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ABSTRACT

Spiking Graph Networks (SGNs) have garnered significant attraction from both
researchers and industry due to their ability to address energy consumption chal-
lenges in graph classification. However, SGNs are only effective for in-distribution
data and cannot tackle out-of-distribution data. In this paper, we first propose the
domain adaptation problem in SGNs, and introduce a novel framework named
Degree-aware Spiking Graph Domain Adaptation for Classification (DeSGDA).
The proposed DeSGDA addresses the spiking graph domain adaptation problem by
three aspects: node degree-aware personalized spiking representation, adversarial
feature distribution alignment, and pseudo-label distillation. First, we introduce
the personalized spiking representation method for generating degree-dependent
spiking signals. Specifically, the threshold of triggering a spike is determined by
the node degree, allowing this personalized approach to capture more expressive
information for classification. Then, we propose the graph feature distribution
alignment module that is adversarially trained using membrane potential against
a domain discriminator. Such an alignment module can efficiently maintain high
performance and low energy consumption in the case of inconsistent distribution.
Additionally, we extract consistent predictions across two spaces to create reliable
pseudo-labels, effectively leveraging unlabeled data to enhance graph classification
performance. Extensive experiments on benchmark datasets validate the superiority
of the proposed DeSGDA compared with competitive baselines.

1 INTRODUCTION

Spiking Graph Networks (SGNs) (Zhu et al., 2022; Xu et al., 2021b) are a specialized type of artificial
neural network engineered to process graph information by mimicking the human brain. SGNs
transform static and real-valued graph features into discrete spikes by simulating neurons’ charging
and discharging cycles, facilitating spike-based representations for graph node classification. Notably,
SGNs excel in capturing semantic spiking representations with low energy consumption, which proves
advantageous for event-based processing tasks (Yao et al., 2021) such as object recognition (Gu
et al., 2020; Li et al., 2021b), real-time data analysis (Zhu et al., 2020; Bauer et al., 2019), and graph
classification (Li et al., 2023; Zhu et al., 2022; Xu et al., 2021b).

Currently, SGNs are usually tested within the same distribution as the training dataset (Li et al.,
2023; Yin et al., 2024; Duan et al., 2024). However, in realistic scenarios, the testing set can have
different distributions from the training set, and such a distribution shift may lead to a degradation in
performance. For instance, Electroencephalography (EEG) data (Binnie & Prior, 1994; Biasiucci et al.,
2019), typically represented as a graph structure with nodes for neurons and edges for connections, is
ideally processed by bio-inspired SGNs that mimic neuronal charging and discharging. Despite the
suitability, EEGs often exhibit varying distributions over time or among different groups (Zhao et al.,
2020; 2021; Wang et al., 2022), leading to suboptimal performance of models trained on specific
distributions when applied to others. This significant issue underscores the necessity of exploring
domain adaptation for spiking graphs. Traditionally, SNNs transfer learning methods (Zhan et al.,
2021; Zhang et al., 2021; Zhan et al., 2024; Guo et al., 2024) have been applied in event-based or
computer vision scenarios. However, there’s no existing research on spiking graph domain adaptation.

In this paper, we address the development of energy-efficient SGNs tailored for scenarios involving
distribution shifts. Both domain adaptation and SGNs are particularly well-suited for real-world
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applications where data distributions vary across environments, and efficient processing of graph-
structured, dynamic data under resource constraints is crucial. These challenges are common across
numerous fields that require solutions capable of handling distribution shifts while minimizing energy
consumption. However, designing an effective spiking graph domain adaptation framework is non-
trivial due to the following major challenges: (1) How to meticulously design an SGN under the
circumstance of domain shift? SGNs usually utilize a global threshold for the firing of each node (Xu
et al., 2021a; Yin et al., 2024; Zhao et al., 2024). However, we observe that the degree of each node
influences the difficulty of triggering spikes. Specifically, nodes with high degrees can integrate
more information from neighbors, making it easier for membrane potential to accumulate and trigger
a spike. Conversely, nodes with lower degrees are more challenging to reach the firing threshold,
denoted as the inflexible architecture challenge. (2) How to design a framework that effectively
addresses spiking graph domain adaptation for classification? Current research primarily focuses on
graph node classification within the same distribution (Li et al., 2023; Yao et al., 2023; Duan et al.,
2024). However, spike-based graph classification under domain shift remains unexplored. (3) How
to guarantee the stability of the proposed framework? Though some works have been proposed to
address the spiking transfer learning challenges (Zhan et al., 2021; Zhang et al., 2021; Zhan et al.,
2024), there is still no theoretical research on spiking graphs under domain shift.

To tackle these challenges, we propose a framework named Degree-aware Spiking Graph Domain
Adaptation for Classification (DeSGDA), which comprises three components: degree-aware per-
sonalized spiking representation, graph feature distribution alignment, and pseudo-label distillation.
To address the first challenge, we establish variable node thresholds based on their degrees. By
adaptively updating these thresholds, we can achieve a more expressive and personalized spiking
representation for each node. Then, we introduce a adversarial feature distribution alignment module
that is adversarially trained using membrane potential against a domain discriminator. To further
enhance performance, we extract consistent predictions from different spaces to generate reliable
pseudo-labels. Additionally, to explore the generalization ability of the proposed DeSGDA, we first
propose the error bound for spiking graph domain adaptation and demonstrate that our pseudo-label
distillation module effectively reduces this upper bound. In summary, we utilize simple yet effec-
tive techniques to address a novel problem while providing insightful analysis of the background
mechanisms and model capabilities of our proposed method.

Our contributions can be summarized as follows: (1) Problem Formulation: We first introduce
the problem of spiking graph domain adaptation for classification, which is non-trivial due to the
challenges of the inflexible architecture of SGNs and theoretical deficiency. (2) Novel Architecture:
We propose DeSGDA, a framework that efficiently learns personalized spiking representations for
nodes using degree-aware thresholds and aligns domain distributions through adversarial training on
membrane potential. Furthermore, we utilize pseudo-label distillation to improve the performance
further. (3) Theoretical Analysis: To guarantee the stability of DeSGDA, we provide theoretical
proof of the error bound for spiking graph domain adaptation. Furthermore, we demonstrate that
DeSGDA maintains a lower theoretical bound than standard spiking graph domain adaptation through
the effective use of the pseudo-label distillation module. (4) Extensive Experiments. We evaluate
the proposed DeSGDA on extensive spiking graph domain adaptation learning datasets, which shows
that our proposed DeSGDA outperforms the variety of state-of-the-art methods.

2 RELATED WORK

Spiking Graph Networks (SGNs). SGNs are a specialized type of neural network that combines
Spiking Neural Networks (SNNs) with Graph Neural Networks (GNNs), preserving energy efficiency
while achieving competitive performance in various graph tasks (Li et al., 2023; Yao et al., 2023;
Duan et al., 2024). Existing research on SGNs focuses on capturing the dynamic temporal information
contained within graphs and enhancing model scalability. For instance, Xu et al. (2021a) utilizes
spatial-temporal feature normalization within SNNs to effectively process dynamic graph data,
ensuring robust learning and improved predictive performance. Zhao et al. (2024) propose a method
that dynamically adapts to evolving graph structures and relationships through a novel architecture
that updates node representations in real time. Additionally, Yin et al. (2024) adapts SNNs to dynamic
graph settings and employs implicit differentiation for the node classification task. However, existing
methods still suffer from data distribution shift issues when training and testing data come from
different domains, resulting in degraded model performance and generalization. To address this, we
propose a novel domain adaptation method based on SGNs to tackle these challenges.
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Spiking Transfer Learning. Spiking transfer learning focuses on adjusting SNNs to handle data
distribution shifts across various domains effectively. Recent advances in spiking transfer learning
have been extensively applied in vision tasks, enhancing model performance while maintaining
energy efficiency (Zhan et al., 2021; Zhang et al., 2021; Zhan et al., 2024). For instance, Guo et al.
(2024) leverages a Jaccard attention mechanism within SNNs to effectively adapt to target domains
without requiring source domain data. Similarly, He et al. (2024) facilitates the transfer of learned
representations from static to dynamic event-based domains by adapting SNNs to process temporal
information. Additionally, Zhan et al. (2024) converts RGB images into spike-based neuromorphic
data, enabling SNNs to process visual information across various domains efficiently. However, the
difficulty of graph topologies makes it infeasible to apply spiking transfer learning to SGNs directly.
To this end, we introduce a specialized domain adaptation method tailored for SGNs.

3 PRELIMINARIES

Bound for Graph Domain Adaptation (GDA). Applying GDA with optimal transport (OT), if
the covariate shift holds on representations that PS(Y |Z) = PT (Y |Z), the target risk ϵT (h, ĥ) is
bounded with the theorem:

Theorem 1 (You et al., 2023) Assuming that the learned discriminator is Cg-Lipschitz continuous
as described in (Redko et al., 2017), and the graph feature extractor f (also referred to as GNN)
is Cf -Lipschitz that ||f ||Lip = maxG1,G2

||f(G1)−f(G2)||2
η(G1,G2)

= Cf for some graph distance measure
η. Let H := {h : G → Y} be the set of bounded real-valued functions with the pseudo-dimension
Pdim(H) = d that h = g ◦ f ∈ H, with probability at least 1− δ the following inequality holds:

ϵT (h, ĥ) ≤ϵ̂S(h, ĥ) +

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

δ
) + 2CfCgW1(PS(G),PT (G)) + ω,

where the (empirical) source and target risks are ϵ̂S(h, ĥ) = 1
NS

∑NS

n=1 |h(Gn) − ĥ(Gn)| and

ϵT (h, ĥ) = EPT (G{|h(G) − ĥ(G)|}, respectively, where ĥ : G → Y is the labeling function for
graphs and ω = min||g||Lip≤Cg,||f ||Lip≤Cf

{ϵS(h, ĥ) + ϵT (h, ĥ)}. The first Wasserstein distance is
defined as (Villani et al., 2009): W1(P,Q) = sup||g||Lip≤1

{
EPS(Z)g(Z)− EPT (Z)g(Z)

}
.

The comprehensive justification of the OT-based graph domain adaptation bound demonstrates that
the generalization gap relies on both the domain divergence 2CfCgW1(PS(G),PT (G)) and model
discriminability ω.

Spiking Graph Networks. In contrast to traditional artificial neural networks, SGNs (Xu et al.,
2021a; Zhu et al., 2022) convert input data into binary spikes over time, with each neuron in the
SGNs maintaining a membrane potential that accumulates input spikes. A spike is produced as an
output when the membrane potential exceeds a threshold, which is formulated as:

uτ+1,i = λ(uτ,i − Vthsτ,i) +
∑
j

wijA (A, sτ,j) + b, sτ+1,i = H(uτ+1,i − Vth), (1)

where H(x) is the Heaviside function, which is the non-differentiable spiking function. A is the
graph aggregation operation, and A is the adjacency matrix of graph. sτ,i denotes the binary spike
train of neuron i, and λ is the constant. wij and b are the weights and bias of each neuron.

4 METHODOLOGY

This work studies the spiking graph domain adaptation problem and proposes a new approach
DeSGDA. DeSGDA consists of three parts: Degree-aware personalized spiking representation
utilizes different thresholds for different degrees, effectively addressing the inflexible architecture
challenge; Adversarial distribution alignment uses the adversarial training on membrane potential
against a domain discriminatory to align distribution between different domains, and Pseudo-label
distillation further applies the pseudo-label to enhance model performance. We provide the theoretical
guarantee of DeSGDA to ensure the effectiveness. The overview of DeSGDA is shown in Figure 1.
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Figure 1: An overview of the proposed DeSGDA. To achieve personalized spiking representations,
DeSGDA employs adaptive thresholds based on node degrees, enabling the generation of tailored
spiking representations. To align domain distributions, DeSGDA leverages adversarial training on
membrane potentials to counter domain discrimination. Furthermore, DeSGDA utilizes pseudo-
labeling to identify and select reliable samples, thereby enhancing overall model performance.

Problem Setup. Given a graph G = (V,E,X) with the node set V , the edge set E, and the node
attribute matrix X. Denote S as the binary input sampled from Bernoulli distribution with probability
of X. The labeled source domain is denoted as Ds = {(Gs

i , y
s
i )}

Ns
i=1, where ysi denotes the labels of

Gs
i ; the unlabeled target domain is Dt = {Gt

j}
Nt
j=1, where Ns and N t denote the number of source

graphs and target graphs. Both domains share the same label space Y but have different distributions
in the graph space. We aim to train a spiking graph model using labeled source graphs and unlabeled
target graphs to achieve superior performance in the target domain.

4.1 DEGREE-AWARE PERSONALIZED SPIKING REPRESENTATION

In this part, we first study the disadvantages of directly applying SNNs to graphs and then propose the
degree-aware personalized spiking representation. Existing SGNs (Li et al., 2023; Yao et al., 2023;
Duan et al., 2024) usually employ a global threshold for membrane potential firing. However, the
global threshold can lead to the inflexible architecture issue since nodes with higher degrees are more
likely to trigger spikes than those with lower degrees. As shown in Eq. 1, nodes with higher degrees
have more neighbors, and the aggregation operation allows for more significant feature accumulation,
making it easier for these nodes to trigger spikes compared to those with fewer neighbors. To alleviate
this issue, we propose the degree-aware thresholds and iteratively update their values.

Specifically, we first set all the degrees of nodes in the source domain graphs, i.e., Ds = set(Ds
1 ∪

· · · ∪ Ds
Ns

), where Di denotes the degree set of graph Gs
i , and set(·) operation is an unordered

sequence of non-repeating elements. Considering that low-degree nodes are more challenging
to trigger while high-degree nodes trigger more easily, we propose setting higher thresholds for
high-degree nodes and lower thresholds for low-degree nodes, which is formulated as:

s
ds
i

τ = H(uτ − V
ds
i

th ), Sds
i = avg(s

ds
i

τ ), V
ds
i

th = (1− α)V
ds
i

th + αSds
i , (2)

where V
ds
i

th is the threshold of degree dsi ∈ Ds, initially set to Vth, and α is a hyper-parameter.
The avg(·) operation takes the average of spiking representation with degree dsi . Consequently,
high-degree nodes tend to achieve high Sds

i , which leads to an iterative increase in the threshold
corresponding to degree dsi and conversely for lower-degree nodes. To further explore the background
mechanism of the hypothesis, we have the following analysis.

Hypothesis 1 In graph spiking networks, nodes with low-degree are more challenging to trigger
while high-degree nodes trigger more easily.

The details analysis are introduced in Appendix A. With different thresholds for different node
degrees, we can obtain the personalized node spiking representation s

ds
j

v∈Gs
i
. Then, we summarize

4
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all node representations with a readout function into the graph-level representation and output the
prediction with a multi-layer perception (MLP) classifier:

si = READOUT

({
s
ds
j

v

}
v∈Gs

i

)
, ŷsi = H(si), (3)

where ŷi is the predicted result and H(·) is the classifier. After that, the source classification loss is:

LS = EGs
i∈Ds l(ysi , ŷ

s
i ), (4)

where l(·) is the loss function and ysi is the ground truth of the i-th graph Gs
i in the source domain.

However, in the scenario of domain adaptation, two significant issues remain unresolved. The first
issue is that degrees in the target domain may be unseen in the source, rendering the thresholds
ineffective for these degrees. The second is that the thresholds in the target may differ from those in
the source, simply applying the source domain’s thresholds could lead to performance degradation.

To alleviate the first issue, we initialize the threshold V
dt
i

th with the same value, where dti /∈ Ds. Then,
with the training process of adversarial alignment, we iteratively update the threshold for degree
dti with Eq. 2. To address the second issue, we incorporate the pseudo-label distillation module in
Section 4.3 to guide the update of source degree thresholds on the target domain.

4.2 ADVERSARIAL DISTRIBUTION ALIGNMENT

To eliminate the discrepancy between the source and target domains, we propose the adversarial
distribution alignment module. Specifically, for each source graph Gs

i and target graph Gt
i, we use

the degree-aware personalized spiking GNNs-based encoder F (·) and semantic classifier H(·) to
produce predicted labels. Then, a domain discriminator Q(·) is trained to distinguish features from
the source and target domains. The encoder and classifier are adversarial trained to align the feature
spaces of the source and target domains.

LAD = EGs
i∈Ds logQ

(
F (Gs

i ), H(Gs
i )|V Ds

th

)
+ EGt

j∈Dt log
(
1−Q

(
F
(
Gt

j

)
, H(Gt

j)|V Ds

th

))
.

However, the degree in the target domain may be unseen by the source. Thus, we further initialize the

threshold with V
dt
j

th and dtj /∈ Ds, which is formulated as:

LAD =EGt
j∈Dt

Dt
j⊂Ds

log
(
1−Q

(
F
(
Gt

j

)
, H(Gt

j)|V Ds

th

))
+ EGs

i∈Ds logQ
(
F (Gs

i ), H(Gs
i )|V Ds

th

)
+ EGt

j∈Dt

∃dt
j /∈Ds

log
(
1−Q

(
F
(
Gt

j

)
, H(Gt

j)|V Ds

th , V Dt

th

))
,

(5)
where Dt = {dti|dti ∈ Dt, dti /∈ Ds}. Then, we iteratively update V Dt

th with Eq. 2 on each latency.
Furthermore, we present an upper bound on the adversarial distribution alignment.

Theorem 2 Assuming that the learned discriminator is Cg-Lipschitz continuous as described in
Theorem 1, the graph feature extractor f (also referred to as GNN) is Cf -Lipschitz that ||f ||Lip =

maxG1,G2

||f(G1)−f(G2)||2
η(G1,G2)

= Cf for some graph distance measure η and the loss function bounded
by C > 0. Let H := {h : G → Y} be the set of bounded real-valued functions with the pseudo-
dimension Pdim(H) = d that h = g ◦ f ∈ H, and provided the spike training data set Sn =
{(Xi, yi) ∈ X × Y}i∈[n] drawn from Ds, with probability at least 1− δ the following inequality :

ϵT (h, ĥT (X)) ≤ϵ̂S(h, ĥS(S)) + 2E

[
sup sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

)
+ 2CfCgW1 (PS(G),PT (G)) ,

(6)

where the (empirical) source and target risks are ϵ̂S(h, ĥ(S)) =
1

NS

∑NS

n=1 |h(Sn) − ĥ(Sn)| and

ϵT (h, ĥ(X)) = EPT (G{|h(G) − ĥ(G)|}, respectively, where ĥ : G → Y is the labeling function

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

for graphs and ω = min||g||Lip≤Cg,||f ||Lip≤Cf
{ϵS(h, ĥ(X)) + ϵT (h, ĥ(X))}, ϵi is the Rademacher

variable and pi is the ith row of P, which is the probability matrix with:

Pkt =

{
exp

(
uk(t)−Vth

σ(uk(t)−ureset)

)
, if uθ ≤ u(t) ≤ Vth,

0, if ureset ≤ uk(t) ≤ uθ.
(7)

Theorem 2 proves the generalization bound of spiking graph domain adaptation. More details can be
found in Appendix B.

4.3 PSEUDO-LABEL DISTILLATION FOR DISCRIMINATION LEARNING

To further address the variance in thresholds between the target and source domains, we incorporate
the pseudo-label distillation module into the DeSGDA framework. With reliable pseudo-labels, we
can effectively update the source degree thresholds in the target domain.

The goal of the pseudo-label distilling procedure is to keep those examples and their corresponding
pseudo-labels from the deep feature space that aligns with the shallow feature space. Specifically,
we denote s′

t
i as the shallow spiking graph representation on the L′-th layer, where L′ < L, and ŷti

as the prediction of graph Gt
i on the L-th layer. Then, to enhance alignment between the shallow

and deep feature spaces and facilitate the generation of more accurate pseudo-labels, we cluster the
shallow features s′t into C clusters and each cluster Ej includes graphs {Gt

j}. After that, we find the
dominating labels er in the cluster, i.e., maxr |{Er : er = ŷtj}|, and remove other instances with the
same pseudo-label but in different clusters. Formally, the pseudo-labels are signed with:

P =
{(

Gt
j , ŷ

t
j

)
: ej = max

r

∣∣{Er : er = ŷtj
}∣∣} . (8)

Finally, we utilize the distilled pseudo-labels to guide the update of source degree thresholds on the
target domain with Eq. 2, and to direct classification in the target domain:

LT = EGt
j∈P l

(
H(s

t
j), ŷ

t
j

)
, (9)

where H(·) and stj are the classifier and spiking graph representation, respectively, which are defined
in Eq. 3. l(·) is the loss function, and we implement it with cross-entropy loss.

Theorem 3 Under the assumption of Theorem 1, we further assume that there exists a small amount
of i.i.d. samples with pseudo labels {(Gn, Yn)}

N ′
T

n=1 from the target distribution PT (G, Y ) (N ′
T ≪

NS) and bring in the conditional shift assumption that domains have different labeling function

ĥS ̸= ĥT and maxG1,G2

|ĥD(G1)−ĥD(G2)|
η(G1,G2)

= Ch ≤ CfCg(D ∈ {S, T}) for some constant Ch and
distance measure η, and the loss function bounded by C > 0. Let H := {h : G → Y} be the set of
bounded real-valued functions with the pseudo-dimension Pdim(H) = d, and provided the spike
training data set Sn = {(Xs

i , y
s
i )}i∈[n], with probability at least 1− δ the following inequality holds:

ϵT (h, ĥT (X)) ≤ N ′
T

NS +N ′
T

ϵ̂T (h, ĥT (S)) +
NS

NS +N ′
T

(
ϵ̂S(h, ĥS(S)) + 2CfCgW1 (PS(G),PT (G))

+ 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X)))− ϵS(h, ĥT (X)))|, |ϵT (h, ĥS(X)))− ϵT (h, ĥT (X)))|

))

≤ϵ̂S(h, ĥS(S)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+ 2CfCgW1 (PS(G),PT (G)) + ω′,
(10)
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Table 1: The graph classification results (in %) on PROTEINS under edge density domain shift
(source→target). P0, P1, P2, and P3 denote the sub-datasets partitioned with edge density. Bold
results indicate the best performance.

Methods P0→P1 P1→P0 P0→P2 P2→P0 P0→P3 P3→P0 P1→P2 P2→P1 P1→P3 P3→P1 P2→P3 P3→P2 Avg.

WL subtree 68.7 82.3 50.7 82.3 58.1 83.8 64.0 74.1 43.7 70.5 71.3 60.1 67.5
GCN 73.4±0.2 83.5±0.3 57.6±0.2 84.2±1.8 24.0±0.1 16.6±0.4 57.6±0.2 73.7±0.4 24.0±0.1 26.6±0.2 39.9±0.9 42.5±0.1 50.3
GIN 62.5±4.7 74.9±3.7 53.0±4.6 59.6±4.2 73.7±0.8 64.7±3.4 60.6±2.7 69.8±0.6 31.1±2.8 63.1±3.4 72.3±2.7 64.6±1.4 62.5
GMT 73.4±0.3 83.5±0.2 57.6±0.1 83.5±0.3 24.0±0.1 83.5±0.1 57.4±0.2 73.4±0.2 24.1±0.1 73.4±0.3 24.0±0.1 57.6±0.2 59.6
CIN 74.5±0.2 84.1±0.5 57.8±0.2 82.7±0.9 75.6±0.6 79.2±2.2 61.5±2.7 74.0±1.0 75.5±0.8 72.5±2.1 76.0±0.3 60.9±1.2 72.9
SpikeGCN 71.8±0.8 79.5±1.3 63.8±1.0 78.9±1.4 68.6±1.1 76.5±1.8 62.3±2.2 72.1±1.5 68.1±2.1 67.2±1.9 69.2±2.1 64.2±1.8 70.2
DRSGNN 72.6±0.6 80.1±1.6 63.1±1.4 79.5±1.8 70.4±1.9 78.6±2.1 64.1±1.7 70.7±2.3 67.8±1.6 65.6±1.4 71.3±1.3 62.1±1.0 70.5

CDAN 72.2±1.8 82.4±1.6 59.8±2.1 76.8±2.4 69.3±4.1 71.8±3.7 64.4±2.5 74.3±0.4 46.3±2.0 69.8±1.8 74.4±1.7 62.6±2.3 68.7
ToAlign 73.4±0.1 83.5±0.2 57.6±0.1 83.5±0.2 24.0±0.3 83.5±0.4 57.6±0.1 73.4±0.1 24.0±0.2 73.4±0.2 24.0±0.1 57.6±0.3 59.6
MetaAlign 75.5±0.9 84.9±0.6 64.8±1.6 85.9±1.1 69.3±2.7 83.3±0.6 68.7±1.2 74.2±0.7 73.3±3.3 72.2±0.9 69.9±1.8 63.6±2.3 73.8

DEAL 76.5±0.4 83.1±0.4 67.5±1.3 77.6±1.8 76.0±0.2 80.1±2.7 66.1±1.3 75.4±1.5 42.3±4.1 68.1±3.7 73.1±2.2 67.8±1.2 71.1
CoCo 75.5±0.2 84.2±0.4 59.8±0.5 83.4±0.2 73.6±2.3 81.6±2.4 65.8±0.3 76.2±0.2 75.8±0.2 71.1±2.1 76.1±0.2 67.1±0.6 74.2
SGDA 63.8±0.6 65.2±1.3 66.7±1.0 59.1±1.5 60.1±0.8 64.4±1.2 65.2±0.7 63.9±0.9 64.5±0.6 61.1±1.3 58.9±1.4 64.9±1.2 63.2
DGDA 58.7±0.8 59.9±1.2 57.1±0.6 57.9±0.8 59.2±1.3 58.9±0.4 61.1±1.2 60.3±1.6 58.6±0.9 57.5±1.2 58.4±0.5 62.3±1.5 59.2
A2GNN 65.4±1.3 66.3±1.1 68.2±1.4 66.3±1.2 65.4±0.7 65.9±0.9 66.9±1.3 65.4±1.2 65.6±0.9 65.5±1.2 66.1±2.0 66.0±1.8 66.1
PA-BOTH 63.1±0.7 67.2±1.1 64.3±0.5 72.1±1.8 66.3±0.7 64.1±1.2 69.7±2.1 67.5±1.8 61.2±1.4 67.7±2.3 61.2±1.6 65.5±0.6 65.9

DeSGDA 76.7±0.8 84.6±0.9 69.4±0.6 85.2±1.5 76.2±1.1 83.9±1.2 69.9±0.6 76.3±1.4 75.9±1.0 73.5±1.3 76.3±1.6 68.3±0.7 76.4

where the (empirical) source and target risks are ϵ̂S(h, ĥ) = 1
NS

∑NS

n=1 |h(Gn) − ĥ(Gn)| and

ϵT (h, ĥ) = EPT (G{|h(G) − ĥ(G)|}, respectively, where ĥ : G → Y is the labeling function for
graphs and ω′ = min||g||Lip≤Cg,||f ||Lip≤Cf

{ϵS(h, ĥ) + ϵT (h, ĥ)}, ϵi is the Rademacher variable
and pi is the ith row of P, which is defined in Eq. 7.

The proof is detailed in Appendix C. From Theorem 3, we observe that the bound of DeSGDA
is lower than simply aligning the distributions by incorporating the highly reliable pseudo-labels,
demonstrating the effectiveness of pseudo labels for spiking graph domain adaptation.

4.4 LEARNING FRAMEWORK

Finally, the overall training objective of DeSGDA integrates classification loss LS , adversarial
training loss LAD, and pseudo-label distillation loss LT , which is formulated as:

L = LS + LT − λLAD, (11)

where λ is a hyper-parameter to balance the adversarial training loss and classification loss. The
learning procedure is illustrated in Algorithm D, and the complexity is shown in Appendix E .

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Dataset. To demonstrate the effectiveness of DeSGDA, we conduct extensive experiments on four
widely-used graph classification datasets from TUDataset 1, including PROTEINS (Dobson & Doig,
2003), NCI1 (Wale et al., 2008), FRANKENSTEIN (Orsini et al., 2015), and MUTAGENICITY
(Kazius et al., 2005). To better address the variation in domain distributions within each dataset, we
divided them into source and target domains based on the edge density, node density, and graph flux
(i.e., the ratio of the number of nodes to the number of edges). The specific statistics, distribution
visualization, and details introduction of experimental datasets are presented in Appendix F.

Baselines. We compare DeSGDA with competitive baselines on the aforementioned datasets,
including one graph kernel method: WL subtree (Shervashidze et al., 2011); four general graph
neural networks: GCN (Kipf & Welling, 2017), GIN (Xu et al., 2018), CIN (Bodnar et al., 2021)
and GMT (Baek et al., 2021); two spiking graph neural networks: SpikeGCN (Zhu et al., 2022) and
DRSGNN (Zhao et al., 2024); three recent domain adaptation methods: CDAN (Long et al., 2018),
ToAlign (Wei et al., 2021b), and MetaAlign (Wei et al., 2021a); and six graph domain adaptation
methods: DEAL (Yin et al., 2022), CoCo (Yin et al., 2023), SGDA (Qiao et al., 2023), DGDA (Cai

1https://chrsmrrs.github.io/datasets/
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Table 2: The graph classification results (in %) on NCI1 under graph flux domain shift
(source→target). N0, N1, N2, and N3 denote the sub-datasets partitioned with graph flux. Bold
results indicate the best performance. OOM means out of memory.

Methods N0→N1 N1→N0 N0→N2 N2→N0 N0→N3 N3→N0 N1→N2 N2→N1 N1→N3 N3→N1 N2→N3 N3→N2 Avg.

WL subtree 75.9 70.4 64.3 63.9 60.6 64.7 73.2 78.9 66.8 69.2 74.2 72.9 69.6
GCN 49.2±1.7 55.8±1.5 46.8±0.5 54.6±2.2 43.4±0.6 46.7±0.2 50.0±1.8 57.2±2.2 44.2±0.4 51.6±0.8 62.7±2.1 56.8±1.3 51.6
GIN 68.8±2.5 70.6±1.0 64.2±1.1 67.2±2.4 62.2±1.8 62.5±1.5 68.7±2.4 72.5±0.6 63.3±1.6 65.2±0.6 62.4±0.3 70.9±0.5 66.6
GMT 66.7±0.3 58.2±0.5 63.9±0.3 58.4±0.3 63.8±0.4 56.7±0.5 63.9±0.7 66.3±1.0 63.8±1.1 66.6±0.4 63.8±0.2 62.6±0.7 62.9
CIN 58.7±2.4 54.9±0.2 52.0±0.3 54.8±0.1 56.6±0.2 54.9±0.1 52.9±1.4 52.8±0.5 56.5±0.6 52.8±2.1 58.5±0.8 56.6±1.4 55.1
SpikeGCN 58.9±0.9 65.2±1.2 60.8±1.3 62.0±1.5 62.3±0.8 58.7±1.6 64.1±0.6 66.7±1.3 60.5±1.7 63.8±1.4 62.2±2.1 61.1±1.5 62.1
DRSGNN 58.0±0.6 64.3±1.1 61.2±0.8 62.2±1.0 62.9±1.5 64.0±1.3 60.6±1.6 64.0±1.4 67.6±2.1 62.4±1.9 71.3±2.3 68.8±2.0 63.9

CDAN 64.0±1.1 68.1±0.3 60.1±0.5 64.0±1.3 60.9±0.2 57.8±1.0 64.3±1.6 61.2±0.2 66.3±0.7 59.0±0.5 68.9±0.3 63.7±0.6 63.2
ToAlign 52.8±0.5 54.8±0.2 48.2±1.1 54.8±1.5 44.0±0.8 54.8±2.0 48.2±1.7 52.8±0.6 44.0±0.2 52.8±0.3 44.0±1.0 48.2±1.2 50.0
MetaAlign 63.1±0.3 63.8±1.3 58.9±2.4 58.5±0.4 59.1±2.1 59.2±1.6 70.1±0.8 63.3±1.4 66.5±2.7 60.9±1.1 71.4±0.2 67.5±0.8 63.5

DEAL 70.7±0.9 72.3±0.2 69.9±0.8 68.9±0.7 64.1±0.6 65.6±0.9 71.9±0.4 69.9±1.7 70.6±0.4 66.5±0.3 71.6±0.7 69.9±0.5 69.3
CoCo 64.0±1.3 63.9±0.6 65.8±1.8 59.9±1.7 62.2±2.1 60.6±1.6 65.0±2.1 64.8±1.4 60.0±0.8 61.3±0.5 68.5±0.4 67.1±0.6 63.6
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 58.9±0.9 60.1±0.7 59.8±1.2 59.4±1.0 62.3±1.5 60.9±1.6 61.6±1.3 59.9±1.9 64.9±1.6 62.9±2.1 65.4±1.5 63.3±2.3 61.7
PA-BOTH 61.1±0.5 60.9±0.4 61.6±0.6 61.2±0.8 60.8±0.6 61.5±0.5 62.2±1.0 61.9±0.7 61.8±1.1 61.1±0.9 60.9±0.8 61.3±1.2 61.6

DeSGDA 68.5±1.2 71.4±1.3 70.1±0.7 69.0±1.1 68.9±1.0 66.3±1.4 69.6±1.3 70.2±1.7 71.1±1.6 69.3±1.8 74.4±1.6 70.0±1.9 70.1

et al., 2024), A2GNN (Liu et al., 2024a) and PA-BOTH (Liu et al., 2024b). More details about the
compared baselines can be found in Appendix G.

Implementation Details. DeSGDA and all baseline models are implemented using PyTorch2 and
PyTorch Geometric3. For DeSGDA, we deploy the GIN (Xu et al., 2018) as the backbone of the
degree-aware personalized spiking graph encoder, incorporating a mean-pooling layer for the readout
function. We conduct experiments for DeSGDA and all baselines on NVIDIA A100 GPUs for a fair
comparison, where the learning rate of Adam optimizer set to 10−4, hidden embedding dimension
256, weight decay 10−12, and GNN layers 4. Additionally, DeSGDA and all baseline models are
trained using all labeled source samples and evaluated on unlabeled target samples (Wu et al., 2020).
The performances of all models are measured and averaged on all samples for five runs.

5.2 PERFORMANCE COMPARISION

P0->P1 P1->P0 P0->P2 P2->P0
0.72

0.76

0.80

A
cc

ur
ac

y

GCN GAT GIN

Figure 2: The performance with different GNN
architectures on PROTEINS.

We present the results of the proposed DeSGDA
with all baseline models under the setting of
graph domain adaptation on different datasets
in Table 1, 2, 19. From these tables, we ob-
serve that: (1) The performance of graph domain
adaptation methods surpasses that of graph and
spike-based graph methods. We attribute this
improvement to the fact that domain distribution
shifts degrade the performance of traditional
graph methods. (2) The graph domain adap-
tation methods (DEAL and CoCo) outperform
the spike-based graph methods (SpikeGCN and
DRSGNN), underscoring the necessity of the
research in spiking graph domain adaptation. (3) The WL subtree method outperforms SGDA,
DGDA, A2GNN, and PA-BOTH but falls short compared to DEAL and CoCO. We attribute this
to the relatively limited research specifically addressing the graph domain adaptation problem (e.g.,
DEAL and CoCo). To bridge this gap, we adapted node classification methods for graph classification
tasks (e.g., SGDA, DGDA, A2GNN, and PA-BOTH). While the WL subtree method demonstrates
superior performance over these adapted node classification-based methods, it remains less effective
than dedicated graph domain adaptation methods tailored for graph classification tasks. (4) Our
DeSGDA outperforms all baselines for most cases, which demonstrates its superiority over other
methods. The remarkable performance of DeSGDA lies in two main reasons: (i) The degree-aware
personalized spiking representations can capture more expressive information for graph classification
by dynamically adjusting the thresholds of nodes in SNNs. (ii) The adversarial distribution align-
ment effectively addresses domain discrepancies by adversarially training the encoder and domain

2https://pytorch.org/
3https://www.pyg.org/
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Table 3: The results of ablation studies on PROTEINS (source → target). Bold results indicate the
best performance. Bold results indicate the best performance.

Methods P0→P1 P1→P0 P0→P2 P2→P0 P0→P3 P3→P0 P1→P2 P2→P1 P1→P3 P3→P1 P2→P3 P3→P2 Avg.

DeSGDA w/o CA 72.3 72.6 71.9 75.1 74.1 71.3 71.5 70.4 71.6 70.5 78.3 71.5 72.6
DeSGDA w/o PL 72.1 68.7 67.8 69.4 63.7 55.7 68.3 69.5 70.2 69.6 76.7 66.9 68.3
DeSGDA w/o CF 56.7 54.2 60.7 62.1 73.4 68.3 55.3 69.5 76.7 65.5 73.7 63.3 65.7
DeSGDA w/o TL 61.7 43.8 56.1 71.2 49.5 69.0 42.4 68.3 73.7 64.0 70.5 43.5 59.5
DeSGDA w/ PT 71.5 68.3 66.1 72.4 66.7 70.1 67.9 70.8 66.3 71.8 74.1 72.9 70.0
DeSGDA w/ CL 74.9 73.3 73.7 75.1 77.0 71.3 73.9 70.0 78.1 77.6 78.8 74.9 75.1

DeSGDA 78.7 78.4 74.8 77.6 79.5 76.7 74.9 71.2 79.5 72.8 81.0 75.1 76.4

discriminator to align feature spaces. Moreover, the pseudo-label distillation aids in updating the
source degree thresholds in the target domain, thereby ensuring optimal performance. More results
evaluated on other datasets can be found in Appendix H.1.

Additionally, we conduct experiments to explore the flexibility of the proposed DeSGDA. Specifically,
we replace the backbone of the degree-aware personalized spiking graph encoder (GIN) with various
GNNs methods (i.e., GCN and GAT), and the results are shown in Figure 2. From the results, we
observe that GIN consistently outperforms other GNNs architectures in most cases, demonstrating
its powerful representation capability. This phenomenon also justifies our choice of using GIN to
enhance the performance of the proposed DeSGDA. More results are reported in Appendix H.1.

5.3 ENERGY EFFICIENCY ANALYSIS

PROTEINS MUTAGENICITY NCI1 FRANKENSTEIN
108

1010

1012

1014

1016

E
ne

rg
y 

/ p
J

DeSGDA
DRSGNN

DEAL
CoCo

A2GNN
PA-BOTH

Figure 3: Energy consumption of DeSGDA and
baselines on different datasets.

To assess the energy efficiency of DeSGDA, we
use the metric from (Zhu et al., 2022) and quan-
tify the energy consumption for graph classifi-
cation in the inference stage. Specifically, the
graph domain adaption methods are evaluated on
GPUs (NVIDIA A100), and the spiking-based
methods are evaluated on neuromorphic chips
(ROLLS (Indiveri et al., 2015)) following (Zhu
et al., 2022). The results are shown in Figure 3,
from the results, we find that compared with tra-
ditional graph domain adaptation methods, the
spike-based methods (DeSGDA and DRSGNN)
have significantly lower energy consumption,
demonstrating the superior energy efficiency of SGNs. Moreover, although the energy consumption
of DeSGDA is slightly higher than DRSGNN due to additional computations required for domain
adaptation, the performance improvement justifies the deployment of DeSGDA in low-power devices.
Additionally, we present a comparison of training time and memory usage between DeSGDA and
other graph domain adaptation methods. The results are detailed in Table 10 and 11.

5.4 ABLATION STUDY

We conduct ablation studies to examine the contributions of each component in the proposed DeSGDA:
(1) DeSGDA w/o CA: It removes the adversarial distribution alignment module; (2) DeSGDA w/o
PL: It removes the pseudo-label distilling module; (3) DeSGDA w/o CF: It removes the classification
loss LS ; (4) DeSGDA w/o TL: It utilizes the global thresholds on all nodes; (5) DeSGDA w/ PT: It
deploys the adaptive perturbations (Yin et al., 2022) on source data for alignment; (6) DeSGDA w/
CL: It replaces the adversarial learning with the cross-domain contrastive learning (Yin et al., 2023).

Experimental results are shown in Table 3. From the table, we find that: (1) DeSGDA outperforms
DeSGDA w/o CA, DeSGDA w/o PL, and DeSGDA w/o CF, demonstrating that the adversarial distri-
bution alignment module can effectively reduce domain discrepancies, ensuring well-aligned feature
spaces between source and target domains. Additionally, the pseudo-label distillation module can
address the variance in thresholds across domains, while the classification loss LS enables DeSGDA
to effectively learn from labeled source data and generalize to the target domain. (2) DeSGDA w/o TL
shows lower performance compared to DeSGDA, showing that the degree-aware thresholds, which
are iteratively updated during model training, can resolve the issue of the inflexible architecture in
SGNs. By using these thresholds, DeSGDA can effectively learn meaningful representations for nodes
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Figure 4: Hyperparameter sensitivity analysis of time latency τ , initial threshold V degree
th in SNNs,

and balance ratio α on PROTEINS.

with various degrees. (3) DeSGDA outperforms DeSGDA w/ PT and DeSGDA w/ CL. We attribute
that the adaptive perturbations method (DeSGDA w/ PT) can not effectively help DeSGDA overcome
the domain discrepancy. Additionally, the cross-domain contrastive learning method (DeSGDA w/
CL) is less effective at aligning the source and target distribution compared to adversarial learning.
Additionally, we provide the ablation studies to examine the effect of directly replacing the SGNs
with commonly used Graph Neural Networks (GNNs) for generating representations for DeSGDA,
and the results are shown in Table 12, 13. More details about ablation results on other datasets are
reported in Appendix H.3.

5.5 SENSITIVITY ANALYSIS

We study the sensitivity analysis of DeSGDA with respect to the impact of its hyperparameters: time
latency τ , degree threshold value V degree

th in SNNs, and balance ratio α, which plays a crucial role
in the performance of DeSGDA. In particular, τ controls the number of SNNs propagation steps;
V degree
th determines when a neuron fires; α governs the changing ratio of degree-aware thresholds.

Figure 4 illustrates how τ , V degree
th , and α affects the performance of DeSGDA on the PROTEINS

dataset. More results on other datasets are shown in Appendix H.4. We vary τ within the range
of {5, 6, 7, 8, 9, 10}, V degree

th in {0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0}, and α in {0.1, 0.3, 0.5, 0.7, 0.9}.
From the results, we observe that: (1) The performance of DeSGDA in Figure 4a generally exhibits
an increasing trend at the beginning and then stabilizes when τ is greater than 8. We attribute this to
smaller values of τ potentially losing important information for representation, while larger values
significantly increase model complexity. To balance performance and complexity, we set τ to 8 as
default. (2) Figure 4b indicates an initial increase followed by a decreasing trend in performance
as V degree

th increases. This trend occurs because a lower threshold may trigger more spikes for
high-degree nodes, leading to a drastic change in the threshold, which can degrade performance.
Conversely, a higher threshold for low-degree nodes could result in fewer spikes, affecting the model’s
ability to process information effectively. Thus, we set V degree

th to 0.5 as default. (3) From Figure 4c,
we find that the performance of DeSGDA initially increases and then decreases as α increases. The
potential reason is that the smaller α may delay the updating of the threshold, leading to performance
degradation. Contrarily, a larger α tends to introduce more spikes that change dynamically at each
step, resulting in instability in the model’s performance. Therefore, we set α to 0.5 as default.

6 CONCLUSION

In this paper, we first propose the problem of spiking graph domain adaptation and introduce a
novel framework DeSGDA for graph classification. This framework enhances the adaptability
and performance of SGNs through three key aspects: node degree-aware personalized spiking
representation, adversarial feature distribution alignment, and pseudo-label distillation. Our approach
enables more expressive information capture through degree-dependent spiking thresholds, aligns
feature distributions via adversarial training, and utilizes pseudo-labels to leverage unlabeled data
effectively. The extensive experimental validation across benchmark datasets has demonstrated
that DeSGDA not only surpasses existing methods in accuracy but also maintains efficient energy
consumption, making it a promising solution for advancing the domain adaptation capabilities of
spiking graph networks. In the future, we will apply SGNs in the scenarios of source-free domain
adaptation and domain generalization.
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A PROOF OF HYPOTHESIS 1

Assuming that the node feature hi follows a normal distribution N (µ, σ2), then for each node in the
graph, we follow the message-passing mechanism and have the information aggregation as:

hi = hi +
∑

j∈N(i)

wijhj . (12)

Therefore, we have the expectation:

E(hi) = E(hi) +
∑

j∈N(i)

wijE(hj), (13)

Since E(hj) ∼ N (µ, σ2), we have:

E(hi) ∼ N

(1 +
∑

j∈N(i)

wij)µ, (1 +
∑

j∈N(i)

wij)σ
2

 . (14)

From the results, we observe that node i follows a normal distribution with a mean of (1 +∑
j∈N(i) wij)µ, determined by the aggregated weights of its neighboring nodes. To provide a

more intuitive understanding, we visualize the aggregated neighbor weights of GCN Kipf & Welling
(2017) and GIN Xu et al. (2018) in Figure 5. The results show that as the degree increases, the
aggregated weights also increase progressively. Consequently, high-degree nodes tend to follow a
normal distribution with a higher mean and variance. In other words, nodes with higher degrees
accumulate greater signals, making them more likely to trigger spiking. Based on this, we propose
assigning higher thresholds to high-degree nodes and lower thresholds to low-degree nodes.

Another observation is that methods that normalize neighbor weights to 1 (e.g., GAT Veličković
et al. (2017), GraphSAGE Hamilton et al. (2017)) still result in aggregated features following the
same normal distribution. This normalization diminishes the ability to distinguish between nodes
with varying degrees, ultimately degrading performance. This explains why, when using GAT as the
backbone of DeSGDA, the performance is the weakest.
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Figure 5: Visualization of degree-aware thresholds and aggregation weights on PROTEINS and
NCI1.

B PROOF OF THEOREM 2

Theorem 2 Assuming that the learned discriminator is Cg-Lipschitz continuous as described in
Theorem 1, the graph feature extractor f (also referred to as GNN) is Cf -Lipschitz that ||f ||Lip =

maxG1,G2

||f(G1)−f(G2)||2
η(G1,G2)

= Cf for some graph distance measure η and the loss function bounded
by C > 0. Let H := {h : G → Y} be the set of bounded real-valued functions with the pseudo-
dimension Pdim(H) = d that h = g ◦ f ∈ H, and provided the spike training data set Sn =
{(Xi, yi) ∈ X × Y}i∈[n] drawn from Ds, with probability at least 1− δ the following inequality:

ϵT (h, ĥT (X)) ≤ϵ̂S(h, ĥS(Sn)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

)
+ 2CfCgW1 (PS(G),PT (G)) ,

(15)
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where the (empirical) source and target risks are ϵ̂S(h, ĥ) = 1
NS

∑NS

n=1 |h(Gn) − ĥ(Gn)| and

ϵT (h, ĥ) = EPT (G{|h(G) − ĥ(G)|}, respectively, where ĥ : G → Y is the labeling function for
graphs and ω = min||g||Lip≤Cg,||f ||Lip≤Cf

{ϵS(h, ĥ)+ ϵT (h, ĥ)}, ϵi is the Rademacher variable and
pi is the ith row of P, which is the probability matrix with:

Pkt =

{
exp

(
uk(t)−Vth

σ(uk(t)−ureset)

)
, if uθ ≤ u(t) ≤ Vth,

0, if ureset ≤ uk(t) ≤ uθ.
(16)

Proof. Before showing the designated lemma, we first introduce the following inequality to be used
that:

|ϵS(h, ĥS)− ϵT (h, ĥT )| = |ϵS(h, ĥS)− ϵS(h, ĥT ) + ϵS(h, ĥT )− ϵT (h, ĥT )|
≤ |ϵS(h, ĥS)− ϵS(h, ĥT )|+ |ϵS(h, ĥT )− ϵT (h, ĥT )|
(a)

≤ |ϵS(h, ĥS)− ϵS(h, ĥT )|+ 2CfCgW1 (PS(G),PT (G)) ,

(17)

where (a) results from (Shen et al., 2018) Theorem 1 with the assumption
max(||h||Lip,maxG1,G2

|ĥD(G1)−ĥD(G2)|
η(G1,G2)

) ≤ CfCg , D ∈ {S, T}. Similarly, we obtain:

|ϵS(h, ĥS)− ϵT (h, ĥT )| ≤ |ϵT (h, ĥS)− ϵT (h, ĥT )|+ 2CfCgW1(PS(G),PT (G)). (18)

We therefore combine them into:

|ϵS(h, ĥS)− ϵT (h, ĥT )| ≤2CfCgW1(PS(G),PT (G))

+ min
(
|ϵS(h, ĥS)− ϵS(h, ĥT )|, |ϵT (h, ĥS)− ϵT (h, ĥT )|

)
,

(19)

i.e. the following holds to bound the target risk ϵT (h, ĥT ):

ϵT (h, ĥT ) ≤ϵS(h, ĥS) + 2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS)− ϵS(h, ĥT )|, |ϵT (h, ĥS)− ϵT (h, ĥT )|

)
.

(20)

We next link the bound with the empirical risk and labeled sample size by showing, with probability
at least 1− δ that:

ϵT (h, ĥT ) ≤ϵS(h, ĥS) + 2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS)− ϵS(h, ĥT )|, |ϵT (h, ĥS)− ϵT (h, ĥT )|

) (21)

The ĥ above is the abbreviation of ĥ(x), which means the input is the continuous feature. Provided
the spike training data set Sn = {(Xi, yi) ∈ X × Y}i∈[n] drawn from D, and motivated by (Yin
et al., 2024), we have:

lim
τ→∞

P
(
ĥ(Sn)τ,i > ĥ(Xτ,i) + ϵ

)
≤ e−ϵ2/2(σ+ŵiϵ/3), (22)

where ŵi = max{wi1, · · · , wid} and h(xij) =
∑d

j=1 wijxij . From Equation 2, we observe that
as τ → ∞, the difference between spike and real-valued features will be with the probability of
p = e−ϵ2/2(σ+ŵiϵ/3) to exceed the upper and lower bounds.

Furthermore, motivated by the techniques given by (Bartlett & Mendelson, 2002), we have:

ϵS(h, ĥS(Sn)) ≤ ϵ̂S(h, ĥS(Sn)) + sup[ϵS(h, ĥS(Sn))− ϵ̂S(h, ĥS(Sn))]︸ ︷︷ ︸
R(Sn,P)

,
(23)

where P is the probability matrix with:

Pkt =

{
exp

(
uk(t)−Vth

σ(uk(t)−ureset)

)
, if uθ ≤ u(t) ≤ Vth,

0, if ureset ≤ uk(t) ≤ uθ,
(24)
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where k indicates the k − th spiking neuron and the membrane threshold utheta is relative to the
excitation probability threshold pθ ∈ (0, 1]. Let pk is the k − th row vector of P. Thus, we have the
probability at least 1− e−ϵ2/2(σ+ŵiϵ/3) to hold:

ϵS(h, ĥS(Xn)) ≤ ϵ̂S(h, ĥS(Sn)) + sup[ϵS(h, ĥS(Sn))− ϵ̂S(h, ĥS(Sn))]︸ ︷︷ ︸
R(Sn,P)

, (25)

Let S′
n denote the sample set that the ith sample (Xi, yi) is replaced by (X′

i, y
′
i), and correspondingly

P′ is the possibility matrix that the ith row vector pi is replaced by p′i, for i ∈ [n]. For the loss
function bounded by C > 0, we have:{

|R(Sn,P)−R(S′
n,P)| ≤ C/n,

|R(Sn,P)−R(Sn,P
′)| ≤ C/n.

(26)

From McDiarmid’s inequality (McDiarmid et al., 1989), with probability at least 1− δ, we have:

R(Sn,P) ≤ ESn∈D,P[R(Sn,P)] + C

√
ln(2/δ)

NS
. (27)

It is observed that:

R(Sn,P) = supES̃n∈D,P̃[ϵ̂(ĥ(Sn); S̃n, P̃)− P̃[ϵ̂(ĥ(Sn);Sn,P)], (28)

where S̃n is another collection drawn from D as well as P̃. Thus, we have

ESn∈D,P[R(Sn,P)] ≤ E
[
sup

[
ϵ̂(ĥ(Sn); S̃n, P̃)− P̃[ϵ̂(ĥ(Sn);Sn,P)

]]
= E

[
sup

1

n

n∑
i=1

[ĥ(X̃i, ỹi, p̃i)− ĥ(Xi, yi, pi)]

]

≤ 2E

[
sup

1

n

n∑
i=1

ϵiĥ(Xi, yi, pi)

]
,

(29)

where ϵi is the Rademacher variable. Combining Eq. 26 27 29, we have:

ϵS(h, ĥS(Xn)) ≤ ϵ̂S(h, ĥS(Sn)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS
. (30)

Finally, we have:

ϵT (h, ĥT (X)) ≤ϵS(h, ĥS(X)) + 2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

)
≤ϵ̂S(h, ĥS(Sn)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

)
+ 2CfCgW1 (PS(G),PT (G)) .

(31)

C PROOF OF THEOREM 3

Theorem 3 Under the assumption of Theorem 1, we further assume that there exists a small amount of
i.i.d. samples with pseudo labels {(Gn, Yn)}

N ′
T

n=1 from the target distribution PT (G, Y ) (N ′
T ≪ NS)

and bring in the conditional shift assumption that domains have different labeling function ĥS ̸= ĥT

and maxG1,G2

|ĥD(G1)−ĥD(G2)|
η(G1,G2)

= Ch ≤ CfCg(D ∈ {S, T}) for some constant Ch and distance
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measure η, and the loss function bounded by C > 0. Let H := {h : G → Y} be the set of bounded
real-valued functions with the pseudo-dimension Pdim(H) = d, and provided the spike training
data set Sn = {(Xi, yi) ∈ X ×Y}i∈[n] drawn from Ds, with probability at least 1− δ the following
inequality holds:

ϵT (h, ĥT (X)) ≤ N ′
T

NS +N ′
T

ϵ̂T (h, ĥT (S)) +
NS

NS +N ′
T

(
ϵ̂S(h, ĥS(S)) + 2CfCgW1 (PS(G),PT (G))

+ 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X)))− ϵS(h, ĥT (X)))|, |ϵT (h, ĥS(X)))− ϵT (h, ĥT (X)))|

))

≤ϵ̂S(h, ĥS(S)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+ 2CfCgW1 (PS(G),PT (G)) + ω′.
(32)

where the (empirical) source and target risks are ϵ̂S(h, ĥ) = 1
NS

∑NS

n=1 |h(Gn) − ĥ(Gn)| and

ϵT (h, ĥ) = EPT (G{|h(G) − ĥ(G)|}, respectively, where ĥ : G → Y is the labeling function for
graphs and ω′ = min||g||Lip≤Cg,||f ||Lip≤Cf

{ϵS(h, ĥ) + ϵT (h, ĥ)}, ϵi is the Rademacher variable
and pi is the ith row of P, which is the probability matrix with:

Pkt =

{
exp

(
uk(t)−Vth

σ(uk(t)−ureset)

)
, if uθ ≤ u(t) ≤ Vth,

0, if ureset ≤ uk(t) ≤ uθ.
(33)

Proof. As proved in Theorem 2, we have:

ϵT (h, ĥT (X)) ≤ϵ̂S(h, ĥS(Sn)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

)
+ 2CfCgW1 (PS(G),PT (G)) .

(34)

Similar with Eq. 30, there exists:

ϵT (h, ĥT (Xn)) ≤ ϵ̂T (h, ĥT (Sn)) + 2E

sup 1

N ′
T

N ′
T∑

i=1

ϵih(Xi, yi, pi)

+ C

√
ln(2/δ)

N ′
T

. (35)

Combining Eq. 34 and 35, we have:

ϵT (h, ĥT (X))
(a)

≤ N ′
T

NS +N ′
T

ϵ̂T (h, ĥT (S)) + 2E

sup 1

N ′
T

N ′
T∑

i=1

ϵih(Xi, yi, pi)

+ C

√
ln(2/δ)

N ′
T


+

NS

NS +N ′
T

ϵ̂S(h, ĥS(S)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS


+

NS

NS +N ′
T

(
2CfCgW1 (PS(G),PT (G))
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+min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

))

≤ N ′
T

NS +N ′
T

ϵ̂T (h, ĥT (S)) +
NS

NS +N ′
T

ϵ̂S(h, ĥS(S))

+
NS

NS +N ′
T

(
2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS(X)− ϵS(h, ĥT ((X))|, |ϵT (h, ĥS((X))− ϵT (h, ĥT ((X))|

))

+
N ′

T

NS +N ′
T

2E

sup 1

N ′
T

N ′
T∑

i=1

ϵih(Xi, yi, pi)

+ C

√
ln(2/δ)

N ′
T


+

NS

NS +N ′
T

2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS


(b).
=

N ′
T

NS +N ′
T

ϵ̂T (h, ĥT (S)) +
NS

NS +N ′
T

ϵ̂S(h, ĥS(S))

+
NS

NS +N ′
T

2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS


+

NS

NS +N ′
T

(
2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

))

=
N ′

T

NS +N ′
T

ϵ̂T (h, ĥT (S)) +
NS

NS +N ′
T

(
ϵ̂S(h, ĥS(S)) + 2CfCgW1 (PS(G),PT (G))

+ 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X)))− ϵS(h, ĥT (X)))|, |ϵT (h, ĥS(X)))− ϵT (h, ĥT (X)))|

))

where (a) is the outcome of applying the union bound with coefficient N ′
T

NS+N ′
T

, NS

NS+N ′
T

respectively;
(b) additionally adopt the assumption N ′

T ≪ NS , following the sleight-of-hand in (Li et al., 2021a)
Theorem 3.2.

Due to the sampels are selected with high confidence, thus, we have the following assumption:

ϵ̂T ≤ ϵT ≤ϵ̂S(h, ĥ(X))) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]

+ C

√
ln(2/δ)

NS
+ 2CfCgW1(PS(G),PT (G)) + ω′,

(36)

where ω′ = min||g||Lip≤Cg,||f ||Lip≤Cf
{ϵS(h, ĥ) + ϵT (h, ĥ)}, ϵ̂T is the empirical risk on the high

confidence samples, ϵT is the empirical risk on the target domain. Besides, we have:

min(|ϵS(h, ĥS(X)))−ϵS(h, ĥT (X)))|, |ϵT (h, ĥS(X)))− ϵT (h, ĥT )|(X))) ≤

min
(
ϵS(h, ĥS(X))) + ϵT (h, ĥS(X)))

) (37)
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Figure 6: Visualization of different distributions on PROTEINS.

Then,

ϵT (h, ĥT (X)) ≤ N ′
T

NS +N ′
T

ϵ̂T (h, ĥT (S)) +
NS

NS +N ′
T

(
ϵ̂S(h, ĥS(S)) + 2CfCgW1 (PS(G),PT (G))

+ 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X)))− ϵS(h, ĥT (X)))|, |ϵT (h, ĥS(X)))− ϵT (h, ĥT (X)))|

))

≤ϵ̂S(h, ĥS(S)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+ 2CfCgW1 (PS(G),PT (G)) + ω′.
(38)

D ALGORITHM

Algorithm 1 Learning Algorithm of DeSGDA
Input: Source data Ds; Target data Dt.
Output: Node degree-aware personalized spiking graph encoder parameters θ, domain discriminator
γ.

1: Initialize model parameters.
2: while not convergence do
3: Sample mini-batches Bs and Bt from source and target data, respectively;
4: Forward propagation Bs and Bt through node degree-aware personalized spiking graph

encoder;
5: Pseudo-label Distilling;
6: Calculate the loss function by Eq. 11;
7: Update model parameters through back propagation;
8: end while

E COMPLEXITY ANALYSIS

Here we analyze the computational complexity of the proposed DeSGDA. The computational
complexity primarily relies on node degree-aware personalized spiking representations. For a given
graph G, ∥A∥0 denotes the number of nonzeros in the adjacency matrix. d is the feature dimension.
L denote the layer number of GIN. |V | is the number of nodes. T denotes the number of time
latency. The spiking graph encoder takes O

(
T · L ·

(
∥A∥0 · d+ |V | · d2

))
computational time for

each graph. As a result, the complexity of our DeSGDA is proportional to both |V | and ∥A∥0.
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Figure 7: Visualization of different distributions on NCI1.
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Figure 8: Visualization of different distributions on FRANKENSTEIN.

F DATASET

Table 4: Statistics of the experimental datasets.

Datasets Graphs Avg. Nodes Avg. Edges Classes

PROTEINS 1,113 39.1 72.8 2
NCI1 4,110 29.87 32.30 2
MUTAGENICITY 4,337 30.32 30.77 2
FRANKENSTEIN 4,337 16.9 17.88 2

F.1 DATASET DESCRIPTION

We conduct extensive experiments on four public benchmark graph datasets from TUDataset. The
dataset statistics can be found in Table 4, and their details are shown as follows:

• PROTEINS. The PROTEINS dataset (Dobson & Doig, 2003) consists of protein graphs.
Each label indicates whether the protein graph is an enzyme. Nodes within these graphs
represent amino acids connected by edges if neighbors along the amino acid sequence are
spaced less than 6 Angstroms apart. We divide the PROTEINS dataset into four parts, i.e.,
P0, P1, P2, and P3, based on edge density, node density, and graph flux; the sub-datasets
exhibit substantial domain disparities among them.

• NCI1. The NCI1 (Wale et al., 2008) dataset contains 4,100 chemical compounds with atoms
as nodes and bonds as edges. Each label indicates the characteristics that hinder the growth
of cancer cells. Like the PROTEINS dataset, we divide the NCI1 dataset into four parts, i.e.,
N0, N1, N2, and N3, based on edge density, node density, and graph flux.

• FRANKENSTEIN. The FRANKENSTEIN (Orsini et al., 2015) dataset consists of 4,337
molecular graphs, where nodes represent atoms and edges depict chemical bonds. Each
graph is labeled to classify molecules based on their biological activity. Like the PROTEINS
dataset, the entire FRANKENSTEIN dataset is divided into four segments (F0, F1, F2, and
F3) based on edge density, node density, and graph flux.
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Figure 9: Visualization of different distributions on MUTAGNENICITY.

Table 5: The results of ablation studies on NCI1 (source → target). Bold results indicate the best
performance per column.

Methods N0→N1 N1→N0 N0→N2 N2→N0 N0→N3 N3→N0 N1→N2 N2→N1 N1→N3 N3→N1 N2→N3 N3→N2 Avg.

DeSGDA w/o CA 58.9 62.6 61.7 60.1 58.2 62.0 63.4 61.7 63.5 60.7 68.3 64.0 62.1
DeSGDA w/o PL 62.8 65.1 55.0 56.9 55.3 54.4 58.6 62.9 61.2 62.2 59.7 64.3 59.7
DeSGDA w/o CF 52.7 62.6 58.5 56.5 56.3 63.8 63.1 52.7 65.4 65.1 58.2 63.7 60.0
DeSGDA w/o TL 64.6 62.8 60.6 54.9 44.9 65.4 60.8 64.8 56.1 64.1 57.8 54.0 59.3
DeSGDA w PT 64.4 59.2 64.6 62.2 64.5 60.1 61.1 60.8 62.0 64.2 62.7 65.5 62.7
DeSGDA w CL 65.3 70.1 68.9 65.2 65.6 63.0 67.6 64.6 68.9 66.8 68.6 70.7 67.1

DeSGDA 68.5 71.4 70.1 69.0 68.9 66.3 69.6 70.2 71.1 69.3 74.4 70.0 70.1

• MUTAGENICITY. The MUTAGENICITY (Kazius et al., 2005) dataset contains 4,337
chemical compounds, each represented as a graph where nodes represent atoms and edges
indicate bonds. Each graph can be used to identify mutagenic compounds, aiding studies in
toxicology and chemical safety. Like the PROTEINS dataset, the entire MUTAGENICITY
dataset is divided into four segments (M0, M1, M2, and M3) based on edge density, node
density, and graph flux.

F.2 DATA PROCESSING

In our implementation, we process these four TUDatasets by adding a self-loop connection for
each node. Additionally, we utilize one-hot embeddings to represent node attributes for datasets
(FRANKENSTEIN and MUTAGENICITY) where node features are unavailable.

G BASELINES

In this part, we introduce the details of the compared baselines as follows:

Graph kernel method. We compare DeSGDA with one graph kernel method:

• WL subtree: Weisfeiler-Lehman (WL) subtree (Shervashidze et al., 2011) method is a
graph kernel method, which calculates the graph similarity by a kernel function, where
It encodes local neighborhood structures into subtree patterns, efficiently capturing the
topology information contained in graphs.

Graph neural networks. We compare DeSGDA with four widely used general graph neural
networks:

• GCN: GCN Kipf & Welling (2017) is a spectral-based neural network that iteratively
updates node representations by aggregating information from neighboring nodes, effectively
capturing both local graph structure and node features.

• GIN: GIN Xu et al. (2018) is a message-passing neural network designed to distinguish graph
structures using an injective aggregation function, theoretically achieving the expressive
power of the Weisfeiler-Lehman test.
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Table 6: The results of ablation studies on FRANKENSTEIN (source → target). Bold results indicate
the best performance. Bold results indicate the best performance.

Methods F0→F1 F1→F0 F0→F2 F2→F0 F0→F3 F3→F0 F1→F2 F2→F1 F1→F3 F3→F1 F2→F3 F3→F2 Avg.

DeSGDA w/o CA 59.6 60.7 60.2 60.7 77.9 58.5 61.3 60.5 76.8 60.0 80.1 63.9 65.0
DeSGDA w/o PL 58.9 56.6 55.9 56.6 69.8 53.6 55.0 57.7 70.4 53.2 68.8 61.7 60.0
DeSGDA w/o CF 55.9 59.2 59.5 54.5 74.9 52.9 59.9 54.6 78.8 56.1 74.5 58.5 61.7
DeSGDA w/o TL 56.2 57.2 60.7 48.2 53.3 45.8 59.5 53.0 48.8 54.8 51.1 54.7 53.6
DeSGDA w PT 60.9 60.2 61.0 61.5 76.2 60.9 60.3 62.2 75.3 57.2 74.8 63.3 64.5
DeSGDA w CL 62.2 61.3 61.7 60.7 79.3 59.7 63.6 64.1 79.5 61.1 78.6 62.7 66.2

DeSGDA 63.5 64.1 62.6 63.0 81.1 62.4 65.5 65.4 81.9 60.8 82.0 65.9 68.1

Table 7: The results of ablation studies on MUTAGENICITY (source → target). Bold results indicate
the best performance. Bold results indicate the best performance.

Methods M0→M1 M1→M0 M0→M2 M2→M0 M0→M3 M3→M0 M1→M2 M2→M1 M1→M3 M3→M1 M2→M3 M3→M2 Avg.

DeSGDA w/o CA 58.3 63.3 62.1 60.1 81.4 62.7 63.8 59.1 80.3 57.1 78.9 63.0 65.8
DeSGDA w/o PL 58.8 57.6 60.2 61.4 73.3 54.5 63.7 61.0 61.2 61.9 71.0 60.2 62.1
DeSGDA w/o CF 54.7 58.3 59.6 58.7 72.1 60.7 57.9 54.9 78.0 57.4 63.2 60.4 61.3
DeSGDA w/o TL 56.5 60.7 59.1 60.7 43.4 56.3 51.0 56.7 53.3 56.9 63.1 52.5 55.9
DeSGDA w PT 62.1 64.3 63.9 61.8 77.3 62.4 66.6 63.9 73.5 66.1 82.1 64.9 67.4
DeSGDA w CL 66.1 62.6 63.3 64.7 81.5 60.7 69.8 67.0 82.2 67.8 82.4 63.6 69.6

DeSGDA 65.4 65.9 65.5 65.6 82.8 63.6 70.7 68.2 82.9 67.6 83.9 66.5 70.1

• CIN: CIN Bodnar et al. (2021) extends the Weisfeiler-Lehman framework by integrating cel-
lular complexes into graph neural networks, allowing for the capture of higher-dimensional
topological features.

• GMT: GMT Baek et al. (2021) utilizes self-attention mechanisms to dynamically adjust
the importance of nodes based on their structural dependencies, thereby enhancing both
adaptability and performance.

Spiking graph neural networks. We compare DeSGDA with two spiking graph neural networks:

• SpikeGCN: SpikeGCN (Zhu et al., 2022) introduces an end-to-end framework designed to
integrate the fidelity characteristics of SNNs with graph node representations.

• DRSGNN: DRSGNN (Zhao et al., 2024) dynamically adapts to evolving graph structures
and relationships through a novel architecture that updates node representations in real-time..

Domain adaption methods. We compare DeSGDA with two recent domain adaption methods:

• CDAN: CDAN (Long et al., 2018) employs a conditional adversarial learning strategy
to reduce domain discrepancy by conditioning adversarial adaptation on discriminative
information from multiple domains.

• ToAlign: ToAlign (Wei et al., 2021b) uses token-level alignment strategies within Trans-
former architectures to enhance cross-lingual transfer, optimizing the alignment of semantic
representations across languages.

• MetaAlign: MetaAlign (Wei et al., 2021a) is a meta-learning framework for domain
adaptation that dynamically aligns feature distributions across domains by learning domain-
invariant representations.

Graph domain adaptation methods. We compare DeSGDA with six SOTA graph domain adaption
methods:

• DEAL: DEAL (Yin et al., 2022) uses domain adversarial learning to align graph representa-
tions across different domains without labeled data, overcoming discrepancies between the
source and target domains.

• CoCo: CoCo (Yin et al., 2023) leverages contrastive learning to align graph representations
between source and target domains, enhancing domain adaptation by promoting intra-domain
cohesion and inter-domain separation in an unsupervised manner.

• SGDA: SGDA (Qiao et al., 2023) utilizes labeled data from the source domain along with
a limited amount of labeled data from the target domain to learn domain-invariant graph
representations.
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• DGDA: DGDA (Cai et al., 2024) employs generative models to capture the underlying
distribution of graph data across domains, facilitating the transfer of graph structures and
features by learning shared latent spaces.

• A2GNN: A2GNN (Liu et al., 2024a) introduces a novel propagation mechanism to enhance
feature transferability across domains, improving the alignment of graph structures and node
features in an unsupervised setting.

• PA-BOTH: PA-BOTH (Liu et al., 2024b) aligns node pairs between source and target
graphs, optimizing feature correspondence at a granular level to improve the transferability
of structural and feature information across domains.

For GCN and GIN, we use the Pytorch Geometric 4 to implement the model. For other baseline
methods, we use the source codes provided by the corresponding paper. For all baseline methods,
we vary the dropout rate in the range of {0.1,0.3,0.5,0.7} and then choose the best one. The hidden
dimension in these methods is set to 256 for a fair comparison.

Table 8: Statistics of the SEED dataset.

Datasets Graphs Avg. Nodes Avg. Edges Classes

SEED 7,636 62.0 168.2 3

Table 9: The graph classification results (in %) on SEED dataset under edge density domain shift
(source→target). E0, E1 and E2 denote the sub-datasets partitioned with edge density. Bold results
indicate the best performance.

Methods E0→E1 E1→E0 E0→E2 E2→E0 E1→E2 E2→E1

GCN 46.0 ± 0.9 47.8 ± 1.0 47.7 ± 1.4 49.7 ± 0.7 51.3 ± 0.8 49.8 ± 1.0

GIN 48.9 ± 0.5 50.3 ± 0.6 49.5 ± 0.7 50.7 ± 1.0 52.7 ± 1.0 52.1 ± 0.9

DEAL 53.5 ± 0.4 56.2 ± 0.7 53.2 ± 0.8 53.7 ± 1.1 55.1 ± 0.8 56.0 ± 0.7

CoCo 53.9 ± 0.5 53.0 ± 0.6 54.1 ± 0.7 54.3 ± 0.7 55.3 ± 1.0 55.9 ± 0.6

DeSGDA 54.5 ± 0.6 55.6 ± 0.7 54.6 ± 0.5 54.5 ± 0.7 55.8 ± 1.1 56.6 ± 0.8

H MORE EXPERIMENTAL RESULTS

H.1 MORE PERFORMANCE COMPARISON

In this part, we provide additional results for our proposed method DeSGDA compared with all base-
line models across various datasets, as illustrated in Table 14 to Table 23. These results consistently
show that DeSGDA outperforms the baseline models in most cases, validating the superiority of our
proposed method. Additionally, the performance of DeSGDA with different GNN architectures on
the NCI1, FRANKENSTEIN, and MUTAGENICITY datasets is shown in Figure 10. It is evident
that GIN consistently outperforms other GNN architectures in most cases.

To verify the efffectiveness of DeSGDA in EEG data and multi-class scenarios, we conducted
additional experiments using the SEED dataset (Duan et al., 2013; Zheng & Lu, 2015), which is
a well-known EEG dataset for emotion classification. For EEG data processing, we utilized the
torcheeg 5 library to convert standard EEG data into graph structures. During graph construction, we
remove edges from each graph and partitioning the dataset into source and target domains based on
edge density (Klepl et al., 2022). The statistics of SEED dataset is shown in Table 8. We compared
the DeSGDA with two general graph neural networks (GCN Kipf & Welling (2017) and GIN Xu
et al. (2018)) and two graph domain adaptation methods (DEAL Yin et al. (2022) and CoCo Yin et al.
(2023)). The results in Table 9 show that DeSGDA still outperforms the other methods in most cases.

4https://www.pyg.org/
5https://github.com/torcheeg/torcheeg
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Table 10: GPU memory consumption of different graph domain methods in training stage for each
training epoch (in GB).

DeSGDA DEAL CoCo A2GNN PA-BOTH

PROTEINS 2.3 1.4 1.2 33.1 5.6
NCI1 5.7 2.9 3.3 34.8 11.9
MUTAGENICITY 5.0 2.8 3.2 35.0 12.3
FRANKENSTEIN 2.9 2.4 1.9 33.6 7.3

Table 11: Time consumption of different graph domain methods in training stage for each training
epoch (in seconds).

DeSGDA DEAL CoCo A2GNN PA-BOTH

PROTEINS 0.587 0.126 22.123 0.869 0.283
NCI1 0.855 0.518 58.564 1.483 0.597
MUTAGENICITY 0.887 0.612 52.740 1.553 0.511
FRANKENSTEIN 0.663 0.375 26.837 1.016 0.275

H.2 TRAINING TIME AND MEMORY COMPARISON

We provide detailed comparisons of GPU memory consumption and training time per epoch for
DeSGDA and other graph domain adaptation methods under identical experimental settings in this
part, as shown in Tables 10 and 11. It is worth noting that the training phase is typically conducted on
more powerful hardware to achieve optimal performance within a reasonable time frame.

H.3 MORE ABLATION STUDY

To validate the effectiveness of the different components in DeSGDA, we conduct more experiments
with sive variants on NCI1, FRANKENSTEIN and MUTAGENICITY datasets, i.e., DeSGDA w/o
CA, DeSGDA w/o PL, DeSGDA w/o CF, DeSGDA w/o TL, DeSGDA w PT and DeSGDA w CL. The
results are shown in Table 5 , 6 and 7. From the results, we have similar observations as summarized
in Section 5.4.

Additionally, we conduct ablation studies to examine the effect of directly replacing the SGNs with
commonly used Graph Neural Networks (GNNs) for generating representations for DeSGDA: (1)
DeSGDA w GCN: It replaces SGNs with GCN Kipf & Welling (2017); (2) DeSGDA w GIN: It
replaces SGNs with GIN Xu et al. (2018); (3) DeSGDA w SAGE: It replaces SGNs with GraphSAGE
Hamilton et al. (2017). The experimental results across the PROTEINS, NCI1, MUTAGENICITY,
and FRANKENSTEIN datasets are shown in Table 12 and 13. However, the critical aspect of our
work lies in the specific problem we set up, i.e., low-power and distribution shift environments. In
this context, directly replacing SGNs with commonly used GNNs like GIN or GCN is not feasible, as
these models are unsuitable for deployment on low-energy devices. As demonstrated in Section 5.3,
GNN based methods have much higher energy consumption than the spike based methods.

H.4 MORE SENSITIVITY ANALYSIS

In this part, we provide additional sensitivity analysis of the proposed DeSGDA with respect to
the impact of its hyperparameters: the time latency τ , degree threshold value V degree

th in SNNs,
and balance ratio α on NCI1, FRANKENSTEIN, and MUTAGENICITY datasets. The results are
illustrated in Figure 11, 12 and 13, where we observe trends similar to those discussed in Section 5.5.
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Table 12: The results of DeSGDA with different widely used graph neural networks (GIN, GCN and
SAGE) on PROTEINS and NCI1 dataset. Bold results indicate the best performance. Bold results
indicate the best performance.

Methods P0→P1 P1→P0 P0→P2 P2→P0 N0→N1 N1→N0 N0→N2 N2→N0

DeSGDA w GCN 76.6 70.5 71.8 74.1 66.3 68.3 68.5 67.1
DeSGDA w SAGE 75.8 73.3 72.4 75.2 67.2 69.5 66.6 68.4
DeSGDA w GIN 77.3 75.8 73.8 77.1 69.0 69.8 68.8 68.8

DeSGDA 78.7 78.4 74.8 77.6 68.5 71.4 70.1 69.0

Table 13: The results of DeSGDA with different widely used graph neural networks (GIN, GCN
and SAGE) on MUTAGENICITY and FRANKENSTEIN dataset. Bold results indicate the best
performance. Bold results indicate the best performance.

Methods M0→M1 M1→M0 M0→M2 M2→M0 F0→F1 F1→F0 F0→F2 F2→F0

DeSGDA w GCN 60.9 60.7 63.6 60.6 61.3 62.2 60.7 61.1
DeSGDA w SAGE 61.1 62.3 64.2 61.1 61.9 62.6 61.3 61.6
DeSGDA w GIN 64.5 65.4 65.0 63.9 62.8 63.6 61.8 62.8

DeSGDA 65.4 65.9 65.5 65.6 63.5 64.1 62.6 63.0
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Figure 10: The performance with different GNN architectures on different datasets.
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Figure 11: Hyperparameter sensitivity analysis of time latency τ , initial threshold V degree
th in SNNs,

and balance ratio α on NCI1.

15 16 17 18 19 20
0.60

0.61

0.62

0.63

0.64

A
cc

ur
ac

y

F0 -> F1
F1 -> F0

F0 -> F2
F2 -> F0

(a) Time Latency

0.05 0.1 0.2 0.5 1.0 2.0 5.0 Vdegree
th

0.60

0.61

0.62

0.63

0.64

0.65

A
cc

ur
ac

y

F0 -> F1
F1 -> F0

F0 -> F2
F2 -> F0

(b) Initial Threshold

0.1 0.3 0.5 0.7 0.9
0.60

0.61

0.62

0.63

0.64

A
cc

ur
ac

y

F0 -> F1
F1 -> F0

F0 -> F2
F2 -> F0

(c) Balance Ratio

Figure 12: Hyperparameter sensitivity analysis of time latency τ , initial threshold V degree
th in SNNs,

and balance ratio α on FRANKENSTEIN.
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Figure 13: Hyperparameter sensitivity analysis of time latency τ , initial threshold V degree
th in SNNs,

and balance ratio α on MUTAGENICITY.

Table 14: The graph classification results (in %) on PROTEINS under graph flux domain shift
(source→target). P0, P1, P2, and P3 denote the sub-datasets partitioned with graph flux. Bold results
indicate the best performance.

Methods P0→P1 P1→P0 P0→P2 P2→P0 P0→P3 P3→P0 P1→P2 P2→P1 P1→P3 P3→P1 P2→P3 P3→P2 Avg.

WL subtree 73.4 72.7 70.5 73.0 72.8 59.0 66.5 71.6 60.6 58.3 76.3 64.0 68.2
GCN 57.2±2.7 62.8±1.7 67.6±0.5 58.5±1.3 67.7±0.4 61.0±0.3 65.0±0.8 51.1±1.3 65.6±2.2 55.4±0.4 68.5±3.1 67.7±0.5 62.3
GIN 69.3±2.3 65.8±0.8 69.3±1.7 69.8±1.6 71.4±2.1 52.4±1.8 64.0±2.4 65.7±3.2 53.4±3.7 58.1±0.8 72.6±0.3 64.6±2.3 64.7
GMT 67.8±1.3 69.6±0.7 74.5±0.5 67.6±2.5 69.9±2.1 55.8±0.7 74.8±1.4 60.1±2.4 71.4±3.3 51.5±0.5 69.0±0.5 63.3±1.3 66.3
CIN 62.6±0.5 59.4±0.5 64.0±0.9 58.5±1.8 71.9±1.7 60.6±2.1 63.7±0.5 61.2±2.1 73.2±0.5 57.7±3.0 68.1±0.4 58.5±2.7 63.3
SpikeGCN 66.1±0.4 67.8±0.7 68.5±0.9 67.2±0.3 70.1±1.1 68.6±1.3 66.1±0.7 65.8±1.2 74.5±0.9 65.4±0.6 73.8±1.1 70.1±1.6 68.6
DRSGNN 68.3±0.5 71.9±0.9 71.5±1.1 75.1±1.7 76.7±1.3 74.4±0.8 70.5±0.7 67.8±0.8 77.0±1.5 65.9±1.6 75.2±1.9 69.2±2.1 71.8

CDAN 75.6±0.5 70.5±0.6 71.6±0.5 69.8±0.5 76.6±0.8 71.4±0.3 71.4±0.3 72.1±0.3 75.5±0.7 74.3±0.8 78.2±1.1 74.0±0.8 73.4
ToAlign 51.1±0.6 55.8±0.1 63.3±0.2 55.8±0.4 68.1±0.7 55.8±0.3 63.3±0.5 51.1±0.2 68.1±1.0 51.1±0.4 68.1±0.6 63.3±0.2 59.6
MetaAlign 59.4±1.1 62.2±1.0 68.9±0.3 65.3±0.8 75.1±0.7 67.5±2.1 70.9±1.4 60.6±2.3 72.4±1.4 59.4±0.6 74.6±0.7 67.8±1.3 67.0

DEAL 76.6±0.4 62.8±0.8 72.8±1.3 67.3±2.2 77.2±2.3 67.6±1.9 71.2±1.6 56.0±2.5 73.9±2.1 66.0±0.3 76.4±1.1 65.5±2.1 69.4
CoCo 73.4±0.5 73.6±0.8 73.4±1.0 71.6±0.5 75.2±1.6 74.6±0.3 70.7±0.8 68.4±1.5 75.0±0.2 72.7±0.4 76.3±1.1 75.0±1.8 73.3
SGDA 63.8±0.8 65.2±0.5 66.7±0.3 59.1±1.2 62.3±0.7 60.6±0.4 65.2±0.9 61.8±1.0 64.5±1.3 60.9±0.8 59.4±1.2 64.9±1.1 62.9
DGDA 59.4±0.7 62.3±1.1 63.1±0.5 61.2±0.9 60.4±0.6 58.8±1.0 60.3±0.8 63.5±1.2 61.9±0.8 60.4±1.6 64.2±1.3 62.6±1.4 61.5
A2GNN 65.4±0.7 66.4±1.1 65.7±1.3 66.0±0.6 64.9±1.2 65.8±1.6 65.5±1.8 66.0±1.4 65.8±2.1 65.6±1.9 66.1±1.7 66.0±2.0 65.8
PA-BOTH 66.9±0.5 67.1±0.8 67.3±1.1 65.8±0.7 69.1±1.0 66.1±1.4 66.7±1.3 67.4±1.4 66.3±1.8 66.0±1.2 66.8±0.8 66.3±1.5 66.8

DeSGDA 78.7±1.3 78.4±1.1 74.8±0.6 77.6±0.9 79.5±1.2 76.7±0.8 74.9±0.7 71.2±1.7 79.5±1.4 72.8±0.8 81.0±1.5 75.1±1.0 76.7

Table 15: The graph classification results (in %) on FRANKENSTEIN under graph flux domain shift
(source→target). F0, F1, F2, and F3 denote the sub-datasets partitioned with graph flux. Bold results
indicate the best performance. OOM means out of memory.

Methods F0→F1 F1→F0 F0→F2 F2→F0 F0→F3 F3→F0 F1→F2 F2→F1 F1→F3 F3→F1 F2→F3 F3→F2 Avg.

WL subtree 58.4 51.8 58.7 51.3 64.3 48.9 64.9 58.9 78.5 54.6 57.1 61.3 59.1
GCN 56.2±0.2 59.0±1.3 41.4±0.4 45.8±0.5 21.2±0.7 41.4±1.7 42.5±1.6 49.0±0.4 24.1±1.6 44.8±0.7 81.4±0.3 58.8±0.2 47.1
GIN 60.7±0.6 58.0±1.0 61.0±2.3 58.9±2.3 77.5±2.2 45.3±2.5 62.5±0.2 59.2±3.0 71.4±2.8 49.8±1.7 77.9±1.4 59.9±0.5 61.8
GMT 56.2±0.4 59.8±0.2 41.4±0.3 59.8±0.7 21.2±1.1 59.8±0.5 41.4±0.2 56.2±0.2 21.1±1.1 56.2±1.4 78.8±0.6 58.6±0.8 50.9
CIN 57.8±1.1 60.1±0.7 58.6±0.2 59.8±0.2 78.9±0.1 59.9±0.4 58.8±0.3 57.4±0.5 78.8±0.6 57.7±1.2 78.8±0.7 60.1±1.1 63.9
SpikeGCN 56.1±0.7 59.7±1.0 58.8±0.6 57.8±0.2 77.1±1.3 53.2±1.6 41.4±1.9 56.1±1.5 70.1±0.9 59.9±1.5 76.8±1.8 58.5±1.4 60.4
DRSGNN 60.2±0.9 59.9±0.8 57.3±1.2 59.0±1.0 74.2±1.9 54.6±1.7 58.5±1.5 58.9±1.8 77.7±2.3 56.9±2.0 78.9±2.4 58.8±1.6 62.9

CDAN 60.9±0.7 59.8±0.5 61.1±1.3 61.0±0.2 80.5±1.2 59.8±0.3 64.0±0.4 61.4±0.1 81.8±0.1 58.0±1.2 81.8±0.3 63.8±0.7 66.1
ToAlign 56.2±0.2 59.8±0.2 41.4±0.1 59.8±0.2 21.1±0.3 59.8±0.7 41.4±1.1 56.2±1.2 21.1±0.4 56.2±0.6 21.1±1.3 41.4±0.5 44.6
MetaAlign 57.3±2.4 59.1±1.1 60.9±1.5 60.2±0.4 80.3±2.1 60.4±0.6 64.0±1.1 64.9±0.6 81.4±1.2 58.5±2.3 80.8±0.5 63.4±1.8 65.9

DEAL 65.3±0.6 64.0±0.2 61.3±0.6 61.0±0.9 78.3±2.1 55.5±1.8 64.9±1.2 64.8±1.1 80.1±1.3 60.1±2.1 81.8±0.4 65.7±0.7 66.9
CoCo 63.5±2.4 61.5±1.0 64.4±1.0 61.2±0.7 81.7±0.4 55.0±1.6 64.5±0.6 64.6±1.1 80.4±1.5 60.6±1.5 81.5±0.6 62.2±1.7 66.8
SGDA 55.7±0.5 55.4±0.9 54.8±0.3 55.3±0.7 56.1±0.5 55.4±0.8 53.2±1.1 55.1±0.6 58.4±0.4 55.3±0.5 57.7±1.0 54.9±0.6 55.7
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 56.0±0.3 56.3±0.6 55.6±0.4 57.3±0.7 58.6±0.6 55.9±0.9 55.5±0.5 55.3±0.2 61.2±1.3 56.6±0.9 65.5±0.8 56.0±1.0 57.5
PA-BOTH 62.2±0.5 60.7±0.7 61.5±0.6 61.2±1.0 61.9±1.3 61.1±0.8 62.3±0.4 61.7±0.8 62.0±0.9 61.1±1.2 61.2±1.5 60.9±0.6 61.5

DeSGDA 63.5±1.1 64.1±0.9 62.6±1.3 63.0±0.8 81.1±1.2 62.4±1.5 65.5±0.6 65.4±1.7 81.9±1.0 60.8±1.4 82.0±2.1 65.9±1.8 68.1
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Table 16: The graph classification results (in %) on MUTAGENICITY under graph flux domain shift
(source→target). M0, M1, M2, and M3 denote the sub-datasets partitioned with graph flux. Bold
results indicate the best performance. OOM means out of memory.

Methods M0→M1 M1→M0 M0→M2 M2→M0 M0→M3 M3→M0 M1→M2 M2→M1 M1→M3 M3→M1 M2→M3 M3→M2 Avg.

WL subtree 74.4 72.9 64.9 68.9 49.1 59.8 70.0 70.5 76.9 60.7 82.6 70.5 68.5
GCN 63.1±1.0 68.1±0.3 48.8±0.4 62.6±0.3 29.1±2.1 38.8±0.3 54.3±0.1 61.8±0.5 30.4±0.2 43.6±0.3 67.8±0.1 57.9±1.3 52.2
GIN 68.1±1.6 74.2±0.6 59.6±2.3 65.2±1.4 40.3±2.7 54.6±1.8 61.3±1.1 63.1±3.2 71.6±3.0 60.0±1.4 79.7±1.3 69.2±0.7 63.9
GMT 56.5±0.3 60.7±0.4 57.9±0.2 40.2±1.2 80.6±0.4 39.3±0.6 57.9±1.1 45.0±2.1 80.6±0.5 43.5±1.1 80.6±1.4 57.9±2.2 58.4
CIN 64.1±3.0 61.3±0.5 63.5±2.3 63.6±1.5 78.2±0.5 63.9±2.7 60.6±1.5 57.0±0.4 73.7±3.2 61.4±1.0 79.1±2.1 61.1±1.9 65.6
SpikeGCN 56.4±1.2 60.7±0.9 59.5±1.3 57.7±1.6 59.0±1.1 60.1±1.8 54.2±1.0 59.9±2.1 50.2±2.6 55.1±1.7 80.1±2.5 57.9±2.2 59.3
DRSGNN 56.7±0.7 61.0±1.1 57.2±1.0 57.7±1.6 52.1±1.4 55.2±1.5 59.4±1.8 56.3±1.7 75.9±2.3 60.7±1.9 80.6±0.8 58.0±1.3 60.9

CDAN 62.8±0.3 68.2±0.6 63.6±0.6 66.9±1.7 81.2±0.5 65.0±2.1 65.8±0.2 64.7±1.2 80.7±0.1 62.5±2.3 82.4±0.4 66.0±0.5 69.1
ToAlign 43.5±0.4 39.3±0.7 57.9±1.0 39.3±1.4 80.6±1.1 39.3±0.7 57.9±0.3 43.5±2.1 80.6±1.8 43.5±0.4 80.6±0.9 57.9±1.0 55.3
MetaAlign 63.1±2.5 68.8±2.6 63.3±0.6 65.2±2.2 81.9±0.1 64.5±1.4 65.0±0.6 68.3±0.6 81.0±0.3 65.2±0.2 82.5±0.4 68.3±0.6 69.7

DEAL 64.6±0.5 65.5±0.8 64.2±1.0 63.1±2.1 82.7±0.8 62.8±0.7 70.2±0.4 67.3±0.4 79.6±0.1 63.9±1.4 75.7±0.3 67.0±0.2 68.9
CoCo 65.7±1.8 74.1±0.7 65.1±0.2 67.6±0.9 80.5±1.3 56.5±1.7 68.4±1.3 70.7±0.4 78.9±1.2 67.3±0.3 83.7±0.1 71.5±0.9 70.8
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 55.4±0.3 55.7±0.7 55.6±0.5 54.7±0.8 63.3±1.0 56.6±0.9 55.3±0.6 55.7±0.5 65.5±0.8 56.6±1.2 69.9±1.4 55.0±0.5 58.3
PA-BOTH 61.2±0.9 62.0±0.4 60.7±0.8 61.7±0.5 60.9±1.2 61.1±0.7 61.5±0.9 60.2±1.2 61.3±1.5 61.8±0.8 62.2±0.9 62.0±1.0 61.4

DeSGDA 65.4±1.3 65.9±0.9 65.5±1.4 64.8±1.1 82.8±1.6 63.6±1.5 70.7±1.8 68.2±0.7 82.9±1.2 67.6±0.8 83.9±1.0 66.5±1.2 70.9

Table 17: The graph classification results (in %) on PROTEINS under node domain shift
(source→target). P0, P1, P2, and P3 denote the sub-datasets partitioned with node. Bold results
indicate the best performance. OOM means out of memory.

Methods P0→P1 P1→P0 P0→P2 P2→P0 P0→P3 P3→P0 P1→P2 P2→P1 P1→P3 P3→P1 P2→P3 P3→P2 Avg.

WL subtree 69.1 59.7 61.2 75.9 41.6 83.5 61.5 72.7 24.7 72.7 63.1 62.9 62.4
GCN 73.7±0.3 82.7±0.4 57.6±0.2 84.0±1.3 24.4±0.4 17.3±0.2 57.6±0.1 70.9±0.7 24.4±0.5 26.3±0.1 37.5±0.2 42.5±0.8 49.9
GIN 71.8±2.7 70.2±4.7 58.5±4.3 56.9±4.9 74.2±1.7 78.2±3.3 63.3±2.7 67.1±3.8 35.9±4.2 61.0±2.4 71.9±2.1 65.1±1.0 64.5
GMT 73.7±0.2 82.7±0.1 57.6±0.3 83.1±0.5 75.6±1.4 17.3±0.6 57.6±1.5 73.7±0.6 75.6±0.4 26.3±1.2 75.6±0.7 42.4±0.5 61.8
CIN 74.1±0.6 83.8±1.0 60.1±2.1 78.6±3.1 75.6±0.2 74.8±3.7 63.9±2.7 74.1±0.6 57.0±4.3 58.9±3.3 75.6±0.7 63.6±1.0 70.0
SpikeGCN 71.8±0.9 80.9±1.2 64.9±1.4 79.1±2.2 71.1±1.9 73.8±1.6 62.4±2.0 71.8±2.3 70.1±2.4 66.9±1.9 72.1±1.9 64.5±1.7 70.9
DRSGNN 73.6±1.1 81.3±1.5 64.6±1.2 80.6±1.4 70.2±1.7 76.1±2.3 64.1±1.5 71.9±1.9 70.4±2.0 64.1±3.1 74.7±1.4 64.3±1.1 71.3

CDAN 75.9±1.0 83.1±0.6 60.8±0.6 82.6±0.2 75.8±0.3 70.9±2.4 64.7±0.3 77.7±0.6 73.3±1.8 75.4±0.7 75.8±0.4 67.1±0.8 73.6
ToAlign 73.7±0.4 82.7±0.3 57.6±0.6 82.7±0.8 24.4±0.1 82.7±0.3 57.6±0.4 73.7±0.2 24.4±0.7 73.7±0.3 24.4±0.5 57.6±0.4 59.6
MetaAlign 74.3±0.8 83.3±2.2 60.6±1.7 71.2±2.1 76.3±0.3 77.3±2.4 64.6±1.2 72.0±1.0 76.0±0.5 73.3±1.8 74.4±1.7 56.9±1.4 71.7

DEAL 75.4±1.2 78.0±2.4 68.1±1.9 80.8±2.1 73.8±1.4 80.6±2.3 65.7±1.7 74.7±2.4 74.7±1.6 71.0±2.1 68.1±2.6 70.3±0.4 73.4
CoCo 74.8±0.6 84.1±1.1 65.5±0.4 83.6±1.1 72.4±2.9 83.1±0.4 69.7±0.5 75.8±0.7 71.4±2.3 73.4±1.3 72.5±2.7 66.4±1.7 74.4
SGDA 64.2±0.5 61.0±0.7 66.9±1.2 61.9±0.9 65.4±1.6 66.5±1.0 64.6±1.1 60.1±0.5 66.3±1.3 59.3±0.8 66.0±1.6 66.2±1.3 64.1
DGDA 58.1±0.4 58.6±0.6 58.9±1.0 61.0±0.9 59.6±0.7 60.2±1.5 56.7±0.6 56.8±0.8 58.1±0.4 58.8±1.1 57.0±1.2 62.2±1.6 58.9
A2GNN 65.7±0.6 65.9±0.8 66.3±0.9 65.6±1.1 65.2±1.4 65.6±1.3 65.9±1.7 65.8±1.6 65.0±1.5 66.1±1.2 65.2±1.9 65.9±1.8 65.7
PA-BOTH 61.0±0.8 61.2±1.3 60.3±0.6 66.7±2.1 63.7±1.5 61.9±2.0 66.2±1.4 69.9±2.3 68.0±0.7 69.4±1.8 61.5±0.4 67.6±1.0 64.9

DeSGDA 77.6±0.9 84.3±1.1 70.5±0.6 84.8±1.4 76.6±0.7 83.9±0.9 71.9±0.6 76.9±1.1 76.1±0.8 73.7±1.0 76.0±1.2 70.4±0.7 76.8

Table 18: The graph classification results (in %) on NCI1 under node domain shift (source→target).
P0, P1, P2, and P3 denote the sub-datasets partitioned with node. Bold results indicate the best
performance.

Methods N0→N1 N1→N0 N0→N2 N2→N0 N0→N3 N3→N0 N1→N2 N2→N1 N1→N3 N3→N1 N2→N3 N3→N2 Avg.

WL subtree 73.5 79.5 64.8 75.9 58.9 68.4 72.5 72.0 69.7 63.6 76.1 74.0 70.7
GCN 51.2±0.1 71.1±0.4 42.7±0.4 27.8±0.3 32.1±1.1 27.0±0.2 55.2±0.6 50.5±0.7 50.9±1.1 49.1±0.3 67.1±0.6 57.3±0.6 48.5
GIN 66.9±2.2 78.9±2.3 60.3±3.1 72.8±0.3 51.1±0.6 68.6±1.8 63.5±2.1 67.8±3.7 65.9±1.7 60.3±1.8 71.1±1.1 67.2±1.3 66.2
GMT 50.9±0.5 73.0±0.1 57.3±0.3 73.0±0.4 66.5±0.2 73.0±0.3 72.4±0.6 50.9±0.1 66.5±0.4 58.3±0.2 66.5±0.5 72.8±0.3 65.1
CIN 60.1±0.7 73.1±1.1 57.5±0.2 73.0±0.4 66.5±1.1 73.1±0.7 58.5±2.1 52.9±1.4 66.5±1.3 56.1±0.1 66.5±0.4 57.4±0.7 63.4
SpikeGCN 63.3±0.4 72.6±0.7 60.6±0.2 73.1±0.8 65.4±0.6 66.6±1.2 64.3±1.4 64.7±1.0 65.6±1.2 59.8±0.8 70.1±1.7 60.9±1.4 65.6
DRSGNN 63.9±0.8 73.3±1.2 56.9±1.5 72.5±1.3 66.7±2.1 64.4±1.8 65.6±1.3 64.8±1.9 66.7±1.4 58.4±1.6 68.6±2.0 61.4±1.3 65.3

CDAN 57.1±0.4 75.0±0.7 61.2±0.4 73.7±0.1 68.2±0.4 73.3±0.3 60.2±0.1 56.5±1.4 68.2±0.2 53.9±1.4 68.4±0.2 59.6±0.5 64.6
ToAlign 49.1±0.3 27.0±0.6 57.3±0.5 27.0±0.4 66.5±0.5 27.0±0.2 57.3±0.3 49.1±0.4 66.5±0.2 49.1±0.3 66.5±0.1 57.3±0.4 50.0
MetaAlign 65.6±1.8 77.7±0.2 63.5±1.4 75.7±0.7 66.4±0.3 74.0±0.3 66.3±1.1 64.6±1.2 66.7±0.2 59.5±2.6 66.7±0.3 66.7±2.7 67.8

DEAL 64.0±0.9 71.9±1.2 61.4±0.3 73.3±0.3 64.9±1.4 71.9±1.9 62.5±2.1 66.2±0.5 54.2±1.4 55.6±0.8 64.6±0.4 58.8±0.4 64.1
CoCo 69.7±0.1 80.4±0.4 64.7±1.2 76.5±0.4 65.0±1.7 73.9±0.3 68.9±1.3 70.7±0.9 68.2±1.2 61.4±1.7 73.0±0.1 65.2±0.9 69.8
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 59.0±0.6 58.3±1.1 58.5±0.8 58.6±1.3 58.7±1.0 59.0±0.7 58.5±1.1 58.7±1.5 59.1±0.6 58.3±1.2 58.6±0.7 59.0±0.5 58.7
PA-BOTH 57.7±0.4 58.0±0.6 57.9±0.5 56.9±0.8 57.4±0.6 58.3±0.5 57.1±1.2 58.8±0.9 58.1±0.7 58.0±0.9 57.9±0.5 58.3±0.8 57.9

DeSGDA 64.4±1.2 76.9±1.5 64.9±0.9 76.6±1.2 68.6±1.8 74.1±1.3 66.9±0.8 65.1±1.2 69.9±1.5 63.9±2.0 70.9±1.6 64.2±1.4 69.0
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Table 19: The graph classification results (in %) on FRANKENSTEIN under node domain shift
(source→target). F0, F1, F2, and F3 denote the sub-datasets partitioned with node. Bold results
indicate the best performance. OOM means out of memory.

Methods F0→F1 F1→F0 F0→F2 F2→F0 F0→F3 F3→F0 F1→F2 F2→F1 F1→F3 F3→F1 F2→F3 F3→F2 Avg.

WL subtree 65.7 71.8 57.9 71.1 47.4 43.4 65.5 75.1 45.3 34.9 52.7 49.8 56.7
GCN 70.6±2.1 60.3±1.5 60.5±3.4 62.3±1.1 58.4±0.5 43.2±0.2 63.8±1.0 70.3±0.3 50.6±1.0 32.8±0.3 50.1±0.4 42.2±0.2 55.4
GIN 66.7±2.1 73.7±2.4 57.3±3.1 69.4±2.3 58.6±0.4 43.1±0.3 66.4±2.7 74.8±1.8 42.2±1.6 33.5±1.0 57.4±0.8 43.9±2.3 57.2
GMT 67.3±0.3 56.8±0.4 58.0±0.2 56.8±0.2 60.6±0.3 56.8±0.5 57.8±0.1 67.3±0.1 39.5±0.3 67.3±0.2 39.5±0.5 57.8±0.4 57.1
CIN 67.6±0.4 63.7±2.1 58.9±1.0 56.8±0.4 63.6±0.4 59.5±2.7 58.7±1.2 67.0±0.5 61.7±1.6 67.8±0.7 62.2±2.1 56.0±1.3 61.9
SpikeGCN 67.2±0.5 57.2±1.2 57.9±0.8 57.1±0.6 61.1±1.3 58.9±1.6 60.0±1.2 67.2±0.9 53.9±2.1 64.4±0.8 57.8±1.0 59.9±1.2 60.2
DRSGNN 67.4±0.4 58.4±1.0 59.0±1.2 57.4±0.5 62.3±1.1 60.4±1.3 61.1±1.6 67.9±1.5 56.2±1.8 66.2±2.1 60.9±1.4 58.6±2.5 61.3

CDAN 72.9±0.4 72.7±0.4 65.4±0.3 72.9±0.1 61.2±0.3 70.3±0.2 65.7±0.4 72.7±0.1 61.0±0.1 72.1±1.2 60.7±0.2 65.3±0.6 67.7
ToAlign 32.7±2.0 43.2±0.1 42.2±1.3 43.2±0.9 60.5±0.7 43.2±1.2 42.2±0.4 32.7±1.2 60.5±0.9 32.7±0.3 60.5±0.7 42.2±0.4 44.7
MetaAlign 67.3±0.7 56.8±0.2 57.8±0.6 56.8±0.4 60.5±1.3 56.8±0.8 57.8±1.1 67.3±1.2 60.5±0.4 67.3±0.6 60.5±0.7 57.8±0.6 60.6

DEAL 75.0±0.9 76.3±2.4 65.9±1.8 77.5±2.7 60.3±4.5 69.7±3.2 67.2±1.5 75.3±1.7 57.4±4.1 71.1±2.2 65.7±2.7 66.4±1.6 69.0
CoCo 74.2±1.7 74.3±0.6 65.9±1.2 72.7±2.1 61.1±0.2 71.0±1.7 68.6±0.3 75.9±0.2 60.7±0.2 73.9±0.4 59.7±1.1 67.3±0.8 68.8
SGDA 55.9±0.6 57.1±0.5 56.1±0.4 54.6±0.8 55.8±1.1 57.7±0.6 54.3±0.7 53.6±1.3 59.1±0.8 56.7±0.6 55.4±1.2 53.8±0.5 55.9
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 55.9±0.7 55.7±0.4 56.6±0.6 57.1±1.0 56.1±1.2 55.8±0.5 56.5±0.7 55.5±0.4 55.9±0.8 56.2±0.6 56.5±1.5 56.0±0.5 56.2
PA-BOTH 56.4±0.5 55.9±0.6 56.0±0.5 56.4±0.4 56.3±0.6 57.7±0.7 56.6±0.2 58.8±0.9 56.9±0.7 57.2±0.3 56.5±0.5 58.3±0.8 56.9

DeSGDA 75.2±0.8 74.3±1.2 68.0±1.5 73.6±2.0 62.3±1.7 71.2±2.5 68.8±1.3 76.0±1.2 61.9±2.2 71.4±1.6 62.8±1.2 65.7±0.9 69.3

Table 20: The graph classification results (in %) on MUTAGENICITY under node domain shift
(source→target). P0, P1, P2, and P3 denote the sub-datasets partitioned with node. Bold results
indicate the best performance. OOM means out of memory.

Methods M0→M1 M1→M0 M0→M2 M2→M0 M0→M3 M3→M0 M1→M2 M2→M1 M1→M3 M3→M1 M2→M3 M3→M2 Avg.

WL subtree 78.0 68.7 70.1 70.5 59.0 61.2 71.7 78.0 49.9 56.3 69.4 71.9 67.1
GCN 74.5±0.2 60.8±2.1 69.7±0.4 68.5±1.7 54.1±0.9 55.2±0.9 68.6±1.6 75.5±0.5 51.5±1.3 46.4±1.7 58.6±0.4 60.2±0.2 61.9
GIN 77.9±3.1 70.7±2.4 70.9±0.8 69.2±1.2 64.1±1.0 61.9±2.4 78.5±0.2 79.8±3.3 65.5±2.7 71.5±0.9 69.5±1.8 73.5±2.6 71.1
GMT 67.3±0.2 52.5±0.1 59.9±0.3 47.5±0.2 53.5±0.2 52.5±0.4 59.9±0.1 67.3±0.2 46.7±0.5 67.3±0.3 53.3±0.1 59.9±0.4 57.1
CIN 70.8±1.1 66.9±3.4 61.7±0.6 62.6±2.4 56.3±3.1 62.9±1.3 65.1±1.0 68.8±1.7 56.6±1.4 66.9±1.0 58.1±1.3 62.5±0.9 63.3
SpikeGCN 63.2±0.6 55.9±1.7 59.8±1.2 56.5±1.6 54.1±2.2 60.3±1.2 60.1±0.8 68.8±1.4 54.4±2.0 64.2±1.6 56.6±0.8 58.5±1.5 59.4
DRSGNN 56.9±0.9 53.4±1.2 58.9±1.0 57.7±1.4 53.2±1.6 61.2±1.5 60.6±2.1 67.9±1.2 57.1±1.4 67.3±2.0 59.9±1.9 57.1±0.8 59.3

CDAN 75.5±0.1 71.3±0.4 70.7±0.3 70.3±0.1 58.7±0.6 58.4±0.6 70.2±0.5 76.1±0.5 58.5±0.6 69.4±1.5 59.0±0.1 63.7±1.4 66.8
ToAlign 67.3±0.2 47.5±0.4 59.9±0.6 47.5±0.5 46.7±0.4 47.5±0.2 59.9±0.7 67.3±0.3 46.7±0.1 67.3±0.4 46.7±0.5 59.9±0.3 55.4
MetaAlign 76.5±0.4 71.8±1.1 71.8±0.8 71.4±0.9 59.3±0.8 63.0±1.0 74.2±1.6 78.0±0.2 61.7±1.2 69.9±1.6 62.2±0.4 68.3±1.5 69.0

DEAL 76.6±0.8 68.8±1.0 69.9±0.4 66.4±0.8 59.3±2.1 64.2±2.2 79.1±0.1 81.9±0.6 64.5±1.1 75.3±0.6 69.8±1.6 76.5±0.2 71.0
CoCo 75.5±0.4 71.7±0.7 68.7±1.1 69.2±2.0 60.8±1.1 65.7±0.3 79.2±1.2 76.8±0.6 63.8±0.5 73.8±0.4 64.6±0.8 70.1±1.1 70.0
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 55.4±0.6 56.3±0.2 55.6±0.8 55.1±0.5 55.3±1.1 55.9±0.4 56.1±0.7 55.7±0.6 57.1±0.3 56.6±1.2 55.2±0.7 56.8±1.0 55.9
PA-BOTH 55.9±1.0 56.0±0.5 56.1±0.7 56.6±1.2 55.9±0.6 56.0±0.7 57.3±0.8 56.8±1.3 55.9±1.2 56.3±1.0 56.4±0.9 57.1±1.3 56.4

DeSGDA 76.7±1.0 72.5±0.6 72.0±2.3 71.5±1.5 61.0±1.2 67.6±0.8 75.5±1.0 79.8±1.2 62.8±1.6 75.9±1.3 65.5±2.1 72.3±1.7 71.2

Table 21: The graph classification results (in %) on NCI1 under edge density domain shift
(source→target). N0, N1, N2, and N3 denote the sub-datasets partitioned with edge density. Bold
results indicate the best performance. OOM means out of memory.

Methods N0→N1 N1→N0 N0→N2 N2→N0 N0→N3 N3→N0 N1→N2 N2→N1 N1→N3 N3→N1 N2→N3 N3→N2 Avg.

WL subtree 72.6 80.3 62.7 75.5 52.0 63.6 69.1 69.8 70.7 59.4 80.0 70.6 68.9
GCN 49.5±0.4 71.1±0.4 46.8±0.5 33.7±2.8 32.7±0.4 27.4±0.1 56.2±1.5 55.3±0.4 58.2±1.7 51.0±0.2 60.7±3.7 53.2±0.2 49.6
GIN 67.3±2.7 67.9±4.8 61.5±4.2 65.4±3.7 58.9±4.1 61.0±3.4 62.5±3.2 66.2±2.1 69.7±0.9 56.8±0.7 72.4±2.8 64.0±1.6 64.5
GMT 50.3±1.2 42.5±3.4 51.1±3.7 42.5±4.5 56.1±4.7 42.5±4.1 53.2±4.9 51.0±0.2 68.2±0.4 51.0±0.3 68.2±0.5 53.2±0.4 52.5
CIN 51.1±0.2 72.6±0.1 54.0±0.9 72.6±0.2 68.2±0.3 71.5±1.3 55.0±2.1 53.5±1.8 68.2±0.3 52.0±0.3 68.3±0.1 53.6±0.6 61.7
SpikeGCN 62.8±0.8 73.1±1.2 61.4±0.8 70.9±0.6 57.7±1.6 66.2±1.1 61.2±1.6 64.5±1.0 62.3±1.4 57.3±0.9 68.9±1.2 60.1±1.0 63.6
DRSGNN 64.3±0.6 76.3±0.9 56.7±1.1 73.2±0.8 58.6±1.4 63.9±1.8 63.0±2.1 65.1±1.6 64.1±1.9 59.2±2.2 70.8±2.5 56.6±1.4 64.3

CDAN 59.6±0.3 73.8±0.5 56.7±1.4 73.7±0.3 71.2±0.4 73.2±0.3 55.5±0.2 57.3±1.1 69.9±0.2 54.6±2.0 69.8±1.4 56.6±0.3 64.3
ToAlign 51.0±0.2 27.4±0.1 53.2±0.4 27.4±0.2 68.2±0.3 27.4±0.3 53.2±0.1 51.0±0.2 68.2±0.2 51.0±0.4 68.2±0.3 53.2±0.2 50.0
MetaAlign 65.0±0.7 77.6±1.6 62.0±0.6 77.1±0.9 68.2±0.8 74.5±2.0 64.2±0.9 65.4±0.3 68.0±0.3 56.1±2.3 68.2±0.1 66.2±1.1 67.7

DEAL 65.6±0.6 73.0±0.9 58.0±0.3 71.6±1.6 60.1±2.8 73.1±0.5 62.8±1.0 65.0±2.4 65.8±0.8 53.9±2.6 57.6±2.8 56.7±3.1 63.6
CoCo 70.4±0.7 80.4±0.9 62.4±0.8 75.8±1.2 65.7±2.0 73.7±0.3 67.0±0.8 70.4±0.7 69.7±0.4 62.7±0.9 74.4±0.5 63.7±0.9 69.7
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 59.2±0.8 58.7±0.5 59.0±1.1 58.7±0.8 58.9±0.6 59.2±1.2 58.7±0.6 58.6±1.2 59.0±1.0 59.5±0.6 58.7±0.5 58.5±1.1 58.9
PA-BOTH 57.6±0.5 58.4±0.4 58.9±0.6 57.4±0.6 57.1±1.0 58.4±0.5 58.0±1.0 58.1±0.5 58.4±0.6 57.7±1.1 57.5±0.6 58.0±0.4 58.0

DeSGDA 66.0±0.5 76.2±0.4 62.8±0.6 77.6±0.6 68.5±1.0 74.6±0.5 65.1±1.0 65.4±0.5 70.9±0.6 64.8±1.1 72.6±0.6 66.3±0.4 69.3
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Table 22: The graph classification results (in %) on FRANKENSTEIN under edge density domain
shift (source→target). F0, F1, F2, and F3 denote the sub-datasets partitioned with edge density. Bold
results indicate the best performance. OOM means out of memory.

Methods F0→F1 F1→F0 F0→F2 F2→F0 F0→F3 F3→F0 F1→F2 F2→F1 F1→F3 F3→F1 F2→F3 F3→F2 Avg.

WL subtree 71.6 72.1 62.1 71.2 57.8 67.7 64.0 75.3 41.1 59.2 55.9 55.4 62.8
GCN 66.5±0.4 60.0±0.8 55.4±0.3 60.0±0.1 39.6±0.3 40.0±0.4 55.4±0.2 66.5±0.1 39.6±0.6 33.5±0.3 39.6±0.1 44.7±0.2 50.1
GIN 71.4±4.7 73.4±3.4 60.8±2.7 66.0±3.4 50.5±3.7 51.6±1.8 64.8±1.0 71.3±3.5 48.3±4.2 57.4±3.8 55.1±3.4 52.6±4.3 60.3
GMT 67.4±1.0 61.7±2.1 55.8±0.7 57.0±2.4 60.2±0.5 58.2±2.0 57.8±2.1 65.7±1.3 60.2±0.3 57.3±2.3 60.7±0.6 57.1±1.2 59.9
CIN 70.4±2.8 66.5±4.3 58.5±2.6 64.2±2.7 60.6±3.0 64.2±3.2 58.7±2.4 69.1±2.7 57.5±3.4 67.7±2.1 59.5±2.3 56.1±1.2 62.7
SpikeGCN 66.5±0.9 60.1±1.5 55.9±0.8 60.2±0.6 54.8±2.1 59.9±1.6 55.8±0.8 62.9±1.6 58.4±1.2 61.1±1.3 58.8±1.9 62.1±1.5 59.8
DRSGNN 67.5±1.2 61.2±0.7 55.6±1.4 61.1±0.9 52.4±2.3 61.0±1.2 56.9±0.7 66.7±1.5 60.3±0.5 62.0±2.0 59.8±1.4 59.2±1.1 60.3

CDAN 72.9±0.2 74.0±0.3 62.7±0.3 73.8±0.5 61.2±1.0 70.0±1.2 62.8±0.1 73.0±0.3 60.6±0.2 71.6±1.5 60.5±0.2 61.1±1.4 67.0
ToAlign 68.0±3.8 73.4±2.7 64.5±1.1 63.7±2.4 60.6±1.2 61.9±1.3 64.8±1.3 74.0±1.3 60.0±0.6 65.7±3.1 61.0±1.4 56.2±2.3 64.5
MetaAlign 73.6±0.2 72.7±1.9 63.9±1.0 67.9±4.3 60.4±0.7 65.4±1.8 65.2±0.8 73.2±2.3 60.0±0.6 66.7±2.4 61.2±1.1 56.8±2.1 65.6

DEAL 75.4±0.3 74.6±1.1 66.1±0.6 74.6±0.8 53.8±1.0 69.6±1.8 66.4±0.3 73.9±0.6 61.6±1.4 69.8±0.2 60.7±1.0 58.3±0.9 67.1
CoCo 74.6±0.9 77.2±0.6 64.1±3.4 73.8±1.1 60.5±0.2 71.5±0.7 65.9±0.5 76.0±0.5 61.4±0.4 72.6±0.6 59.6±1.0 64.7±1.0 68.5
SGDA 56.6±0.6 56.9±0.8 55.3±1.2 54.6±0.5 57.9±1.3 58.3±0.4 56.1±0.9 55.9±0.6 54.6±1.3 56.7±0.5 53.3±0.7 56.8±1.1 56.1
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 55.4±0.8 56.1±0.6 56.7±1.0 55.3±0.5 54.9±0.7 57.2±0.9 55.7±0.5 56.5±1.3 54.5±0.6 56.8±0.5 56.2±1.0 58.8±0.8 56.1
PA-BOTH 56.1±0.5 56.0±0.4 56.3±0.7 56.4±0.4 56.0±0.6 57.1±0.7 56.2±1.1 58.3±0.9 56.5±0.6 57.2±0.9 56.9±0.4 57.7±0.8 56.8

DeSGDA 75.9±1.0 74.7±1.2 66.8±1.5 71.3±1.9 63.2±1.5 69.4±1.7 66.5±1.3 74.3±2.4 62.6±1.5 73.0±1.8 61.6±2.2 63.6±1.5 68.6

Table 23: The graph classification results (in %) on MUTAGENICITY under edge density domain
shift (source→target). M0, M1, M2, and M3 denote the sub-datasets partitioned with edge density.
Bold results indicate the best performance. OOM means out of memory.

Methods M0→M1 M1→M0 M0→M2 M2→M0 M0→M3 M3→M0 M1→M2 M2→M1 M1→M3 M3→M1 M2→M3 M3→M2 Avg.

WL subtree 74.9 74.8 67.3 69.9 57.8 57.9 73.7 80.2 60.0 57.9 70.2 73.1 68.1
GCN 73.0±1.7 68.7±1.5 66.8±3.5 69.2±0.9 53.9±3.4 53.4±2.7 69.3±0.8 74.0±1.1 55.1±1.3 42.6±1.9 55.5±3.5 57.9±2.9 61.6
GIN 74.1±1.8 73.4±3.4 65.4±1.5 70.4±2.9 58.9±2.7 61.2±1.1 73.2±3.8 77.7±3.0 63.1±3.7 63.9±2.4 67.4±2.3 73.2±1.9 68.5
GMT 69.0±4.0 67.4±3.8 60.3±4.2 66.5±3.8 54.9±1.6 54.8±3.6 65.6±4.2 70.4±3.2 64.0±2.3 56.8±4.3 64.7±1.5 61.1±3.5 63.0
CIN 68.5±2.1 65.1±2.6 65.4±1.3 63.6±2.8 57.3±3.4 59.0±3.1 59.3±1.5 68.3±1.3 58.1±2.4 71.1±3.1 60.7±1.7 61.7±2.4 63.2
SpikeGCN 66.7±1.5 65.5±2.0 57.9±0.4 60.2±1.6 53.2±1.4 60.1±1.5 57.7±1.2 67.3±1.5 57.7±2.1 60.1±1.9 59.9±2.4 63.3±1.8 60.1
DRSGNN 66.9±1.2 62.1±0.7 57.1±1.2 63.3±2.1 56.6±0.9 62.1±1.3 56.9±1.0 67.2±1.8 58.1±0.6 61.3±2.5 58.8±1.0 64.7±1.7 61.3

CDAN 74.2±0.3 73.7±0.5 68.8±0.2 71.8±0.4 59.9±2.0 58.6±1.9 70.7±1.4 74.3±0.3 59.2±1.2 69.0±1.6 60.0±1.2 62.7±1.3 66.9
ToAlign 75.5±1.9 67.1±3.8 68.1±1.5 63.3±2.7 55.6±1.2 67.3±4.3 69.4±3.3 77.0±1.2 57.6±1.6 74.9±2.4 59.0±3.3 64.6±3.4 66.6
MetaAlign 74.5±0.9 73.8±0.6 69.4±1.2 72.6±1.3 59.8±1.8 70.7±2.7 72.0±0.5 75.6±0.6 62.4±2.1 72.3±1.9 62.2±1.1 72.0±1.2 69.7

DEAL 76.3±0.2 72.4±0.7 68.8±1.0 72.5±0.7 57.6±0.6 67.6±1.9 77.4±0.6 80.0±0.7 64.9±0.7 72.8±1.4 70.3±0.3 76.2±1.3 71.4
CoCo 77.5±0.4 75.7±1.3 68.3±3.7 74.9±0.5 65.1±2.1 74.0±0.4 76.9±0.6 77.4±3.4 66.4±1.5 71.2±2.7 62.8±4.2 77.1±0.6 72.2
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 55.3±0.3 54.9±0.6 55.8±0.4 55.1±0.8 54.2±1.0 57.1±1.2 56.1±0.5 55.2±0.7 57.9±1.5 56.3±0.6 54.4±0.5 58.1±1.5 55.8
PA-BOTH 56.3±0.5 57.7±0.9 56.9±0.6 56.2±1.0 55.7±0.8 56.5±0.9 57.8±1.2 56.9±2.1 56.5±1.5 56.2±1.8 56.8±1.4 57.4±0.7 56.8

DeSGDA 75.8±1.4 74.5±1.7 69.5±1.3 75.0±2.0 61.0±1.5 69.2±1.3 69.5±1.6 76.1±1.5 65.0±1.4 75.5±2.2 63.4±1.8 68.3±1.3 70.3
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