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Abstract
Secure aggregation is a critical component in federated learning (FL), which1

enables the server to learn the aggregate model of the users without observing2

their local models. Conventionally, secure aggregation algorithms focus only on3

ensuring the privacy of individual users in a single training round. We contend that4

such designs can lead to significant privacy leakages over multiple training rounds,5

due to partial user selection/participation at each round of FL. In fact, we show that6

the conventional random user selection strategies in FL may lead to leaking users’7

individual models within a number of rounds that is linear in the number of users.8

To address this challenge, we introduce a secure aggregation framework, Multi-9

RoundSecAgg, with multi-round privacy guarantees. In particular, we introduce a10

new metric to quantify the privacy guarantees of FL over multiple training rounds,11

and develop a structured user selection strategy that guarantees the long-term12

privacy of each user (over any number of training rounds). Our framework also13

carefully accounts for the fairness and the average number of participating users at14

each round. Our experiments on MNIST, CIFAR-10 and CIFAR-100 datasets in15

the IID and the non-IID settings demonstrate the performance improvement over16

the baselines, both in terms of privacy protection and test accuracy.17

1 Introduction18

Figure 1: A qualitative comparison of the reconstructed
images in two settings is shown. The first setting
corresponds to the case that model privacy with random
user selection (e.g., FedAvg [25]) is protected by
conventional secure aggregation schemes as [4] at each
round. In the second setting, our proposed method
ensures the long-term privacy of individual models
over any number of rounds, and hence model inversion
attack cannot work well. This reconstruction process is
described in detail in Appendix H.

Federated learning (FL) enables collaborative19

training of machine learning models over the20

data collected and stored locally by multiple21

data-owners. The training in FL is typically22

coordinated by a central server who maintains a23

global model that is updated locally by the users.24

The local updates are then aggregated by the25

server to update the global model. Throughout26

the training process, the users never share their27

data with the server, i.e., the data is always kept28

on device, rather, they only share their local29

updates. However, as has been shown recently,30

the local models may still reveal substantial31

information about the local datasets, and the32

private training data can be reconstructed from33

the local models through inference or inversion34

attacks (see e.g., [11, 26, 42, 12]).35

To prevent such information leakage, secure aggregation protocols are proposed (e.g., [4, 31, 15,36

40, 2, 38, 30]) to protect the privacy of the local models, both from the server and the other users,37

while still allowing the server to learn their aggregate. More specifically, the secure aggregation38

protocols ensure that, at any given round, the server can only learn the aggregate model of the users,39

and beyond that no further information is revealed about the individual model.40

Secure aggregation protocols, however, only ensure the privacy of the individual users in a single41

training round, and do not consider their privacy over multiple training rounds [4, 2, 31, 32]. On42

the other hand, due to partial user selection [7, 5, 6, 28], the server may be able to reconstruct the43

individual models of some users using the aggregated models from the previous rounds. In fact, we44

show that after a sufficient number of rounds, all local models can be recovered with a high accuracy45

if the server uniformly chooses a random subset of the users to participate at every round. As shown46



in Fig.1, performing model inversion attack [12] with the recovered local models yields reconstructed47

images with a similar quality as the original images.48

Contributions. As such motivated, we study long-term user privacy in FL. Specifically, our49

contributions are as follows.50

1. We introduce a new metric to capture long-term privacy guarantees for secure aggregation protocols51

in FL for the first time. This long-term privacy requires that the server cannot reconstruct any52

individual model using the aggregated models from any number of training rounds. Using this53

metric, we show that the conventional random selection schemes can result in leaking the local54

models after a sufficient number of rounds, even if secure aggregation is employed at each round.55

2. We propose Multi-RoundSecAgg, a privacy-preserving structured user selection strategy that56

ensures the long-term privacy of the individual users over any number of training rounds. This57

strategy also takes into account the fairness of the selection process and the average number of58

participating users at each round.59

3. We demonstrate that Multi-RoundSecAgg creates a trade-off between the long-term privacy60

guarantee and the average number of participating users. In particular, as the average number of61

participating users increases, the long-term privacy guarantee becomes weaker.62

4. We provide the convergence analysis of Multi-RoundSecAgg, which shows that the long-term63

privacy guarantee and the average number of participating users control the convergence rate. The64

convergence rate is maximized when the average number of participating users is maximized.65

(e.g., the random user selection strategy maximizes the average number of participating users at66

the expense of not providing long-term privacy guarantees). As we require stronger long-term67

privacy guarantees, the average number of participating users decreases and a larger number of68

training rounds is required to achieve the same level of accuracy as the random selection strategy.69

5. Finally, our experiments in both IID and non-IID settings on MNIST, CIFAR-10 and CIFAR-10070

datasets demonstrate that Multi-RoundSecAgg achieves almost the same test accuracy compared71

to the random selection scheme while providing better long-term privacy guarantees.72

2 Related Work73

The underlying principle of the secure aggregation protocol in [4] is that each pair of users exchange a74

pairwise secret key which they can use to mask their local models before sharing them with the server.75

The pairwise masks cancel out when the server aggregates the masked models, allowing the server to76

aggregate the local models. These masks also ensure that the local models are kept private, i.e., no77

further information is revealed beyond the aggregate of the local models. This protocol, however,78

incurs a significant communication cost due to exchanging and reconstructing the pairwise keys.79

Recently, several works have developed computation and communication-efficient protocols [31, 15,80

2, 35, 8, 10, 38], which are complementary to and can be combined with our work. Another line of81

work focused on designing partial user selection strategies to overcome the communication bottleneck82

in FL while speeding up the convergence by selecting the users based on their local loss [7, 5, 6, 28].83

Previous works, either on secure aggregation or on partial user selection, however, do not consider84

mitigating the potential privacy leakage as a result of partial user participation and the server observing85

the aggregated models across multiple training rounds. While [27] pointed out to the privacy leakage86

of secure aggregation, mitigating this leakage has not been considered and our work is the first secure87

aggregation protocol to address this challenge.88

Differential privacy (DP), in which each user adds artificial noises to the local models, can be one of89

the potential solution to protect the privacy leakage over the multiple rounds [9, 1, 37, 3, 16]. In DP,90

however, the privacy guarantee sacrifices the model performance, which is known as a privacy-utility91

trade-off. It is worth noting that secure aggregation and DP are complementary, i.e., all the benefits92

of DP can be applied to our approach by adding noise to the local models [3]. In this paper, our93

objective is to understand the secure aggregation itself.94

3 System Model95

In this section, we first describe the basic federated learning model in Section 3.1. Next, we introduce96

the multi-round secure aggregation problem for federated learning and define the key metrics to97

evaluate the performance of a multi-round secure aggregation protocol in Section 3.2.98
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3.1 Basic Federated Learning Model99

We consider a cross-device federated learning setup consisting of a server and # users. User 8 ∈ [#]100

has a local dataset D8 consisting of <8 = |D8 | data samples. The users are connected to each other101

through the server, i.e., all communications between the users goes through the server [24, 4, 17].102

The goal is to collaboratively learn a global model x with dimension 3, using the local datasets that103

are generated, stored, and processed locally by the users. The training task can be represented by104

minimizing a global loss function,105

min
x
! (x) s.t. ! (x) = 1∑#

8=1 F8

#∑
8=1

F8!8 (x), (1)

where !8 is the loss function of user 8 and F8 ≥ 0 is a weight parameter assigned to user 8 to specify106

the relative impact of that user. A common choice for the weight parameters is F8 = <8 [17]. We107

define the optimal model parameters x∗ and x∗
8

as x∗ = arg minx∈R3 ! (x) and x∗
8
= arg minx∈R3 !8 (x).108

Federated Averaging with Partial User Participation. To solve (1), the most common algorithm109

is the FedAvg (federated averaging) algorithm [24]. FedAvg is an iterative algorithm, where the model110

training is done by repeatedly iterating over individual local updates. At the beginning of training111

round C, the server sends the current state of the global model, denoted by x(C) , to the users. Each112

round consists of two phases, local training and aggregation. In the local training phase, user 8 ∈ [#]113

updates the global model by carrying out � (≥ 1) local stochastic gradient descent (SGD) steps and114

sends the updated local model x(C)
8

to the server. One of key features of cross-device FL is partial115

device participation. Due to various reasons such as unreliable wireless connectivity, or battery issues,116

at any given round, only a fraction of the users are available to participate in the protocol. We refer117

to such users as available users throughout the paper. In the aggregation phase, the server selects118

 ≤ # users among the available users if this is possible and aggregates their local updates. The119

server updates the global model as follows120

x(C+1) =
∑
8∈S (C )

F′8x
(C)
8
= X(C)>p(C) , (2)

where S (C) is the set of participating users at round C, F′
8
=

F8∑
8∈S(C ) F8

, and p(C) ∈ {0, 1}# is the121

corresponding characteristic vector. That is, p(C) denotes a participation vector at round C whose 8-th122

entry is 0 when user 8 is not selected and 1 otherwise. X(C) denotes the concatenation of the weighted123

local models at round C, i.e., X(C) =
[
F′1x(C)1 , . . . , F′

#
x(C)
#

]> ∈ R#×3 . Finally, the server broadcasts124

the updated global model x(C+1) to the users for the next round.125

Threat Model. Similar to the prior works on secure aggregation as [4, 15, 31], we consider the126

honest-but-curious model. All participants follow the protocol honestly in this model, but try to learn127

as much as possible about the users. At each round, the privacy of individual model x(C)
8

in (2) is128

protected by secure aggregation such that the server only learns the aggregated model
∑
8∈S (C ) F

′
8
x(C)
8

.129

130

3.2 Multi-round Secure Aggregation131

Conventional secure aggregation protocols only consider the privacy guarantees over a single training132

round. While secure aggregation protocols have provable privacy guarantees at any single round,133

in the sense that no information is leaked beyond the aggregate model at each round, the privacy134

guarantees do not extend to attacks that span multiple training rounds. Specifically, by using the135

aggregate models and participation information across multiple rounds, an individual model may be136

reconstructed. For instance, consider the following user participation strategy across three training137

rounds, p(1) = [1, 1, 0]>, p(2) = [0, 1, 1]>, and p(3) = [1, 0, 1]>. Assume a scenario where the local138

updates do not change significantly over time (e.g., models start to converge, or the server fixes the139

global model over consecutive rounds), i.e., x8 = x(C)
8

for all 8 ∈ [3] and C ∈ [3]. Then, the server can140

single out individual model, e.g., x1 = (x(1) + x(3) − x(2) )/2. Similarly, the server can single out all141

individual models x8 , even if a secure aggregation protocol is employed at each round.142

In this paper, we study secure aggregation protocols with long-term privacy guarantees (which we143

term multi-round secure aggregation) for the cross-device FL setup which has not been studied before.144
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We assume that user 8 ∈ [#] drops from the protocol at each round with probability ?8 . U (C) denotes145

the index set of available users at round C and u(C) ∈ {0, 1}# is a vector indicating the available users146

such that {u(C) } 9 = 1{ 9 ∈ U (C) }, where {u} 9 is 9-th entry of u and 1{·} is the indicator function.147

The server selects  users fromU (C) , if |U (C) | ≥  , based on the history of selected users in previous148

rounds. If |U (C) | <  , the server skips this round. The local models of the selected users are then149

aggregated via a secure aggregation protocol (i.e., by communicating masked models), at the end of150

which the server learns the aggregate of the local models of the selected users. Our goal is to design a151

user selection algorithm A (C) : {0, 1}C×# × {0, 1}# → {0, 1}# ,152

A (C)
(
P(C) , u(C)

)
= p(C) such that ‖p(C) ‖0 ∈ {0,  }, (3)

to prevent the potential information leakage over multiple rounds, where p(C) ∈ {0, 1}# is the153

participation vector defined in (2), ‖x‖0 denotes the !0-“norm” of a vector x and  denotes the154

number of selected users. We note that A (C) can be a random function. P(C) is a matrix representing155

the user participation information up to round C, and is termed the participation matrix, given by156

P(C) =
[
p(0) , p(1) , . . . , p(C−1) ]> ∈ {0, 1}C×# . (4)

Key Metrics. A multi-round secure aggregation protocol can be represented by A = {A (C) }C ∈[� ] ,157

whereA (C) is the user selection algorithm at round C defined in (3) and � is the total number of rounds.158

The inputs of A (C) are a random vector u(C) , which indicates the available users at round C, and the159

participation matrix P(C) defined in (4) which can be a random matrix. Given the participation matrix160

P(� ) , we evaluate the performance of the corresponding multi-round secure aggregation protocol161

through the following metrics.162

1. Multi-round Privacy Guarantee. The secure aggregation protocols ensure that the server can163

only learn the sum of the local models of some users in each single round, but they do not consider164

what the server can learn over the long run. Our multi-round privacy definition extends the165

guarantees of the secure aggregation protocols from one round to all rounds by requiring that the166

server can only learn a sum of the local models even if the server exploits the aggregate models167

of all rounds. That is, our multi-round privacy guarantee is a natural extension of the privacy168

guarantee provided by the secure aggregation protocols considering a single training round.169

Specifically, a multi-round privacy guarantee ) requires that any non-zero partial sum of the170

local models that the server can reconstruct, through any linear combination X>P(� )>z, where171

z ∈ R� \ {0}, must be of the form1172

X>P(� )>z =
∑
8∈[=]

08

∑
9∈S8

x 9 = 01
∑
9∈S1

x 9 + 02
∑
9∈S2

x 9 + · · · + 0=
∑
9∈S=

x 9 , (5)

where |S8 | ≥ ), 08 ≠ 0,∀8 ∈ [=] and = ∈ Z+. Here all the sets S8 , the number of sets =, and each173

08 could all depend on z. In equation (5), we consider the worst-case scenario, where the local174

models do not change over the rounds. That is, X(C) = X, ∀C ∈ [�]. Intuitively, this guarantee175

ensures that the best that the server can do is to reconstruct a partial sum of ) local models which176

corresponds to the case where = = 1. When ) ≥ 2, this condition implies that the server cannot177

get any user model from the aggregate models of all training rounds (the best it can obtain is the178

sum of two local models).179

Remark 1. (Weaker Privacy Notion). It is worth noting that, a weaker privacy notion would180

require that ‖P(� )>z‖0 ≥ ) when P(� )>z ≠ 0. When ) = 2, this definition requires that the server181

cannot reconstruct any individual model (the best it can do is to obtain a linear combination of182

two local models). This notion, however, allows constructions in the form of 0x8 + 1x 9 for any183

0, 1 ∈ R \ {0}. When 0 � 1, however, this is almost the same as recovering x8 perfectly, hence184

this privacy criterion is weaker than that of (5).185

Remark 2. (Multi-round Privacy of Random Selection). In Section 6, we empirically show that a186

random selection strategy in which  available users are selected uniformly at random at each187

round does not ensure multi-round privacy even with respect to the weaker definition of Remark188

1. Specifically, the local models can be reconstructed within a number of rounds that is linear in189

# . We also show theoretically in Appendix H that when min(# −  ,  ) ≥ 2# , where 2 > 0 is a190

constant, then the probability that the server can reconstruct all local models after # rounds is191

1We assume that F8 = 1
#
,∀8 ∈ [#] in this paper.
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at least 1 − 24−2′# for a constant 2′ that depends on 2. Finally, we show that a random selection192

scheme in which the users are selected in an i.i.d fashion according to Bern(  
# (1−?) ) reveals all193

local models after # rounds with probability that converges to 1 exponentially fast.194

Remark 3. (Worst-Case Assumption). In (5), we considered the worst-case assumption where195

the models do not change over time. When the local models change over rounds, the multi-round196

privacy guarantee becomes even stronger as the number of unknowns increases. In Fig. 1 and197

Appendix H, we empirically show that the conventional secure aggregation schemes leak extensive198

information of training data even in the realistic settings where the models change over the rounds.199

2. Aggregation Fairness Gap. The average aggregation fairness gap quantifies the largest gap200

between any two users in terms of the expected relative number of rounds each user has participated201

in training. Formally, the average aggregation fairness gap is defined as follows202

� = max
8∈[# ]

lim sup
�→∞

1
�
E
[ �−1∑
C=0

1
{
{p(C) }8 = 1

}]
− min
8∈[# ]

lim inf
�→∞

1
�
E
[ �−1∑
C=0

1
{
{p(C) }8 = 1

}]
, (6)

where {p(C) }8 is 8-th entry of the vector p(C) and the expectation is over the randomness of the user203

selection algorithm A and the user availability. The main intuition behind this definition is that204

when � = 0, all users participate on average on the same number of rounds. This is important to205

take the different users into consideration equally and our experiments show that the accuracy of206

the schemes with small � are much higher than the schemes with high �.207

3. Average Aggregation Cardinality. The aggregation cardinality quantifies the expected number208

of models to be aggregated per round. Formally, it is defined as209

� = lim inf
�→∞

E
[ ∑�−1

C=0 ‖p(C) ‖0
]

�
, (7)

where the expectation is over the randomness in A and the user availability. Intuitively, less210

number of rounds are needed to converge as more users participate in the training. In fact, as we211

show in Section 5.2, � directly controls the convergence rate.212

3.3 Baseline Schemes213

In this subsection, we introduce three baseline schemes for multi-round secure aggregation.214

Random Selection. In this scheme, at each round, the server selects  users at random from the set215

of available users if this is possible.216

Random Weighted Selection. This scheme is a modified version of random selection to reduce �217

when the dropout probabilities of the users are not equal. Specifically,  users are selected at random218

from the available users with the minimum frequency of participation in the previous rounds.219

User Partitioning (Grouping). In this scheme, the users are partitioned into � = #/ equal-sized220

groups denoted as G1,G2, · · · ,G� . At each round, the server selects one of the groups if none of221

the users in this group has dropped out. If multiple groups are available, to reduce the aggregation222

fairness gap, the server selects a group including a user with the minimum frequency of participation223

in previous rounds. If no group is available, the server skips this round.224

4 Proposed Scheme: Multi-RoundSecAgg225

In this section, we present Multi-RoundSecAgg, which has two components as follows.226

• The first component designs a family of sets of users that satisfy the multi-round privacy requirement.227

The inputs of the first component are the number of users (#), the number of selected users at each228

round ( ), and the desired multi-round privacy guarantee ()). The output is a family of sets of  229

users satisfying the multi-round privacy guarantee ) , termed as a privacy-preserving family. This230

family is represented by a matrix B, where the rows are the characteristic vectors of these user sets.231

• The second component selects a set from this designed family to satisfy the fairness guarantee. The232

inputs to the second component are the family B, the set of available users at round C,U (C) , and the233

frequency of participation of each user. The output is the set of users that will participate at round C.234

We now describe these two components in detail.235
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Component 1 (Batch Partitioning (BP) of the users to guarantee multi-round privacy). The236

first component designs a family of 'BP sets, where 'BP is the size of the set, satisfying the multi-237

round privacy requirement ) . We denote the 'BP × # binary matrix corresponding to these sets by238

B = [b1, · · · , b'BP ]>, where ‖b8 ‖0 =  ,∀8 ∈ ['BP]. That is, the rows of B are the characteristic239

vectors of those sets. The main idea of our scheme is to restrict certain sets of users of size ) , denoted240

as batches, to either participate together or not participate at all. This guarantees a multi-round privacy241

) as we show in Section 5.242

To construct a family of sets with this property, the users are first partitioned into #/)243

batches. At any given round, either all or none of the users of a particular batch participate244

in training. The server can choose  /) batches to participate in training, provided that all245

users in any given selected batch are available. Since there are
(# /)
 /)

)
possible sets with246

this property, then the size of this privacy-preserving family of sets is given by 'BP
def
=

(# /)
 /)

)2.247

Figure 2: Example of our construction
with # = 8,  = 4 and ) = 2.

In the extreme case of ) = 1, this strategy specializes to random248

selection where the server can choose any  possible users. In249

the other extreme case of ) =  , this strategy specializes to250

the partitioning strategy where there are #/ possible sets. We251

next provide an example to illustrate the construction of B.252

Example 1 (# = 8,  = 4, ) = 2). In this example, the users253

are partitioned into 4 batches as G1 = {1, 2},G2 = {3, 4},G3 =254

{5, 6} and G4 = {7, 8} as given in Fig. 2. The server can choose any two batches out of these 4255

batches, hence we have 'BP =
(4
2
)
= 6 possible sets. This ensures a multi-round privacy ) = 2.256

Component 2 (Available batch selection to guarantee fairness). At round C, user 8 ∈ [#] is257

available to participate in the protocol with a probability 1−?8 ∈ (0, 1]. The frequency of participation258

of user 8 before round C is denoted by 5
(C)
8

def
=

∑C−1
9=0 1

{
{p( 9) }8 = 1

}
. Given the set of available users at259

round C, U (C) , and the frequencies of participation f (C−1) = ( 5 (C−1)
1 , · · · , 5 (C−1)

#
), the server selects260

 users. To do so, the server first finds the submatrix of B denoted by B(C) corresponding toU (C) .261

Specifically, the 8-th row of B denoted by b>
8

is included in B(C) provided that supp(bi) ⊆ U (C) . If262

B(C) is an empty matrix, then the server skips this round. Otherwise, the server selects a row from B(C)263

uniformly at random if ?8 = ?,∀8 ∈ [#]. If the users have different ?8 , the server selects a row from264

B(C) that includes the user with the minimum frequency of participation ℓ (C−1)
min

def
= arg min8∈U (C ) 5

(C−1)
8

.265

If there are many such rows, then the server selects one of them uniformly at random.266

Remark 4. (Necessity of the Second Component). The second component is necessary to guarantee267

that the aggregation fairness gap goes to zero as we show in Theorem 1 and Section 6.268

Overall, the algorithm first designs a privacy-preserving family of sets to ensure the multi-round269

privacy guarantee ) . Then specific sets are selected from this family to ensure fairness. We describe270

the two components of Multi-RoundSecAgg in detail in Algorithm 1 and Algorithm 2 in Appendix D.271

5 Theoretical Results272

In this section, we provide the theoretical guarantees of Multi-RoundSecAgg in Section 5.1 and the273

convergence analysis of Multi-RoundSecAgg in Section 5.2.274

5.1 Theoretical Guarantees of Multi-RoundSecAgg275

In this subsection, we establish the theoretical guarantees of Multi-RoundSecAgg in terms of the276

multi-round privacy guarantee, the aggregation fairness gap and the average aggregation cardinality.277

Theorem 1. Multi-RoundSecAgg with parameters #,  ,) ensures a multi-round privacy guarantee278

of ) , an aggregation fairness gap � = 0, and an average aggregation cardinality given by279

� =  
©«1 −

# /)∑
8=# /) − /) +1

(
#/)
8

)
@8 (1 − @)# /) −8ª®¬,

2We assume for simplicity that #/) and  /) are integers.
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where @ = 1 − (1 − ?)) , when all users have the dropout probability ?.280

We provide the proof of Theorem 1 in Appendix A.281

Remark 5. (Trade-off between “Multi-round Privacy Guarantee” and “Average Aggregation282

Cardinality”). Theorem 1 indicates a trade-off between the multi-round privacy and the average283

aggregation cardinality since as ) increases, � decreases which slows down the convergence as we284

show in Sec. 5.2. We show this trade-off in Fig. 3.285

Remark 6. (Necessity of Batch Partitioning (BP)). We show that any strategy that satisfies the privacy286

guarantee in Equation (5) must have a batch partitioning structure, and for given #,  ,),  ≤ #/2,287

the largest number of distinct user sets in any strategy is at most
(# /)
 /)

)
, which is achieved in our288

design in Section 4. We provide the proof in Appendix C.289

Remark 7. (Non-linear Reconstructions of Aggregated Models). The privacy criterion in Eq. (5)290

considers linear reconstructions of the aggregated models. One may also consider more general291

non-linear reconstructions. The long-term privacy guarantees of batch partitioning hold even under292

such reconstructions as the users in the same batch always participate together or do not participate293

at all. Hence, the server cannot separate individual models within the same batch even through294

non-linear operations.295

5.2 Convergence Analysis of Multi-RoundSecAgg296

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Figure 3: An illustration of the trade-off between
the multi-round privacy guarantee ) and the
average aggregation cardinality �. In this example,
# = 120 and  = 12.

For convergence analysis of Multi-RoundSecAgg, we297

first introduce a few common assumptions [23, 39].298

Assumption 1. !1, . . . , !# in (1) are all d-smooth:299

for all a, b ∈ R3 and 8 ∈ [#], !8 (a) ≤ !8 (b) + (a −300

b)>∇!8 (b) + d2 ‖a − b‖2.301

Assumption 2. !1, . . . , !# in (1) are all `-strongly302

convex: for all a, b ∈ R3 and 8 ∈ [#], !8 (a) ≥303

!8 (b) + (a − b)>∇!8 (b) + `

2 ‖a − b‖2.304

Assumption 3. Let b (C)
8

be a sample uniformly selected from the dataset D8 . The variance of the305

stochastic gradients at each user is bounded, i.e., E‖∇!8 (x(C)8 , b
(C)
8
) − ∇!8 (x(C)8 )‖2 ≤ f2

8
for 8 ∈ [#].306

Assumption 4. The expected squared norm of the stochastic gradients is uniformly bounded, i.e.,307

E‖∇!8 (x(C)8 , b
(C)
8
)‖2 ≤ �2 for all 8 ∈ [#].308

We now state the convergence guarantees of Multi-RoundSecAgg.309

Theorem 2. Consider a FL setup with # users to train a machine learning model from (1). Assume310

 users are selected by Multi-RoundSecAgg with average aggregation cardinality � defined in (7) to311

update the global model from (2), and all users have the same dropout rate, hence Multi-RoundSecAgg312

selects a random set of  users uniformly from the set of available user sets at each round. Then, the313

following is satisfied314

E[! (x(� ) )] − !∗ ≤ d

W + �
 
�� − 1

(
2(U + V)
`2 + W

2
E‖x(0) − x∗‖2

)
, (8)

where U = 1
#

∑#
8=1 f

2
8
+6dΓ+8(�−1)2�2, V = 4(#− )�2�2

 (#−1) , Γ = !∗−∑#
8=1 !

∗
8
, and W = max

{
8d
`
, �

}
.315

We provide the proof of Theorem 2 in Appendix B.316

Remark 8. (The average aggregation cardinality controls the convergence rate.) Theorem 2 shows317

how the average aggregation cardinality affects the convergence. When the average aggregation318

cardinality is maximized, i.e., � =  , the convergence rate in Theorem 2 equals that of the random319

selection algorithm provided in Theorem 3 of [23]. In (8), we have the additional term � (number of320

local epochs) in front of � compared to Theorem 3 of [23] as we use global round index C instead of321

using step index of local SGD. As the average aggregation cardinality decreases, a greater number of322

training rounds is required to achieve the same level of accuracy.323

Remark 9. (General Convex and Non-Convex Convergence Rates). Theorem 2 considers the324

strongly-convex case, but we consider the general convex and the non-convex cases in Appendix I.325
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Remark 10. (Different Dropout Rates). When the dropout probabilities of the users are not the same,326

characterizing the convergence guarantees of Multi-RoundSecAgg is challenging. This is due to the327

fact that batch selection based on the frequency of participation breaks the conditional unbiasedness328

of the user selection, which is required for the convergence guarantee. In experiments, however, we329

empirically show that Multi-RoundSecAgg guarantees the convergence with different dropout rates.330

6 Experiments331

Our experiments consist of two parts. We first numerically demonstrate the performance of Multi-332

RoundSecAgg compared to the baselines of Section 3.3 in terms of the key metrics of Section 3.2.333

Next, we implement convolutional neural networks (CNNs) for image classification with MNIST [21],334

CIFAR-10, and CIFAR-100 [20] to investigate how the key metrics affect the test accuracy.335

Setup. We consider a FL setting with # = 120 users, where the server aims to choose  = 12 users336

at every round. We study two settings for partitioning the CIFAR-100 dataset across the users.337

• IID Setting. 50000 training samples are shuffled and partitioned uniformly across # = 120 users.338

• Non-IID Setting. We distribute the dataset using a Dirichlet distribution [13], which samples339

d2 ∼ Dir(V = 0.5) which specifying the prior class distribution over 100 classes, and allocate a340

portion 32,8 of the class 2 to user 8. The parameter V controls the heterogeneity of the distributions341

at each user, where V→∞ results in IID setting.342

We implement a VGG-11 [29], which is sufficient for our needs, as our goal is to evaluate various343

schemes, not to achieve the best accuracy. The hyperparameters are provided in Appendix F.344

Modeling dropouts. To model heterogeneous system, users have different dropout probability ?8345

selected from {0.1, 0.2, 0.3, 0.4, 0.5}. At each round, user 8 ∈ [#] drops with probability ?8 .346

Scheme Family size (= ')

Random selection ∼ 1016

Weighted random selection ∼ 1016

User partition 10
Multi-RoundSecAgg, T=6 190
Multi-RoundSecAgg, T=4 4060
Multi-RoundSecAgg, T=3 91389

Table 1: Family size with # = 120,  = 12.

Implemented Schemes. For the benchmarks, we347

implement the three baselines introduced in Sec. 3.3,348

referred to as Random, Weighted Random, and Partition.349

For Multi-RoundSecAgg, we construct three privacy-350

preserving families with different target multi-round351

privacy guarantees, ) = 6, ) = 4, and ) = 3 which352

we refer to as Multi-RoundSecAgg () = 6), Multi-353

RoundSecAgg () = 4), and Multi-RoundSecAgg () =354

3), respectively. One can view the Random and Partition as extreme cases of Multi-RoundSecAgg355

with ) = 1 and ) =  , respectively. Table 1 summarizes the family size ' defined in Section 4.356

Key Metrics. To numerically demonstrate the performance of the six schemes in terms of the key357

metrics defined in Sec. 3.2, at each round, we measure the following metrics.358

• For the multi-round privacy guarantee, we measure the number of models in the partial sum that359

the server can reconstruct, which is given by ) (C) B minz∈R� } ‖z>P(C) ‖0, s.t. P(C)>z ≠ 0. This360

corresponds to the weaker privacy definition of Remark 1. We use this weaker privacy definition361

as the random selection and the random weighted selection strategies provide the worst privacy362

guarantee even with this weaker definition, as demonstrated later. On the other hand, Multi-363

RoundSecAgg provides better privacy guarantees with both the strong and the weaker definitions.364

• For the aggregation fairness gap, we measure the instantaneous fairness gap, � (C) B365

max8∈[# ] � (C)8 −min8∈[# ] � (C)8 where � (C)
8
= 1
C+1

∑C
;=0 1

{
{p(;) }8 = 1

}
.366

• We measure the instantaneous aggregation cardinality as � (C) B 1
C+1

∑C
;=0 ‖p(;) ‖0.367

We demonstrate these key metrics in Figure 4. We make the following key observations.368

• Multi-RoundSecAgg achieves better multi-round privacy guarantee than both the random selection369

and random weighted selection strategies, while user partitioning achieves the best multi-round370

privacy guarantee, ) =  = 12. However, the partitioning strategy has the worst aggregation371

cardinality, which results in the lowest convergence rate as demonstrated later.372

• Figure 5 demonstrates the trade-off between the multi-round privacy guarantee ) and the average373

aggregation cardinality �. Interestingly, Multi-RoundSecAgg when ) = 3 or ) = 4 achieves better374

multi-round privacy guarantee than both the random selection and the weighted random selection375

strategies while achieving almost the same average aggregation cardinality.376
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Figure 4: The key metrics with # = 120 (number of users),  = 12 (number of selected users at each round).
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Figure 5: Trade-off between
multi-round privacy and average
aggregation cardinality with # =

120,  = 12.

(a) IID data distribution. (b) Non-IID data distribution.

Figure 6: Training rounds versus test accuracy of VGG11 in [29] on
the CIFAR-100 with # = 120 and  = 12.

Remark 11. (Multi-round Privacy of Random and Weighted Random). The multi-round privacy377

guarantees of Random and Weighted Random drop sharply as shown in Fig. 4(a) as the participating378

matrix P(C) ∈ {0, 1}C×# becomes full rank with high probability when C ≥ # , and hence the server can379

reconstruct the individual models by utilizing a pseudo inversion of the matrix P(C) . More precisely,380

Theorem 3 in Appendix H shows this thresholding phenomenon, where the probability that the server381

can reconstruct individual models after certain number of rounds converges to 1 exponentially fast.382

Key Metrics versus Test Accuracy. To investigate how the key metrics affect the test accuracy, we383

measure the test accuracy of the six schemes in the two settings, the IID and the non-IID settings.384

Our results are demonstrated in Figure 6. We make the following key observations.385

• In the IID setting, the Multi-RoundSecAgg schemes show test accuracies that are comparable to the386

random selection and random weighted selection schemes while the Multi-RoundSecAgg schemes387

provide higher levels of privacy. Specifically, the Multi-RoundSecAgg schemes achieve ) = 3, 4, 6388

based on the privacy-preserving family design while the random selection and random weighted389

selection schemes have ) = 1, i.e., the server can learn an individual local model.390

• In the non-IID setting, Multi-RoundSecAgg not only outperforms the random selection scheme but391

also achieves a smaller aggregation fairness gap as demonstrated in Fig. 4(b).392

• In both IID and non-IID settings, the user partitioning scheme has the worst accuracy as its average393

aggregation cardinality is much smaller than the other schemes as demonstrated in Fig. 4(c).394

We also implement additional experiments on MNIST and CIFAR-10 datasets in Appendix E and395

present ablation study for various settings of (#,  ,)) in Appendix G396

7 Conclusion397

Partial user participation may breach user privacy in federated learning, even if secure aggregation is398

employed at every training round. To address this challenge, we introduced the notion of long-term399

privacy, which ensures that the privacy of individual models are protected over all training rounds. We400

developed Multi-RoundSecAgg, a structured user selection strategy that guarantees long-term privacy401

while taking into account the fairness in user selection and average number of participating users,402

and showed that Multi-RoundSecAgg provides a trade-off between long-term privacy and average403

number of participating users (hence the convergence rate). Our experiments on the CIFAR-100,404

CIFAR-10, and MNIST datasets on both the IID and non-IID settings show that Multi-RoundSecAgg405

achieves comparable accuracy to the random selection strategy (which does not ensure long-term406

privacy), while ensuring long-term privacy guarantees.407
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