 32 in both
methods. We denote the hidden dimension of both the hypernetwork and the main model as dm,
which is 1024 in T5-Large and 2048 in T5-XL. We denote the number of layers in both the main
model’s encoder and decoder as L, which is 24 in both T5-Large and T5-XL.

Parameter Generation in HyperTuning. In HyperTuning, the input to the hypernetwork’s decoder is
a learnable embedding with 2p as the sequence length, denoted as z ∈ R2p×dm . At each forward pass,
the decoder takes in z and generates a hidden state h ∈ R2p×dm using bi-directional self-attention
following Eq. 3. The decoder conditions on the few-shot demonstration examples by crossly attending
to the hypernetwork’s encoder’s output representation.

For each layer of the main model, two layer-specific MLPs would be learned to project the hidden
state h to the key and value prefixes, respectively. In other words, for a 2L-layer main model, there
are 4L MLPs. Each MLP consists of a layer normalization, 2 linear projections each with a dimension
of Rdm×dm , and a tanh non-linear activation.

We denotes the MLP that learns the key/value prefix for the l-th layer of the encoder/decoder
as MLPlenc,key(·), MLPlenc,value(·), MLPldec,key(·), and MLPldec,value(·), respectively. MLPlenc,key(·) and
MLPlenc,value(·) would take h[: p, :] ∈ Rp×dm as input and produce ϕl

enc,key and ϕl
enc,value, both in

Rp×dm , as the key and value prefixes for the l-th layer of the encoder. Similarly, MLPldec,key(·) and
MLPldec,value(·) would take h[−p :, :] ∈ Rp×dm as input and produce ϕl

dec,key and ϕl
dec,value as the

key and value prefixes for the l-th layer of the decoder.

For training efficiency, {MLPlenc,key}Ll=1 share the weights of their first linear projections.
{MLPlenc,value}Ll=1, {MLPldec,key}Ll=1 and {MLPldec,value}Ll=1 share their weights in a similar fashion.

Parameter Generation in HART. In HART, the input to the hypernetwork’s decoder is a learnable
embedding with 2 as the sequence length, denoted as z ∈ R2×dm . At each forward pass, the decoder
takes in z and autoregressively decodes a sequence of hidden states h1, ..., hL, each with dimension
R2×dm . The decoder conditions on the few-shot task-specific demonstration examples by crossly
attending to the hypernetwork’s encoder’s output representation.

For each layer of the main model, two layer-specific MLPs would be learned to project the hidden
state h to the key and value prefixes, respectively. Each MLP consists of a layer normalization,
2 linear projections and a tanh non-linear activation. The first linear projection is of dimension
Rdm×pdm and the second is of dimension Rdm×dm .

Following the same notations from HyperTuning, MLPlenc,key(·) and MLPlenc,value(·) would take
h[: 1, :] ∈ Rdm as input. After their first linear projections, the intermediate outputs are of dimension
Rpdm . We further reshape the intermediate outputs into the dimension Rp×dm , which is then projected
by their second linear projections into ϕl

enc,key and ϕl
enc,value, the key and value prefixes for the
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l-th layer of the encoder. Both prefixes are of dimension Rp×dm . Similarly, MLPldec,key(·) and
MLPldec,value(·) would take h[−1 :, :] ∈ Rdm as input and produce ϕl

dec,key and ϕl
dec,value as the key

and value prefixes for the l-th layer of the decoder.

For training efficiency, {MLPlenc,key}Ll=1 share the weights of their first linear projections.
{MLPlenc,value}Ll=1, {MLPldec,key}Ll=1 and {MLPldec,value}Ll=1 share their weights in a similar fashion.

Remark regarding Weight Sharing and Input Sharing in MLPs. We remark that in HyperTuning
and HART, the MLPs are not completely independent across layers because they share the same input
hidden state and the first linear projection layers. Such input and weight sharing indeed allow MLPs
to learn the pattern of layerwise dependency through training, but they need to learn it from scratch.
In contrast, autoregressive decoding allows the hypernetwork to directly exploit the layerwise pattern
without learning. This pattern is an useful inductive bias that improves the sample efficiency during
training.

6.1.3 Training Details

Multi-task Training Data Taxonomy. We adhere to the training and evaluation subsets used in [17]
for both P3 and S-NI datasets.

For P3, we use the T0 model’s training subset, specifically selecting tasks with an average input
length of fewer than 320 tokens following HyperTuning. We also use the T0 model’s evaluation
subset after excluding StoryCloze, as StoryCloze is not publicly distributed. The task taxonomy for
both training and evaluation subsets are illustrated in [19]. The complete list of training tasks are
provided in [17].

For S-NI, we utilize the training and evaluation split from the Super-NaturalInstructions V2 dataset,
excluding non-English tasks [23].

Multi-task Training Data Sampling. We follow the multi-task in-context fine-tuning setting from
MetaICL [14]. At each training iteration, we first randomly sample a task from the training task pool,
and then randomly sample K shot demonstration examples and one training example from this task.
During inference, for each task, we use a fixed set of demonstration examples for all test queries.

For SN-I, we construct the input to the hypernetwork as “Def+2Pos” because this format has been
observed to outperform other formats [23]. Following [17], we select the English tasks for training
and evaluation.

For P3, we exclude training tasks with average sequence lengths longer than 320 tokens to fit more
prompts into the input following [17].

Fusion-in-decoder. We further adopt a fusion-in-decoder strategy, originally designed for question
answering tasks [9, 27]. This strategy requires the decoder to attend to concatenated representations
of multiple encoded input contexts. [8] has validated its effectiveness for hypernetworks. Specifically,
at each forward pass, we prepend the hypernetwork’s encoder output to the main model’s encoder
output, and require the main model’s decoder to attend to such a fused representation in the cross
attention module. This approach is adopted in both the training and inference stages.

Hyperparameters. We fine-tune the hypernetwork for 10k steps in T5-Large experiments and 20k
steps in T5-XL experiments. For both model experiments, we use the Adam-8bit optimizer [10, 3]
with a learning rate of 5×10−5 and a batch size of 256. We adopt a linear decay learning rate schedule.
We select α ∈ {1, 10, 20}. We set the maximum input sequence length for the hypernetwork as 1024
and the prefix length as 32. For the main model, we set the maximum input and target sequence
length as 384 and 128. We adopt the same input sequence length and target sequence length during
inference.

We use deepspeed library for distributed training and inference. The T5-Large experiments are
conducted on 8 Nvidia 32G V100 GPUs and T5-XL experiments are conducted on 8 Nvidia 80G
A100 GPUs.

6.2 Analysis

In this section, we justify the design choices for HART. All experiments herein utilize a T5-Large
model for initializing both the hypernetwork and the main model.

11



6.2.1 Ablation Study

Table 5 shows an ablation study of autoregressive parameter generation and local consistency regular-
ization on the S-NI held out test set and the P3 held-out validation set. Starting with HyperTuning,
we first remove the hypernetwork pre-training stage, then incorporate the fusion-in-decoder approach,
and sequentially introduce the proposed strategies. We observe that autoregressive parameter gen-
eration contributes over a one-point gain on both benchmarks, with local consistency adding an
additional gain of approximately 0.5 points.

Table 5: Ablation study of the proposed components on the S-NI held out test set and the P3 held-out
validation set.

Method S-NI P3
Avg. ROUGE-L Avg. Score

HyperTuning-PT 43.5 54.6
- Continual Pre-training 25.3 50.9
+ Fusion-in-Decoder (HyperTuning) 45.2 53.0
+ Autoregressive Parameter Generation 46.4 54.3
+ Local Consistency Regularization (HART) 46.8 55.0

Figure 3: The main model prediction losses with and without using autoregressive parameter genera-
tion on the S-NI and the P3 training sets.

6.2.2 Autoregressively Generated Parameters Fit Better

Figure 3 shows the main model’s prediction losses with and without autoregressive parameter
generation on the S-NI and the P3 training sets. We present the loss curves corresponding to the
experiments at the third and the fourth rows in Table 5, without regularizing the local consistency. By
using autoregressively generated parameters, the training loss converges faster, suggesting that the
parameters better fit the training data.

6.2.3 Local Consistency Regularization Reduces Loss Variance

Figure 4: The main model predic-
tion losses with and without using
local consistency regularization on
the P3 training set.

Figure 4 shows the main model’s prediction losses with and
without local consistency regularization the P3 training set.
We present the loss curves corresponding to the experiments
at the fourth and the last rows in Table 5. Local consistency
regularization alleviates the loss spikes and reduces the loss
variances, suggesting the training is more stable.
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