
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEGREE-AWARE SPIKING GRAPH DOMAIN ADAPTA-
TION FOR CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Graph Networks (SGNs) have garnered significant attraction from both
researchers and industry due to their ability to address energy consumption chal-
lenges in graph classification. However, SGNs are only effective for in-distribution
data and cannot tackle out-of-distribution data. In this paper, we first propose the
domain adaptation problem in SGNs, and introduce a novel framework named
Degree-aware Spiking Graph Domain Adaptation for Classification (DeSGDA).
The proposed DeSGDA addresses the spiking graph domain adaptation problem by
three aspects: node degree-aware personalized spiking representation, adversarial
feature distribution alignment, and pseudo-label distillation. First, we introduce
the personalized spiking representation method for generating degree-dependent
spiking signals. Specifically, the threshold of triggering a spike is determined by
the node degree, allowing this personalized approach to capture more expressive
information for classification. Then, we propose the graph feature distribution
alignment module that is adversarially trained using membrane potential against
a domain discriminator. Such an alignment module can efficiently maintain high
performance and low energy consumption in the case of inconsistent distribution.
Additionally, we extract consistent predictions across two spaces to create reliable
pseudo-labels, effectively leveraging unlabeled data to enhance graph classification
performance. Extensive experiments on benchmark datasets validate the superiority
of the proposed DeSGDA compared with competitive baselines.

1 INTRODUCTION

Spiking Graph Networks (SGNs) (Zhu et al., 2022; Xu et al., 2021b) are a specialized type of artificial
neural network engineered to process graph information by mimicking the human brain. SGNs
transform static and real-valued graph features into discrete spikes by simulating neurons’ charging
and discharging cycles, facilitating spike-based representations for graph node classification. Notably,
SGNs excel in capturing semantic spiking representations with low energy consumption, which proves
advantageous for event-based processing tasks (Yao et al., 2021) such as object recognition (Gu
et al., 2020; Li et al., 2021b), real-time data analysis (Zhu et al., 2020; Bauer et al., 2019), and graph
classification (Li et al., 2023; Zhu et al., 2022; Xu et al., 2021b).

Currently, SGNs are usually tested within the same distribution as the training dataset (Li et al.,
2023; Yin et al., 2024; Duan et al., 2024). However, in realistic scenarios, the testing set can have
different distributions from the training set, and such a distribution shift may lead to a degradation in
performance. For instance, Electroencephalography (EEG) data (Binnie & Prior, 1994; Biasiucci et al.,
2019), typically represented as a graph structure with nodes for neurons and edges for connections, is
ideally processed by bio-inspired SGNs that mimic neuronal charging and discharging. Despite the
suitability, EEGs often exhibit varying distributions over time or among different groups (Zhao et al.,
2020; 2021; Wang et al., 2022), leading to suboptimal performance of models trained on specific
distributions when applied to others. This significant issue underscores the necessity of exploring
domain adaptation for spiking graphs. Traditionally, SNNs transfer learning methods (Zhan et al.,
2021; Zhang et al., 2021; Zhan et al., 2024; Guo et al., 2024) have been applied in event-based or
computer vision scenarios. However, there’s no existing research on spiking graph domain adaptation.

In this paper, we address the development of energy-efficient SGNs tailored for scenarios involving
distribution shifts. Both domain adaptation and SGNs are particularly well-suited for real-world

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

applications where data distributions vary across environments, and efficient processing of graph-
structured, dynamic data under resource constraints is crucial. These challenges are common across
numerous fields that require solutions capable of handling distribution shifts while minimizing energy
consumption. However, designing an effective spiking graph domain adaptation framework is non-
trivial due to the following major challenges: (1) How to meticulously design an SGN under the
circumstance of domain shift? SGNs usually utilize a global threshold for the firing of each node (Xu
et al., 2021a; Yin et al., 2024; Zhao et al., 2024). However, we observe that the degree of each node
influences the difficulty of triggering spikes. Specifically, nodes with high degrees can integrate
more information from neighbors, making it easier for membrane potential to accumulate and trigger
a spike. Conversely, nodes with lower degrees are more challenging to reach the firing threshold,
denoted as the inflexible architecture challenge. (2) How to design a framework that effectively
addresses spiking graph domain adaptation for classification? Current research primarily focuses on
graph node classification within the same distribution (Li et al., 2023; Yao et al., 2023; Duan et al.,
2024). However, spike-based graph classification under domain shift remains unexplored. (3) How
to guarantee the stability of the proposed framework? Though some works have been proposed to
address the spiking transfer learning challenges (Zhan et al., 2021; Zhang et al., 2021; Zhan et al.,
2024), there is still no theoretical research on spiking graphs under domain shift.

To tackle these challenges, we propose a framework named Degree-aware Spiking Graph Domain
Adaptation for Classification (DeSGDA), which comprises three components: degree-aware per-
sonalized spiking representation, graph feature distribution alignment, and pseudo-label distillation.
To address the first challenge, we establish variable node thresholds based on their degrees. By
adaptively updating these thresholds, we can achieve a more expressive and personalized spiking
representation for each node. Then, we introduce a adversarial feature distribution alignment module
that is adversarially trained using membrane potential against a domain discriminator. To further
enhance performance, we extract consistent predictions from different spaces to generate reliable
pseudo-labels. Additionally, to explore the generalization ability of the proposed DeSGDA, we first
propose the error bound for spiking graph domain adaptation and demonstrate that our pseudo-label
distillation module effectively reduces this upper bound. In summary, we utilize simple yet effec-
tive techniques to address a novel problem while providing insightful analysis of the background
mechanisms and model capabilities of our proposed method.

Our contributions can be summarized as follows: (1) Problem Formulation: We first introduce
the problem of spiking graph domain adaptation for classification, which is non-trivial due to the
challenges of the inflexible architecture of SGNs and theoretical deficiency. (2) Novel Architecture:
We propose DeSGDA, a framework that efficiently learns personalized spiking representations for
nodes using degree-aware thresholds and aligns domain distributions through adversarial training on
membrane potential. Furthermore, we utilize pseudo-label distillation to improve the performance
further. (3) Theoretical Analysis: To guarantee the stability of DeSGDA, we provide theoretical
proof of the error bound for spiking graph domain adaptation. Furthermore, we demonstrate that
DeSGDA maintains a lower theoretical bound than standard spiking graph domain adaptation through
the effective use of the pseudo-label distillation module. (4) Extensive Experiments. We evaluate
the proposed DeSGDA on extensive spiking graph domain adaptation learning datasets, which shows
that our proposed DeSGDA outperforms the variety of state-of-the-art methods.

2 RELATED WORK

Spiking Graph Networks (SGNs). SGNs are a specialized type of neural network that combines
Spiking Neural Networks (SNNs) with Graph Neural Networks (GNNs), preserving energy efficiency
while achieving competitive performance in various graph tasks (Li et al., 2023; Yao et al., 2023;
Duan et al., 2024). Existing research on SGNs focuses on capturing the dynamic temporal information
contained within graphs and enhancing model scalability. For instance, Xu et al. (2021a) utilizes
spatial-temporal feature normalization within SNNs to effectively process dynamic graph data,
ensuring robust learning and improved predictive performance. Zhao et al. (2024) propose a method
that dynamically adapts to evolving graph structures and relationships through a novel architecture
that updates node representations in real time. Additionally, Yin et al. (2024) adapts SNNs to dynamic
graph settings and employs implicit differentiation for the node classification task. However, existing
methods still suffer from data distribution shift issues when training and testing data come from
different domains, resulting in degraded model performance and generalization. To address this, we
propose a novel domain adaptation method based on SGNs to tackle these challenges.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Spiking Transfer Learning. Spiking transfer learning focuses on adjusting SNNs to handle data
distribution shifts across various domains effectively. Recent advances in spiking transfer learning
have been extensively applied in vision tasks, enhancing model performance while maintaining
energy efficiency (Zhan et al., 2021; Zhang et al., 2021; Zhan et al., 2024). For instance, Guo et al.
(2024) leverages a Jaccard attention mechanism within SNNs to effectively adapt to target domains
without requiring source domain data. Similarly, He et al. (2024) facilitates the transfer of learned
representations from static to dynamic event-based domains by adapting SNNs to process temporal
information. Additionally, Zhan et al. (2024) converts RGB images into spike-based neuromorphic
data, enabling SNNs to process visual information across various domains efficiently. However, the
difficulty of graph topologies makes it infeasible to apply spiking transfer learning to SGNs directly.
To this end, we introduce a specialized domain adaptation method tailored for SGNs.

3 PRELIMINARIES

Bound for Graph Domain Adaptation (GDA). Applying GDA with optimal transport (OT), if
the covariate shift holds on representations that PS(Y |Z) = PT (Y |Z), the target risk ϵT (h, ĥ) is
bounded with the theorem:

Theorem 1 (You et al., 2023) Assuming that the learned discriminator is Cg-Lipschitz continuous
as described in (Redko et al., 2017), and the graph feature extractor f (also referred to as GNN)
is Cf -Lipschitz that ||f ||Lip = maxG1,G2

||f(G1)−f(G2)||2
η(G1,G2)

= Cf for some graph distance measure
η. Let H := {h : G → Y} be the set of bounded real-valued functions with the pseudo-dimension
Pdim(H) = d that h = g ◦ f ∈ H, with probability at least 1− δ the following inequality holds:

ϵT (h, ĥ) ≤ϵ̂S(h, ĥ) +

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

δ
) + 2CfCgW1(PS(G),PT (G)) + ω,

where the (empirical) source and target risks are ϵ̂S(h, ĥ) = 1
NS

∑NS

n=1 |h(Gn) − ĥ(Gn)| and

ϵT (h, ĥ) = EPT (G{|h(G) − ĥ(G)|}, respectively, where ĥ : G → Y is the labeling function for
graphs and ω = min||g||Lip≤Cg,||f ||Lip≤Cf

{ϵS(h, ĥ) + ϵT (h, ĥ)}. The first Wasserstein distance is
defined as (Villani et al., 2009): W1(P,Q) = sup||g||Lip≤1

{
EPS(Z)g(Z)− EPT (Z)g(Z)

}
.

The comprehensive justification of the OT-based graph domain adaptation bound demonstrates that
the generalization gap relies on both the domain divergence 2CfCgW1(PS(G),PT (G)) and model
discriminability ω.

Spiking Graph Networks. In contrast to traditional artificial neural networks, SGNs (Xu et al.,
2021a; Zhu et al., 2022) convert input data into binary spikes over time, with each neuron in the
SGNs maintaining a membrane potential that accumulates input spikes. A spike is produced as an
output when the membrane potential exceeds a threshold, which is formulated as:

uτ+1,i = λ(uτ,i − Vthsτ,i) +
∑
j

wijA (A, sτ,j) + b, sτ+1,i = H(uτ+1,i − Vth), (1)

where H(x) is the Heaviside function, which is the non-differentiable spiking function. A is the
graph aggregation operation, and A is the adjacency matrix of graph. sτ,i denotes the binary spike
train of neuron i, and λ is the constant. wij and b are the weights and bias of each neuron.

4 METHODOLOGY

This work studies the spiking graph domain adaptation problem and proposes a new approach
DeSGDA. DeSGDA consists of three parts: Degree-aware personalized spiking representation
utilizes different thresholds for different degrees, effectively addressing the inflexible architecture
challenge; Adversarial distribution alignment uses the adversarial training on membrane potential
against a domain discriminatory to align distribution between different domains, and Pseudo-label
distillation further applies the pseudo-label to enhance model performance. We provide the theoretical
guarantee of DeSGDA to ensure the effectiveness. The overview of DeSGDA is shown in Figure 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: An overview of the proposed DeSGDA. To achieve personalized spiking representations,
DeSGDA employs adaptive thresholds based on node degrees, enabling the generation of tailored
spiking representations. To align domain distributions, DeSGDA leverages adversarial training on
membrane potentials to counter domain discrimination. Furthermore, DeSGDA utilizes pseudo-
labeling to identify and select reliable samples, thereby enhancing overall model performance.

Problem Setup. Given a graph G = (V,E,X) with the node set V , the edge set E, and the node
attribute matrix X. Denote S as the binary input sampled from Bernoulli distribution with probability
of X. The labeled source domain is denoted as Ds = {(Gs

i , y
s
i)}

Ns
i=1, where ysi denotes the labels of

Gs
i ; the unlabeled target domain is Dt = {Gt

j}
Nt
j=1, where Ns and N t denote the number of source

graphs and target graphs. Both domains share the same label space Y but have different distributions
in the graph space. We aim to train a spiking graph model using labeled source graphs and unlabeled
target graphs to achieve superior performance in the target domain.

4.1 DEGREE-AWARE PERSONALIZED SPIKING REPRESENTATION

In this part, we first study the disadvantages of directly applying SNNs to graphs and then propose the
degree-aware personalized spiking representation. Existing SGNs (Li et al., 2023; Yao et al., 2023;
Duan et al., 2024) usually employ a global threshold for membrane potential firing. However, the
global threshold can lead to the inflexible architecture issue since nodes with higher degrees are more
likely to trigger spikes than those with lower degrees. As shown in Eq. 1, nodes with higher degrees
have more neighbors, and the aggregation operation allows for more significant feature accumulation,
making it easier for these nodes to trigger spikes compared to those with fewer neighbors. To alleviate
this issue, we propose the degree-aware thresholds and iteratively update their values.

Specifically, we first set all the degrees of nodes in the source domain graphs, i.e., Ds = set(Ds
1 ∪

· · · ∪ Ds
Ns

), where Di denotes the degree set of graph Gs
i , and set(·) operation is an unordered

sequence of non-repeating elements. Considering that low-degree nodes are more challenging
to trigger while high-degree nodes trigger more easily, we propose setting higher thresholds for
high-degree nodes and lower thresholds for low-degree nodes, which is formulated as:

s
ds
i

τ = H(uτ − V
ds
i

th), Sds
i = avg(s

ds
i

τ), V
ds
i

th = (1− α)V
ds
i

th + αSds
i , (2)

where V
ds
i

th is the threshold of degree dsi ∈ Ds, initially set to Vth, and α is a hyper-parameter.
The avg(·) operation takes the average of spiking representation with degree dsi . Consequently,
high-degree nodes tend to achieve high Sds

i , which leads to an iterative increase in the threshold
corresponding to degree dsi and conversely for lower-degree nodes. To further explore the background
mechanism of the hypothesis, we have the following analysis.

Hypothesis 1 In graph spiking networks, nodes with low-degree are more challenging to trigger
while high-degree nodes trigger more easily.

The details analysis are introduced in Appendix A. With different thresholds for different node
degrees, we can obtain the personalized node spiking representation s

ds
j

v∈Gs
i
. Then, we summarize

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

all node representations with a readout function into the graph-level representation and output the
prediction with a multi-layer perception (MLP) classifier:

si = READOUT

({
s
ds
j

v

}
v∈Gs

i

)
, ŷsi = H(si), (3)

where ŷi is the predicted result and H(·) is the classifier. After that, the source classification loss is:

LS = EGs
i∈Ds l(ysi , ŷ

s
i), (4)

where l(·) is the loss function and ysi is the ground truth of the i-th graph Gs
i in the source domain.

However, in the scenario of domain adaptation, two significant issues remain unresolved. The first
issue is that degrees in the target domain may be unseen in the source, rendering the thresholds
ineffective for these degrees. The second is that the thresholds in the target may differ from those in
the source, simply applying the source domain’s thresholds could lead to performance degradation.

To alleviate the first issue, we initialize the threshold V
dt
i

th with the same value, where dti /∈ Ds. Then,
with the training process of adversarial alignment, we iteratively update the threshold for degree
dti with Eq. 2. To address the second issue, we incorporate the pseudo-label distillation module in
Section 4.3 to guide the update of source degree thresholds on the target domain.

4.2 ADVERSARIAL DISTRIBUTION ALIGNMENT

To eliminate the discrepancy between the source and target domains, we propose the adversarial
distribution alignment module. Specifically, for each source graph Gs

i and target graph Gt
i, we use

the degree-aware personalized spiking GNNs-based encoder F (·) and semantic classifier H(·) to
produce predicted labels. Then, a domain discriminator Q(·) is trained to distinguish features from
the source and target domains. The encoder and classifier are adversarial trained to align the feature
spaces of the source and target domains.

LAD = EGs
i∈Ds logQ

(
F (Gs

i), H(Gs
i)|V Ds

th

)
+ EGt

j∈Dt log
(
1−Q

(
F
(
Gt

j

)
, H(Gt

j)|V Ds

th

))
.

However, the degree in the target domain may be unseen by the source. Thus, we further initialize the

threshold with V
dt
j

th and dtj /∈ Ds, which is formulated as:

LAD =EGt
j∈Dt

Dt
j⊂Ds

log
(
1−Q

(
F
(
Gt

j

)
, H(Gt

j)|V Ds

th

))
+ EGs

i∈Ds logQ
(
F (Gs

i), H(Gs
i)|V Ds

th

)
+ EGt

j∈Dt

∃dt
j /∈Ds

log
(
1−Q

(
F
(
Gt

j

)
, H(Gt

j)|V Ds

th , V Dt

th

))
,

(5)
where Dt = {dti|dti ∈ Dt, dti /∈ Ds}. Then, we iteratively update V Dt

th with Eq. 2 on each latency.
Furthermore, we present an upper bound on the adversarial distribution alignment.

Theorem 2 Assuming that the learned discriminator is Cg-Lipschitz continuous as described in
Theorem 1, the graph feature extractor f (also referred to as GNN) is Cf -Lipschitz that ||f ||Lip =

maxG1,G2

||f(G1)−f(G2)||2
η(G1,G2)

= Cf for some graph distance measure η and the loss function bounded
by C > 0. Let H := {h : G → Y} be the set of bounded real-valued functions with the pseudo-
dimension Pdim(H) = d that h = g ◦ f ∈ H, and provided the spike training data set Sn =
{(Xi, yi) ∈ X × Y}i∈[n] drawn from Ds, with probability at least 1− δ the following inequality :

ϵT (h, ĥT (X)) ≤ϵ̂S(h, ĥS(S)) + 2E

[
sup sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

)
+ 2CfCgW1 (PS(G),PT (G)) ,

(6)

where the (empirical) source and target risks are ϵ̂S(h, ĥ(S)) =
1

NS

∑NS

n=1 |h(Sn) − ĥ(Sn)| and

ϵT (h, ĥ(X)) = EPT (G{|h(G) − ĥ(G)|}, respectively, where ĥ : G → Y is the labeling function

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

for graphs and ω = min||g||Lip≤Cg,||f ||Lip≤Cf
{ϵS(h, ĥ(X)) + ϵT (h, ĥ(X))}, ϵi is the Rademacher

variable and pi is the ith row of P, which is the probability matrix with:

Pkt =

{
exp

(
uk(t)−Vth

σ(uk(t)−ureset)

)
, if uθ ≤ u(t) ≤ Vth,

0, if ureset ≤ uk(t) ≤ uθ.
(7)

Theorem 2 proves the generalization bound of spiking graph domain adaptation. More details can be
found in Appendix B.

4.3 PSEUDO-LABEL DISTILLATION FOR DISCRIMINATION LEARNING

To further address the variance in thresholds between the target and source domains, we incorporate
the pseudo-label distillation module into the DeSGDA framework. With reliable pseudo-labels, we
can effectively update the source degree thresholds in the target domain.

The goal of the pseudo-label distilling procedure is to keep those examples and their corresponding
pseudo-labels from the deep feature space that aligns with the shallow feature space. Specifically,
we denote s′

t
i as the shallow spiking graph representation on the L′-th layer, where L′ < L, and ŷti

as the prediction of graph Gt
i on the L-th layer. Then, to enhance alignment between the shallow

and deep feature spaces and facilitate the generation of more accurate pseudo-labels, we cluster the
shallow features s′t into C clusters and each cluster Ej includes graphs {Gt

j}. After that, we find the
dominating labels er in the cluster, i.e., maxr |{Er : er = ŷtj}|, and remove other instances with the
same pseudo-label but in different clusters. Formally, the pseudo-labels are signed with:

P =
{(

Gt
j , ŷ

t
j

)
: ej = max

r

∣∣{Er : er = ŷtj
}∣∣} . (8)

Finally, we utilize the distilled pseudo-labels to guide the update of source degree thresholds on the
target domain with Eq. 2, and to direct classification in the target domain:

LT = EGt
j∈P l

(
H(s

t
j), ŷ

t
j

)
, (9)

where H(·) and stj are the classifier and spiking graph representation, respectively, which are defined
in Eq. 3. l(·) is the loss function, and we implement it with cross-entropy loss.

Theorem 3 Under the assumption of Theorem 1, we further assume that there exists a small amount
of i.i.d. samples with pseudo labels {(Gn, Yn)}

N ′
T

n=1 from the target distribution PT (G, Y) (N ′
T ≪

NS) and bring in the conditional shift assumption that domains have different labeling function

ĥS ̸= ĥT and maxG1,G2

|ĥD(G1)−ĥD(G2)|
η(G1,G2)

= Ch ≤ CfCg(D ∈ {S, T}) for some constant Ch and
distance measure η, and the loss function bounded by C > 0. Let H := {h : G → Y} be the set of
bounded real-valued functions with the pseudo-dimension Pdim(H) = d, and provided the spike
training data set Sn = {(Xs

i , y
s
i)}i∈[n], with probability at least 1− δ the following inequality holds:

ϵT (h, ĥT (X)) ≤ N ′
T

NS +N ′
T

ϵ̂T (h, ĥT (S)) +
NS

NS +N ′
T

(
ϵ̂S(h, ĥS(S)) + 2CfCgW1 (PS(G),PT (G))

+ 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X)))− ϵS(h, ĥT (X)))|, |ϵT (h, ĥS(X)))− ϵT (h, ĥT (X)))|

))

≤ϵ̂S(h, ĥS(S)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+ 2CfCgW1 (PS(G),PT (G)) + ω′,
(10)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: The graph classification results (in %) on PROTEINS under edge density domain shift
(source→target). P0, P1, P2, and P3 denote the sub-datasets partitioned with edge density. Bold
results indicate the best performance.

Methods P0→P1 P1→P0 P0→P2 P2→P0 P0→P3 P3→P0 P1→P2 P2→P1 P1→P3 P3→P1 P2→P3 P3→P2 Avg.

WL subtree 68.7 82.3 50.7 82.3 58.1 83.8 64.0 74.1 43.7 70.5 71.3 60.1 67.5
GCN 73.4±0.2 83.5±0.3 57.6±0.2 84.2±1.8 24.0±0.1 16.6±0.4 57.6±0.2 73.7±0.4 24.0±0.1 26.6±0.2 39.9±0.9 42.5±0.1 50.3
GIN 62.5±4.7 74.9±3.7 53.0±4.6 59.6±4.2 73.7±0.8 64.7±3.4 60.6±2.7 69.8±0.6 31.1±2.8 63.1±3.4 72.3±2.7 64.6±1.4 62.5
GMT 73.4±0.3 83.5±0.2 57.6±0.1 83.5±0.3 24.0±0.1 83.5±0.1 57.4±0.2 73.4±0.2 24.1±0.1 73.4±0.3 24.0±0.1 57.6±0.2 59.6
CIN 74.5±0.2 84.1±0.5 57.8±0.2 82.7±0.9 75.6±0.6 79.2±2.2 61.5±2.7 74.0±1.0 75.5±0.8 72.5±2.1 76.0±0.3 60.9±1.2 72.9
SpikeGCN 71.8±0.8 79.5±1.3 63.8±1.0 78.9±1.4 68.6±1.1 76.5±1.8 62.3±2.2 72.1±1.5 68.1±2.1 67.2±1.9 69.2±2.1 64.2±1.8 70.2
DRSGNN 72.6±0.6 80.1±1.6 63.1±1.4 79.5±1.8 70.4±1.9 78.6±2.1 64.1±1.7 70.7±2.3 67.8±1.6 65.6±1.4 71.3±1.3 62.1±1.0 70.5

CDAN 72.2±1.8 82.4±1.6 59.8±2.1 76.8±2.4 69.3±4.1 71.8±3.7 64.4±2.5 74.3±0.4 46.3±2.0 69.8±1.8 74.4±1.7 62.6±2.3 68.7
ToAlign 73.4±0.1 83.5±0.2 57.6±0.1 83.5±0.2 24.0±0.3 83.5±0.4 57.6±0.1 73.4±0.1 24.0±0.2 73.4±0.2 24.0±0.1 57.6±0.3 59.6
MetaAlign 75.5±0.9 84.9±0.6 64.8±1.6 85.9±1.1 69.3±2.7 83.3±0.6 68.7±1.2 74.2±0.7 73.3±3.3 72.2±0.9 69.9±1.8 63.6±2.3 73.8

DEAL 76.5±0.4 83.1±0.4 67.5±1.3 77.6±1.8 76.0±0.2 80.1±2.7 66.1±1.3 75.4±1.5 42.3±4.1 68.1±3.7 73.1±2.2 67.8±1.2 71.1
CoCo 75.5±0.2 84.2±0.4 59.8±0.5 83.4±0.2 73.6±2.3 81.6±2.4 65.8±0.3 76.2±0.2 75.8±0.2 71.1±2.1 76.1±0.2 67.1±0.6 74.2
SGDA 63.8±0.6 65.2±1.3 66.7±1.0 59.1±1.5 60.1±0.8 64.4±1.2 65.2±0.7 63.9±0.9 64.5±0.6 61.1±1.3 58.9±1.4 64.9±1.2 63.2
DGDA 58.7±0.8 59.9±1.2 57.1±0.6 57.9±0.8 59.2±1.3 58.9±0.4 61.1±1.2 60.3±1.6 58.6±0.9 57.5±1.2 58.4±0.5 62.3±1.5 59.2
A2GNN 65.4±1.3 66.3±1.1 68.2±1.4 66.3±1.2 65.4±0.7 65.9±0.9 66.9±1.3 65.4±1.2 65.6±0.9 65.5±1.2 66.1±2.0 66.0±1.8 66.1
PA-BOTH 63.1±0.7 67.2±1.1 64.3±0.5 72.1±1.8 66.3±0.7 64.1±1.2 69.7±2.1 67.5±1.8 61.2±1.4 67.7±2.3 61.2±1.6 65.5±0.6 65.9

DeSGDA 76.7±0.8 84.6±0.9 69.4±0.6 85.2±1.5 76.2±1.1 83.9±1.2 69.9±0.6 76.3±1.4 75.9±1.0 73.5±1.3 76.3±1.6 68.3±0.7 76.4

where the (empirical) source and target risks are ϵ̂S(h, ĥ) = 1
NS

∑NS

n=1 |h(Gn) − ĥ(Gn)| and

ϵT (h, ĥ) = EPT (G{|h(G) − ĥ(G)|}, respectively, where ĥ : G → Y is the labeling function for
graphs and ω′ = min||g||Lip≤Cg,||f ||Lip≤Cf

{ϵS(h, ĥ) + ϵT (h, ĥ)}, ϵi is the Rademacher variable
and pi is the ith row of P, which is defined in Eq. 7.

The proof is detailed in Appendix C. From Theorem 3, we observe that the bound of DeSGDA
is lower than simply aligning the distributions by incorporating the highly reliable pseudo-labels,
demonstrating the effectiveness of pseudo labels for spiking graph domain adaptation.

4.4 LEARNING FRAMEWORK

Finally, the overall training objective of DeSGDA integrates classification loss LS , adversarial
training loss LAD, and pseudo-label distillation loss LT , which is formulated as:

L = LS + LT − λLAD, (11)

where λ is a hyper-parameter to balance the adversarial training loss and classification loss. The
learning procedure is illustrated in Algorithm D, and the complexity is shown in Appendix E .

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Dataset. To demonstrate the effectiveness of DeSGDA, we conduct extensive experiments on four
widely-used graph classification datasets from TUDataset 1, including PROTEINS (Dobson & Doig,
2003), NCI1 (Wale et al., 2008), FRANKENSTEIN (Orsini et al., 2015), and MUTAGENICITY
(Kazius et al., 2005). To better address the variation in domain distributions within each dataset, we
divided them into source and target domains based on the edge density, node density, and graph flux
(i.e., the ratio of the number of nodes to the number of edges). The specific statistics, distribution
visualization, and details introduction of experimental datasets are presented in Appendix F.

Baselines. We compare DeSGDA with competitive baselines on the aforementioned datasets,
including one graph kernel method: WL subtree (Shervashidze et al., 2011); four general graph
neural networks: GCN (Kipf & Welling, 2017), GIN (Xu et al., 2018), CIN (Bodnar et al., 2021)
and GMT (Baek et al., 2021); two spiking graph neural networks: SpikeGCN (Zhu et al., 2022) and
DRSGNN (Zhao et al., 2024); three recent domain adaptation methods: CDAN (Long et al., 2018),
ToAlign (Wei et al., 2021b), and MetaAlign (Wei et al., 2021a); and six graph domain adaptation
methods: DEAL (Yin et al., 2022), CoCo (Yin et al., 2023), SGDA (Qiao et al., 2023), DGDA (Cai

1https://chrsmrrs.github.io/datasets/

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: The graph classification results (in %) on NCI1 under graph flux domain shift
(source→target). N0, N1, N2, and N3 denote the sub-datasets partitioned with graph flux. Bold
results indicate the best performance. OOM means out of memory.

Methods N0→N1 N1→N0 N0→N2 N2→N0 N0→N3 N3→N0 N1→N2 N2→N1 N1→N3 N3→N1 N2→N3 N3→N2 Avg.

WL subtree 75.9 70.4 64.3 63.9 60.6 64.7 73.2 78.9 66.8 69.2 74.2 72.9 69.6
GCN 49.2±1.7 55.8±1.5 46.8±0.5 54.6±2.2 43.4±0.6 46.7±0.2 50.0±1.8 57.2±2.2 44.2±0.4 51.6±0.8 62.7±2.1 56.8±1.3 51.6
GIN 68.8±2.5 70.6±1.0 64.2±1.1 67.2±2.4 62.2±1.8 62.5±1.5 68.7±2.4 72.5±0.6 63.3±1.6 65.2±0.6 62.4±0.3 70.9±0.5 66.6
GMT 66.7±0.3 58.2±0.5 63.9±0.3 58.4±0.3 63.8±0.4 56.7±0.5 63.9±0.7 66.3±1.0 63.8±1.1 66.6±0.4 63.8±0.2 62.6±0.7 62.9
CIN 58.7±2.4 54.9±0.2 52.0±0.3 54.8±0.1 56.6±0.2 54.9±0.1 52.9±1.4 52.8±0.5 56.5±0.6 52.8±2.1 58.5±0.8 56.6±1.4 55.1
SpikeGCN 58.9±0.9 65.2±1.2 60.8±1.3 62.0±1.5 62.3±0.8 58.7±1.6 64.1±0.6 66.7±1.3 60.5±1.7 63.8±1.4 62.2±2.1 61.1±1.5 62.1
DRSGNN 58.0±0.6 64.3±1.1 61.2±0.8 62.2±1.0 62.9±1.5 64.0±1.3 60.6±1.6 64.0±1.4 67.6±2.1 62.4±1.9 71.3±2.3 68.8±2.0 63.9

CDAN 64.0±1.1 68.1±0.3 60.1±0.5 64.0±1.3 60.9±0.2 57.8±1.0 64.3±1.6 61.2±0.2 66.3±0.7 59.0±0.5 68.9±0.3 63.7±0.6 63.2
ToAlign 52.8±0.5 54.8±0.2 48.2±1.1 54.8±1.5 44.0±0.8 54.8±2.0 48.2±1.7 52.8±0.6 44.0±0.2 52.8±0.3 44.0±1.0 48.2±1.2 50.0
MetaAlign 63.1±0.3 63.8±1.3 58.9±2.4 58.5±0.4 59.1±2.1 59.2±1.6 70.1±0.8 63.3±1.4 66.5±2.7 60.9±1.1 71.4±0.2 67.5±0.8 63.5

DEAL 70.7±0.9 72.3±0.2 69.9±0.8 68.9±0.7 64.1±0.6 65.6±0.9 71.9±0.4 69.9±1.7 70.6±0.4 66.5±0.3 71.6±0.7 69.9±0.5 69.3
CoCo 64.0±1.3 63.9±0.6 65.8±1.8 59.9±1.7 62.2±2.1 60.6±1.6 65.0±2.1 64.8±1.4 60.0±0.8 61.3±0.5 68.5±0.4 67.1±0.6 63.6
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 58.9±0.9 60.1±0.7 59.8±1.2 59.4±1.0 62.3±1.5 60.9±1.6 61.6±1.3 59.9±1.9 64.9±1.6 62.9±2.1 65.4±1.5 63.3±2.3 61.7
PA-BOTH 61.1±0.5 60.9±0.4 61.6±0.6 61.2±0.8 60.8±0.6 61.5±0.5 62.2±1.0 61.9±0.7 61.8±1.1 61.1±0.9 60.9±0.8 61.3±1.2 61.6

DeSGDA 68.5±1.2 71.4±1.3 70.1±0.7 69.0±1.1 68.9±1.0 66.3±1.4 69.6±1.3 70.2±1.7 71.1±1.6 69.3±1.8 74.4±1.6 70.0±1.9 70.1

et al., 2024), A2GNN (Liu et al., 2024a) and PA-BOTH (Liu et al., 2024b). More details about the
compared baselines can be found in Appendix G.

Implementation Details. DeSGDA and all baseline models are implemented using PyTorch2 and
PyTorch Geometric3. For DeSGDA, we deploy the GIN (Xu et al., 2018) as the backbone of the
degree-aware personalized spiking graph encoder, incorporating a mean-pooling layer for the readout
function. We conduct experiments for DeSGDA and all baselines on NVIDIA A100 GPUs for a fair
comparison, where the learning rate of Adam optimizer set to 10−4, hidden embedding dimension
256, weight decay 10−12, and GNN layers 4. Additionally, DeSGDA and all baseline models are
trained using all labeled source samples and evaluated on unlabeled target samples (Wu et al., 2020).
The performances of all models are measured and averaged on all samples for five runs.

5.2 PERFORMANCE COMPARISION

P0->P1 P1->P0 P0->P2 P2->P0
0.72

0.76

0.80

A
cc

ur
ac

y

GCN GAT GIN

Figure 2: The performance with different GNN
architectures on PROTEINS.

We present the results of the proposed DeSGDA
with all baseline models under the setting of
graph domain adaptation on different datasets
in Table 1, 2, 19. From these tables, we ob-
serve that: (1) The performance of graph domain
adaptation methods surpasses that of graph and
spike-based graph methods. We attribute this
improvement to the fact that domain distribution
shifts degrade the performance of traditional
graph methods. (2) The graph domain adap-
tation methods (DEAL and CoCo) outperform
the spike-based graph methods (SpikeGCN and
DRSGNN), underscoring the necessity of the
research in spiking graph domain adaptation. (3) The WL subtree method outperforms SGDA,
DGDA, A2GNN, and PA-BOTH but falls short compared to DEAL and CoCO. We attribute this
to the relatively limited research specifically addressing the graph domain adaptation problem (e.g.,
DEAL and CoCo). To bridge this gap, we adapted node classification methods for graph classification
tasks (e.g., SGDA, DGDA, A2GNN, and PA-BOTH). While the WL subtree method demonstrates
superior performance over these adapted node classification-based methods, it remains less effective
than dedicated graph domain adaptation methods tailored for graph classification tasks. (4) Our
DeSGDA outperforms all baselines for most cases, which demonstrates its superiority over other
methods. The remarkable performance of DeSGDA lies in two main reasons: (i) The degree-aware
personalized spiking representations can capture more expressive information for graph classification
by dynamically adjusting the thresholds of nodes in SNNs. (ii) The adversarial distribution align-
ment effectively addresses domain discrepancies by adversarially training the encoder and domain

2https://pytorch.org/
3https://www.pyg.org/

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: The results of ablation studies on PROTEINS (source → target). Bold results indicate the
best performance. Bold results indicate the best performance.

Methods P0→P1 P1→P0 P0→P2 P2→P0 P0→P3 P3→P0 P1→P2 P2→P1 P1→P3 P3→P1 P2→P3 P3→P2 Avg.

DeSGDA w/o CA 72.3 72.6 71.9 75.1 74.1 71.3 71.5 70.4 71.6 70.5 78.3 71.5 72.6
DeSGDA w/o PL 72.1 68.7 67.8 69.4 63.7 55.7 68.3 69.5 70.2 69.6 76.7 66.9 68.3
DeSGDA w/o CF 56.7 54.2 60.7 62.1 73.4 68.3 55.3 69.5 76.7 65.5 73.7 63.3 65.7
DeSGDA w/o TL 61.7 43.8 56.1 71.2 49.5 69.0 42.4 68.3 73.7 64.0 70.5 43.5 59.5
DeSGDA w/ PT 71.5 68.3 66.1 72.4 66.7 70.1 67.9 70.8 66.3 71.8 74.1 72.9 70.0
DeSGDA w/ CL 74.9 73.3 73.7 75.1 77.0 71.3 73.9 70.0 78.1 77.6 78.8 74.9 75.1

DeSGDA 78.7 78.4 74.8 77.6 79.5 76.7 74.9 71.2 79.5 72.8 81.0 75.1 76.4

discriminator to align feature spaces. Moreover, the pseudo-label distillation aids in updating the
source degree thresholds in the target domain, thereby ensuring optimal performance. More results
evaluated on other datasets can be found in Appendix H.1.

Additionally, we conduct experiments to explore the flexibility of the proposed DeSGDA. Specifically,
we replace the backbone of the degree-aware personalized spiking graph encoder (GIN) with various
GNNs methods (i.e., GCN and GAT), and the results are shown in Figure 2. From the results, we
observe that GIN consistently outperforms other GNNs architectures in most cases, demonstrating
its powerful representation capability. This phenomenon also justifies our choice of using GIN to
enhance the performance of the proposed DeSGDA. More results are reported in Appendix H.1.

5.3 ENERGY EFFICIENCY ANALYSIS

PROTEINS MUTAGENICITY NCI1 FRANKENSTEIN
108

1010

1012

1014

1016

E
ne

rg
y

/ p
J

DeSGDA
DRSGNN

DEAL
CoCo

A2GNN
PA-BOTH

Figure 3: Energy consumption of DeSGDA and
baselines on different datasets.

To assess the energy efficiency of DeSGDA, we
use the metric from (Zhu et al., 2022) and quan-
tify the energy consumption for graph classifi-
cation in the inference stage. Specifically, the
graph domain adaption methods are evaluated on
GPUs (NVIDIA A100), and the spiking-based
methods are evaluated on neuromorphic chips
(ROLLS (Indiveri et al., 2015)) following (Zhu
et al., 2022). The results are shown in Figure 3,
from the results, we find that compared with tra-
ditional graph domain adaptation methods, the
spike-based methods (DeSGDA and DRSGNN)
have significantly lower energy consumption,
demonstrating the superior energy efficiency of SGNs. Moreover, although the energy consumption
of DeSGDA is slightly higher than DRSGNN due to additional computations required for domain
adaptation, the performance improvement justifies the deployment of DeSGDA in low-power devices.
Additionally, we present a comparison of training time and memory usage between DeSGDA and
other graph domain adaptation methods. The results are detailed in Table 10 and 11.

5.4 ABLATION STUDY

We conduct ablation studies to examine the contributions of each component in the proposed DeSGDA:
(1) DeSGDA w/o CA: It removes the adversarial distribution alignment module; (2) DeSGDA w/o
PL: It removes the pseudo-label distilling module; (3) DeSGDA w/o CF: It removes the classification
loss LS ; (4) DeSGDA w/o TL: It utilizes the global thresholds on all nodes; (5) DeSGDA w/ PT: It
deploys the adaptive perturbations (Yin et al., 2022) on source data for alignment; (6) DeSGDA w/
CL: It replaces the adversarial learning with the cross-domain contrastive learning (Yin et al., 2023).

Experimental results are shown in Table 3. From the table, we find that: (1) DeSGDA outperforms
DeSGDA w/o CA, DeSGDA w/o PL, and DeSGDA w/o CF, demonstrating that the adversarial distri-
bution alignment module can effectively reduce domain discrepancies, ensuring well-aligned feature
spaces between source and target domains. Additionally, the pseudo-label distillation module can
address the variance in thresholds across domains, while the classification loss LS enables DeSGDA
to effectively learn from labeled source data and generalize to the target domain. (2) DeSGDA w/o TL
shows lower performance compared to DeSGDA, showing that the degree-aware thresholds, which
are iteratively updated during model training, can resolve the issue of the inflexible architecture in
SGNs. By using these thresholds, DeSGDA can effectively learn meaningful representations for nodes

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 6 7 8 9 10
0.74

0.76

0.78

0.80

A
cc

ur
ac

y

P0 -> P1
P1 -> P0

P0 -> P2
P2 -> P0

(a) Time Latency τ

0.05 0.1 0.2 0.5 1.0 2.0 5.0 Vdegree
th

0.74

0.76

0.78

0.80

A
cc

ur
ac

y

P0 -> P1
P1 -> P0

P0 -> P2
P2 -> P0

(b) Initial Threshold V degree
th

0.1 0.3 0.5 0.7 0.9
0.74

0.76

0.78

0.80

A
cc

ur
ac

y

P0 -> P1
P1 -> P0

P0 -> P2
P2 -> P0

(c) Balance Ratio α

Figure 4: Hyperparameter sensitivity analysis of time latency τ , initial threshold V degree
th in SNNs,

and balance ratio α on PROTEINS.

with various degrees. (3) DeSGDA outperforms DeSGDA w/ PT and DeSGDA w/ CL. We attribute
that the adaptive perturbations method (DeSGDA w/ PT) can not effectively help DeSGDA overcome
the domain discrepancy. Additionally, the cross-domain contrastive learning method (DeSGDA w/
CL) is less effective at aligning the source and target distribution compared to adversarial learning.
Additionally, we provide the ablation studies to examine the effect of directly replacing the SGNs
with commonly used Graph Neural Networks (GNNs) for generating representations for DeSGDA,
and the results are shown in Table 12, 13. More details about ablation results on other datasets are
reported in Appendix H.3.

5.5 SENSITIVITY ANALYSIS

We study the sensitivity analysis of DeSGDA with respect to the impact of its hyperparameters: time
latency τ , degree threshold value V degree

th in SNNs, and balance ratio α, which plays a crucial role
in the performance of DeSGDA. In particular, τ controls the number of SNNs propagation steps;
V degree
th determines when a neuron fires; α governs the changing ratio of degree-aware thresholds.

Figure 4 illustrates how τ , V degree
th , and α affects the performance of DeSGDA on the PROTEINS

dataset. More results on other datasets are shown in Appendix H.4. We vary τ within the range
of {5, 6, 7, 8, 9, 10}, V degree

th in {0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0}, and α in {0.1, 0.3, 0.5, 0.7, 0.9}.
From the results, we observe that: (1) The performance of DeSGDA in Figure 4a generally exhibits
an increasing trend at the beginning and then stabilizes when τ is greater than 8. We attribute this to
smaller values of τ potentially losing important information for representation, while larger values
significantly increase model complexity. To balance performance and complexity, we set τ to 8 as
default. (2) Figure 4b indicates an initial increase followed by a decreasing trend in performance
as V degree

th increases. This trend occurs because a lower threshold may trigger more spikes for
high-degree nodes, leading to a drastic change in the threshold, which can degrade performance.
Conversely, a higher threshold for low-degree nodes could result in fewer spikes, affecting the model’s
ability to process information effectively. Thus, we set V degree

th to 0.5 as default. (3) From Figure 4c,
we find that the performance of DeSGDA initially increases and then decreases as α increases. The
potential reason is that the smaller α may delay the updating of the threshold, leading to performance
degradation. Contrarily, a larger α tends to introduce more spikes that change dynamically at each
step, resulting in instability in the model’s performance. Therefore, we set α to 0.5 as default.

6 CONCLUSION

In this paper, we first propose the problem of spiking graph domain adaptation and introduce a
novel framework DeSGDA for graph classification. This framework enhances the adaptability
and performance of SGNs through three key aspects: node degree-aware personalized spiking
representation, adversarial feature distribution alignment, and pseudo-label distillation. Our approach
enables more expressive information capture through degree-dependent spiking thresholds, aligns
feature distributions via adversarial training, and utilizes pseudo-labels to leverage unlabeled data
effectively. The extensive experimental validation across benchmark datasets has demonstrated
that DeSGDA not only surpasses existing methods in accuracy but also maintains efficient energy
consumption, making it a promising solution for advancing the domain adaptation capabilities of
spiking graph networks. In the future, we will apply SGNs in the scenarios of source-free domain
adaptation and domain generalization.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with
graph multiset pooling. In Proceedings of the International Conference on Learning Representa-
tions, 2021.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. The Journal of Machine Learning Research., 3(Nov):463–482, 2002.

Felix Christian Bauer, Dylan Richard Muir, and Giacomo Indiveri. Real-time ultra-low power ecg
anomaly detection using an event-driven neuromorphic processor. IEEE transactions on biomedical
circuits and systems, 13(6):1575–1582, 2019.

Andrea Biasiucci, Benedetta Franceschiello, and Micah M Murray. Electroencephalography. Current
Biology, 29(3):R80–R85, 2019.

CD Binnie and PF Prior. Electroencephalography. Journal of Neurology, Neurosurgery & Psychiatry,
57(11):1308–1319, 1994.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Proceedings of the Conference
on Neural Information Processing Systems, 34:2625–2640, 2021.

Ruichu Cai, Fengzhu Wu, Zijian Li, Pengfei Wei, Lingling Yi, and Kun Zhang. Graph domain
adaptation: A generative view. ACM Transactions on Knowledge Discovery from Data, 18(3):
1–24, 2024.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330(4):771–783, 2003.

Dexin Duan, Fei Wen, et al. Brain-inspired online adaptation for remote sensing with spiking neural
network. arXiv preprint arXiv:2409.02146, 2024.

Ruo-Nan Duan, Jia-Yi Zhu, and Bao-Liang Lu. Differential entropy feature for eeg-based emotion
classification. In 2013 6th international IEEE/EMBS conference on neural engineering (NER), pp.
81–84. IEEE, 2013.

Fuqiang Gu, Weicong Sng, Tasbolat Taunyazov, and Harold Soh. Tactilesgnet: A spiking graph neural
network for event-based tactile object recognition. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 9876–9882. IEEE, 2020.

Weiyu Guo, Ying Sun, Yijie Xu, Ziyue Qiao, Yongkui Yang, and Hui Xiong. Spgesture: Source-free
domain-adaptive semg-based gesture recognition with jaccard attentive spiking neural network.
arXiv preprint arXiv:2405.14398, 2024.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Proceedings of the Conference on Neural Information Processing Systems, 30, 2017.

Xiang He, Dongcheng Zhao, Yang Li, Guobin Shen, Qingqun Kong, and Yi Zeng. An efficient
knowledge transfer strategy for spiking neural networks from static to event domain. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pp. 512–520, 2024.

Giacomo Indiveri, Federico Corradi, and Ning Qiao. Neuromorphic architectures for spiking deep
neural networks. In 2015 IEEE International Electron Devices Meeting (IEDM), pp. 4–2. IEEE,
2015.

Jeroen Kazius, Ross McGuire, and Roberta Bursi. Derivation and validation of toxicophores for
mutagenicity prediction. Journal of medicinal chemistry, 48(1):312–320, 2005.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proceedings of the International Conference on Learning Representations, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dominik Klepl, Fei He, Min Wu, Daniel J Blackburn, and Ptolemaios Sarrigiannis. Eeg-based
graph neural network classification of alzheimer’s disease: An empirical evaluation of functional
connectivity methods. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30:
2651–2660, 2022.

Jintang Li, Zhouxin Yu, Zulun Zhu, Liang Chen, Qi Yu, Zibin Zheng, Sheng Tian, Ruofan Wu, and
Changhua Meng. Scaling up dynamic graph representation learning via spiking neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 8588–8596, 2023.

Junnan Li, Caiming Xiong, and Steven CH Hoi. Learning from noisy data with robust representation
learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021a.

Yijin Li, Han Zhou, Bangbang Yang, Ye Zhang, Zhaopeng Cui, Hujun Bao, and Guofeng Zhang.
Graph-based asynchronous event processing for rapid object recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 934–943, 2021b.

Meihan Liu, Zeyu Fang, Zhen Zhang, Ming Gu, Sheng Zhou, Xin Wang, and Jiajun Bu. Rethinking
propagation for unsupervised graph domain adaptation. Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 13963–13971, 2024a.

Shikun Liu, Deyu Zou, Han Zhao, and Pan Li. Pairwise alignment improves graph domain adaptation.
Proceedings of the International Conference on Machine Learning, 2024b.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. Proceedings of the Conference on Neural Information Processing Systems, 31,
2018.

Colin McDiarmid et al. On the method of bounded differences. Surveys in combinatorics, 141(1):
148–188, 1989.

Francesco Orsini, Paolo Frasconi, and Luc De Raedt. Graph invariant kernels. In Proceedings of the
International Joint Conference on Artificial Intelligence, 2015.

Ziyue Qiao, Xiao Luo, Meng Xiao, Hao Dong, Yuanchun Zhou, and Hui Xiong. Semi-supervised
domain adaptation in graph transfer learning. In Proceedings of the International Joint Conference
on Artificial Intelligence, pp. 2279–2287, 2023.

Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation with
optimal transport. pp. 737–753, 2017.

Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance guided representation
learning for domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence,
2018.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. The Journal of Machine Learning Research., 12(9),
2011.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowledge and Information Systems, 14:347–375, 2008.

Yixin Wang, Shuang Qiu, Dan Li, Changde Du, Bao-Liang Lu, and Huiguang He. Multi-modal
domain adaptation variational autoencoder for eeg-based emotion recognition. IEEE/CAA Journal
of Automatica Sinica, 9(9):1612–1626, 2022.

Guoqiang Wei, Cuiling Lan, Wenjun Zeng, and Zhibo Chen. Metaalign: Coordinating domain
alignment and classification for unsupervised domain adaptation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16643–16653, 2021a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Guoqiang Wei, Cuiling Lan, Wenjun Zeng, Zhizheng Zhang, and Zhibo Chen. Toalign: Task-
oriented alignment for unsupervised domain adaptation. Proceedings of the Conference on Neural
Information Processing Systems, 34:13834–13846, 2021b.

Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain
adaptive graph convolutional networks. In WWW, pp. 1457–1467, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proceedings of the International Conference on Learning Representations, 2018.

M. Xu, Yujie Wu, Lei Deng, Faqiang Liu, Guoqi Li, and Jing Pei. Exploiting spiking dynamics with
spatial-temporal feature normalization in graph learning. In International Joint Conference on
Artificial Intelligence, 2021a. URL https://api.semanticscholar.org/CorpusID:
235829564.

Mingkun Xu, Yujie Wu, Lei Deng, Faqiang Liu, Guoqi Li, and Jing Pei. Exploiting spiking dynamics
with spatial-temporal feature normalization in graph learning. In Proceedings of the International
Joint Conference on Artificial Intelligence, pp. 3207–3213, 2021b.

Man Yao, Huanhuan Gao, Guangshe Zhao, Dingheng Wang, Yihan Lin, Zhaoxu Yang, and Guoqi Li.
Temporal-wise attention spiking neural networks for event streams classification. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 10201–10210, 2021.

Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi
Li. Attention spiking neural networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(8):9393–9410, 2023.

Nan Yin, Li Shen, Baopu Li, Mengzhu Wang, Xiao Luo, Chong Chen, Zhigang Luo, and Xian-
Sheng Hua. Deal: An unsupervised domain adaptive framework for graph-level classification. In
Proceedings of the ACM International Conference on Multimedia, pp. 3470–3479, 2022.

Nan Yin, Li Shen, Mengzhu Wang, Long Lan, Zeyu Ma, Chong Chen, Xian-Sheng Hua, and Xiao Luo.
Coco: A coupled contrastive framework for unsupervised domain adaptive graph classification.
In Proceedings of the International Conference on Machine Learning, pp. 40040–40053. PMLR,
2023.

Nan Yin, Mengzhu Wang, Zhenghan Chen, Giulia De Masi, Huan Xiong, and Bin Gu. Dynamic
spiking graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 16495–16503, 2024.

Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. Graph domain adaptation via theory-
grounded spectral regularization. In Proceedings of the International Conference on Learning
Representations, 2023.

Qiugang Zhan, Guisong Liu, Xiurui Xie, Guolin Sun, and Huajin Tang. Effective transfer learning
algorithm in spiking neural networks. IEEE Transactions on Cybernetics, 52(12):13323–13335,
2021.

Qiugang Zhan, Guisong Liu, Xiurui Xie, Ran Tao, Malu Zhang, and Huajin Tang. Spiking transfer
learning from rgb image to neuromorphic event stream. IEEE Transactions on Image Processing,
2024.

Yuhan Zhang, Lindong Wu, Weihua He, Ziyang Zhang, Chen Yang, Yaoyuan Wang, Ying Wang, Kun
Tian, Jianxing Liao, and Ying Yang. An event-driven spatiotemporal domain adaptation method
for dvs gesture recognition. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(3):
1332–1336, 2021.

Han Zhao, Xu Yang, Cheng Deng, and Junchi Yan. Dynamic reactive spiking graph neural network.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 16970–16978,
2024.

He Zhao, Qingqing Zheng, Kai Ma, Huiqi Li, and Yefeng Zheng. Deep representation-based domain
adaptation for nonstationary eeg classification. IEEE Transactions on Neural Networks and
Learning Systems, 32(2):535–545, 2020.

13

https://api.semanticscholar.org/CorpusID:235829564
https://api.semanticscholar.org/CorpusID:235829564

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Li-Ming Zhao, Xu Yan, and Bao-Liang Lu. Plug-and-play domain adaptation for cross-subject
eeg-based emotion recognition. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 863–870, 2021.

Wei-Long Zheng and Bao-Liang Lu. Investigating critical frequency bands and channels for eeg-
based emotion recognition with deep neural networks. IEEE Transactions on autonomous mental
development, 7(3):162–175, 2015.

Xiaojian Zhu, Qiwen Wang, and Wei D Lu. Memristor networks for real-time neural activity analysis.
Nature communications, 11(1):2439, 2020.

Zulun Zhu, Jiaying Peng, Jintang Li, Liang Chen, Qi Yu, and Siqiang Luo. Spiking graph convolu-
tional networks. In Proceedings of the International Joint Conference on Artificial Intelligence,
2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOF OF HYPOTHESIS 1

Assuming that the node feature hi follows a normal distribution N (µ, σ2), then for each node in the
graph, we follow the message-passing mechanism and have the information aggregation as:

hi = hi +
∑

j∈N(i)

wijhj . (12)

Therefore, we have the expectation:

E(hi) = E(hi) +
∑

j∈N(i)

wijE(hj), (13)

Since E(hj) ∼ N (µ, σ2), we have:

E(hi) ∼ N

(1 +
∑

j∈N(i)

wij)µ, (1 +
∑

j∈N(i)

wij)σ
2

 . (14)

From the results, we observe that node i follows a normal distribution with a mean of (1 +∑
j∈N(i) wij)µ, determined by the aggregated weights of its neighboring nodes. To provide a

more intuitive understanding, we visualize the aggregated neighbor weights of GCN Kipf & Welling
(2017) and GIN Xu et al. (2018) in Figure 5. The results show that as the degree increases, the
aggregated weights also increase progressively. Consequently, high-degree nodes tend to follow a
normal distribution with a higher mean and variance. In other words, nodes with higher degrees
accumulate greater signals, making them more likely to trigger spiking. Based on this, we propose
assigning higher thresholds to high-degree nodes and lower thresholds to low-degree nodes.

Another observation is that methods that normalize neighbor weights to 1 (e.g., GAT Veličković
et al. (2017), GraphSAGE Hamilton et al. (2017)) still result in aggregated features following the
same normal distribution. This normalization diminishes the ability to distinguish between nodes
with varying degrees, ultimately degrading performance. This explains why, when using GAT as the
backbone of DeSGDA, the performance is the weakest.

1 2 3 4 5 6 7 8 9 10 11 12 13 15 24 25
Degree

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

Th
re

sh
ol

d
Va

lu
e

PROTEINS

1 2 3 4
Degree

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Th
re

sh
ol

d
Va

lu
e

NCI1

1 2 3 4 5 6 7 8 9 10 11 12 13 15 24 25
Degree

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ag
gr

eg
at

io
n

W
ei

gh
ts

PROTEINS

1 2 3 4
Degree

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ag
gr

eg
at

io
n

W
ei

gh
ts

NCI1

Figure 5: Visualization of degree-aware thresholds and aggregation weights on PROTEINS and
NCI1.

B PROOF OF THEOREM 2

Theorem 2 Assuming that the learned discriminator is Cg-Lipschitz continuous as described in
Theorem 1, the graph feature extractor f (also referred to as GNN) is Cf -Lipschitz that ||f ||Lip =

maxG1,G2

||f(G1)−f(G2)||2
η(G1,G2)

= Cf for some graph distance measure η and the loss function bounded
by C > 0. Let H := {h : G → Y} be the set of bounded real-valued functions with the pseudo-
dimension Pdim(H) = d that h = g ◦ f ∈ H, and provided the spike training data set Sn =
{(Xi, yi) ∈ X × Y}i∈[n] drawn from Ds, with probability at least 1− δ the following inequality:

ϵT (h, ĥT (X)) ≤ϵ̂S(h, ĥS(Sn)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

)
+ 2CfCgW1 (PS(G),PT (G)) ,

(15)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where the (empirical) source and target risks are ϵ̂S(h, ĥ) = 1
NS

∑NS

n=1 |h(Gn) − ĥ(Gn)| and

ϵT (h, ĥ) = EPT (G{|h(G) − ĥ(G)|}, respectively, where ĥ : G → Y is the labeling function for
graphs and ω = min||g||Lip≤Cg,||f ||Lip≤Cf

{ϵS(h, ĥ)+ ϵT (h, ĥ)}, ϵi is the Rademacher variable and
pi is the ith row of P, which is the probability matrix with:

Pkt =

{
exp

(
uk(t)−Vth

σ(uk(t)−ureset)

)
, if uθ ≤ u(t) ≤ Vth,

0, if ureset ≤ uk(t) ≤ uθ.
(16)

Proof. Before showing the designated lemma, we first introduce the following inequality to be used
that:

|ϵS(h, ĥS)− ϵT (h, ĥT)| = |ϵS(h, ĥS)− ϵS(h, ĥT) + ϵS(h, ĥT)− ϵT (h, ĥT)|
≤ |ϵS(h, ĥS)− ϵS(h, ĥT)|+ |ϵS(h, ĥT)− ϵT (h, ĥT)|
(a)

≤ |ϵS(h, ĥS)− ϵS(h, ĥT)|+ 2CfCgW1 (PS(G),PT (G)) ,

(17)

where (a) results from (Shen et al., 2018) Theorem 1 with the assumption
max(||h||Lip,maxG1,G2

|ĥD(G1)−ĥD(G2)|
η(G1,G2)

) ≤ CfCg , D ∈ {S, T}. Similarly, we obtain:

|ϵS(h, ĥS)− ϵT (h, ĥT)| ≤ |ϵT (h, ĥS)− ϵT (h, ĥT)|+ 2CfCgW1(PS(G),PT (G)). (18)

We therefore combine them into:

|ϵS(h, ĥS)− ϵT (h, ĥT)| ≤2CfCgW1(PS(G),PT (G))

+ min
(
|ϵS(h, ĥS)− ϵS(h, ĥT)|, |ϵT (h, ĥS)− ϵT (h, ĥT)|

)
,

(19)

i.e. the following holds to bound the target risk ϵT (h, ĥT):

ϵT (h, ĥT) ≤ϵS(h, ĥS) + 2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS)− ϵS(h, ĥT)|, |ϵT (h, ĥS)− ϵT (h, ĥT)|

)
.

(20)

We next link the bound with the empirical risk and labeled sample size by showing, with probability
at least 1− δ that:

ϵT (h, ĥT) ≤ϵS(h, ĥS) + 2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS)− ϵS(h, ĥT)|, |ϵT (h, ĥS)− ϵT (h, ĥT)|

) (21)

The ĥ above is the abbreviation of ĥ(x), which means the input is the continuous feature. Provided
the spike training data set Sn = {(Xi, yi) ∈ X × Y}i∈[n] drawn from D, and motivated by (Yin
et al., 2024), we have:

lim
τ→∞

P
(
ĥ(Sn)τ,i > ĥ(Xτ,i) + ϵ

)
≤ e−ϵ2/2(σ+ŵiϵ/3), (22)

where ŵi = max{wi1, · · · , wid} and h(xij) =
∑d

j=1 wijxij . From Equation 2, we observe that
as τ → ∞, the difference between spike and real-valued features will be with the probability of
p = e−ϵ2/2(σ+ŵiϵ/3) to exceed the upper and lower bounds.

Furthermore, motivated by the techniques given by (Bartlett & Mendelson, 2002), we have:

ϵS(h, ĥS(Sn)) ≤ ϵ̂S(h, ĥS(Sn)) + sup[ϵS(h, ĥS(Sn))− ϵ̂S(h, ĥS(Sn))]︸ ︷︷ ︸
R(Sn,P)

,
(23)

where P is the probability matrix with:

Pkt =

{
exp

(
uk(t)−Vth

σ(uk(t)−ureset)

)
, if uθ ≤ u(t) ≤ Vth,

0, if ureset ≤ uk(t) ≤ uθ,
(24)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where k indicates the k − th spiking neuron and the membrane threshold utheta is relative to the
excitation probability threshold pθ ∈ (0, 1]. Let pk is the k − th row vector of P. Thus, we have the
probability at least 1− e−ϵ2/2(σ+ŵiϵ/3) to hold:

ϵS(h, ĥS(Xn)) ≤ ϵ̂S(h, ĥS(Sn)) + sup[ϵS(h, ĥS(Sn))− ϵ̂S(h, ĥS(Sn))]︸ ︷︷ ︸
R(Sn,P)

, (25)

Let S′
n denote the sample set that the ith sample (Xi, yi) is replaced by (X′

i, y
′
i), and correspondingly

P′ is the possibility matrix that the ith row vector pi is replaced by p′i, for i ∈ [n]. For the loss
function bounded by C > 0, we have:{

|R(Sn,P)−R(S′
n,P)| ≤ C/n,

|R(Sn,P)−R(Sn,P
′)| ≤ C/n.

(26)

From McDiarmid’s inequality (McDiarmid et al., 1989), with probability at least 1− δ, we have:

R(Sn,P) ≤ ESn∈D,P[R(Sn,P)] + C

√
ln(2/δ)

NS
. (27)

It is observed that:

R(Sn,P) = supES̃n∈D,P̃[ϵ̂(ĥ(Sn); S̃n, P̃)− P̃[ϵ̂(ĥ(Sn);Sn,P)], (28)

where S̃n is another collection drawn from D as well as P̃. Thus, we have

ESn∈D,P[R(Sn,P)] ≤ E
[
sup

[
ϵ̂(ĥ(Sn); S̃n, P̃)− P̃[ϵ̂(ĥ(Sn);Sn,P)

]]
= E

[
sup

1

n

n∑
i=1

[ĥ(X̃i, ỹi, p̃i)− ĥ(Xi, yi, pi)]

]

≤ 2E

[
sup

1

n

n∑
i=1

ϵiĥ(Xi, yi, pi)

]
,

(29)

where ϵi is the Rademacher variable. Combining Eq. 26 27 29, we have:

ϵS(h, ĥS(Xn)) ≤ ϵ̂S(h, ĥS(Sn)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS
. (30)

Finally, we have:

ϵT (h, ĥT (X)) ≤ϵS(h, ĥS(X)) + 2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

)
≤ϵ̂S(h, ĥS(Sn)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

)
+ 2CfCgW1 (PS(G),PT (G)) .

(31)

C PROOF OF THEOREM 3

Theorem 3 Under the assumption of Theorem 1, we further assume that there exists a small amount of
i.i.d. samples with pseudo labels {(Gn, Yn)}

N ′
T

n=1 from the target distribution PT (G, Y) (N ′
T ≪ NS)

and bring in the conditional shift assumption that domains have different labeling function ĥS ̸= ĥT

and maxG1,G2

|ĥD(G1)−ĥD(G2)|
η(G1,G2)

= Ch ≤ CfCg(D ∈ {S, T}) for some constant Ch and distance

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

measure η, and the loss function bounded by C > 0. Let H := {h : G → Y} be the set of bounded
real-valued functions with the pseudo-dimension Pdim(H) = d, and provided the spike training
data set Sn = {(Xi, yi) ∈ X ×Y}i∈[n] drawn from Ds, with probability at least 1− δ the following
inequality holds:

ϵT (h, ĥT (X)) ≤ N ′
T

NS +N ′
T

ϵ̂T (h, ĥT (S)) +
NS

NS +N ′
T

(
ϵ̂S(h, ĥS(S)) + 2CfCgW1 (PS(G),PT (G))

+ 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X)))− ϵS(h, ĥT (X)))|, |ϵT (h, ĥS(X)))− ϵT (h, ĥT (X)))|

))

≤ϵ̂S(h, ĥS(S)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+ 2CfCgW1 (PS(G),PT (G)) + ω′.
(32)

where the (empirical) source and target risks are ϵ̂S(h, ĥ) = 1
NS

∑NS

n=1 |h(Gn) − ĥ(Gn)| and

ϵT (h, ĥ) = EPT (G{|h(G) − ĥ(G)|}, respectively, where ĥ : G → Y is the labeling function for
graphs and ω′ = min||g||Lip≤Cg,||f ||Lip≤Cf

{ϵS(h, ĥ) + ϵT (h, ĥ)}, ϵi is the Rademacher variable
and pi is the ith row of P, which is the probability matrix with:

Pkt =

{
exp

(
uk(t)−Vth

σ(uk(t)−ureset)

)
, if uθ ≤ u(t) ≤ Vth,

0, if ureset ≤ uk(t) ≤ uθ.
(33)

Proof. As proved in Theorem 2, we have:

ϵT (h, ĥT (X)) ≤ϵ̂S(h, ĥS(Sn)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

)
+ 2CfCgW1 (PS(G),PT (G)) .

(34)

Similar with Eq. 30, there exists:

ϵT (h, ĥT (Xn)) ≤ ϵ̂T (h, ĥT (Sn)) + 2E

sup 1

N ′
T

N ′
T∑

i=1

ϵih(Xi, yi, pi)

+ C

√
ln(2/δ)

N ′
T

. (35)

Combining Eq. 34 and 35, we have:

ϵT (h, ĥT (X))
(a)

≤ N ′
T

NS +N ′
T

ϵ̂T (h, ĥT (S)) + 2E

sup 1

N ′
T

N ′
T∑

i=1

ϵih(Xi, yi, pi)

+ C

√
ln(2/δ)

N ′
T

+

NS

NS +N ′
T

ϵ̂S(h, ĥS(S)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+

NS

NS +N ′
T

(
2CfCgW1 (PS(G),PT (G))

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

+min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

))

≤ N ′
T

NS +N ′
T

ϵ̂T (h, ĥT (S)) +
NS

NS +N ′
T

ϵ̂S(h, ĥS(S))

+
NS

NS +N ′
T

(
2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS(X)− ϵS(h, ĥT ((X))|, |ϵT (h, ĥS((X))− ϵT (h, ĥT ((X))|

))

+
N ′

T

NS +N ′
T

2E

sup 1

N ′
T

N ′
T∑

i=1

ϵih(Xi, yi, pi)

+ C

√
ln(2/δ)

N ′
T

+

NS

NS +N ′
T

2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

(b).
=

N ′
T

NS +N ′
T

ϵ̂T (h, ĥT (S)) +
NS

NS +N ′
T

ϵ̂S(h, ĥS(S))

+
NS

NS +N ′
T

2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+

NS

NS +N ′
T

(
2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

))

=
N ′

T

NS +N ′
T

ϵ̂T (h, ĥT (S)) +
NS

NS +N ′
T

(
ϵ̂S(h, ĥS(S)) + 2CfCgW1 (PS(G),PT (G))

+ 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X)))− ϵS(h, ĥT (X)))|, |ϵT (h, ĥS(X)))− ϵT (h, ĥT (X)))|

))

where (a) is the outcome of applying the union bound with coefficient N ′
T

NS+N ′
T

, NS

NS+N ′
T

respectively;
(b) additionally adopt the assumption N ′

T ≪ NS , following the sleight-of-hand in (Li et al., 2021a)
Theorem 3.2.

Due to the sampels are selected with high confidence, thus, we have the following assumption:

ϵ̂T ≤ ϵT ≤ϵ̂S(h, ĥ(X))) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]

+ C

√
ln(2/δ)

NS
+ 2CfCgW1(PS(G),PT (G)) + ω′,

(36)

where ω′ = min||g||Lip≤Cg,||f ||Lip≤Cf
{ϵS(h, ĥ) + ϵT (h, ĥ)}, ϵ̂T is the empirical risk on the high

confidence samples, ϵT is the empirical risk on the target domain. Besides, we have:

min(|ϵS(h, ĥS(X)))−ϵS(h, ĥT (X)))|, |ϵT (h, ĥS(X)))− ϵT (h, ĥT)|(X))) ≤

min
(
ϵS(h, ĥS(X))) + ϵT (h, ĥS(X)))

) (37)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0.20 0.22 0.24 0.26 0.28 0.30
Graph Flux Density

0

1

2

3

4

Fr
eq

ue
nc

y

1e1 Flux Distribution
P0
P1
P2
P3

0 30 60 90 120
Number of Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fr
eq

ue
nc

y

×101 Node Distribution
P0
P1
P2
P3

80 160 240 320
Number of Edges

0.0

0.5

1.0

1.5

2.0

2.5

Fr
eq

ue
nc

y

×101 Edge Distribution
P0
P1
P2
P3

Figure 6: Visualization of different distributions on PROTEINS.

Then,

ϵT (h, ĥT (X)) ≤ N ′
T

NS +N ′
T

ϵ̂T (h, ĥT (S)) +
NS

NS +N ′
T

(
ϵ̂S(h, ĥS(S)) + 2CfCgW1 (PS(G),PT (G))

+ 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X)))− ϵS(h, ĥT (X)))|, |ϵT (h, ĥS(X)))− ϵT (h, ĥT (X)))|

))

≤ϵ̂S(h, ĥS(S)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+ 2CfCgW1 (PS(G),PT (G)) + ω′.
(38)

D ALGORITHM

Algorithm 1 Learning Algorithm of DeSGDA
Input: Source data Ds; Target data Dt.
Output: Node degree-aware personalized spiking graph encoder parameters θ, domain discriminator
γ.

1: Initialize model parameters.
2: while not convergence do
3: Sample mini-batches Bs and Bt from source and target data, respectively;
4: Forward propagation Bs and Bt through node degree-aware personalized spiking graph

encoder;
5: Pseudo-label Distilling;
6: Calculate the loss function by Eq. 11;
7: Update model parameters through back propagation;
8: end while

E COMPLEXITY ANALYSIS

Here we analyze the computational complexity of the proposed DeSGDA. The computational
complexity primarily relies on node degree-aware personalized spiking representations. For a given
graph G, ∥A∥0 denotes the number of nonzeros in the adjacency matrix. d is the feature dimension.
L denote the layer number of GIN. |V | is the number of nodes. T denotes the number of time
latency. The spiking graph encoder takes O

(
T · L ·

(
∥A∥0 · d+ |V | · d2

))
computational time for

each graph. As a result, the complexity of our DeSGDA is proportional to both |V | and ∥A∥0.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0.40 0.42 0.44 0.46 0.48 0.50
Graph Flux Density

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fr
eq

ue
nc

y

1e2 Flux Distribution
N0
N1
N2
N3

20 40 60 80
Number of Nodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fr
eq

ue
nc

y

×102 Node Distribution
N0
N1
N2
N3

40 80 120 160 200
Number of Edges

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fr
eq

ue
nc

y

×102 Edge Distribution
N0
N1
N2
N3

Figure 7: Visualization of different distributions on NCI1.

0.400 0.425 0.450 0.475 0.500 0.525 0.550 0.575 0.600
Graph Flux Density

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

1e2 Flux Distribution
F0
F1
F2
F3

0 15 30 45 60
Number of Nodes

0.0

0.5

1.0

1.5

2.0

2.5

Fr
eq

ue
nc

y

×102 Node Distribution
F0
F1
F2
F3

0 30 60 90 120
Number of Edges

0.0

0.5

1.0

1.5

2.0

2.5

Fr
eq

ue
nc

y

×102 Edge Distribution
F0
F1
F2
F3

Figure 8: Visualization of different distributions on FRANKENSTEIN.

F DATASET

Table 4: Statistics of the experimental datasets.

Datasets Graphs Avg. Nodes Avg. Edges Classes

PROTEINS 1,113 39.1 72.8 2
NCI1 4,110 29.87 32.30 2
MUTAGENICITY 4,337 30.32 30.77 2
FRANKENSTEIN 4,337 16.9 17.88 2

F.1 DATASET DESCRIPTION

We conduct extensive experiments on four public benchmark graph datasets from TUDataset. The
dataset statistics can be found in Table 4, and their details are shown as follows:

• PROTEINS. The PROTEINS dataset (Dobson & Doig, 2003) consists of protein graphs.
Each label indicates whether the protein graph is an enzyme. Nodes within these graphs
represent amino acids connected by edges if neighbors along the amino acid sequence are
spaced less than 6 Angstroms apart. We divide the PROTEINS dataset into four parts, i.e.,
P0, P1, P2, and P3, based on edge density, node density, and graph flux; the sub-datasets
exhibit substantial domain disparities among them.

• NCI1. The NCI1 (Wale et al., 2008) dataset contains 4,100 chemical compounds with atoms
as nodes and bonds as edges. Each label indicates the characteristics that hinder the growth
of cancer cells. Like the PROTEINS dataset, we divide the NCI1 dataset into four parts, i.e.,
N0, N1, N2, and N3, based on edge density, node density, and graph flux.

• FRANKENSTEIN. The FRANKENSTEIN (Orsini et al., 2015) dataset consists of 4,337
molecular graphs, where nodes represent atoms and edges depict chemical bonds. Each
graph is labeled to classify molecules based on their biological activity. Like the PROTEINS
dataset, the entire FRANKENSTEIN dataset is divided into four segments (F0, F1, F2, and
F3) based on edge density, node density, and graph flux.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.400 0.425 0.450 0.475 0.500 0.525 0.550 0.575 0.600
Graph Flux Density

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

1e2 Flux Distribution
M0
M1
M2
M3

0 30 60 90 120
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fr
eq

ue
nc

y

×102 Node Distribution
M0
M1
M2
M3

50 100 150 200
Number of Edges

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fr
eq

ue
nc

y

×102 Edge Distribution
M0
M1
M2
M3

Figure 9: Visualization of different distributions on MUTAGNENICITY.

Table 5: The results of ablation studies on NCI1 (source → target). Bold results indicate the best
performance per column.

Methods N0→N1 N1→N0 N0→N2 N2→N0 N0→N3 N3→N0 N1→N2 N2→N1 N1→N3 N3→N1 N2→N3 N3→N2 Avg.

DeSGDA w/o CA 58.9 62.6 61.7 60.1 58.2 62.0 63.4 61.7 63.5 60.7 68.3 64.0 62.1
DeSGDA w/o PL 62.8 65.1 55.0 56.9 55.3 54.4 58.6 62.9 61.2 62.2 59.7 64.3 59.7
DeSGDA w/o CF 52.7 62.6 58.5 56.5 56.3 63.8 63.1 52.7 65.4 65.1 58.2 63.7 60.0
DeSGDA w/o TL 64.6 62.8 60.6 54.9 44.9 65.4 60.8 64.8 56.1 64.1 57.8 54.0 59.3
DeSGDA w PT 64.4 59.2 64.6 62.2 64.5 60.1 61.1 60.8 62.0 64.2 62.7 65.5 62.7
DeSGDA w CL 65.3 70.1 68.9 65.2 65.6 63.0 67.6 64.6 68.9 66.8 68.6 70.7 67.1

DeSGDA 68.5 71.4 70.1 69.0 68.9 66.3 69.6 70.2 71.1 69.3 74.4 70.0 70.1

• MUTAGENICITY. The MUTAGENICITY (Kazius et al., 2005) dataset contains 4,337
chemical compounds, each represented as a graph where nodes represent atoms and edges
indicate bonds. Each graph can be used to identify mutagenic compounds, aiding studies in
toxicology and chemical safety. Like the PROTEINS dataset, the entire MUTAGENICITY
dataset is divided into four segments (M0, M1, M2, and M3) based on edge density, node
density, and graph flux.

F.2 DATA PROCESSING

In our implementation, we process these four TUDatasets by adding a self-loop connection for
each node. Additionally, we utilize one-hot embeddings to represent node attributes for datasets
(FRANKENSTEIN and MUTAGENICITY) where node features are unavailable.

G BASELINES

In this part, we introduce the details of the compared baselines as follows:

Graph kernel method. We compare DeSGDA with one graph kernel method:

• WL subtree: Weisfeiler-Lehman (WL) subtree (Shervashidze et al., 2011) method is a
graph kernel method, which calculates the graph similarity by a kernel function, where
It encodes local neighborhood structures into subtree patterns, efficiently capturing the
topology information contained in graphs.

Graph neural networks. We compare DeSGDA with four widely used general graph neural
networks:

• GCN: GCN Kipf & Welling (2017) is a spectral-based neural network that iteratively
updates node representations by aggregating information from neighboring nodes, effectively
capturing both local graph structure and node features.

• GIN: GIN Xu et al. (2018) is a message-passing neural network designed to distinguish graph
structures using an injective aggregation function, theoretically achieving the expressive
power of the Weisfeiler-Lehman test.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 6: The results of ablation studies on FRANKENSTEIN (source → target). Bold results indicate
the best performance. Bold results indicate the best performance.

Methods F0→F1 F1→F0 F0→F2 F2→F0 F0→F3 F3→F0 F1→F2 F2→F1 F1→F3 F3→F1 F2→F3 F3→F2 Avg.

DeSGDA w/o CA 59.6 60.7 60.2 60.7 77.9 58.5 61.3 60.5 76.8 60.0 80.1 63.9 65.0
DeSGDA w/o PL 58.9 56.6 55.9 56.6 69.8 53.6 55.0 57.7 70.4 53.2 68.8 61.7 60.0
DeSGDA w/o CF 55.9 59.2 59.5 54.5 74.9 52.9 59.9 54.6 78.8 56.1 74.5 58.5 61.7
DeSGDA w/o TL 56.2 57.2 60.7 48.2 53.3 45.8 59.5 53.0 48.8 54.8 51.1 54.7 53.6
DeSGDA w PT 60.9 60.2 61.0 61.5 76.2 60.9 60.3 62.2 75.3 57.2 74.8 63.3 64.5
DeSGDA w CL 62.2 61.3 61.7 60.7 79.3 59.7 63.6 64.1 79.5 61.1 78.6 62.7 66.2

DeSGDA 63.5 64.1 62.6 63.0 81.1 62.4 65.5 65.4 81.9 60.8 82.0 65.9 68.1

Table 7: The results of ablation studies on MUTAGENICITY (source → target). Bold results indicate
the best performance. Bold results indicate the best performance.

Methods M0→M1 M1→M0 M0→M2 M2→M0 M0→M3 M3→M0 M1→M2 M2→M1 M1→M3 M3→M1 M2→M3 M3→M2 Avg.

DeSGDA w/o CA 58.3 63.3 62.1 60.1 81.4 62.7 63.8 59.1 80.3 57.1 78.9 63.0 65.8
DeSGDA w/o PL 58.8 57.6 60.2 61.4 73.3 54.5 63.7 61.0 61.2 61.9 71.0 60.2 62.1
DeSGDA w/o CF 54.7 58.3 59.6 58.7 72.1 60.7 57.9 54.9 78.0 57.4 63.2 60.4 61.3
DeSGDA w/o TL 56.5 60.7 59.1 60.7 43.4 56.3 51.0 56.7 53.3 56.9 63.1 52.5 55.9
DeSGDA w PT 62.1 64.3 63.9 61.8 77.3 62.4 66.6 63.9 73.5 66.1 82.1 64.9 67.4
DeSGDA w CL 66.1 62.6 63.3 64.7 81.5 60.7 69.8 67.0 82.2 67.8 82.4 63.6 69.6

DeSGDA 65.4 65.9 65.5 65.6 82.8 63.6 70.7 68.2 82.9 67.6 83.9 66.5 70.1

• CIN: CIN Bodnar et al. (2021) extends the Weisfeiler-Lehman framework by integrating cel-
lular complexes into graph neural networks, allowing for the capture of higher-dimensional
topological features.

• GMT: GMT Baek et al. (2021) utilizes self-attention mechanisms to dynamically adjust
the importance of nodes based on their structural dependencies, thereby enhancing both
adaptability and performance.

Spiking graph neural networks. We compare DeSGDA with two spiking graph neural networks:

• SpikeGCN: SpikeGCN (Zhu et al., 2022) introduces an end-to-end framework designed to
integrate the fidelity characteristics of SNNs with graph node representations.

• DRSGNN: DRSGNN (Zhao et al., 2024) dynamically adapts to evolving graph structures
and relationships through a novel architecture that updates node representations in real-time..

Domain adaption methods. We compare DeSGDA with two recent domain adaption methods:

• CDAN: CDAN (Long et al., 2018) employs a conditional adversarial learning strategy
to reduce domain discrepancy by conditioning adversarial adaptation on discriminative
information from multiple domains.

• ToAlign: ToAlign (Wei et al., 2021b) uses token-level alignment strategies within Trans-
former architectures to enhance cross-lingual transfer, optimizing the alignment of semantic
representations across languages.

• MetaAlign: MetaAlign (Wei et al., 2021a) is a meta-learning framework for domain
adaptation that dynamically aligns feature distributions across domains by learning domain-
invariant representations.

Graph domain adaptation methods. We compare DeSGDA with six SOTA graph domain adaption
methods:

• DEAL: DEAL (Yin et al., 2022) uses domain adversarial learning to align graph representa-
tions across different domains without labeled data, overcoming discrepancies between the
source and target domains.

• CoCo: CoCo (Yin et al., 2023) leverages contrastive learning to align graph representations
between source and target domains, enhancing domain adaptation by promoting intra-domain
cohesion and inter-domain separation in an unsupervised manner.

• SGDA: SGDA (Qiao et al., 2023) utilizes labeled data from the source domain along with
a limited amount of labeled data from the target domain to learn domain-invariant graph
representations.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

• DGDA: DGDA (Cai et al., 2024) employs generative models to capture the underlying
distribution of graph data across domains, facilitating the transfer of graph structures and
features by learning shared latent spaces.

• A2GNN: A2GNN (Liu et al., 2024a) introduces a novel propagation mechanism to enhance
feature transferability across domains, improving the alignment of graph structures and node
features in an unsupervised setting.

• PA-BOTH: PA-BOTH (Liu et al., 2024b) aligns node pairs between source and target
graphs, optimizing feature correspondence at a granular level to improve the transferability
of structural and feature information across domains.

For GCN and GIN, we use the Pytorch Geometric 4 to implement the model. For other baseline
methods, we use the source codes provided by the corresponding paper. For all baseline methods,
we vary the dropout rate in the range of {0.1,0.3,0.5,0.7} and then choose the best one. The hidden
dimension in these methods is set to 256 for a fair comparison.

Table 8: Statistics of the SEED dataset.

Datasets Graphs Avg. Nodes Avg. Edges Classes

SEED 7,636 62.0 168.2 3

Table 9: The graph classification results (in %) on SEED dataset under edge density domain shift
(source→target). E0, E1 and E2 denote the sub-datasets partitioned with edge density. Bold results
indicate the best performance.

Methods E0→E1 E1→E0 E0→E2 E2→E0 E1→E2 E2→E1

GCN 46.0 ± 0.9 47.8 ± 1.0 47.7 ± 1.4 49.7 ± 0.7 51.3 ± 0.8 49.8 ± 1.0

GIN 48.9 ± 0.5 50.3 ± 0.6 49.5 ± 0.7 50.7 ± 1.0 52.7 ± 1.0 52.1 ± 0.9

DEAL 53.5 ± 0.4 56.2 ± 0.7 53.2 ± 0.8 53.7 ± 1.1 55.1 ± 0.8 56.0 ± 0.7

CoCo 53.9 ± 0.5 53.0 ± 0.6 54.1 ± 0.7 54.3 ± 0.7 55.3 ± 1.0 55.9 ± 0.6

DeSGDA 54.5 ± 0.6 55.6 ± 0.7 54.6 ± 0.5 54.5 ± 0.7 55.8 ± 1.1 56.6 ± 0.8

H MORE EXPERIMENTAL RESULTS

H.1 MORE PERFORMANCE COMPARISON

In this part, we provide additional results for our proposed method DeSGDA compared with all base-
line models across various datasets, as illustrated in Table 14 to Table 23. These results consistently
show that DeSGDA outperforms the baseline models in most cases, validating the superiority of our
proposed method. Additionally, the performance of DeSGDA with different GNN architectures on
the NCI1, FRANKENSTEIN, and MUTAGENICITY datasets is shown in Figure 10. It is evident
that GIN consistently outperforms other GNN architectures in most cases.

To verify the efffectiveness of DeSGDA in EEG data and multi-class scenarios, we conducted
additional experiments using the SEED dataset (Duan et al., 2013; Zheng & Lu, 2015), which is
a well-known EEG dataset for emotion classification. For EEG data processing, we utilized the
torcheeg 5 library to convert standard EEG data into graph structures. During graph construction, we
remove edges from each graph and partitioning the dataset into source and target domains based on
edge density (Klepl et al., 2022). The statistics of SEED dataset is shown in Table 8. We compared
the DeSGDA with two general graph neural networks (GCN Kipf & Welling (2017) and GIN Xu
et al. (2018)) and two graph domain adaptation methods (DEAL Yin et al. (2022) and CoCo Yin et al.
(2023)). The results in Table 9 show that DeSGDA still outperforms the other methods in most cases.

4https://www.pyg.org/
5https://github.com/torcheeg/torcheeg

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 10: GPU memory consumption of different graph domain methods in training stage for each
training epoch (in GB).

DeSGDA DEAL CoCo A2GNN PA-BOTH

PROTEINS 2.3 1.4 1.2 33.1 5.6
NCI1 5.7 2.9 3.3 34.8 11.9
MUTAGENICITY 5.0 2.8 3.2 35.0 12.3
FRANKENSTEIN 2.9 2.4 1.9 33.6 7.3

Table 11: Time consumption of different graph domain methods in training stage for each training
epoch (in seconds).

DeSGDA DEAL CoCo A2GNN PA-BOTH

PROTEINS 0.587 0.126 22.123 0.869 0.283
NCI1 0.855 0.518 58.564 1.483 0.597
MUTAGENICITY 0.887 0.612 52.740 1.553 0.511
FRANKENSTEIN 0.663 0.375 26.837 1.016 0.275

H.2 TRAINING TIME AND MEMORY COMPARISON

We provide detailed comparisons of GPU memory consumption and training time per epoch for
DeSGDA and other graph domain adaptation methods under identical experimental settings in this
part, as shown in Tables 10 and 11. It is worth noting that the training phase is typically conducted on
more powerful hardware to achieve optimal performance within a reasonable time frame.

H.3 MORE ABLATION STUDY

To validate the effectiveness of the different components in DeSGDA, we conduct more experiments
with sive variants on NCI1, FRANKENSTEIN and MUTAGENICITY datasets, i.e., DeSGDA w/o
CA, DeSGDA w/o PL, DeSGDA w/o CF, DeSGDA w/o TL, DeSGDA w PT and DeSGDA w CL. The
results are shown in Table 5 , 6 and 7. From the results, we have similar observations as summarized
in Section 5.4.

Additionally, we conduct ablation studies to examine the effect of directly replacing the SGNs with
commonly used Graph Neural Networks (GNNs) for generating representations for DeSGDA: (1)
DeSGDA w GCN: It replaces SGNs with GCN Kipf & Welling (2017); (2) DeSGDA w GIN: It
replaces SGNs with GIN Xu et al. (2018); (3) DeSGDA w SAGE: It replaces SGNs with GraphSAGE
Hamilton et al. (2017). The experimental results across the PROTEINS, NCI1, MUTAGENICITY,
and FRANKENSTEIN datasets are shown in Table 12 and 13. However, the critical aspect of our
work lies in the specific problem we set up, i.e., low-power and distribution shift environments. In
this context, directly replacing SGNs with commonly used GNNs like GIN or GCN is not feasible, as
these models are unsuitable for deployment on low-energy devices. As demonstrated in Section 5.3,
GNN based methods have much higher energy consumption than the spike based methods.

H.4 MORE SENSITIVITY ANALYSIS

In this part, we provide additional sensitivity analysis of the proposed DeSGDA with respect to
the impact of its hyperparameters: the time latency τ , degree threshold value V degree

th in SNNs,
and balance ratio α on NCI1, FRANKENSTEIN, and MUTAGENICITY datasets. The results are
illustrated in Figure 11, 12 and 13, where we observe trends similar to those discussed in Section 5.5.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 12: The results of DeSGDA with different widely used graph neural networks (GIN, GCN and
SAGE) on PROTEINS and NCI1 dataset. Bold results indicate the best performance. Bold results
indicate the best performance.

Methods P0→P1 P1→P0 P0→P2 P2→P0 N0→N1 N1→N0 N0→N2 N2→N0

DeSGDA w GCN 76.6 70.5 71.8 74.1 66.3 68.3 68.5 67.1
DeSGDA w SAGE 75.8 73.3 72.4 75.2 67.2 69.5 66.6 68.4
DeSGDA w GIN 77.3 75.8 73.8 77.1 69.0 69.8 68.8 68.8

DeSGDA 78.7 78.4 74.8 77.6 68.5 71.4 70.1 69.0

Table 13: The results of DeSGDA with different widely used graph neural networks (GIN, GCN
and SAGE) on MUTAGENICITY and FRANKENSTEIN dataset. Bold results indicate the best
performance. Bold results indicate the best performance.

Methods M0→M1 M1→M0 M0→M2 M2→M0 F0→F1 F1→F0 F0→F2 F2→F0

DeSGDA w GCN 60.9 60.7 63.6 60.6 61.3 62.2 60.7 61.1
DeSGDA w SAGE 61.1 62.3 64.2 61.1 61.9 62.6 61.3 61.6
DeSGDA w GIN 64.5 65.4 65.0 63.9 62.8 63.6 61.8 62.8

DeSGDA 65.4 65.9 65.5 65.6 63.5 64.1 62.6 63.0

N0->N1 N1->N0 N0->N2 N2->N0
0.66

0.68

0.70

0.72

A
cc

ur
ac

y

GCN
GAT
GIN

(a) NCI1

F0->F1 F1->F0 F0->F2 F2->F0

0.62

0.63

0.64

A
cc

ur
ac

y

GCN
GAT
GIN

(b) FRANKENSTEIN

M0->M1 M1->M0 M0->M2 M2->M0
0.64

0.65

0.66

A
cc

ur
ac

y

GCN
GAT
GIN

(c) MUTAGENICITY

Figure 10: The performance with different GNN architectures on different datasets.

5 6 7 8 9 10
0.66

0.67

0.68

0.69

0.70

0.71

A
cc

ur
ac

y

N0 -> N1
N1 -> N0

N0 -> N2
N2 -> N0

(a) Time Latency

0.05 0.1 0.2 0.5 1.0 2.0 5.0 Vdegree
th

0.64

0.66

0.68

0.70

0.72

A
cc

ur
ac

y

N0 -> N1
N1 -> N0

N0 -> N2
N2 -> N0

(b) Initial Threshold

0.1 0.3 0.5 0.7 0.9
0.66

0.68

0.70

0.72

A
cc

ur
ac

y

N0 -> N1
N1 -> N0

N0 -> N2
N2 -> N0

(c) Balance Tatio

Figure 11: Hyperparameter sensitivity analysis of time latency τ , initial threshold V degree
th in SNNs,

and balance ratio α on NCI1.

15 16 17 18 19 20
0.60

0.61

0.62

0.63

0.64

A
cc

ur
ac

y

F0 -> F1
F1 -> F0

F0 -> F2
F2 -> F0

(a) Time Latency

0.05 0.1 0.2 0.5 1.0 2.0 5.0 Vdegree
th

0.60

0.61

0.62

0.63

0.64

0.65

A
cc

ur
ac

y

F0 -> F1
F1 -> F0

F0 -> F2
F2 -> F0

(b) Initial Threshold

0.1 0.3 0.5 0.7 0.9
0.60

0.61

0.62

0.63

0.64

A
cc

ur
ac

y

F0 -> F1
F1 -> F0

F0 -> F2
F2 -> F0

(c) Balance Ratio

Figure 12: Hyperparameter sensitivity analysis of time latency τ , initial threshold V degree
th in SNNs,

and balance ratio α on FRANKENSTEIN.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

15 16 17 18 19 20

0.64

0.65

0.66
A

cc
ur

ac
y

M0 -> M1
M1 -> M0

M0 -> M2
M2 -> M0

(a) Time Latency

0.05 0.1 0.2 0.5 1.0 2.0 5.0 Vdegree
th

0.62

0.63

0.64

0.65

0.66

A
cc

ur
ac

y

M0 -> M1
M1 -> M0

M0 -> M2
M2 -> M0

(b) Initial Threshold

0.1 0.3 0.5 0.7 0.9
0.61

0.62

0.63

0.64

0.65

A
cc

ur
ac

y

M0 -> M1
M1 -> M0

M0 -> M2
M2 -> M0

(c) Balance Ratio

Figure 13: Hyperparameter sensitivity analysis of time latency τ , initial threshold V degree
th in SNNs,

and balance ratio α on MUTAGENICITY.

Table 14: The graph classification results (in %) on PROTEINS under graph flux domain shift
(source→target). P0, P1, P2, and P3 denote the sub-datasets partitioned with graph flux. Bold results
indicate the best performance.

Methods P0→P1 P1→P0 P0→P2 P2→P0 P0→P3 P3→P0 P1→P2 P2→P1 P1→P3 P3→P1 P2→P3 P3→P2 Avg.

WL subtree 73.4 72.7 70.5 73.0 72.8 59.0 66.5 71.6 60.6 58.3 76.3 64.0 68.2
GCN 57.2±2.7 62.8±1.7 67.6±0.5 58.5±1.3 67.7±0.4 61.0±0.3 65.0±0.8 51.1±1.3 65.6±2.2 55.4±0.4 68.5±3.1 67.7±0.5 62.3
GIN 69.3±2.3 65.8±0.8 69.3±1.7 69.8±1.6 71.4±2.1 52.4±1.8 64.0±2.4 65.7±3.2 53.4±3.7 58.1±0.8 72.6±0.3 64.6±2.3 64.7
GMT 67.8±1.3 69.6±0.7 74.5±0.5 67.6±2.5 69.9±2.1 55.8±0.7 74.8±1.4 60.1±2.4 71.4±3.3 51.5±0.5 69.0±0.5 63.3±1.3 66.3
CIN 62.6±0.5 59.4±0.5 64.0±0.9 58.5±1.8 71.9±1.7 60.6±2.1 63.7±0.5 61.2±2.1 73.2±0.5 57.7±3.0 68.1±0.4 58.5±2.7 63.3
SpikeGCN 66.1±0.4 67.8±0.7 68.5±0.9 67.2±0.3 70.1±1.1 68.6±1.3 66.1±0.7 65.8±1.2 74.5±0.9 65.4±0.6 73.8±1.1 70.1±1.6 68.6
DRSGNN 68.3±0.5 71.9±0.9 71.5±1.1 75.1±1.7 76.7±1.3 74.4±0.8 70.5±0.7 67.8±0.8 77.0±1.5 65.9±1.6 75.2±1.9 69.2±2.1 71.8

CDAN 75.6±0.5 70.5±0.6 71.6±0.5 69.8±0.5 76.6±0.8 71.4±0.3 71.4±0.3 72.1±0.3 75.5±0.7 74.3±0.8 78.2±1.1 74.0±0.8 73.4
ToAlign 51.1±0.6 55.8±0.1 63.3±0.2 55.8±0.4 68.1±0.7 55.8±0.3 63.3±0.5 51.1±0.2 68.1±1.0 51.1±0.4 68.1±0.6 63.3±0.2 59.6
MetaAlign 59.4±1.1 62.2±1.0 68.9±0.3 65.3±0.8 75.1±0.7 67.5±2.1 70.9±1.4 60.6±2.3 72.4±1.4 59.4±0.6 74.6±0.7 67.8±1.3 67.0

DEAL 76.6±0.4 62.8±0.8 72.8±1.3 67.3±2.2 77.2±2.3 67.6±1.9 71.2±1.6 56.0±2.5 73.9±2.1 66.0±0.3 76.4±1.1 65.5±2.1 69.4
CoCo 73.4±0.5 73.6±0.8 73.4±1.0 71.6±0.5 75.2±1.6 74.6±0.3 70.7±0.8 68.4±1.5 75.0±0.2 72.7±0.4 76.3±1.1 75.0±1.8 73.3
SGDA 63.8±0.8 65.2±0.5 66.7±0.3 59.1±1.2 62.3±0.7 60.6±0.4 65.2±0.9 61.8±1.0 64.5±1.3 60.9±0.8 59.4±1.2 64.9±1.1 62.9
DGDA 59.4±0.7 62.3±1.1 63.1±0.5 61.2±0.9 60.4±0.6 58.8±1.0 60.3±0.8 63.5±1.2 61.9±0.8 60.4±1.6 64.2±1.3 62.6±1.4 61.5
A2GNN 65.4±0.7 66.4±1.1 65.7±1.3 66.0±0.6 64.9±1.2 65.8±1.6 65.5±1.8 66.0±1.4 65.8±2.1 65.6±1.9 66.1±1.7 66.0±2.0 65.8
PA-BOTH 66.9±0.5 67.1±0.8 67.3±1.1 65.8±0.7 69.1±1.0 66.1±1.4 66.7±1.3 67.4±1.4 66.3±1.8 66.0±1.2 66.8±0.8 66.3±1.5 66.8

DeSGDA 78.7±1.3 78.4±1.1 74.8±0.6 77.6±0.9 79.5±1.2 76.7±0.8 74.9±0.7 71.2±1.7 79.5±1.4 72.8±0.8 81.0±1.5 75.1±1.0 76.7

Table 15: The graph classification results (in %) on FRANKENSTEIN under graph flux domain shift
(source→target). F0, F1, F2, and F3 denote the sub-datasets partitioned with graph flux. Bold results
indicate the best performance. OOM means out of memory.

Methods F0→F1 F1→F0 F0→F2 F2→F0 F0→F3 F3→F0 F1→F2 F2→F1 F1→F3 F3→F1 F2→F3 F3→F2 Avg.

WL subtree 58.4 51.8 58.7 51.3 64.3 48.9 64.9 58.9 78.5 54.6 57.1 61.3 59.1
GCN 56.2±0.2 59.0±1.3 41.4±0.4 45.8±0.5 21.2±0.7 41.4±1.7 42.5±1.6 49.0±0.4 24.1±1.6 44.8±0.7 81.4±0.3 58.8±0.2 47.1
GIN 60.7±0.6 58.0±1.0 61.0±2.3 58.9±2.3 77.5±2.2 45.3±2.5 62.5±0.2 59.2±3.0 71.4±2.8 49.8±1.7 77.9±1.4 59.9±0.5 61.8
GMT 56.2±0.4 59.8±0.2 41.4±0.3 59.8±0.7 21.2±1.1 59.8±0.5 41.4±0.2 56.2±0.2 21.1±1.1 56.2±1.4 78.8±0.6 58.6±0.8 50.9
CIN 57.8±1.1 60.1±0.7 58.6±0.2 59.8±0.2 78.9±0.1 59.9±0.4 58.8±0.3 57.4±0.5 78.8±0.6 57.7±1.2 78.8±0.7 60.1±1.1 63.9
SpikeGCN 56.1±0.7 59.7±1.0 58.8±0.6 57.8±0.2 77.1±1.3 53.2±1.6 41.4±1.9 56.1±1.5 70.1±0.9 59.9±1.5 76.8±1.8 58.5±1.4 60.4
DRSGNN 60.2±0.9 59.9±0.8 57.3±1.2 59.0±1.0 74.2±1.9 54.6±1.7 58.5±1.5 58.9±1.8 77.7±2.3 56.9±2.0 78.9±2.4 58.8±1.6 62.9

CDAN 60.9±0.7 59.8±0.5 61.1±1.3 61.0±0.2 80.5±1.2 59.8±0.3 64.0±0.4 61.4±0.1 81.8±0.1 58.0±1.2 81.8±0.3 63.8±0.7 66.1
ToAlign 56.2±0.2 59.8±0.2 41.4±0.1 59.8±0.2 21.1±0.3 59.8±0.7 41.4±1.1 56.2±1.2 21.1±0.4 56.2±0.6 21.1±1.3 41.4±0.5 44.6
MetaAlign 57.3±2.4 59.1±1.1 60.9±1.5 60.2±0.4 80.3±2.1 60.4±0.6 64.0±1.1 64.9±0.6 81.4±1.2 58.5±2.3 80.8±0.5 63.4±1.8 65.9

DEAL 65.3±0.6 64.0±0.2 61.3±0.6 61.0±0.9 78.3±2.1 55.5±1.8 64.9±1.2 64.8±1.1 80.1±1.3 60.1±2.1 81.8±0.4 65.7±0.7 66.9
CoCo 63.5±2.4 61.5±1.0 64.4±1.0 61.2±0.7 81.7±0.4 55.0±1.6 64.5±0.6 64.6±1.1 80.4±1.5 60.6±1.5 81.5±0.6 62.2±1.7 66.8
SGDA 55.7±0.5 55.4±0.9 54.8±0.3 55.3±0.7 56.1±0.5 55.4±0.8 53.2±1.1 55.1±0.6 58.4±0.4 55.3±0.5 57.7±1.0 54.9±0.6 55.7
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 56.0±0.3 56.3±0.6 55.6±0.4 57.3±0.7 58.6±0.6 55.9±0.9 55.5±0.5 55.3±0.2 61.2±1.3 56.6±0.9 65.5±0.8 56.0±1.0 57.5
PA-BOTH 62.2±0.5 60.7±0.7 61.5±0.6 61.2±1.0 61.9±1.3 61.1±0.8 62.3±0.4 61.7±0.8 62.0±0.9 61.1±1.2 61.2±1.5 60.9±0.6 61.5

DeSGDA 63.5±1.1 64.1±0.9 62.6±1.3 63.0±0.8 81.1±1.2 62.4±1.5 65.5±0.6 65.4±1.7 81.9±1.0 60.8±1.4 82.0±2.1 65.9±1.8 68.1

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 16: The graph classification results (in %) on MUTAGENICITY under graph flux domain shift
(source→target). M0, M1, M2, and M3 denote the sub-datasets partitioned with graph flux. Bold
results indicate the best performance. OOM means out of memory.

Methods M0→M1 M1→M0 M0→M2 M2→M0 M0→M3 M3→M0 M1→M2 M2→M1 M1→M3 M3→M1 M2→M3 M3→M2 Avg.

WL subtree 74.4 72.9 64.9 68.9 49.1 59.8 70.0 70.5 76.9 60.7 82.6 70.5 68.5
GCN 63.1±1.0 68.1±0.3 48.8±0.4 62.6±0.3 29.1±2.1 38.8±0.3 54.3±0.1 61.8±0.5 30.4±0.2 43.6±0.3 67.8±0.1 57.9±1.3 52.2
GIN 68.1±1.6 74.2±0.6 59.6±2.3 65.2±1.4 40.3±2.7 54.6±1.8 61.3±1.1 63.1±3.2 71.6±3.0 60.0±1.4 79.7±1.3 69.2±0.7 63.9
GMT 56.5±0.3 60.7±0.4 57.9±0.2 40.2±1.2 80.6±0.4 39.3±0.6 57.9±1.1 45.0±2.1 80.6±0.5 43.5±1.1 80.6±1.4 57.9±2.2 58.4
CIN 64.1±3.0 61.3±0.5 63.5±2.3 63.6±1.5 78.2±0.5 63.9±2.7 60.6±1.5 57.0±0.4 73.7±3.2 61.4±1.0 79.1±2.1 61.1±1.9 65.6
SpikeGCN 56.4±1.2 60.7±0.9 59.5±1.3 57.7±1.6 59.0±1.1 60.1±1.8 54.2±1.0 59.9±2.1 50.2±2.6 55.1±1.7 80.1±2.5 57.9±2.2 59.3
DRSGNN 56.7±0.7 61.0±1.1 57.2±1.0 57.7±1.6 52.1±1.4 55.2±1.5 59.4±1.8 56.3±1.7 75.9±2.3 60.7±1.9 80.6±0.8 58.0±1.3 60.9

CDAN 62.8±0.3 68.2±0.6 63.6±0.6 66.9±1.7 81.2±0.5 65.0±2.1 65.8±0.2 64.7±1.2 80.7±0.1 62.5±2.3 82.4±0.4 66.0±0.5 69.1
ToAlign 43.5±0.4 39.3±0.7 57.9±1.0 39.3±1.4 80.6±1.1 39.3±0.7 57.9±0.3 43.5±2.1 80.6±1.8 43.5±0.4 80.6±0.9 57.9±1.0 55.3
MetaAlign 63.1±2.5 68.8±2.6 63.3±0.6 65.2±2.2 81.9±0.1 64.5±1.4 65.0±0.6 68.3±0.6 81.0±0.3 65.2±0.2 82.5±0.4 68.3±0.6 69.7

DEAL 64.6±0.5 65.5±0.8 64.2±1.0 63.1±2.1 82.7±0.8 62.8±0.7 70.2±0.4 67.3±0.4 79.6±0.1 63.9±1.4 75.7±0.3 67.0±0.2 68.9
CoCo 65.7±1.8 74.1±0.7 65.1±0.2 67.6±0.9 80.5±1.3 56.5±1.7 68.4±1.3 70.7±0.4 78.9±1.2 67.3±0.3 83.7±0.1 71.5±0.9 70.8
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 55.4±0.3 55.7±0.7 55.6±0.5 54.7±0.8 63.3±1.0 56.6±0.9 55.3±0.6 55.7±0.5 65.5±0.8 56.6±1.2 69.9±1.4 55.0±0.5 58.3
PA-BOTH 61.2±0.9 62.0±0.4 60.7±0.8 61.7±0.5 60.9±1.2 61.1±0.7 61.5±0.9 60.2±1.2 61.3±1.5 61.8±0.8 62.2±0.9 62.0±1.0 61.4

DeSGDA 65.4±1.3 65.9±0.9 65.5±1.4 64.8±1.1 82.8±1.6 63.6±1.5 70.7±1.8 68.2±0.7 82.9±1.2 67.6±0.8 83.9±1.0 66.5±1.2 70.9

Table 17: The graph classification results (in %) on PROTEINS under node domain shift
(source→target). P0, P1, P2, and P3 denote the sub-datasets partitioned with node. Bold results
indicate the best performance. OOM means out of memory.

Methods P0→P1 P1→P0 P0→P2 P2→P0 P0→P3 P3→P0 P1→P2 P2→P1 P1→P3 P3→P1 P2→P3 P3→P2 Avg.

WL subtree 69.1 59.7 61.2 75.9 41.6 83.5 61.5 72.7 24.7 72.7 63.1 62.9 62.4
GCN 73.7±0.3 82.7±0.4 57.6±0.2 84.0±1.3 24.4±0.4 17.3±0.2 57.6±0.1 70.9±0.7 24.4±0.5 26.3±0.1 37.5±0.2 42.5±0.8 49.9
GIN 71.8±2.7 70.2±4.7 58.5±4.3 56.9±4.9 74.2±1.7 78.2±3.3 63.3±2.7 67.1±3.8 35.9±4.2 61.0±2.4 71.9±2.1 65.1±1.0 64.5
GMT 73.7±0.2 82.7±0.1 57.6±0.3 83.1±0.5 75.6±1.4 17.3±0.6 57.6±1.5 73.7±0.6 75.6±0.4 26.3±1.2 75.6±0.7 42.4±0.5 61.8
CIN 74.1±0.6 83.8±1.0 60.1±2.1 78.6±3.1 75.6±0.2 74.8±3.7 63.9±2.7 74.1±0.6 57.0±4.3 58.9±3.3 75.6±0.7 63.6±1.0 70.0
SpikeGCN 71.8±0.9 80.9±1.2 64.9±1.4 79.1±2.2 71.1±1.9 73.8±1.6 62.4±2.0 71.8±2.3 70.1±2.4 66.9±1.9 72.1±1.9 64.5±1.7 70.9
DRSGNN 73.6±1.1 81.3±1.5 64.6±1.2 80.6±1.4 70.2±1.7 76.1±2.3 64.1±1.5 71.9±1.9 70.4±2.0 64.1±3.1 74.7±1.4 64.3±1.1 71.3

CDAN 75.9±1.0 83.1±0.6 60.8±0.6 82.6±0.2 75.8±0.3 70.9±2.4 64.7±0.3 77.7±0.6 73.3±1.8 75.4±0.7 75.8±0.4 67.1±0.8 73.6
ToAlign 73.7±0.4 82.7±0.3 57.6±0.6 82.7±0.8 24.4±0.1 82.7±0.3 57.6±0.4 73.7±0.2 24.4±0.7 73.7±0.3 24.4±0.5 57.6±0.4 59.6
MetaAlign 74.3±0.8 83.3±2.2 60.6±1.7 71.2±2.1 76.3±0.3 77.3±2.4 64.6±1.2 72.0±1.0 76.0±0.5 73.3±1.8 74.4±1.7 56.9±1.4 71.7

DEAL 75.4±1.2 78.0±2.4 68.1±1.9 80.8±2.1 73.8±1.4 80.6±2.3 65.7±1.7 74.7±2.4 74.7±1.6 71.0±2.1 68.1±2.6 70.3±0.4 73.4
CoCo 74.8±0.6 84.1±1.1 65.5±0.4 83.6±1.1 72.4±2.9 83.1±0.4 69.7±0.5 75.8±0.7 71.4±2.3 73.4±1.3 72.5±2.7 66.4±1.7 74.4
SGDA 64.2±0.5 61.0±0.7 66.9±1.2 61.9±0.9 65.4±1.6 66.5±1.0 64.6±1.1 60.1±0.5 66.3±1.3 59.3±0.8 66.0±1.6 66.2±1.3 64.1
DGDA 58.1±0.4 58.6±0.6 58.9±1.0 61.0±0.9 59.6±0.7 60.2±1.5 56.7±0.6 56.8±0.8 58.1±0.4 58.8±1.1 57.0±1.2 62.2±1.6 58.9
A2GNN 65.7±0.6 65.9±0.8 66.3±0.9 65.6±1.1 65.2±1.4 65.6±1.3 65.9±1.7 65.8±1.6 65.0±1.5 66.1±1.2 65.2±1.9 65.9±1.8 65.7
PA-BOTH 61.0±0.8 61.2±1.3 60.3±0.6 66.7±2.1 63.7±1.5 61.9±2.0 66.2±1.4 69.9±2.3 68.0±0.7 69.4±1.8 61.5±0.4 67.6±1.0 64.9

DeSGDA 77.6±0.9 84.3±1.1 70.5±0.6 84.8±1.4 76.6±0.7 83.9±0.9 71.9±0.6 76.9±1.1 76.1±0.8 73.7±1.0 76.0±1.2 70.4±0.7 76.8

Table 18: The graph classification results (in %) on NCI1 under node domain shift (source→target).
P0, P1, P2, and P3 denote the sub-datasets partitioned with node. Bold results indicate the best
performance.

Methods N0→N1 N1→N0 N0→N2 N2→N0 N0→N3 N3→N0 N1→N2 N2→N1 N1→N3 N3→N1 N2→N3 N3→N2 Avg.

WL subtree 73.5 79.5 64.8 75.9 58.9 68.4 72.5 72.0 69.7 63.6 76.1 74.0 70.7
GCN 51.2±0.1 71.1±0.4 42.7±0.4 27.8±0.3 32.1±1.1 27.0±0.2 55.2±0.6 50.5±0.7 50.9±1.1 49.1±0.3 67.1±0.6 57.3±0.6 48.5
GIN 66.9±2.2 78.9±2.3 60.3±3.1 72.8±0.3 51.1±0.6 68.6±1.8 63.5±2.1 67.8±3.7 65.9±1.7 60.3±1.8 71.1±1.1 67.2±1.3 66.2
GMT 50.9±0.5 73.0±0.1 57.3±0.3 73.0±0.4 66.5±0.2 73.0±0.3 72.4±0.6 50.9±0.1 66.5±0.4 58.3±0.2 66.5±0.5 72.8±0.3 65.1
CIN 60.1±0.7 73.1±1.1 57.5±0.2 73.0±0.4 66.5±1.1 73.1±0.7 58.5±2.1 52.9±1.4 66.5±1.3 56.1±0.1 66.5±0.4 57.4±0.7 63.4
SpikeGCN 63.3±0.4 72.6±0.7 60.6±0.2 73.1±0.8 65.4±0.6 66.6±1.2 64.3±1.4 64.7±1.0 65.6±1.2 59.8±0.8 70.1±1.7 60.9±1.4 65.6
DRSGNN 63.9±0.8 73.3±1.2 56.9±1.5 72.5±1.3 66.7±2.1 64.4±1.8 65.6±1.3 64.8±1.9 66.7±1.4 58.4±1.6 68.6±2.0 61.4±1.3 65.3

CDAN 57.1±0.4 75.0±0.7 61.2±0.4 73.7±0.1 68.2±0.4 73.3±0.3 60.2±0.1 56.5±1.4 68.2±0.2 53.9±1.4 68.4±0.2 59.6±0.5 64.6
ToAlign 49.1±0.3 27.0±0.6 57.3±0.5 27.0±0.4 66.5±0.5 27.0±0.2 57.3±0.3 49.1±0.4 66.5±0.2 49.1±0.3 66.5±0.1 57.3±0.4 50.0
MetaAlign 65.6±1.8 77.7±0.2 63.5±1.4 75.7±0.7 66.4±0.3 74.0±0.3 66.3±1.1 64.6±1.2 66.7±0.2 59.5±2.6 66.7±0.3 66.7±2.7 67.8

DEAL 64.0±0.9 71.9±1.2 61.4±0.3 73.3±0.3 64.9±1.4 71.9±1.9 62.5±2.1 66.2±0.5 54.2±1.4 55.6±0.8 64.6±0.4 58.8±0.4 64.1
CoCo 69.7±0.1 80.4±0.4 64.7±1.2 76.5±0.4 65.0±1.7 73.9±0.3 68.9±1.3 70.7±0.9 68.2±1.2 61.4±1.7 73.0±0.1 65.2±0.9 69.8
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 59.0±0.6 58.3±1.1 58.5±0.8 58.6±1.3 58.7±1.0 59.0±0.7 58.5±1.1 58.7±1.5 59.1±0.6 58.3±1.2 58.6±0.7 59.0±0.5 58.7
PA-BOTH 57.7±0.4 58.0±0.6 57.9±0.5 56.9±0.8 57.4±0.6 58.3±0.5 57.1±1.2 58.8±0.9 58.1±0.7 58.0±0.9 57.9±0.5 58.3±0.8 57.9

DeSGDA 64.4±1.2 76.9±1.5 64.9±0.9 76.6±1.2 68.6±1.8 74.1±1.3 66.9±0.8 65.1±1.2 69.9±1.5 63.9±2.0 70.9±1.6 64.2±1.4 69.0

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 19: The graph classification results (in %) on FRANKENSTEIN under node domain shift
(source→target). F0, F1, F2, and F3 denote the sub-datasets partitioned with node. Bold results
indicate the best performance. OOM means out of memory.

Methods F0→F1 F1→F0 F0→F2 F2→F0 F0→F3 F3→F0 F1→F2 F2→F1 F1→F3 F3→F1 F2→F3 F3→F2 Avg.

WL subtree 65.7 71.8 57.9 71.1 47.4 43.4 65.5 75.1 45.3 34.9 52.7 49.8 56.7
GCN 70.6±2.1 60.3±1.5 60.5±3.4 62.3±1.1 58.4±0.5 43.2±0.2 63.8±1.0 70.3±0.3 50.6±1.0 32.8±0.3 50.1±0.4 42.2±0.2 55.4
GIN 66.7±2.1 73.7±2.4 57.3±3.1 69.4±2.3 58.6±0.4 43.1±0.3 66.4±2.7 74.8±1.8 42.2±1.6 33.5±1.0 57.4±0.8 43.9±2.3 57.2
GMT 67.3±0.3 56.8±0.4 58.0±0.2 56.8±0.2 60.6±0.3 56.8±0.5 57.8±0.1 67.3±0.1 39.5±0.3 67.3±0.2 39.5±0.5 57.8±0.4 57.1
CIN 67.6±0.4 63.7±2.1 58.9±1.0 56.8±0.4 63.6±0.4 59.5±2.7 58.7±1.2 67.0±0.5 61.7±1.6 67.8±0.7 62.2±2.1 56.0±1.3 61.9
SpikeGCN 67.2±0.5 57.2±1.2 57.9±0.8 57.1±0.6 61.1±1.3 58.9±1.6 60.0±1.2 67.2±0.9 53.9±2.1 64.4±0.8 57.8±1.0 59.9±1.2 60.2
DRSGNN 67.4±0.4 58.4±1.0 59.0±1.2 57.4±0.5 62.3±1.1 60.4±1.3 61.1±1.6 67.9±1.5 56.2±1.8 66.2±2.1 60.9±1.4 58.6±2.5 61.3

CDAN 72.9±0.4 72.7±0.4 65.4±0.3 72.9±0.1 61.2±0.3 70.3±0.2 65.7±0.4 72.7±0.1 61.0±0.1 72.1±1.2 60.7±0.2 65.3±0.6 67.7
ToAlign 32.7±2.0 43.2±0.1 42.2±1.3 43.2±0.9 60.5±0.7 43.2±1.2 42.2±0.4 32.7±1.2 60.5±0.9 32.7±0.3 60.5±0.7 42.2±0.4 44.7
MetaAlign 67.3±0.7 56.8±0.2 57.8±0.6 56.8±0.4 60.5±1.3 56.8±0.8 57.8±1.1 67.3±1.2 60.5±0.4 67.3±0.6 60.5±0.7 57.8±0.6 60.6

DEAL 75.0±0.9 76.3±2.4 65.9±1.8 77.5±2.7 60.3±4.5 69.7±3.2 67.2±1.5 75.3±1.7 57.4±4.1 71.1±2.2 65.7±2.7 66.4±1.6 69.0
CoCo 74.2±1.7 74.3±0.6 65.9±1.2 72.7±2.1 61.1±0.2 71.0±1.7 68.6±0.3 75.9±0.2 60.7±0.2 73.9±0.4 59.7±1.1 67.3±0.8 68.8
SGDA 55.9±0.6 57.1±0.5 56.1±0.4 54.6±0.8 55.8±1.1 57.7±0.6 54.3±0.7 53.6±1.3 59.1±0.8 56.7±0.6 55.4±1.2 53.8±0.5 55.9
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 55.9±0.7 55.7±0.4 56.6±0.6 57.1±1.0 56.1±1.2 55.8±0.5 56.5±0.7 55.5±0.4 55.9±0.8 56.2±0.6 56.5±1.5 56.0±0.5 56.2
PA-BOTH 56.4±0.5 55.9±0.6 56.0±0.5 56.4±0.4 56.3±0.6 57.7±0.7 56.6±0.2 58.8±0.9 56.9±0.7 57.2±0.3 56.5±0.5 58.3±0.8 56.9

DeSGDA 75.2±0.8 74.3±1.2 68.0±1.5 73.6±2.0 62.3±1.7 71.2±2.5 68.8±1.3 76.0±1.2 61.9±2.2 71.4±1.6 62.8±1.2 65.7±0.9 69.3

Table 20: The graph classification results (in %) on MUTAGENICITY under node domain shift
(source→target). P0, P1, P2, and P3 denote the sub-datasets partitioned with node. Bold results
indicate the best performance. OOM means out of memory.

Methods M0→M1 M1→M0 M0→M2 M2→M0 M0→M3 M3→M0 M1→M2 M2→M1 M1→M3 M3→M1 M2→M3 M3→M2 Avg.

WL subtree 78.0 68.7 70.1 70.5 59.0 61.2 71.7 78.0 49.9 56.3 69.4 71.9 67.1
GCN 74.5±0.2 60.8±2.1 69.7±0.4 68.5±1.7 54.1±0.9 55.2±0.9 68.6±1.6 75.5±0.5 51.5±1.3 46.4±1.7 58.6±0.4 60.2±0.2 61.9
GIN 77.9±3.1 70.7±2.4 70.9±0.8 69.2±1.2 64.1±1.0 61.9±2.4 78.5±0.2 79.8±3.3 65.5±2.7 71.5±0.9 69.5±1.8 73.5±2.6 71.1
GMT 67.3±0.2 52.5±0.1 59.9±0.3 47.5±0.2 53.5±0.2 52.5±0.4 59.9±0.1 67.3±0.2 46.7±0.5 67.3±0.3 53.3±0.1 59.9±0.4 57.1
CIN 70.8±1.1 66.9±3.4 61.7±0.6 62.6±2.4 56.3±3.1 62.9±1.3 65.1±1.0 68.8±1.7 56.6±1.4 66.9±1.0 58.1±1.3 62.5±0.9 63.3
SpikeGCN 63.2±0.6 55.9±1.7 59.8±1.2 56.5±1.6 54.1±2.2 60.3±1.2 60.1±0.8 68.8±1.4 54.4±2.0 64.2±1.6 56.6±0.8 58.5±1.5 59.4
DRSGNN 56.9±0.9 53.4±1.2 58.9±1.0 57.7±1.4 53.2±1.6 61.2±1.5 60.6±2.1 67.9±1.2 57.1±1.4 67.3±2.0 59.9±1.9 57.1±0.8 59.3

CDAN 75.5±0.1 71.3±0.4 70.7±0.3 70.3±0.1 58.7±0.6 58.4±0.6 70.2±0.5 76.1±0.5 58.5±0.6 69.4±1.5 59.0±0.1 63.7±1.4 66.8
ToAlign 67.3±0.2 47.5±0.4 59.9±0.6 47.5±0.5 46.7±0.4 47.5±0.2 59.9±0.7 67.3±0.3 46.7±0.1 67.3±0.4 46.7±0.5 59.9±0.3 55.4
MetaAlign 76.5±0.4 71.8±1.1 71.8±0.8 71.4±0.9 59.3±0.8 63.0±1.0 74.2±1.6 78.0±0.2 61.7±1.2 69.9±1.6 62.2±0.4 68.3±1.5 69.0

DEAL 76.6±0.8 68.8±1.0 69.9±0.4 66.4±0.8 59.3±2.1 64.2±2.2 79.1±0.1 81.9±0.6 64.5±1.1 75.3±0.6 69.8±1.6 76.5±0.2 71.0
CoCo 75.5±0.4 71.7±0.7 68.7±1.1 69.2±2.0 60.8±1.1 65.7±0.3 79.2±1.2 76.8±0.6 63.8±0.5 73.8±0.4 64.6±0.8 70.1±1.1 70.0
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 55.4±0.6 56.3±0.2 55.6±0.8 55.1±0.5 55.3±1.1 55.9±0.4 56.1±0.7 55.7±0.6 57.1±0.3 56.6±1.2 55.2±0.7 56.8±1.0 55.9
PA-BOTH 55.9±1.0 56.0±0.5 56.1±0.7 56.6±1.2 55.9±0.6 56.0±0.7 57.3±0.8 56.8±1.3 55.9±1.2 56.3±1.0 56.4±0.9 57.1±1.3 56.4

DeSGDA 76.7±1.0 72.5±0.6 72.0±2.3 71.5±1.5 61.0±1.2 67.6±0.8 75.5±1.0 79.8±1.2 62.8±1.6 75.9±1.3 65.5±2.1 72.3±1.7 71.2

Table 21: The graph classification results (in %) on NCI1 under edge density domain shift
(source→target). N0, N1, N2, and N3 denote the sub-datasets partitioned with edge density. Bold
results indicate the best performance. OOM means out of memory.

Methods N0→N1 N1→N0 N0→N2 N2→N0 N0→N3 N3→N0 N1→N2 N2→N1 N1→N3 N3→N1 N2→N3 N3→N2 Avg.

WL subtree 72.6 80.3 62.7 75.5 52.0 63.6 69.1 69.8 70.7 59.4 80.0 70.6 68.9
GCN 49.5±0.4 71.1±0.4 46.8±0.5 33.7±2.8 32.7±0.4 27.4±0.1 56.2±1.5 55.3±0.4 58.2±1.7 51.0±0.2 60.7±3.7 53.2±0.2 49.6
GIN 67.3±2.7 67.9±4.8 61.5±4.2 65.4±3.7 58.9±4.1 61.0±3.4 62.5±3.2 66.2±2.1 69.7±0.9 56.8±0.7 72.4±2.8 64.0±1.6 64.5
GMT 50.3±1.2 42.5±3.4 51.1±3.7 42.5±4.5 56.1±4.7 42.5±4.1 53.2±4.9 51.0±0.2 68.2±0.4 51.0±0.3 68.2±0.5 53.2±0.4 52.5
CIN 51.1±0.2 72.6±0.1 54.0±0.9 72.6±0.2 68.2±0.3 71.5±1.3 55.0±2.1 53.5±1.8 68.2±0.3 52.0±0.3 68.3±0.1 53.6±0.6 61.7
SpikeGCN 62.8±0.8 73.1±1.2 61.4±0.8 70.9±0.6 57.7±1.6 66.2±1.1 61.2±1.6 64.5±1.0 62.3±1.4 57.3±0.9 68.9±1.2 60.1±1.0 63.6
DRSGNN 64.3±0.6 76.3±0.9 56.7±1.1 73.2±0.8 58.6±1.4 63.9±1.8 63.0±2.1 65.1±1.6 64.1±1.9 59.2±2.2 70.8±2.5 56.6±1.4 64.3

CDAN 59.6±0.3 73.8±0.5 56.7±1.4 73.7±0.3 71.2±0.4 73.2±0.3 55.5±0.2 57.3±1.1 69.9±0.2 54.6±2.0 69.8±1.4 56.6±0.3 64.3
ToAlign 51.0±0.2 27.4±0.1 53.2±0.4 27.4±0.2 68.2±0.3 27.4±0.3 53.2±0.1 51.0±0.2 68.2±0.2 51.0±0.4 68.2±0.3 53.2±0.2 50.0
MetaAlign 65.0±0.7 77.6±1.6 62.0±0.6 77.1±0.9 68.2±0.8 74.5±2.0 64.2±0.9 65.4±0.3 68.0±0.3 56.1±2.3 68.2±0.1 66.2±1.1 67.7

DEAL 65.6±0.6 73.0±0.9 58.0±0.3 71.6±1.6 60.1±2.8 73.1±0.5 62.8±1.0 65.0±2.4 65.8±0.8 53.9±2.6 57.6±2.8 56.7±3.1 63.6
CoCo 70.4±0.7 80.4±0.9 62.4±0.8 75.8±1.2 65.7±2.0 73.7±0.3 67.0±0.8 70.4±0.7 69.7±0.4 62.7±0.9 74.4±0.5 63.7±0.9 69.7
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 59.2±0.8 58.7±0.5 59.0±1.1 58.7±0.8 58.9±0.6 59.2±1.2 58.7±0.6 58.6±1.2 59.0±1.0 59.5±0.6 58.7±0.5 58.5±1.1 58.9
PA-BOTH 57.6±0.5 58.4±0.4 58.9±0.6 57.4±0.6 57.1±1.0 58.4±0.5 58.0±1.0 58.1±0.5 58.4±0.6 57.7±1.1 57.5±0.6 58.0±0.4 58.0

DeSGDA 66.0±0.5 76.2±0.4 62.8±0.6 77.6±0.6 68.5±1.0 74.6±0.5 65.1±1.0 65.4±0.5 70.9±0.6 64.8±1.1 72.6±0.6 66.3±0.4 69.3

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 22: The graph classification results (in %) on FRANKENSTEIN under edge density domain
shift (source→target). F0, F1, F2, and F3 denote the sub-datasets partitioned with edge density. Bold
results indicate the best performance. OOM means out of memory.

Methods F0→F1 F1→F0 F0→F2 F2→F0 F0→F3 F3→F0 F1→F2 F2→F1 F1→F3 F3→F1 F2→F3 F3→F2 Avg.

WL subtree 71.6 72.1 62.1 71.2 57.8 67.7 64.0 75.3 41.1 59.2 55.9 55.4 62.8
GCN 66.5±0.4 60.0±0.8 55.4±0.3 60.0±0.1 39.6±0.3 40.0±0.4 55.4±0.2 66.5±0.1 39.6±0.6 33.5±0.3 39.6±0.1 44.7±0.2 50.1
GIN 71.4±4.7 73.4±3.4 60.8±2.7 66.0±3.4 50.5±3.7 51.6±1.8 64.8±1.0 71.3±3.5 48.3±4.2 57.4±3.8 55.1±3.4 52.6±4.3 60.3
GMT 67.4±1.0 61.7±2.1 55.8±0.7 57.0±2.4 60.2±0.5 58.2±2.0 57.8±2.1 65.7±1.3 60.2±0.3 57.3±2.3 60.7±0.6 57.1±1.2 59.9
CIN 70.4±2.8 66.5±4.3 58.5±2.6 64.2±2.7 60.6±3.0 64.2±3.2 58.7±2.4 69.1±2.7 57.5±3.4 67.7±2.1 59.5±2.3 56.1±1.2 62.7
SpikeGCN 66.5±0.9 60.1±1.5 55.9±0.8 60.2±0.6 54.8±2.1 59.9±1.6 55.8±0.8 62.9±1.6 58.4±1.2 61.1±1.3 58.8±1.9 62.1±1.5 59.8
DRSGNN 67.5±1.2 61.2±0.7 55.6±1.4 61.1±0.9 52.4±2.3 61.0±1.2 56.9±0.7 66.7±1.5 60.3±0.5 62.0±2.0 59.8±1.4 59.2±1.1 60.3

CDAN 72.9±0.2 74.0±0.3 62.7±0.3 73.8±0.5 61.2±1.0 70.0±1.2 62.8±0.1 73.0±0.3 60.6±0.2 71.6±1.5 60.5±0.2 61.1±1.4 67.0
ToAlign 68.0±3.8 73.4±2.7 64.5±1.1 63.7±2.4 60.6±1.2 61.9±1.3 64.8±1.3 74.0±1.3 60.0±0.6 65.7±3.1 61.0±1.4 56.2±2.3 64.5
MetaAlign 73.6±0.2 72.7±1.9 63.9±1.0 67.9±4.3 60.4±0.7 65.4±1.8 65.2±0.8 73.2±2.3 60.0±0.6 66.7±2.4 61.2±1.1 56.8±2.1 65.6

DEAL 75.4±0.3 74.6±1.1 66.1±0.6 74.6±0.8 53.8±1.0 69.6±1.8 66.4±0.3 73.9±0.6 61.6±1.4 69.8±0.2 60.7±1.0 58.3±0.9 67.1
CoCo 74.6±0.9 77.2±0.6 64.1±3.4 73.8±1.1 60.5±0.2 71.5±0.7 65.9±0.5 76.0±0.5 61.4±0.4 72.6±0.6 59.6±1.0 64.7±1.0 68.5
SGDA 56.6±0.6 56.9±0.8 55.3±1.2 54.6±0.5 57.9±1.3 58.3±0.4 56.1±0.9 55.9±0.6 54.6±1.3 56.7±0.5 53.3±0.7 56.8±1.1 56.1
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 55.4±0.8 56.1±0.6 56.7±1.0 55.3±0.5 54.9±0.7 57.2±0.9 55.7±0.5 56.5±1.3 54.5±0.6 56.8±0.5 56.2±1.0 58.8±0.8 56.1
PA-BOTH 56.1±0.5 56.0±0.4 56.3±0.7 56.4±0.4 56.0±0.6 57.1±0.7 56.2±1.1 58.3±0.9 56.5±0.6 57.2±0.9 56.9±0.4 57.7±0.8 56.8

DeSGDA 75.9±1.0 74.7±1.2 66.8±1.5 71.3±1.9 63.2±1.5 69.4±1.7 66.5±1.3 74.3±2.4 62.6±1.5 73.0±1.8 61.6±2.2 63.6±1.5 68.6

Table 23: The graph classification results (in %) on MUTAGENICITY under edge density domain
shift (source→target). M0, M1, M2, and M3 denote the sub-datasets partitioned with edge density.
Bold results indicate the best performance. OOM means out of memory.

Methods M0→M1 M1→M0 M0→M2 M2→M0 M0→M3 M3→M0 M1→M2 M2→M1 M1→M3 M3→M1 M2→M3 M3→M2 Avg.

WL subtree 74.9 74.8 67.3 69.9 57.8 57.9 73.7 80.2 60.0 57.9 70.2 73.1 68.1
GCN 73.0±1.7 68.7±1.5 66.8±3.5 69.2±0.9 53.9±3.4 53.4±2.7 69.3±0.8 74.0±1.1 55.1±1.3 42.6±1.9 55.5±3.5 57.9±2.9 61.6
GIN 74.1±1.8 73.4±3.4 65.4±1.5 70.4±2.9 58.9±2.7 61.2±1.1 73.2±3.8 77.7±3.0 63.1±3.7 63.9±2.4 67.4±2.3 73.2±1.9 68.5
GMT 69.0±4.0 67.4±3.8 60.3±4.2 66.5±3.8 54.9±1.6 54.8±3.6 65.6±4.2 70.4±3.2 64.0±2.3 56.8±4.3 64.7±1.5 61.1±3.5 63.0
CIN 68.5±2.1 65.1±2.6 65.4±1.3 63.6±2.8 57.3±3.4 59.0±3.1 59.3±1.5 68.3±1.3 58.1±2.4 71.1±3.1 60.7±1.7 61.7±2.4 63.2
SpikeGCN 66.7±1.5 65.5±2.0 57.9±0.4 60.2±1.6 53.2±1.4 60.1±1.5 57.7±1.2 67.3±1.5 57.7±2.1 60.1±1.9 59.9±2.4 63.3±1.8 60.1
DRSGNN 66.9±1.2 62.1±0.7 57.1±1.2 63.3±2.1 56.6±0.9 62.1±1.3 56.9±1.0 67.2±1.8 58.1±0.6 61.3±2.5 58.8±1.0 64.7±1.7 61.3

CDAN 74.2±0.3 73.7±0.5 68.8±0.2 71.8±0.4 59.9±2.0 58.6±1.9 70.7±1.4 74.3±0.3 59.2±1.2 69.0±1.6 60.0±1.2 62.7±1.3 66.9
ToAlign 75.5±1.9 67.1±3.8 68.1±1.5 63.3±2.7 55.6±1.2 67.3±4.3 69.4±3.3 77.0±1.2 57.6±1.6 74.9±2.4 59.0±3.3 64.6±3.4 66.6
MetaAlign 74.5±0.9 73.8±0.6 69.4±1.2 72.6±1.3 59.8±1.8 70.7±2.7 72.0±0.5 75.6±0.6 62.4±2.1 72.3±1.9 62.2±1.1 72.0±1.2 69.7

DEAL 76.3±0.2 72.4±0.7 68.8±1.0 72.5±0.7 57.6±0.6 67.6±1.9 77.4±0.6 80.0±0.7 64.9±0.7 72.8±1.4 70.3±0.3 76.2±1.3 71.4
CoCo 77.5±0.4 75.7±1.3 68.3±3.7 74.9±0.5 65.1±2.1 74.0±0.4 76.9±0.6 77.4±3.4 66.4±1.5 71.2±2.7 62.8±4.2 77.1±0.6 72.2
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 55.3±0.3 54.9±0.6 55.8±0.4 55.1±0.8 54.2±1.0 57.1±1.2 56.1±0.5 55.2±0.7 57.9±1.5 56.3±0.6 54.4±0.5 58.1±1.5 55.8
PA-BOTH 56.3±0.5 57.7±0.9 56.9±0.6 56.2±1.0 55.7±0.8 56.5±0.9 57.8±1.2 56.9±2.1 56.5±1.5 56.2±1.8 56.8±1.4 57.4±0.7 56.8

DeSGDA 75.8±1.4 74.5±1.7 69.5±1.3 75.0±2.0 61.0±1.5 69.2±1.3 69.5±1.6 76.1±1.5 65.0±1.4 75.5±2.2 63.4±1.8 68.3±1.3 70.3

30

	Introduction
	Related work
	Preliminaries
	Methodology
	Degree-aware Personalized Spiking Representation
	Adversarial Distribution Alignment
	Pseudo-label Distillation for Discrimination Learning
	Learning Framework

	Experiment
	Experimental Settings
	Performance Comparision
	Energy Efficiency Analysis
	Ablation Study
	Sensitivity Analysis

	Conclusion
	Proof of Hypothesis 1
	Proof of Theorem 2
	Proof of Theorem 3
	Algorithm
	Complexity Analysis
	Dataset
	Dataset Description
	Data processing

	Baselines
	More experimental results
	More performance comparison
	Training time and memory comparison
	More Ablation study
	More Sensitivity Analysis

