
Published as a workshop paper at SCOPE - ICLR 2025

FAST GRADIENT COMPUTATION FOR ROPE ATTEN-
TION IN ALMOST LINEAR TIME

Yifang Chen∗ Jiayan Huo† Xiaoyu Li‡

Yingyu Liang§ Zhenmei Shi¶ Zhao Song∥

ABSTRACT

The Rotary Position Embedding (RoPE) mechanism has become a powerful en-
hancement to the Transformer architecture, which enables models to capture token
relationships when encoding positional information. However, the RoPE mecha-
nisms make the computations of attention mechanisms more complicated, which
makes efficient algorithms challenging. Earlier research introduced almost linear
time algorithms for the forward computation under specific parameter settings of
bounded entries (i.e., in time n1+o(1) where n is the number of input tokens), but
has not addressed backward computation. In this work, we develop the first almost
linear time algorithm for backward computations in the RoPE-based attention un-
der bounded entries. Our approach builds on recent advancements in fast RoPE
attention computations, utilizing a novel combination of the polynomial method
and the Fast Fourier Transform. Furthermore, we show that with lower bounds
derived from the Strong Exponential Time Hypothesis (SETH), the bounded entry
condition is necessary for subquadratic performance.

1 INTRODUCTION

The GPT-o3 (OpenAI, 2024), Llama 3.3 (Llama Team, 2024; AI, 2024), Claude 3.5 (Anthropic,
2024b) are transformed-based Large Language Models (LLMs), have become important tools in
natural language processing, which enables applications from machine translation to sentiment anal-
ysis. In the Transformer architecture, attention mechanisms, computationally intensive operations,
compute token correlations within the sequence (Vaswani et al., 2017). The efficiency of attention
computations, both in forward computations and backward gradient computations, directly influ-
enced the scalability and feasibility of training LLMs, especially when the size and input context
length of these LLMs continue to grow (Alman & Song, 2024a; 2023). In recent research, Ro-
tating Position Embedding (RoPE) (Su et al., 2024) has become a popular modification to the at-
tention mechanism, and it has enabled models to capture positional relationships between tokens
with better expressiveness. The RoPE mechanism has been adopted in state-of-the-art models,
such as Llama (Touvron et al., 2023a;b; Llama Team, 2024), Claude (Anthropic, 2024b), Apple’s
LLMs (Gunter et al., 2024; McKinzie et al., 2024), and many others, but the implementation of RoPE
complicates attention computation due to the additional structure imposed by position-dependent ro-
tations (Su et al., 2024). In recent work, Alman & Song (2024b) demonstrated an efficient algorithm
for forward computation of RoPE attention in the bounded entry regime. However, backward com-
putation, the process of calculating gradients for model optimization, has been explored less.

Backward computation introduces additional complexity because it requires the evaluation of gra-
dients that involve non-linear transformations of the attention matrix and positional embeddings.
In Alman & Song (2023), they present their algorithm to approximate forward computations of fast

∗ yifangc@uchicago.edu. University of Chicago.
† jiayanh@arizona.edu. University of Arizona.
‡ xiaoyu.li2@student.unsw.edu.au. University of New South Wales.
§ yingyul@hku.hk. The University of Hong Kong. yliang@cs.wisc.edu. University of

Wisconsin-Madison.
¶ zhmeishi@cs.wisc.edu. University of Wisconsin-Madison.
∥ magic.linuxkde@gmail.com. The Simons Institute for the Theory of Computing at UC Berkeley.

1

Published as a workshop paper at SCOPE - ICLR 2025

attention with bounded entries using the polynomial methods and low-rank approximation. In Al-
man & Song (2024c), they propose almost linear time, i.e., n1+o(1) where n is the number of input
tokens, an algorithm to compute backward gradients for fast attention with bounded entries. In recent
work, Alman & Song (2024b) proposes an efficient algorithm to perform the forward computation
of RoPE-based attention using the polynomial methods and Fast Fourier Transform. Therefore, it is
natural to raise the key question:

Can backward computations for the RoPE attention match the efficiency of their forward
computations in the bounded entry regime?

In this work, we aim to address the question by presenting the first efficient algorithm for backward
computation in RoPE attention under the bounded entry. Our main result shows that the backward
gradient computations for the RoPE attention match their forward version’s efficiency. Therefore,
by leveraging our algorithm in approximating backward computations in the RoPE attention with
the forward algorithm from Alman & Song (2024b), we will improve the overall time complexity of
RoPE attention to almost linear time with bounded entries.

To the best of our knowledge, this is the first work to characterize the fine-grained complexity
of backward computations in RoPE attentions, extending prior results on forward computations in
RoPE attention (Alman & Song, 2024b). Our contribution can be described as follows.

• We formulated the closed-form gradient for the RoPE attention (see Lemma 4.1) along with
its exact time complexity (see Theorem 4.2).

• We derive the almost linear time backward approximation (see Theorem 5.2) for RoPE
attention based on the closed-form gradient.

• We show that with lower bounds derived from the SETH, the bounded entry condition is
necessary for subquadratic performance (see Theorem 6.1).

Roadmap. In Section 2, we present some relevant papers. In Section 3, we show essential com-
ponents for the RoPE attention. Section 4 gives the closed form of the RoPE Attention gradient and
discusses the exact time complexity to compute it. Section 5 shows the fast computation of the RoPE
Attention gradient in almost linear time. Section 6 details the lower bounds of hardness. Finally,
Section 7 provides conclusions and avenues for future work.

2 RELATED WORK

Rotary Position Embedding. At a high level, RoPE gives more expressive power to the model
in exchange for making the computational problem more complicated. In particular, many prior
algorithms, such as the algorithm of Alman & Song (2023), no longer apply to RoPE for fundamental
reasons we will discuss. RoPE was proposed by Su et al. (2024) and has been used extensively in
large-scale industrial models. Examples which are known to use RoPE include the open-source
models released by Meta such as Llama (Touvron et al., 2023a) (see page 3), Llama 2 (Touvron
et al., 2023b) (see page 5), Llama 3 Llama Team (2024) (see page 7), and the close-source LLM
Claude 3.5 (Anthropic, 2024b) released by Anthropic. Apple also incorporates RoPE into their LLM
architecture (see McKinzie et al. (2024), and page 3 of Gunter et al. (2024)).

Fast Attention Computation. The attention mechanism has often been criticized for its quadratic
computational complexity concerning context length, a challenge that becomes more pronounced
as the sequence length grows in today’s LLMs (Achiam et al., 2023; OpenAI, 2024; Llama Team,
2024; AI, 2024; Anthropic, 2024a;b). However, this issue can be addressed using polynomial kernel
approximation methods (Aggarwal & Alman, 2022), which facilitate constructing the approximated
attention matrix using low-rank approximations. Such techniques enable substantial improvements
in computation speed, allowing a single attention layer to perform both training and inference nearly
as fast as linear time (Alman & Song, 2023; 2024c). Our research further extends this efficiency
to support multi-layer transformer architectures for both training and inference. In addition, these
techniques can generalize to advanced attention mechanisms, such as tensor attention, while pre-
serving the almost linear time complexity in both training and evaluation phases (Alman & Song,
2024a; Liang et al., 2024c). Beyond this, alternative theoretical methods also exist. For example,

2

Published as a workshop paper at SCOPE - ICLR 2025

the conv-basis approach introduced in Liang et al. (2024a) offers another avenue for speeding up
attention computation.

Gradient Approximation. Using low-rank approximation to approximate the gradient is a com-
mon approach for optimizing the training of transformers by reducing the complexity in the compu-
tations, such as Liang et al. (2024b;c); Alman & Song (2024c); Hu et al. (2024). Specifically, Alman
& Song (2024c) extends the low-rank approximation technique developed in Alman & Song (2023),
which studies the forward computation of attention to approximate the gradient of the attention
computation. In Liang et al. (2024b), they further develop the low-rank approximation technique in
Alman & Song (2024c) to study multi-layer transformers, showing they can use nearly linear time
to approximate the backward computations of multi-layer transformers. On the other hand, Liang
et al. (2024c) generalizes the gradient approximation of Alman & Song (2024c) to another direction:
they use it to study the training of the tensor version of attention computation that develops from the
forward computation as in Alman & Song (2024a). Finally, Hu et al. (2024) leverages the low-rank
approximation technique to study the training of Diffusion Transformers (DiTs).

3 PRELIMINARIES ON ROPE ATTENTION

Our approximation task can be formalized as follows.

Definition 3.1 (The Approx of the gradient of RoPE Attention Loss Function,
ARAttLGC(n, d,B, ϵ)). Let B > 0 and ϵ > 0 denote two parameters. Given a set of
matrices W−(n−1), · · · ,W−1,W0, W1, · · · ,Wn−1 ∈ Rd×d where supp(Wi) ⊂ S for all
i ∈ {−(n − 1), · · · ,−1, 0, 1, · · · , n − 1}. Here S ⊆ [d] × [d] where |S| = O(d). For
i, j ∈ [n], let W ∈ Rn2×d2

such that Wi+(j−1)n,∗ = vec(Wi−j). Let X1, X2, Y ∈ Rd×d.
Let X := X1 ⊗ X2 ∈ Rd2×d2

. We have four n × d matrices Let A1, A2, A3, E.
Let A ∈ Rn2×d2

such that A equals to an n2 × d2 matrix from A1 ⊗ A2. Assume
∥A1X∥∞ ≤ B, ∥A2X∥∞ ≤ B, ∥A3Y ∥∞ ≤ B, ∥W∥∞ ≤ 1. Assume that all the log(n)
bits model is applied throughout all numbers in matrices. We define Loss(X) from Def. A.11. Here,
we define dLoss(X)

dX as the loss function gradient. The goal is to output a vector g̃ ∈ Rd4

such that

∥g̃ − dLoss(X)

dX
∥∞ ≤ ϵ.

The formulation of the problem can be found in Section A.6

4 EXACT GRADIENT COMPUTATION TIME

In this section, we provide the gradient computations of RoPE attentions. In Section 4.1, we formu-
late the gradient in its closed form. In Section 4.2, we conduct a time complexity analysis on the
exact computation of RoPE attention gradients.

4.1 REFORMULATE THE GRADIENT INTO ITS CLOSED FORM

In this section, we present the closed-form gradient of RoPE attention.

Lemma 4.1 (Gradient Reformulation, dLoss(x)
dx , Informal Version of Lemma C.4). For every i ∈ [d4],

we choose the following functions

• The Normalized Softmax function s(x)j0 ∈ Rn (see Definition B.3),

• The Error term ℓ(x)j0,i0 ∈ R (see Definition B.5),

• The Loss term Loss(x)j0,i0 ∈ R (see Definition B.6),

• We define β(x)j0 ∈ Rn is A3Y︸︷︷︸
n×d

ℓ(x)⊤j0,∗︸ ︷︷ ︸
d×1

3

Published as a workshop paper at SCOPE - ICLR 2025

• We define γ(x)j0 ∈ Rn is (diag(s(x)j0)− s(x)j0s(x)
⊤
j0
)β(x)j0

Then, we get
dLoss(x)

dx
= Ã⊤︸︷︷︸

d4×n2

vec(γ(x)︸︷︷︸
n×n

)

Proof. See full proof at Lemma C.4.

4.2 TIME COMPLEXITY FOR COMPUTING THE GRADIENT OF ROPE ATTENTION

In this section, we provide the time complexity of computing the exact gradient of RoPE attention.
Theorem 4.2 (RoPE attention gradient computation time complexity). We define three n× d input
matrices as A1, A2, A3, and the n× d approximated attention computation matrix as E. We define
several input fixed matrices as X1, X2, Y ∈ Rd×d. We define X = X1⊗X2, A = A1⊗A2. We define
x := vec(X) and try to get the Loss function gradient. Let g := dLoss(X1,X2)

dx where Loss(X1, X2)

from Def. 3.1. Then, it costs O(Tmat(n, d, d) + Tmat(n, d, n)) time to get the gradient g ∈ Rd4

.

Proof. See full proof at Theorem C.8.

Note that O(Tmat(n, d, d) + Tmat(n, d, n)) ≥ Ω(n2). Thus, the naive RoPE attention gradient
computation is a complexity obstacle in practice, as discussed in Section 1. Based on the closed
formulation in Lemma 4.1, we derive our acceleration method, which will be introduced in the
following section.

5 COMPUTE ROPE ATTENTION GRADIENT IN ALMOST LINEAR TIME

In this section, we present our main result. With the low-rank approximation, we can approximate
the RoPE gradient computations in almost linear time.

In Section 5.1, we discuss the techniques we used to develop the almost linear time algorithm. In
Section 5.2, we present our main results, which compute RoPE Attention gradient in almost linear
time.

5.1 TECHNIQUE OVERVIEW

In recent work Alman & Song (2024b), they present an almost linear-time algorithm to compute
forward computations of RoPE attention as follows.
Lemma 5.1 (Theorem 1.3 in Alman & Song (2024b)). Suppose d = O(log n) and B = o(

√
log n).

There is an n1+o(1) time algorithm to approximate ArAttC up to ϵ = 1/ poly(n) additive error.

Recall that the closed form gradient of RoPE attention is dLoss(x)
dx = Ã⊤ vec(γ(x)) from Lemma 4.1.

We need to show γ(x) can be low-rank approximated in O(n1+o(1)) time with 1/poly(n) error.

To low rank approximate γ(x), we use the strategy to split γ(x) into two terms, γ1(x) and
γ2(x), and run the approximation separately. From Lemma 4.1, γ(x)j0 ∈ Rn is (diag(s(x)j0) −
s(x)j0s(x)

⊤
j0
)β(x)j0 . We define γ1(x)j0 = diag(s(x)j0)β(x)j0and γ2(x)j0 = s(x)j0s(x)

⊤
j0
β(x)j0 ;

thus, we can have γ(x) = γ1(x)− γ2(x).

In the definitions of γ1(x) and γ2(x) provided above, they both contain s(x) and β(x). In order
to find the almost linear time algorithm of γ(x), we need to first show that there exists O(n1+o(1))
time complexity approximation for s(x) and β(x) with ϵ/poly(n) error first. From Lemma 4.1,
we have β(x)j0 ∈ Rn is A3Y ℓ(x)⊤j0,∗. Based on the β(x) definition, we need to show ℓ(x) can be
approximated in almost linear time first.

Overall, to develop the O(n1+o(1)) time complexity algorithm to compute RoPE gradients
with ϵ/ poly(n) error, we need to prove the existence of almost linear time algorithms for
s(x), ℓ(x), γ(x), and β(x) with low rank approximation.

4

Published as a workshop paper at SCOPE - ICLR 2025

5.2 FAST COMPUTATION IN ALMOST LINEAR TIME

Based on Section 5.1, we have proved the almost linear time approximation of s(x), ℓ(x), γ(x), and
β(x) in Lemma D.1, D.2, D.3, D.5, and D.4. We are now ready to show our main result, which is to
approximate RoPE gradient computation in almost linear time.
Theorem 5.2 (Main result, Low Rank Approximate RoPE Attention Gradient). Assuming the en-
tries of A1, A2, X1, X2, Y, E are represented using O(log n) bits, there is an n1+o(1) time algo-
rithm to solve AAttLGC(n, d = O(log n), B = o(

√
log n)), from Def. 3.1, with the accuracy upper

bounded by 1
poly(n) . To be more specific, a gradient vector g̃ ∈ Rd4

comes out of our algorithm

where ∥dLoss
dx − g̃∥∞ ≤ 1

poly(n) .

Proof Sketch. By Lemma D.5 and Lemma D.4, there exist matrices γ1(x) and γ2(x) such that
γ(x) = γ1(x) − γ2(x). We assume these lemmas follow from the low-rank approximations in
Lemmas D.1–D.3, allowing us to write γ̃1(x) = U3V

⊤
3 and γ̃2(x) = U4V

⊤
4 in n1+o(1) time. From

Lemma 4.1, the reformulated gradient is dLoss(x)
dx = Ã⊤ vec(γ(x)), and hence the total running time

remains n1+o(1). To bound the error, we show that

∥dLoss(x)
dx

− g̃∥∞ = ∥Ã⊤(vec(γ(x))− vec(γ̃(x)))∥∞

≤ ∥Ã⊤∥∞ ∥γ(x)− γ̃(x)∥∞
≤ ϵ/ poly(n),

This completes the proof. (See full proof at Theorem D.6)

6 HARDNESS

In this section, we provide the lower bound results to compute the gradient of RoPE attention.
The hardness result shows that under the widely accepted SETH, the bounded entries condition is
necessary for achieving subquadratic runtime.
Theorem 6.1 (Lower bound, informal version of Theorem E.1). Assuming SETH, for any q > 0,
for the ARAttLGC(n, d = O(log n), B = ω(

√
log n), there does not exist an algorithm which can

be executed in time O(n2−q) based on Def. 3.1.

Proof. See the full proof at Theorem E.1.

In Theorem 6.1, we show that under the Strong Exponential Time Hypothesis (SETH) (see Hypoth-
esis A.4), computing the gradient of RoPE attention remains computationally hard. Specifically, for
any constant q > 0, no algorithm can compute the gradient in time O(n2−q) when d = O(log n)
and B = ω(

√
log n). This result establishes a lower bound that fundamentally limits the efficiency

of gradient computation for RoPE attention.

7 CONCLUSION

This paper presents the first efficient backward gradient computation, assuming bounded entries for
the RoPE-based attention mechanism. We achieve almost linear time complexity by leveraging poly-
nomial methods and the Fast Fourier Transform, making the forward and backward computations
comparably efficient. Additionally, we demonstrate that conditions exist under which performance
better than quadratic can be realized, consistent with the lower bounds suggested by the Strong
Exponential Time Hypothesis (SETH).

These findings not only improve the computational efficiency of RoPE-based attention mechanisms
but also provide a foundation for exploring sub-gradient computations in other advanced attention
variants of neural networks. This work highlights the connection between algorithm design and
computational complexity theory, unveiling new possibilities for the development of large trans-
former models. Future research could extend these results to cases involving unbounded entries and
assess the real-world implications of these theoretical advancements for large language models.

5

Published as a workshop paper at SCOPE - ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials and
gaussian kernel density estimation. In Proceedings of the 37th Computational Complexity Con-
ference, pp. 1–23, 2022.

Meta AI. Introducing meta llama 3: The most capable openly available llm to date, 2024. https:
//ai.meta.com/blog/meta-llama-3/.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36, 2023.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024a. URL https://openreview.net/forum?id=v0zNCwwkaV.

Josh Alman and Zhao Song. Fast rope attention: Combining the polynomial method and fast fourier
transform. manuscript, 2024b.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024c. URL https://openreview.net/forum?id=up4tWnwRol.

Anthropic. Claude 3.5 sonnet, 2024a. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024b. https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Markus Bläser. Fast matrix multiplication. Theory of Computing, pp. 1–60, 2013.

Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. Algebraic complexity theory.
Grundlehren der mathematischen Wissenschaften, 1997.

Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as cnf-sat.
ACM Transactions on Algorithms (TALG), 12(3):1–24, 2016.

Google Gemini. Gemini 1.5 pro updates, 1.5 flash debut and 2 new
gemma models. https://blog.google/technology/developers/
gemini-gemma-developer-updates-may-2024/, 2024. Accessed: May 15.

Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang, Andy Narayanan, Aonan Zhang, Bowen
Zhang, Chen Chen, Chung-Cheng Chiu, David Qiu, et al. Apple intelligence foundation language
models. arXiv preprint arXiv:2407.21075, 2024.

Jerry Yao-Chieh Hu, Weimin Wu, Zhao Song, and Han Liu. On statistical rates and provably efficient
criteria of latent diffusion transformers (dits). arXiv preprint arXiv:2407.01079, 2024.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer and
System Sciences, 62(2):367–375, 2001.

Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, and Junze Yin. Conv-basis: A new
paradigm for efficient attention inference and gradient computation in transformers. arXiv
preprint arXiv:2405.05219, 2024a.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024b.

6

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://openreview.net/forum?id=v0zNCwwkaV
https://openreview.net/forum?id=up4tWnwRol
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://blog.google/technology/developers/gemini-gemma-developer-updates-may-2024/
https://blog.google/technology/developers/gemini-gemma-developer-updates-may-2024/

Published as a workshop paper at SCOPE - ICLR 2025

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably effi-
cient learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024c.

AI @ Meta Llama Team. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp Dufter,
Dhruti Shah, Xianzhi Du, Futang Peng, Floris Weers, et al. Mm1: Methods, analysis & insights
from multimodal llm pre-training. arXiv preprint arXiv:2403.09611, 2024.

OpenAI. Introducing openai o1-preview. https://openai.com/index/
introducing-openai-o1-preview/, 2024. Accessed: September 12.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lossukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural infor-
mation processing systems, 30, 2017.

Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In
Proceedings of the international congress of mathematicians: Rio de janeiro 2018, pp. 3447–
3487. World Scientific, 2018.

7

 https://openai.com/index/introducing-openai-o1-preview/
 https://openai.com/index/introducing-openai-o1-preview/

Published as a workshop paper at SCOPE - ICLR 2025

Appendix

A PRELIMINARY

In Section A.2, we talk about polynomial approximation of the exponential function. In Section A.3,
we talk about the time complexity of matrix multiplications, setting up the framework for analyzing
efficiency in attention computation. In Section A.4, we talk about the Strong Exponential Time
Hypothesis (SETH). In Section A.5, we talk about mathematical properties and tricks, such as the
tensor trick and row-wise Kronecker products, which enable efficient matrix-vector operations. In
Section A.6, we show the formulation of our RoPE attention optimization task. In Section A.7, we
show the construction of the Loss function.

A.1 NOTATION

For n ∈ Z+ ∪ {0}, for set {1, 2, · · · , n}, we denote the set by using the notation [n]. Here, we
define the concept of nearly linear time when the time is O(n log n). We introduce the concept of
almost linear time when time is O(n1+o(1)). Given a as any vector, we say the diagonal matrix of
c is diag(c) where ci means the i, i-th entry in the matrix diag(c). For any matrix, we denote the
support of the matrix using the notation supp, that is, the set of entries where the matrix is nonzero.
B⊤ is defined as (B⊤)i,j := Bj,i. Suppose there are two vectors c, d of the same length. We denote
the entry-wise multiplication using the notation c ◦ d; that is, the i-th entry in that vector is cidi.
To denote the Frobenius norm, for any matrix B, we denote it as ∥B∥F :=

√∑
i,j B

2
i,j ; to denote

the maximum norm of matrix B, we use ∥B∥∞ := maxi,j |Bi,j |. Suppose there are two matrices
C,D of the same dimensions. We represent the Hadamard product or the entry-wise multiplication
by using the notation C ◦D, that is, (i, j)-th entry of the matrix is Ci,j ·Di,j . Let C ∈ Rn0×m0 and
D ∈ Rn1×m1 . We define C⊗D is an n0n1×m0m1 matrix, where (C⊗D)(j0−1)n1+j1,(i0−1)m2+i1

is equal to Cj0,i0Dj1,i1 for any j0 ∈ [n0], i0 ∈ [m0], j1 ∈ [n1], i1 ∈ [m1].

A.2 POLYNOMIAL APPROXIMATION OF EXPONENTIAL

Here, we will explain a technical tool for controlling the error dependence of our approximate al-
gorithm. In particular, we will use the following optimal-degree polynomial approximation of the
exponential function.
Lemma A.1 (Aggarwal & Alman (2022)). Let B > 1 and suppose ϵ in (0, 0.1). We can
have P , which has input as a scalar and output as a scalar of degree g. g is defined as
Θ(max {log(1/ϵ)/(log(log(1/ϵ)/B)), B}) such that for all x ∈ [0, B], we can get

|P (x)− exp(x)| < ϵ.

Because P ’s coefficients are rational values with numerators and denominators represented using
integers of poly(g)-bit size and these coefficients can be determined in poly(g) time, we can calcu-
late P in an efficient way.

A.3 TIME COMPLEXITY OF MULTIPLICATIONS

Matrix multiplication is a fundamental operation in many algorithms, and understanding its time
complexity is essential for analyzing computational efficiency. Here, we introduce the time com-
plexity of matrix multiplications.
Definition A.2. We suppose n1, n2, n3, denote any three positive integers. We define A ∈ Rn1×n2

and B ∈ Rn2×n3 . It costs Tmat(n1, n2, n3) time to perform AB.

To further analyze the structure of matrix multiplication time complexity, we rely on a well-known
fact from prior research Bürgisser et al. (1997); Bläser (2013). This fact provides equivalences
between different permutations of matrix dimensions.
Fact A.3. We suppose n1, n2, n3, denote any three positive integers. Tmat(n1, n2, n3) =
O(Tmat(n1, n3, n2)) = O(Tmat(n2, n1, n3)) = O(Tmat(n2, n3, n1)) = O(Tmat(n3, n1, n2)) =
O(Tmat(n3, n2, n1)).

8

Published as a workshop paper at SCOPE - ICLR 2025

A.4 SETH HYPOTHESIS

Now, we introduce a fundamental theoretical assumption underpinning many of the results pre-
sented in this paper: the Strong Exponential Time Hypothesis (SETH). This hypothesis serves as a
cornerstone for establishing the hardness of various computational problems.

Our results are built on the common conjecture. Impagliazzo & Paturi (2001) introduce the Strong
Exponential Time Hypothesis (SETH) as a stronger form of the P ̸= NP conjecture. It suggests that
our current best SAT algorithms are optimal and is a popular conjecture for proving fine-grained
lower bounds for a wide variety of algorithmic problems Cygan et al. (2016); Williams (2018).
Hypothesis A.4 (SETH). ∀ϵ > 0, ∃k ∈ Z+ and k greater or equal to 3 such that, even when
utilizing randomized algorithms, within the time of O(2(1−ϵ)n), we cannot solve k-SAT problems
with n variables.

A.5 BASIC FACTS

In this section, we present several basic facts that are used throughout the paper to develop the
proof of our main results. These fundamental properties enable efficient computations of vectors
and matrices products in our paper.

Here, we first introduce the facts about row-wise Kronecker products.
Fact A.5 (Row-wise Kronecker product). Let U1, V1 ∈ Rn×k1 . Let U2, V2 ∈ Rn×k2 . Then we have

(U1V
⊤
1) ◦ (U2V

⊤
2) = (U1 ⊘ U2)(V1 ⊘ V2)

⊤

Here, given U1 ∈ Rn×k1 and U2 ∈ Rn×k2 , we define the row-wise Kronecker product as U1⊘U2 ∈
Rn×k1k2 . That is, (U1 ⊘ U2)i,l1+(l2−1)k1

:= (U1)i,l1Ui,l2 for all i ∈ [n], l1 ∈ [k1] and l2 ∈ [k2]

To simplify the computation of certain matrix operations, we can use a technique known as the tensor
trick, which reformulates matrix products into operations involving vectorized representations and
Kronecker products.

Fact A.6 (Tensor trick). Let X ∈ Rd×d. Let x ∈ Rd2

be the vectorization of X . Let there be two
n× d matrices A1, A2, and we define A = A1 ⊗A2. Then, we can get vec(A1XA⊤

2) = Ax.

Given the above tensor trick fact, we can derive additional properties that extend its applicability to
exponential operations on matrices. These properties can help us compute the exponential of matrix
products efficiently. The properties are presented below.
Fact A.7. Let there be two n × d matrices A1, A2, and we define A = A1 ⊗ A2. Let X ∈ Rd×d.
Let Aj0 ∈ Rn×d2

be a block of A. We introduce x ∈ Rd2

as the vectorization of X . Thus, we get

• (exp(A1XA⊤
2)j0,∗)

⊤ = exp(Aj0x)

• vec(exp(A1XA⊤
2)) = exp(Ax),

For the j0-th row of exp(A1XA⊤
2) ∈ Rn×n, we use the notation exp(A1XA⊤

2)j0,∗.

Proof. From Lemma and Def. A.6, we are able to prove this fact. We omit the details here since the
proof is straightforward.

Fact A.8. We suppose there are three vectors of n dimension x, y, z. Thus, we get

• ⟨x ◦ y, z⟩ = x⊤ diag(y)z.

• ⟨x, y⟩ = ⟨x ◦ y,1n⟩.

Next, we introduce some important properties of inner products that help us to reshape the equations
in the proofs.
Fact A.9 (Inner Products). We suppose n ∈ Z+, and we suppose the n dimension vectors a, b, c and
a scalar d. Then, we have

9

Published as a workshop paper at SCOPE - ICLR 2025

• ⟨a, b⟩ = ⟨a ◦ b,1n⟩.

• ⟨da, b⟩ = d⟨a, b⟩ = ⟨a, db⟩ = d⟨b, a⟩.

• ⟨a+ c, b⟩ = ⟨a, b⟩+ ⟨c, b⟩.

• ⟨a, b⟩ = a⊤b.

• ⟨a ◦ c, b⟩ = ⟨a, b ◦ c⟩.

• ⟨a ◦ b, c⟩ = b⊤ diag(a)c

A.6 PROBLEM DEFINITION

Let n be the number of input tokens, and let d be the hidden/feature dimensions. We state the
generalization of the standard RoPE attention from Alman & Song (2024b).

Definition A.10 (A General Approximate RoPE Attention Computation, ARAttC, Definition 1.1
in Alman & Song (2024b)). Let B > 0 and ϵ > 0 denote two parameters. Given a set of matrices
W−(n−1), · · · ,W−1, W0,W1, · · · ,Wn−1 ∈ Rd×d where supp(Wi) ⊂ S for all i ∈ {−(n −
1), · · · ,−1, 0, 1, · · · , n − 1}. Here S ⊆ [d] × [d] where |S| = O(d). Given three n × d matrices
Q,K, V with the guarantee that ∥Q∥∞, ∥K∥∞, ∥V ∥∞ ≤ B and ∥W∥∞ ≤ 1. We define matrix
A ∈ Rn×n as, for i, j ∈ [n],

Ai,j := exp(Qi,∗Wi−jK
⊤
j,∗/d).

We define D := diag(A1n). The goal of General Approximate RoPE Attention Computation is to
output a matrix T ∈ Rn×d such that ∥T − ARAttC∥∞ ≤ ϵ is small, where ARAttC := D−1AV .
For matrix M , we use ∥M∥∞ := maxi,j |Mi,j |. Note that the 1/d factor inside exp in the definition
of A is a normalization factor.

Our focus is to find weights to fit the attention to a desired output. Let Q := A1X1, K := A2X2,
and V := A3Y . We use X1, X2, and X3 to represent the weights WQ, WK and WV , respectively.
We use A1, A2, and A3 to replace the input matrix to handle the more general settings such as cross
attention. Then, the attention matrix is as follows.

A(X1, X2)i,j := exp((A1X1)i,∗Wi−j(A2X2)
⊤
j,∗/d)

= exp(A1,i,∗X1Wi−jX
⊤
2 A⊤

2,j,∗/d).

We define wi−j := vec(Wi−j) ∈ Rd2

and define W such that Wj0,∗ is an 1 × d2 block and
Wi+(j−1)n := w⊤

i−j . Here, let A := A1 ⊗ A2 ∈ Rn2×d2

and X := X1 ⊗ X2 ∈ Rd2×d2

. We
can show that

A1,i,∗X1Wi−jX
⊤
2 A⊤

2,j,∗

= (A1,i,∗ ⊗A2,j,∗)(X1 ⊗X2) vec(Wi−j)

= Ai+(j−1)n,∗Xwi−j ,

where the first step uses the tensor trick, and the second step uses the definitions of wi−j ,A, and X.
Thus we can reformulate the attention matrix A as, for i, j ∈ [n]

A(X)i,j = exp(Ai+(j−1)n,∗︸ ︷︷ ︸
1×d2

X︸︷︷︸
d2×d2

wi−j/d︸ ︷︷ ︸
d2×1

).

Using the tensor trick again, we have

A(X)i,j = exp((Ai+(j−1)n,∗ ⊗ w⊤
i−j)︸ ︷︷ ︸

1×d4

vec(X)/d︸ ︷︷ ︸
d4×1

)

= exp((Ai+(j−1)n,∗ ⊗Wi+(j−1)n,∗)︸ ︷︷ ︸
1×d4

vec(X)/d︸ ︷︷ ︸
d4×1

).

10

Published as a workshop paper at SCOPE - ICLR 2025

Hence, by definition of row-wise Kronecker product, we have

vec(A(X)) = exp((A⊘W)︸ ︷︷ ︸
n2×d4

vec(X)/d︸ ︷︷ ︸
d4×1

).

We define the matrix D(X) ∈ Rn×n as

D(X) = diag(A(X)︸ ︷︷ ︸
n×n

1n︸︷︷︸
n×1

).

Then, the optimization problem in the context of RoPE attention computation is described as fol-
lows:
Definition A.11 (Optimize RoPE Attention). Let B > 0 and ϵ > 0 denote two parameters. Given
a set of matrices W−(n−1), · · · ,W−1, W0,W1, · · · ,Wn−1 ∈ Rd×d where supp(Wi) ⊂ S for all
i ∈ {−(n − 1), · · · ,−1, 0, 1, · · · , n − 1}. Here S ⊆ [d] × [d] where |S| = O(d). For i, j ∈ [n],
let W ∈ Rn2×d2

such that Wi+(j−1)n,∗ = vec(Wi−j). Here, we suppose four n × d matrices
A1, A2, A3, E, and we have three d×d matrices X1, X2, Y . Let X := X1⊗X2 ∈ Rd2×d2

. We define
the matrix A(X) ∈ Rn×n as the matrix representation of exp((A⊘W)︸ ︷︷ ︸

n2×d4

vec(X)/d︸ ︷︷ ︸
d4×1

) and the n × n

matrix D(X) := diag(A(X)︸ ︷︷ ︸
n×n

1n︸︷︷︸
n×1

). The RoPE attention optimization problem minX∈Rd2×d2 Loss(X)

is formulated as follows:

min
X∈Rd2×d2

0.5∥D(X)−1A(X)A3Y − E∥2F .

Note that we are able to get the gradient computation of Loss with respect to X1 or X2 based on the
chain rule because

dLoss(X1, X2)

dX1
=

dLoss(X)

dX

dX

dX1

=
dLoss(X)

dX

d(X1 ⊗X2)

dX1

=
dLoss(X)

dX
(Id×d ⊗X2).

Our approximation task can be formalized as follows.
Definition A.12 (The Approx of the gradient of RoPE Attention Loss Function,
ARAttLGC(n, d,B, ϵ)). Let B > 0 and ϵ > 0 denote two parameters. Given a set of
matrices W−(n−1), · · · ,W−1,W0, W1, · · · ,Wn−1 ∈ Rd×d where supp(Wi) ⊂ S for all
i ∈ {−(n − 1), · · · ,−1, 0, 1, · · · , n − 1}. Here S ⊆ [d] × [d] where |S| = O(d). For
i, j ∈ [n], let W ∈ Rn2×d2

such that Wi+(j−1)n,∗ = vec(Wi−j). Let X1, X2, Y ∈ Rd×d.
Let X := X1 ⊗ X2 ∈ Rd2×d2

. We have four n × d matrices Let A1, A2, A3, E.
Let A ∈ Rn2×d2

such that A equals to an n2 × d2 matrix from A1 ⊗ A2. Assume
∥A1X∥∞ ≤ B, ∥A2X∥∞ ≤ B, ∥A3Y ∥∞ ≤ B, ∥W∥∞ ≤ 1. Assume that all the log(n)
bits model is applied throughout all numbers in matrices. We define Loss(X) from Def. A.11. Here,
we define dLoss(X)

dX as the loss function gradient. Then, our target is to output a vector g̃ ∈ Rd4

satisfying:

∥g̃ − dLoss(X)

dX
∥∞ ≤ ϵ.

A.7 REFORMULATION OF THE LOSS FUNCTION

In this section, we are able to reformulate and simplify the loss function based on the definitions
provided in Section B. This reformulation provides a structured representation of the loss in terms
of its components, using the tensor trick to simplify computations and facilitate analysis.

The following lemma formalizes this reformulation, consolidating the expressions for the loss func-
tion and connecting its components:

11

Published as a workshop paper at SCOPE - ICLR 2025

Lemma A.13 (Loss Function Formulation). Given three n×d input sequence matrices A1, A2, and
A3, we define A = A1 ⊗ A2 ∈ Rn2×d2

and X = X1 ⊗X2 ∈ Rd2×d2

, where ⊗ denotes Kronecker
product. Given W is a n2 × d2 matrix, we define Ã = A⊘W , where ⊘ is the row-wise Kronecker
product from Fact A.5. Let j0 ∈ [n], we define Ãj0 ∈ Rn×d2

be a block of size n × d2 from Ã. Let
E ∈ Rn×d be a matrix, for j0 ∈ [n] and i0 ∈ [d], we define Ej0,i0 as the (j0, i0)-th entry of the
matrix E. We use Loss function from Definition A.11. Based on Def. B.6, for j0 in the set [n] and i0
in the set [d], we get Loss(X)j0,i0 . Then, we have

Loss(X) =
∑

j0∈[n]

∑
i0∈[d]

Loss(x)j0,i0 .

Proof. We present the reformulation of the Loss Function using the tensor trick as follows.

Loss(X) = 0.5∥D(X)−1A(X)A3Y − E∥2F

=

n∑
j0=1

d∑
i0=1

0.5 · (⟨⟨exp(Ãj0x),1n⟩−1

exp(Ãj0x), A3Y∗,i0⟩ − Ej0,i0)
2

=

n∑
j0=1

d∑
i0=1

0.5(⟨s(x)j0 , v(y)i0⟩ − Ej0,i0)
2

=

n∑
j0=1

d∑
i0=1

Loss(x)j0,i0

where the 1st equality is based on Def. A.11, the definition of Frobenius norm derives the 2nd
equality, the 3rd equality is due to Def. B.3 and Def. B.4, and the 4th step is based on Def. B.6.

B KEY DEFINITIONS OF ROPE ATTENTION

In this section, we decompose RoPE attention into its individual components, each representing a
specific function or operation within the attention mechanism. These definitions provide a structured
framework for understanding and analyzing the properties of RoPE attention in subsequent sections.

We denote the d4-dimensional vector x ∈ Rd4

as the vectorization of a d2 × d2 matrix X. We divide
the RoPE attention to the following components to simplify our calculations and notation.

First, we define u(x) for the softmax operation.

Definition B.1 (Softmax u(x)). We suppose there are two n2 × d2 matrices A,W. We define Ã as
A ⊘W, which is an n2 × d4 matrix. We use Ãj0 to denote the an n × d4 subblock of Ã, given that
the total counts of subblocks is n. The function is defined as u(x)j0 maps a d4 dimensional vector
to an n-dimensional vector with every j0 ∈ [n] such that

u(x)j0 := exp(Ãj0x).

Next, we define α(x) for the diagonal matrix.
Definition B.2 (Diagonal matrix α(x)). We suppose two n2 × d2 matrices A,W. Suppose that
Ã := A⊘W ∈ Rn2×d4

. We use Ãj0 to denote the an n× d4 subblock of Ã, given the counts of total
subblocks is n. The function is defined as α(x)j0 maps from a d4-dimensional vector to a scalar
with every j0 ∈ [n] such that

α(x)j0 := ⟨exp(Ãj0x),1n⟩.

We define s(x) for the normalized softmax (D−1 · softmax).
Definition B.3 (Normalized softmax s(x)). From Def. B.1, it defines u(·)j0 , and we have
α(·)j0based on Def. B.2. The function s(x)j0 maps a d4-dimensional vector to an n-dimensional
vector given every j0 ∈ [n] such that s(x)j0 := α(x)

−1
j0

u(x)j0 .

12

Published as a workshop paper at SCOPE - ICLR 2025

Lastly, we define v(y) for the value matrix in the attention component.

Definition B.4 (Value matrix v(y)). Let A3 ∈ Rn×d be a matrix. We define v(y)i0 as the i0-th
column of v(y). We define the function v(y)i0 maps a d2-dimensional vector to an n-dimensional
vector, given each i0 in the set [d], such that v(y)i0 := A3Y∗,i0 where y ∈ Rd2

is the vectorization
of n× n matrix Y .

Given the definitions of the RoPE attention components, we can now define the loss functions, which
quantify the difference between the computed and target values in the context of RoPE attention.

We first introduce the error ℓ(x)j0,i0 between the exact RoPE attention computation ⟨s(x)j0 , v(y)i0⟩
and approximated RoPE computation Ej0,i0 .

Definition B.5 (RoPE attention error ℓ(x)). From Def. B.3, with every j0 in the set [n], it gives
s(x)j0 as an n-dimensional normalized vector, and we define v(y)i0 based on Def. B.4 given that
each i0 ∈ [d]. Defining a function ℓ(x)j0,i0 maps a d4-dimensional vector to a scalar with each
j0 ∈ [n] and each i0 ∈ [d] such that

ℓ(x)j0,i0 := ⟨s(x)j0 , v(y)i0⟩ − Ej0,i0 .

Here Ej0,i0 is the (j0, i0)-th coordinate of E ∈ Rn×d for each j0 in the set [n] and i0 in the set [d],
that is ℓ(x) = s(x)v(y)− E.

Then, we define the Loss term.

Definition B.6 (Loss term Loss(x)). Here we let Loss(x)j0,i0 := 0.5ℓ(x)2j0,i0 with every j0 in the
set [n] and i0 in the set [d].

C ROPE ATTENTION GRADIENT CALCULATION

In this section, we analyze the time complexity of exact gradient computation. In Section C.1, we
reformulate the closed form of the gradient. In Section C.2, we show the time complexity for s(x)
and v(y). In Section C.3, we show the time complexity for ℓ(x). In Section C.4, we show the time
complexity for β(x) and γ(x). In Section C.5, we show the total time complexity for computing the
gradient of RoPE attention.

In this section, we compute the entry-wise gradient of the RoPE attention loss function from
Lemma A.13

Lemma C.1. If we have for every i ∈ [d4],

• The column function u(x)j0 ∈ Rn (Definitions B.1),

• α(x)j0 is a real number (Def. B.2),

• s(x)j0 is an arbitrary element in Rn (Def. B.3),

• ℓ(x)j0,i0 is a real number (Def. B.5), and

• Loss(x)j0,i0 is a real number (Def. B.6).

Then, we have ∀j0 ∈ [n], ∀i0 ∈ [d],

• Part 1.

dÃj0x

dxi
= (Ãj0)∗,i︸ ︷︷ ︸

n×1

.

• Part 2.

du(x)j0
dxi

= u(x)j0 ◦ (Ãj0)∗,i.

13

Published as a workshop paper at SCOPE - ICLR 2025

• Part 3.
dα(x)j0
dxi

= ⟨(Ãj0)∗,i, u(x)j0⟩.

• Part 4.
ds(x)j0
dxi

= −s(x)j0⟨(Ãj0)∗,i, s(x)j0⟩+ s(x)j0 ◦ (Ãj0)∗,i

• Part 5.
d⟨s(x)j0 , v(y)i0⟩

dxi
= ⟨−s(x)j0⟨(Ãj0)∗,i, s(x)j0⟩+ s(x)j0 ◦ (Ãj0)∗,i, A3Y∗,i0⟩.

• Part 6.
dℓ(x)j0,i0

dxi
= ⟨−s(x)j0⟨(Ãj0)∗,i, s(x)j0⟩+ s(x)j0 ◦ (Ãj0)∗,i, A3Y∗,i0⟩.

• Part 7.
dLoss(x)j0,i0

dxi
= ℓ(x)j0,i0⟨−s(x)j0⟨(Ãj0)∗,i, s(x)j0⟩+ s(x)j0 ◦ (Ãj0)∗,i, A3Y∗,i0⟩.

Proof. To show Part 1,

dÃj0x

dxi
= Ãj0

dx

dxi

= Ãj0︸︷︷︸
n×d4

ei︸︷︷︸
d4×1

= (Ãj0)∗,i,

and we note that the 1st and 2nd equalities are by the basic derivative rule and the 3rd equality is
due to the basis vector definition.

To show Part 2,

du(x)j0
dxi

=
d exp(Ãj0x)

dxi

= exp(Ãj0x) ◦
dÃj0x

dxi

= exp(Ãj0x) ◦ (Ãj0)∗,i

= u(x)j0 ◦ (Ãj0)∗,i,

and we note that the 1st equality is by Def. B.1, the 2nd equality is by chain rule, the 3rd equality is
due to Part 1, and the 4th equality is because of Def. B.1.

To show Part 3,

dα(x)j0
dxi

=
d⟨exp(Ãj0x),1n⟩

dxi

= ⟨d exp(Ãj0x)

dxi
,1n⟩+ ⟨exp(Ãj0x),

d1n

dxi
⟩

= ⟨d exp(Ãj0x)

dxi
,1n⟩

= ⟨u(x)j0 ◦ (Ãj0)∗,i,1n⟩

= ⟨(Ãj0)∗,i, u(x)j0⟩,

14

Published as a workshop paper at SCOPE - ICLR 2025

and we note that the 1st equality is by Def. B.2, the 2nd equality is by product rule, the 3rd equality
is due to d1n

dxi
= 0n, the 4th equality is because of Def. B.1, and 5th equality derives from basic

algebra.

To show Part 4,

ds(x)j0
dxi

=
d(α(x)

−1
j0

u(x)j0)

dxi

=
dα(x)

−1
j0

dxi
u(x)j0 + α(x)

−1
j0

du(x)j0
dxi

= − α(x)
−2
j0

dα(x)j0
dxi

u(x)j0 + α(x)
−1
j0

du(x)j0
dxi

= − α(x)
−2
j0

⟨(Ãj0)∗,i︸ ︷︷ ︸
n×1

, u(x)j0︸ ︷︷ ︸
n×1

⟩u(x)j0 + α(x)
−1
j0

(u(x)j0︸ ︷︷ ︸
n×1

◦ (Ãj0)∗,i︸ ︷︷ ︸
n×1

)

= − α(x)
−1
j0

s(x)j0⟨(Ãj0)∗,i︸ ︷︷ ︸
n×1

, u(x)j0︸ ︷︷ ︸
n×1

⟩+ s(x)j0 ◦ (Ãj0)∗,i

= − s(x)j0⟨(Ãj0)∗,i︸ ︷︷ ︸
n×1

, s(x)j0︸ ︷︷ ︸
n×1

⟩+ s(x)j0 ◦ (Ãj0)∗,i,

and we note that the 1st equality is by Def. B.3, the 2nd equality is by product rule, the 3rd equality
is due to chain rule, the 4th equality is because of previous parts, the 5th and 6th equalities derive
from Def. B.3.

To show Part 5,
d⟨s(x)j0 , v(y)i0⟩

dxi
= ⟨ds(x)j0

dxi
, v(y)i0⟩+ ⟨s(x)j0 ,

dv(y)i0
dxi

⟩

= ⟨ds(x)j0
dxi

, v(y)i0⟩

= ⟨−s(x)j0⟨(Ãj0)∗,i, s(x)j0⟩+ s(x)j0 ◦ (Ãj0)∗,i, A3Y∗,i0⟩,

and we note that the 1st equality is due to the product rule, the 2nd equality is by dv(y)i0
dxi

= 0n, and
the 3rd equality is due to the previous part.

To show Part 6,
dℓ(x)j0,i0

dxi
=

d(⟨s(x)j0 , v(y)i0⟩ − Ej0,i0)

dxi

=
d⟨s(x)j0 , v(y)i0⟩

dxi

= ⟨−s(x)j0⟨(Ãj0)∗,i︸ ︷︷ ︸
n×1

, s(x)j0︸ ︷︷ ︸
n×1

⟩+ s(x)j0 ◦ (Ãj0)∗,i, A3Y∗,i0⟩,

and we note that the 1st equality is by Def. B.5, the 2nd equality is by dEj0,i0

dxi
= 0n, and the 3rd

equality is due to the previous part.

To show Part 7,
dLoss(x)j0,i0

dxi
= 0.5

d(ℓ(x)j0,i0)
2

dxi

= ℓ(x)j0,i0 ·
dℓ(x)j0,i0

dxi

= ℓ(x)j0,i0⟨−s(x)j0⟨(Ãj0)∗,i︸ ︷︷ ︸
n×1

, s(x)j0︸ ︷︷ ︸
n×1

⟩+ s(x)j0 ◦ (Ãj0)∗,i, A3Y∗,i0⟩,

and we note that the 1st equality is by Def. B.6, the 2nd equality is by chain rule and the 3rd equality
is due to the previous part.

15

Published as a workshop paper at SCOPE - ICLR 2025

C.1 REFORMULATE THE GRADIENT INTO ITS CLOSED FORM

In this section, we reformulate the entry-wise gradient of the RoPE loss function from Lemma 4.1
into its matrix form.

We first begin with reformulating the gradient with respect to the entire vector x.

Lemma C.2 (Gradient Reformulation, dLoss(x)j0,i0

dx). If we have for every i ∈ [d4],

• The column function u(x)j0 ∈ Rn (Definitions B.1),

• α(x)j0 is a real number (Def. B.2),

• s(x)j0 is an arbitrary element in Rn (Def. B.3),

• ℓ(x)j0,i0 is a real number (Def. B.5), and

• Loss(x)j0,i0 is a real number (Def. B.6).

Then, we have
dLoss(x)j0,i0

dx
= ℓ(x)j0,i0 Ã

⊤
j0(diag(s(x)j0)A3Y∗,i0 − s(x)j0s(x)

⊤
j0A3Y∗,i0).

Proof.

dLoss(x)j0,i0
dxi

= ℓ(x)j0,i0⟨−s(x)j0⟨(Ãj0)∗,i, s(x)j0⟩+ s(x)j0 ◦ (Ãj0)∗,i, A3Y∗,i0⟩

= ℓ(x)j0,i0⟨s(x)j0 ◦ (Ãj0)∗,i, A3Y∗,i0⟩ − ℓ(x)j0,i0⟨s(x)j0⟨(Ãj0)∗,i, s(x)j0⟩, A3Y∗,i0⟩

= ℓ(x)j0,i0⟨s(x)j0 ◦ (Ãj0)∗,i, A3Y∗,i0⟩ − ℓ(x)j0,i0⟨(Ãj0)∗,i, s(x)j0⟩⟨s(x)j0 , A3Y∗,i0⟩

= ℓ(x)j0,i0(Ã
⊤
j0)∗,i diag(s(x)j0)A3Y∗,i0 − ℓ(x)j0,i0(Ã

⊤
j0)∗,is(x)j0s(x)

⊤
j0A3Y∗,i0

= ℓ(x)j0,i0(Ã
⊤
j0)∗,i(diag(s(x)j0)− s(x)j0s(x)

⊤
j0)A3Y∗,i0 .

where the 1st step follows from Lemma 4.1, and all other steps follow from Fact A.9.

Then, the gradient can be reformulated as follows.

dLoss(x)j0,i0
dx

= ℓ(x)j0,i0Ã
⊤
j0(diag(s(x)j0)A3Y∗,i0 − s(x)j0s(x)

⊤
j0A3Y∗,i0).

Thus, we complete the proof.

Next, we show our reformulation of the gradient by dropping the index i0 from Loss(x)j0,i0

Lemma C.3 (Gradient Reformulation, dLoss(x)j0
dx). If we have for every i ∈ [d4],

• The column function u(x)j0 ∈ Rn (Definitions B.1),

• α(x)j0 is a real number (Def. B.2),

• s(x)j0 is an arbitrary element in Rn (Def. B.3),

• ℓ(x)j0,i0 is a real number (Def. B.5),

• Loss(x)j0,i0 is a real number (Def. B.6), and

• β(x)j0 ∈ Rn is A3Y︸︷︷︸
n×d

ℓ(x)⊤j0,∗︸ ︷︷ ︸
d×1

.

Then, we get

dLoss(x)j0
dx

= Ã⊤
j0(s(x)j0 ◦A3β(x)j0)

− Ã⊤
j0s(x)j0⟨s(x)j0 , A3β(x)j0⟩.

16

Published as a workshop paper at SCOPE - ICLR 2025

Proof. We can get

dLoss(x)j0
dx

=
∑
i0∈[d]

dLoss(x)j0,i0
dx

=
∑
i0∈[d]

Ã⊤
j0(diag(s(x)j0)− s(x)j0s(x)

⊤
j0)ℓ(x)j0,i0A3Y∗,i0

= Ã⊤
j0(diag(s(x)j0)− s(x)j0s(x)

⊤
j0)β(x)j0 ,

and we note that the first equality is because Lemma A.13, the 2nd equality is due to basic algebra,
and the 3rd equality comes from the lemma statement.

Thus, we complete this proof.

Finally, we reformulate the gradient into its matrix form.

Lemma C.4 (Gradient Reformulation, dLoss(x)
dx , Formal version of Lemma 4.1). If we have for every

i ∈ [d4],

• The column function u(x)j0 ∈ Rn (Definitions B.1),

• α(x)j0 is a real number (Def. B.2),

• s(x)j0 is an arbitrary element in Rn (Def. B.3),

• ℓ(x)j0,i0 is a real number (Def. B.5),

• Loss(x)j0,i0 is a real number (Def. B.6),

• β(x)j0 ∈ Rn is A3Y︸︷︷︸
n×d

ℓ(x)⊤j0,∗︸ ︷︷ ︸
d×1

, and

• γ(x)j0 ∈ Rn is (diag(s(x)j0)− s(x)j0s(x)
⊤
j0
)β(x)j0

Then, we get

dLoss(x)

dx
= Ã⊤︸︷︷︸

d4×n2

vec(γ(x)︸︷︷︸
n×n

)

Proof. We show that

dLoss(x)

dx
=

∑
j0∈[n]

dLoss(x)j0
dx

=
∑

j0∈[n]

Ã⊤
j0γ(x)j0

= Ã⊤ vec(γ(x)),

where we note that the 1st equality is because of Lemma A.13, the 2nd equality is based on the
lemma statement, and the 3rd equality derives from basic concepts of vectorization.

Thus, we complete the proof.

C.2 TIME COMPLEXITY FOR COMPUTING s(x) AND v(y) FUNCTIONS

In this section, we use the vector and matrix multiplication time complexity from Definition A.2 and
Fact A.3 to analyze the complexity of computing s(x) and v(y).

17

Published as a workshop paper at SCOPE - ICLR 2025

Lemma C.5. Pick s(x) and v(y) from Def. B.3 and Def. B.4, then it costs O(Tmat(n, d, d) +
Tmat(n, d, n)) time to get s(x), and it costs Tmat(n, d, d) time to get v(y).

Proof. We first show the time complexity of s(x).

Let A ∈ Rn×n be the RoPE attention matrix. Let D = A1n. Then

s(x) = D−1A.

Then, we need Tmat(n, d, d) + Tmat(n, d, n) time to get A.

Next, we need O(n2) time to get D.

Now, we need O(n2) time to get D−1A.

Therefore, they cost time O(Tmat(n, d, d) + Tmat(n, d, n)) time .

We show the time complexity of v(y).

To get v(y) = A3Y , it costs time Tmat(n, d, d).

Thus, we complete the proof.

C.3 TIME COMPLEXITY FOR COMPUTING ℓ(x) FUNCTIONS

In this section, we use the vector and matrix multiplication time complexity from Definition A.2 and
Fact A.3 to analyze the complexity of computing ℓ(x).
Lemma C.6. We have ℓ(x) from Def. B.5, then it costs Tmat(n, n, d) +O(nd) to calculate ℓ(x).

Proof. We show the time complexity of ℓ(x), where ℓ(x) = s(x)v(y)− E.

It costs Tmat(n, n, d) time to get s(x)v(y).

Then, it requires O(nd) time to get s(x)v(y)− E.

Therefore, they cost time Tmat(n, n, d) +O(nd).

Thus, we complete the proof.

C.4 TIME COMPLEXITY FOR COMPUTING β(x) AND γ(x) FUNCTIONS

In this section, we use the vector and matrix multiplication time complexity from Definition A.2 and
Fact A.3 to analyze the complexity of computing β(x) and γ(x).
Lemma C.7. Let β(x) ∈ Rn×n be defined as β(x) := ℓ(x)v(y)⊤ and γ(x) be defined as γ(x)j0 :=
(diag(s(x)j0 − s(x)j0s(x)

⊤
j0
β(x)j0 ∈ Rn, given that s(x) ∈ Rn×n then β(x) can be computed in

time of O(Tmat(n, n, d)) and γ(x) can be computed in time of O(n2).

Proof. Here we present β(x) as follows: β(x) = ℓ(x)v(y)⊤.

It costs Tmat(n, d, n) time to get ℓ(x)v(y)⊤, which equals to O(Tmat(n, n, d)).

Next, we show the time complexity for γ(x)j0 = (diag(s(x)j0 −s(x)j0s(x)
⊤
j0
)β(x)j0 It costs O(n)

time to get γ(x)j0 . The reason is that s(x)j0s(x)
⊤
j0

is a rank one matrix and diag(s(x)j0) is a
diagonal matrix

Given j0 ∈ [n], the time for γ(x) is O(n2) and we finish the proof.

C.5 TIME COMPLEXITY FOR COMPUTING THE GRADIENT OF ROPE ATTENTION

Theorem C.8 (RoPE attention gradient computation time complexity, Restatement of Theorem 4.2).
We define three n× d input sequence matrices as A1, A2, A3, and the n× d approximated attention
computation matrix as E. We define several input fixed matrices as X1, X2, Y ∈ Rd×d. We define
X = X1 ⊗X2, A = A1 ⊗A2. We define x := vec(X) and try to get the Loss function gradient. Let

18

Published as a workshop paper at SCOPE - ICLR 2025

g := dLoss(X1,X2)
dx where Loss(X1, X2) from Def. 3.1. Then, it costs O(Tmat(n, d, d)+Tmat(n, d, n))

time to get the gradient g ∈ Rd4

.

Proof. We show the time complexity of g as follows.

1. We need time O(Tmat(n, d, d) + Tmat(n, d, n)) for s(x), v(y) from Lemma C.2.

2. We need time O(Tmat(n, n, d) + Tmat(n, d, d)) for ℓ(x) from Lemma C.3.

3. We need time O(Tmat(n, n, d)) for β(x) from Lemma C.7.

4. We need time O(n2) for γ(x) from Lemma C.7.

Therefore, it costs O(Tmat(n, d, d) + Tmat(n, d, n)) time overall for the gradient computation.

Thus, we complete the proof.

D LOW RANK APPROXIMATION OF ROPE ATTENTION

This section presents the fast running time using the low-rank approximations where the low-rank
matrices are generated from the polynomial method (see Lemma A.1).

D.1 APPROXIMATE s USING LOW RANK APPROXIMATION

In this section, we use the low-rank approximation technique to approximate s(x)

Lemma D.1 (Low Rank Approximate s(x)). For any B = o(
√
log n), let k1 equals to no(1)

such that: Suppose we have two n × d matrices A1, A2, X1, X2 ∈ Rd×d and X = X1 ⊗
X2 ∈ Rd2×d2

. Assume we can use O(log n) bits to write every entry from s(x). It holds that
max{∥A1X1∥∞, ∥A2X2∥∞} ≤ B, then there are three matrices U1, V1,W1 ∈ Rn×k1 such that
∥U1V

⊤
1 − s(x)∥∞ ≤ ϵ/poly(n). Here s(x) = D−1A ∈ Rn×n where A is defined as the matrix

representation of exp((A⊘W) vec(X)), and D = diag(A/d)1n. Moreover, these matrices U1, V1

can be created explicitly in n1+o(1) time.

Proof. By definition of A(X), we have

vec(A(X)) = exp(A⊘W) vec(X).

Hence, using the tensor trick, we have

A(X)i,j = exp((Ai+(j−1)n ⊗Wi+(j−1)n) vec(X)/d)

= exp((Ai+(j−1)n ⊗ w⊤
i−j) vec(X)/d).

We define wi−j := vec(Wi−j) ∈ Rd2

and define W such that Wj0 is an 1 × d2 block and
Wi+(j−1)n := w⊤

i−j . We also define A := A1 ⊗ A2 ∈ Rn2×d2

and X := X1 ⊗ X2 ∈ Rd2×d2

.
We use Aj0 to denote the a 1× d2 subblock of A.

We can reformulate the attention matrix A as, for i, j ∈ [n]

A(X)i,j = exp(Ai+(j−1)n︸ ︷︷ ︸
1×d2

X︸︷︷︸
d2×d2

wi−j/d︸ ︷︷ ︸
d2×1

).

Thus, we can show that

Ai+(j−1)nXwi−j ,

= (A1,i,∗ ⊗A2,j,∗)(X1 ⊗X2) vec(Wi−j)

= A1,i,∗X1Wi−jX
⊤
2 A⊤

2,j,∗

where 1st equality uses definitions of wi−j ,A, and X, and the second step uses the tensor trick. We
complete our proof after applying Lemma 5.1.

19

Published as a workshop paper at SCOPE - ICLR 2025

D.2 APPROXIMATE ℓ USING LOW RANK APPROXIMATION

In this section, we use the low-rank approximation technique to approximate ℓ(x)

Lemma D.2 (Low Rank Approximate ℓ(x)). Let d equal O(log n). Suppose we can use O(log n)
bits to write every entry in E, v(y) ∈ Rn×d. Define the ℓ(x) ∈ Rn×d as specified in Def. B.5. Then,
we have U1, V1 ∈ Rn×k1 such that ∥U1V

⊤
1 v(y)− E − ℓ(x)∥∞ ≤ ϵ/ poly(n).

Proof. Here, we present the bound as follows.

∥U1V
⊤
1 v(y)− E − ℓ(x)∥∞ = ∥U1V

⊤
1 v(y)− s(x)v(y)∥∞

= ∥v(y)∥∞ · ∥U1V
⊤
1 − s(x)∥∞

≤ ϵ/ poly(n),

where the 1st is because of Def. B.5, 2nd step is based on the distributive law, and 3rd step is due to
Lemma D.1.

D.3 APPROXIMATE β USING LOW RANK APPROXIMATION

In this section, we use the low-rank approximation technique to approximate β(x)

Lemma D.3 (Low Rank Approximate β(x)). Let k2 = no(1). We define ℓ(x) ∈ Rn×d based on
Def. B.5, and v(y) ∈ Rn×d based on Def. B.4. We suppose β(x) is equal to v(y)ℓ(x)⊤, which is an
n× n matrix. Let U2, V2 ∈ Rn×k2 such that ∥U2V

⊤
2 − β(x)∥∞ ≤ ϵ/ poly(n). In n1+o(1) time, we

can get U2, V2.

Proof. Let β̃(x) ≈ β(x)

By Lemma D.2, U1V
⊤
1 v(y)− E approximately equals to ℓ(x).

Then we define β̃(x) = v(y)(U1V
⊤
1 v(y)− E)⊤.

We can use the low-rank technique to represent β̃(x) = v(y)v(y)⊤V1U
⊤
1 − v(y)E⊤.

Also, v(y)⊤V1 can be computed at first because it takes n1+o(1) time.

Given that all low-rank matrices, we have U2, V2 ∈ Rn×k2 where k2 = max{d, k}+ d = no(1).

Here, we present the proof for obtaining the bound.

∥β̃(x)− β(x)∥∞ = ∥v(y)(U1V
⊤
1 v(y))− E)⊤ − v(y)ℓ(x)⊤∥∞

≤ ∥U1V
⊤
1 v(y))− E − ℓ(x)∥∞ · ∥v(y)∥∞ · d

≤ ϵ/ poly(n)

where the first step is based on the definition of β(x) and β̃(x), the second step is due to the dis-
tributive law, and the third step derives from Lemma D.2.

Thus, we complete the proof.

D.4 APPROXIMATE γ USING LOW RANK APPROXIMATION

In this section, we use the low-rank approximation technique to approximate γ(x). Specifically, we
apply the polynomial methods to γ1(x) and γ2(x) where γ(x) = γ1(x)− γ2(x).

First, we show the low-rank approximation of γ1(x).

Lemma D.4 (Low Rank Approximate γ1(x)). Let k1 = no(1). Let k2 = no(1). We suppose γ1(x)
is diag(s(x))β(x), and U1, V1 be two n× k1 matrices, in which ∥U1V

⊤
1 − f(x)∥∞ ≤ ϵ

poly(n) . We
suppose two n × k2 matrices U2, V2 in which ∥U2V

⊤
2 − β(x)∥∞ ≤ ϵ

poly(n) . Then we have two

n × k3 matrices in which ∥U3V
⊤
3 − γ1(x)∥∞ ≤ ϵ/ poly(n). We can construct U3, V3 in n1+o(1)

time.

20

Published as a workshop paper at SCOPE - ICLR 2025

Proof. Let U3 = U1 ⊘ U2 and V3 = V1 ⊘ V2, and we can use n1+o(1) time to get them.

Let s̃(x) = U1V
⊤
1 and β̃(x) = U2V

⊤
2 .

Then, we have the following by Fact A.5.

∥U3V
⊤
3 − γ1(x)∥∞ ≤ ∥U3V

⊤
3 − diag(s(x))β(x)∥∞

= ∥(U1 ⊘ U2)(V1 ⊘ V2)
⊤ − diag(s(x))β(x)∥∞

= ∥ diag(U1V
⊤
1)(U2V

⊤
2)− diag(s(x))β(x)∥∞

= ∥ diag(s̃(x))β̃(x)− diag(s(x))β(x)∥∞
= ∥ diag(s̃(x))β̃(x)− diag(s̃(x))β(x) + diag(s̃(x))β(x)− diag(s(x))β(x)∥∞
≤ ∥diag(s̃(x))β̃(x)− diag(s̃(x))β(x)∥∞ + ∥ diag(s̃(x))β(x)− diag(s(x))β(x)∥∞
≤ ϵ

poly(n)

where the first inequality is because of the def. of γ1(x), the second equality is due to the def. of
U3, V3, the third equality is based on Fact A.5, the fourth equality is due to the def. of s̃(x) and
β̃(x), the fifth equality is due to simple arithmetic, the sixth inequality is because of the triangle
inequality, and the seventh inequality derives from Lemma D.1 and Lemma D.3.

Next, we show the low-rank approximation of γ2(x).

Lemma D.5 (Low Rank Approximate γ2(x)). Let k1 = no(1). Let k2 = no(1). Let k4 = no(1). Let
γ2(x) ∈ Rn×n where for j0 in set [n], j0 represents j0-th column, γ2(x)j0 = s(x)j0s(x)

⊤
j0
β(x)j0 .

We suppose U1, V1 ∈ Rn×k1 in which ∥U1V
⊤
1 − s(x)∥∞ ≤ ϵ

poly(n) . We suppose two n × k2

matrices U2, V2 in which ∥U2V
⊤
2 − β(x)∥∞ ≤ ϵ

poly(n) . Then, we have U4, V4 ∈ Rn×k4 such that

∥U4V
⊤
4 − γ2(x)∥∞ ≤ ϵ/ poly(n). We can get U4, V4 in n1+o(1) time.

Proof. Let ρ(x) ∈ Rn be ρ(x)j0 := s(x)j0β(x)j0 .

We define ρ̃(x) ≈ ρ(x).

Let (U1V1)
⊤
j0,∗ ≈ s(x)j0 and (U2V2)

⊤
j0,∗ ≈ β(x)j0 .

Then, we define ρ̃(x)j0 as the inner product of s̃(x)j0 and β̃(x)j0 , and by Fact A.9, we have ρ̃(x)j0 =
(U1V1)j0,∗ · (U2V2)

⊤
j0,∗

Then, it costs n1+o(1) time if we compute V1V
⊤
2 first.

Now, we show

ρ̃(x)j0 = (U1V1)j0,∗ · (U2V2)
⊤
j0,∗

= (U1)j0,∗︸ ︷︷ ︸
1×k1

V1V
⊤
2︸ ︷︷ ︸

k1×k2

(U2)
⊤
j0,∗︸ ︷︷ ︸

k2×1

Once the V1V
⊤
2 are pre-computed, the above step only takes O(k1k2) time. Given that j0 ∈ [n], we

can have the total time O(nk1k2) = n1+o(1).

We suppose s̃(x) approximates s(x) and set is equal to U1V
⊤
1 . Then, we are able to approximate

γ2(x) using s̃(x) and ρ̃(x) as follows.

We suppose γ̃2(x) equals to s̃(x) diag(ρ̃(x)). U4 and V4 can be obtained since we can use the
low-rank approximation technique to represent s̃(x) and diag(ρ̃(x)) is a diagonal matrix. Basically
U4 = U1 and V4 = diag(ρ̃(x))V1.

Now, we need to control the error. We have

∥U4V
⊤
4 − γ2(x)∥∞ = ∥γ̃2(x)− γ2(x)∥∞

= max
j0∈[n]

∥s̃(x)j0 ρ̃(x)j0 − s(x)j0ρ(x)j0∥∞

21

Published as a workshop paper at SCOPE - ICLR 2025

= max
j0∈[n]

∥s̃(x)j0 ρ̃(x)j0 − s̃(x)j0ρ(x)j0 + s̃(x)j0ρ(x)j0 − s(x)j0ρ(x)j0∥∞

≤ max
j0∈[n]

∥s̃(x)j0 ρ̃(x)j0 − s̃(x)j0ρ(x)j0∥∞ + ∥s̃(x)j0ρ(x)j0 − s(x)j0ρ(x)j0∥∞

≤ max
j0∈[n]

∥s̃(x)j0∥∞ · ∥ρ̃(x)j0 − ρ(x)j0∥∞ + ∥s̃(x)j0 − s(x)j0∥∞ · ∥ρ(x)j0∥∞

≤ ϵ/poly(n)

where the 1st equality is based on the def. of γ̃2(x), the 2nd equality is due to def. of γ̃2(x) and
γ2(x), the 3rd equality is due to simple mathematical properties, the 4th step is due to the triangle
inequalities, and the 5th step is due to the distributive law.

Thus, we complete the proof.

D.5 FAST COMPUTATION IN ALMOST LINEAR TIME

In this section, we present our main result. With the low-rank approximation, we can approximate
the RoPE gradient computations in almost linear time.

Theorem D.6 (Main result, Low Rank Approximate RoPE Attention Gradient, Restatement of The-
orem 5.2). Assuming the entries of A1, A2, X1, X2, Y, E are represented using O(log n) bits, there
is an n1+o(1) time algorithm to solve AAttLGC(n, d = O(log n), B = o(

√
log n)), from Def. 3.1,

with the accuracy upper bounded by 1
poly(n) . To be more specific, a gradient vector g̃ ∈ Rd4

comes

out of our algorithm where ∥dLoss
dx − g̃∥∞ ≤ 1

poly(n) .

Proof. By Lemma D.5 and Lemma D.4, There are matrices γ(x), γ1(x) ∈ Rn×n and γ2(x), we
have

γ(x) = γ1(x)− γ2(x).

We assume Lemma D.4 and Lemma D.5 are true from Lemma D.1 to Lemma D.3. Thus, we can
have the following based on Lemma D.4 Lemma D.5.

We can use low-rank approximation technique to represent γ̃1(x) = U3V
⊤
3 and γ̃2(x) = U3V

⊤
3 as

the approximation to γ1(x) and γ2(x) respectively.

The cost is n1+o(1) time for every Lemma in Lemmas D.1, D.2, D.3, D.4 and D.5.

We have the reformulated gradient from Lemma C.4 as follows.

dLoss(x)

dx
= Ã⊤︸︷︷︸

d4×n2

vec(γ(x)︸︷︷︸
n×n

)

Therefore, n1+o(1) is the total running time.

We show that

∥dLoss(X)

dx
− g̃∥∞ = ∥ Ã⊤︸︷︷︸

d4×n2

vec(γ(x)︸︷︷︸
n×n

)− Ã⊤︸︷︷︸
d4×n2

vec(γ̃(x)︸︷︷︸
n×n

)∥∞

= ∥ Ã⊤︸︷︷︸
d4×n2

(vec(γ(x)︸︷︷︸
n×n

)− vec(γ̃(x)︸︷︷︸
n×n

))∥∞

= ∥ Ã⊤︸︷︷︸
d4×n2

∥∞∥ vec(γ(x)︸︷︷︸
n×n

)− vec(γ̃(x)︸︷︷︸
n×n

)∥∞

= ∥ Ã⊤︸︷︷︸
d4×n2

∥∞∥γ(x)− γ̃(x)∥∞

≤ ϵ/ poly(n).

22

Published as a workshop paper at SCOPE - ICLR 2025

where the first equality is based on Lemma C.4, the second equality is due to the distributive law,
the third equality derives from the definition of ℓ∞ norm, the fourth equality is due to the def. of
vectorization, and the fifth inequality derives from the Lemmas in Lemma D.4 and Lemma D.5.

We choose ϵ = 1
poly(n) .

Thus, we have finished our proof.

Remark D.7. The assumption in Theorem 5.2 is practical. In practice, especially in recent long
context tasks, the n is large, e.g., n = 2×106 for Google’s Gemini 1.5 Pro Gemini (2024), while the
model training uses a half-precision floating-point format, e.g., the bit number is 16. Furthermore,
our assumption is “tight”, where if we slightly weaken the assumption, there is no algorithm that
can solve the RoPE attention gradient computation in truly sub-quadratic complexity (Theorem 6.1).

Our Theorem 5.2 accurately approximates (ϵ = 1/ poly(n)) the RoPE attention gradient computa-
tion in almost linear time n1+o(1) under practical assumptions (see the above Remark D.7). Thus,
our methods solve the last puzzle of RoPE attention acceleration. Combined with previous work on
RoPE attention inference (see Lemma 5.1), this may make RoPE attention practical as we overcome
the theoretical quadratic time complexity barrier both in inference and training.

E HARDNESS

In this section, we provide the lower bound results to compute the gradient of RoPE attention.
Theorem E.1 (Lower bound). Assuming SETH, for any q > 0, for the ARAttLGC(n, d =
O(log n), B = ω(

√
log n), there does not exist an algorithm which can be executed in time O(n2−q)

based on Def. 3.1.

Proof. We pick all of the W−(n−1), . . . ,Wn−1 ∈ Rd×d as an identity matrix Id. Therefore, the gra-
dient computation of RoPE attention can be treated as the gradient computation of classic attention.
Thus, our lower bound result can derive from Alman & Song (2024c).

23

	Introduction
	Related Work
	Preliminaries on RoPE Attention
	Exact Gradient Computation Time
	Reformulate the Gradient into Its Closed Form
	Time Complexity for Computing the Gradient of RoPE Attention

	Compute RoPE Attention Gradient in Almost Linear Time
	Technique Overview
	Fast Computation in Almost Linear Time

	Hardness
	Conclusion
	Preliminary
	Notation
	Polynomial Approximation of Exponential
	Time Complexity of Multiplications
	SETH Hypothesis
	Basic Facts
	Problem Definition
	Reformulation of the Loss Function

	Key Definitions of RoPE Attention
	RoPE Attention Gradient Calculation
	Reformulate the Gradient into Its Closed Form
	Time Complexity for Computing f and h Functions
	Time Complexity for Computing c(x) Functions
	Time Complexity for Computing q(x) and p(x) Functions
	Time Complexity for Computing the Gradient of RoPE Attention

	Low Rank Approximation of RoPE Attention
	Approximate f Using Low Rank Approximation
	Approximate c Using Low Rank Approximation
	Approximate q Using Low Rank Approximation
	Approximate Using Low Rank Approximation
	Fast Computation in Almost Linear Time

	Hardness

