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ABSTRACT

Transformers have gained widespread acclaim for their versatility in handling di-
verse data structures, yet their application to log data remains underexplored. Log
data, characterized by its hierarchical, dictionary-like structure, poses unique chal-
lenges when processed using conventional transformer models. Traditional meth-
ods often rely on manually crafted templates for parsing logs, a process that is
labor-intensive and lacks generalizability. Additionally, the linear treatment of log
sequences by standard transformers neglects the rich, nested relationships within
log entries, leading to suboptimal representations and excessive memory usage.
To address these issues, we introduce HLogformer, a novel hierarchical trans-
former framework specifically designed for log data. HLogformer leverages the
hierarchical structure of log entries to significantly reduce memory costs and en-
hance representation learning. Unlike traditional models that treat log data as flat
sequences, our framework processes log entries in a manner that respects their in-
herent hierarchical organization. This approach ensures comprehensive encoding
of both fine-grained details and broader contextual relationships. Our contribu-
tions are threefold: First, HLogformer is the first framework to design a dynamic
hierarchical transformer tailored for dictionary-like log data. Second, it dramati-
cally reduces memory costs associated with processing extensive log sequences.
Third, comprehensive experiments demonstrate that HLogformer more effectively
encodes hierarchical contextual information, proving to be highly effective for
downstream tasks such as synthetic anomaly detection and product recommenda-
tion.

1 INTRODUCTION

In recent years, transformers have garnered significant attention due to their versatility in handling
various data structures, including images, text, graphs, tabular data, and temporal graphs (Vaswani
et al., 2017; Dosovitskiy et al., 2020; Veličković et al., 2017; Huang et al., 2020; Wu et al., 2024; Hou
et al., 2024b). Despite their widespread application, there remains a notable gap in research focused
on log data. Log data inherently possesses a hierarchical, dictionary-like structure, where each log
entry is composed of nested fields and attributes. For instance, a single log entry might include
metadata like timestamps, user IDs, and event types at the top level, while containing nested details
such as specific actions taken, resources affected, and additional contextual information. Examples
of log data include Amazon EC2 logs, IAM logs, and web server access logs.

Traditional methods for processing log data often involve manually applying templates to parse
the logs before utilizing existing transformers. These templates are predefined rules or patterns
designed to extract structured information from unstructured log messages. While this approach can
be effective for certain types of logs, it has several limitations. Template-based methods can be labor-
intensive, requiring domain-specific knowledge to create and maintain the templates. Additionally,
they may not generalize well to diverse or evolving log formats, leading to incomplete or inaccurate
parsing.

When lengthy log sequences are input into transformers for representation learning and downstream
tasks, several challenges arise. Firstly, the memory requirements become excessive due to the sheer
volume of log data, making it difficult to process efficiently. Secondly, capturing the necessary
contextual information demands larger and more complex transformer models, which can be com-
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putationally expensive and resource-intensive. Lastly, there is a tendency to treat log data as linear
sequences, which neglects the hierarchical and structured nature of log entries. This linear treat-
ment fails to leverage the rich, nested relationships inherent in log data, resulting in sub-optimal
representation and analysis.

To address these challenges, researchers have proposed several approaches aimed at extending con-
text length and reducing memory costs. Sparse transformers (Child et al., 2019) leverage predefined
patterns to limit the number of attention connections each token has. Local attention restricts the
attention mechanism to a fixed-size window around each token, ensuring that only nearby tokens are
considered. This approach is efficient for capturing local dependencies and reduces the overall com-
putational burden. Strided attention extends this idea by allowing tokens to attend to other tokens at
fixed intervals, further reducing the number of attention connections while maintaining the ability to
capture broader context across the sequence. Other methods, such as the ones proposed by Roy et al.
(2021) and Kitaev et al. (2020), take this concept further by making the sparsity pattern learnable.

Additionally, models like Longformer (Beltagy et al., 2020), ETC (Extended Transformer Construc-
tion) (Ainslie et al., 2020), and Big Bird (Zaheer et al., 2020) introduce global memory tokens to
address the limitations of traditional transformers in handling long sequences. These global mem-
ory tokens are specialized tokens that have attention connections to all other tokens in the sequence.
This mechanism enables the models to maintain a broader contextual understanding without the
quadratic memory and computational overhead typically associated with the self-attention mech-
anism in standard transformers. There are techniques such as Transformer-XL (Dai et al., 2019)
and Compressive Transformer (Rae et al., 2019) which employ segment-based recurrence to signif-
icantly reduce memory and computational costs. Despite their effectiveness, these approaches are
not tailored to the unique characteristics of log data.

There are several hierarchical transformers (Nawrot et al., 2021; Pappagari et al., 2019; Pan et al.,
2021; Liu et al., 2021b) that modify the vanilla transformer architecture to obtain hierarchical rep-
resentations of the data. However, these architectures primarily build the hierarchy by encoding
the tokens using downsampling, pooling, or segmentation techniques, which are not specifically
designed for the hierarchical log data we are interested in.

In this paper, we introduce a novel and efficient hierarchical transformer framework specifically
designed for log data, termed HLogformer. Our HLogformer framework addresses the unique chal-
lenges of log data by significantly reducing memory costs, making it feasible to apply transformers
to lengthy log sequences. Furthermore, HLogformer captures and leverages the inherent hierar-
chical structural information within the data, thereby enhancing representation learning. Our key
contributions are as follows:

• HLogformer is the first framework to design a dynamic hierarchical transformer tailored for
dictionary-like nested log data.

• HLogformer dramatically reduces memory costs associated with processing extensive log data.

• Comprehensive experiments demonstrate that HLogformer more effectively encodes hierarchical
contextual information, proving to be highly effective for downstream tasks such as synthetic
anomaly detection and product recommendation.

The rest of the paper is organized as follows. Section 2 reviews the related work, providing context
and background that underpins our study. In Section 3, we delve into the proposed methodology and
training strategy, detailing the innovative approaches and techniques we employ. Finally, Section 4
presents the experiments and results, showcasing the effectiveness and practical implications of our
proposed model.

2 RELATED WORKS

The related work in this area can be categorized into 2 main groups: efficient transformers includ-
ing incorporating global memory tokens, sparse attention mechanisms, segment-based recurrence
methods, and hierarchical architectures. Each category offers distinct approaches to addressing the
challenges of processing long sequences with transformers.
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2.1 EFFICIENT TRANSFORMERS

Global Memory Tokens in Transformers. Models like Longformer (Beltagy et al., 2020), ETC
(Extended Transformer Construction) (Ainslie et al., 2020), and Big Bird (Zaheer et al., 2020) in-
troduce global memory tokens to address the limitations of traditional transformers with long se-
quences. These tokens maintain attention connections to all other tokens in the sequence, allowing
the models to capture broader contextual understanding while avoiding the quadratic memory and
computational overhead of standard self-attention mechanisms.

Sparse Attention Mechanisms. Sparse transformers (Child et al., 2019) employ fixed patterns with
local and strided attention to address the inefficiencies of traditional transformers in processing long
sequences. Other methods, such as those proposed by (Roy et al., 2021) and (Kitaev et al., 2020),
enhance this concept by making the sparsity pattern learnable. These approaches adapt the attention
patterns during training to better capture the data structure.

Segment-based Recurrence. Segment-based recurrence methods, such as Transformer-XL (Dai
et al., 2019) and Compressive Transformer (Rae et al., 2019), introduce mechanisms to maintain and
leverage contextual information across segments, significantly reducing memory and computational
costs.

Despite their effectiveness, these approaches are not specifically tailored to the unique characteristics
of log data, which often exhibit a hierarchical, dictionary-like structure. This gap underscores the
need for models designed to capture and leverage the intrinsic structure of log data.

2.2 HIERARCHICAL ARCHITECTURES

Existing hierarchical transformer architectures (Nawrot et al., 2021; Pappagari et al., 2019; Pan et al.,
2021; Liu et al., 2021b; He et al., 2021) that primarily focus on compressing or encoding fine-grained
information and decoding it back to the original size if necessary. For example, Hourglass (Nawrot
et al., 2021) utilizes downsampling and upsampling techniques to create hierarchical and efficient
transformers. Pappagari et al. (2019) design hierarchical transformers by segmenting the input into
smaller chunks and feeding each chunk into the base model, effectively managing long documents.
Swin Transformer (Liu et al., 2021b) employs a shifted windows scheme to design an efficient
hierarchical architecture. sentence-level information in text data. However, these architectures often
prioritize compression and encoding efficiency over accurately representing the hierarchical nature
of data. They focus on reducing the size of the data for efficient processing and storage, and then
decoding it back when needed. These approaches do not fully align with the unique characteristics
of log data, which require capturing and leveraging their inherent hierarchical structure.

2.3 TRUSTWORTHINESS IN LANGUAGE MODELING

Trustworthiness in language modeling attract more attention in recent years (Morris et al., 2020;
Tao et al., 2024a;b; Luo et al., 2024). For instance, Li et al.Li et al. (2020) enhance text-to-speech
transformers by modifying attention and position embedding. Liu et al.(Liu et al., 2021a) introduce
an attention-based classifier for crisis detection. TableFormer (Yang et al., 2022) improves tabular
data encoding for robustness. However, these models are task-specific and lack generalizability. Han
et al. (Han et al., 2023) address this by proposing a general self-attention framework using robust
kernel density estimation (RKDE).

3 PROPOSED METHODOLOGY

In this section, we discuss the hierarchical structure inherent in log data and introduce our novel
model, HLogformer, designed to leverage this structure.

3.1 HIERARCHICAL STRUCTURE OF LOG DATA

As illustrated in Figure 1 log data, such as AWS CloudTrail Logs, can be represented in two distinct
ways: as a linear sequence (Figure 1 (a)) or as a hierarchical tree (Figure 1 (b)).
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(a) Log as a sequence (b) Log as a hierarchical tree

Figure 1: Different representations of log data: (a) treating log data as a sequence, and (b) treating
the log data as a hierarchical tree.

When log data is represented as a sequence (Figure 1 (a)), each log entry is treated as a part of a
continuous stream. This sequential representation allows for the application of traditional language
modeling techniques, where each log entry is analogous to a token in a sentence. By leveraging
vanilla language models it is possible to derive meaningful representations of the log data.

However, treating log data as a sequence can oversimplify the complex, nested relationships inherent
in the logs. Each log entry in systems like CloudTrail contains multiple fields and attributes orga-
nized in a hierarchical structure, reflecting the nested nature of the recorded events. For example,
user identity as a log entry contains nested attributes such as account Id, username, session context,
principal Id, where session context itself has a nested structure and contains attributes such as ses-
sion issuer, session arn, etc. Representing this data as a flat sequence can obscure these relationships
and result in a loss of critical contextual information.

Representing log data as a hierarchical tree (Figure 1 (b)) acknowledges and preserves the nested
structure of the log entries. In this representation, each node in the tree corresponds to a component
of the log entry, with parent-child relationships reflecting the inherent hierarchy. This approach
captures the multi-level dependencies and relationships within the data more effectively, allowing
for a richer and more accurate representation.

Figure 2: Schematic overview of HLogformer: HLogformer encapsulates the context segment into a
summary vector, which is then passed from low-level to high-level (left). Specifically, at each step,
we concatenate all the child nodes’ tokens Si and the previous summary vector σi−1 as the input.
The language model is then applied over this input to obtain the updated summary vector and the
token representation (right).

3.2 HLOGFORMER: A HIERARCHICAL LOG TRANSFORMER

To fully leverage the hierarchical structure inherent in log data, we introduce a novel architecture
called HLogformer, illustrated in Figure 2 . This architecture is inspired by context compression
techniques (Chevalier et al., 2023), but unlike them, HLogformer segments log data according to
its hierarchical tree structure. This segmentation process progresses systematically from low-level
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details to high-level summaries, mirroring the natural organization of the data. Each segment corre-
sponds to a distinct level of the hierarchical structure, ensuring that the model respects and utilizes
the nested relationships within the log entries.

We can first represent the log data as a directed graph G = (V, E) where si denotes the text in node
vi ∈ V while eij = (vi, vj) ∈ E denotes the parent-child relationship in the log data. For step i, we
concatenate all the child nodes’ text of node i as the segment Si = Concat[{sj : eij ∈ G}].
The processing pipeline of HLogformer operates step-by-step as shown in Figure 2 (right), begin-
ning with the most granular details of the log data. At each step, the architecture processes a segment
of the log data, extracting and summarizing the relevant information. These summary vectors encap-
sulate the essential context and dependencies at the current level of the hierarchy. Once processed,
these summary vectors are passed to the next step, where higher-level segments are processed simi-
larly. At each step i, the segment Si is processed along with the summary vector from the previous
step σi−1. This process ensures that the hierarchical context is preserved and progressively refined
as we move through the log data. The following equation formalizes this process, where the log data
segment Si and the summary vector from the previous step σi−1are combined and processed by the
language model LM:

Zi, σi = LM([Si, σi−1]) (1)

In this equation, LM represents the language model that generates the new summary vector σi

and the intermediate representation Zi, capturing both the current segment’s information and the
accumulated context from previous segments.

Bidirectional Hierarchical Compression Paradigm. In the primary architecture described above,
summary vectors are passed exclusively from low-level to high-level segments. This allows high-
level tokens to access low-level information through the summary vectors, but it may result in low-
level tokens missing out some corresponding high-level context. To address this limitation, we
propose a bidirectional summary passing technique. This involves initially passing the summary
from low-level to high-level, and then reversing the process to ensure that low-level tokens can also
benefit from high-level information.

Complexity Analysis. Our HLogformer provides an efficient framework for handling long context
in log data. Assume the entire sequence has a length of L and is split into M equal-sized segments.
Then the vanilla transformer has a memory complexity of O(L2), while HLogformer reduces this to
O(L2/M).

Advantages. This progressive approach offers several key advantages: (1) By segmenting the
log data according to its hierarchical structure, HLogformer captures both fine-grained details and
broader contextual relationships, building a comprehensive and layered representation at each step;
(2) This method significantly reduces memory and computational costs by summarizing information
at each level and passing only the accumulated summary vectors to the next step, efficiently man-
aging the data’s complexity and size; (3) Additionally, HLogformer enhances the model’s ability
to perform downstream tasks such as anomaly detection, log classification, and predictive main-
tenance. By maintaining and leveraging the hierarchical structure, the model can more accurately
identify patterns and anomalies within the data.

3.3 TRAINING STRATEGY

Figure 3: Self-supervised Learning.

After building the hierarchical log
transformer, we need to adopt an ap-
propriate training strategy to obtain
informative representations and per-
form downstream tasks. Given that
log data typically lack labels, we pro-
pose a self-supervised learning ap-
proach using masked language mod-
eling loss and volume hypersphere
minimization loss, as illustrated in
Figure 3.
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Masked Language Modeling. To capture the contextual information of log data, we utilize the
masked language modeling (MLM) task, which has proven effective in various natural language
processing applications. This approach involves randomly selecting a subset of tokens from the input
data and replacing them with a special [MASK] token. The model is then tasked with predicting the
original tokens that were masked, allowing it to learn rich contextual representations of the log data.

The training objective for this task is defined by the cross-entropy loss function, which measures the
discrepancy between the predicted tokens and the actual tokens at the masked positions. Formally,
the MLM loss is expressed as:

LMLM =
1

M

M∑
i=1

ymaski
log ŷmaski

,

where M is the number of masked tokens, ymaski
represents the actual token at the i-th masked

position, and ŷmaski
is the predicted token at the same position. This loss function encourages the

model to accurately predict the masked tokens, thereby forcing it to learn the underlying patterns
and dependencies in the log data.

Volume Hypersphere Minimization. Given our assumption that all training data represents real
or normal instances, the task aligns well with one-class classification problems. In this context, we
draw inspiration from the One-Class Deep SVDD (Ruff et al., 2018) methodology. Our objective
is to map normal data points as closely as possible to the center of a hypersphere. This approach
effectively captures the notion of normality by ensuring that the representations of normal data points
are densely clustered.

To achieve this, we seek to minimize the volume of the hypersphere by positioning its center, denoted
as c, such that the mean distance of all data representations to this center is minimized. Formally,
this minimization problem is expressed through the following loss function:

LV HM =
1

N

N∑
i=1

∥Si − c∥,

where N is the number of data points, Si represents the accumulated summary vector of i-th data
point, and c = 1

N

∑N
i=1 S

i is the calculated center of all the data representations. This center c is
dynamically computed as the average of all summary vectors, ensuring that it accurately reflects the
central tendency of the normal data points.

By minimizing this loss, we encourage the model to produce representations that are not only com-
pact but also concentrated around a central point. This is crucial for downstream tasks such as
anomaly detection, where deviations from this central cluster can be effectively identified as anoma-
lies.

4 EXPERIMENTS

In this section, we will begin by evaluating the effectiveness of our HLogformer model in masked
language modeling tasks. This will involve assessing its ability to accurately predict masked tokens
within a sequence, thereby demonstrating its understanding of the underlying log data. Following
this, we will apply our model to several downstream tasks to further validate its utility and perfor-
mance. These tasks include fake log detection, where the model will be tested on its capability to
identify fraudulent or synthetic log entries, and visualization analysis, where we will leverage the
model’s outputs to generate insightful visual representations of the log data.

4.1 EXPERIMENTAL SETTING

In this section, we detail the dataset utilized for our experiments, the backbone architecture under-
pinning our models, and the hyperparameters selected to optimize performance.

Datasets. We use the following datasets in our experiments:

(1) CloudTrail Logs Dataset: It is an anonymized public log data from flaws.could that covers
over 3.5 years of data and 1,939,207 number of events.

6
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(2) OKTA: This log data is a private dataset which monitors and audits authentication activity to an
internal system.

(3) TrailDiscover: It is an evolving repository of CloudTrail events with detailed descriptions,
MITRE ATT&CK insights, real-world incidents, references and security implications.

(4) Amazon Reviews (Hou et al., 2024a): It is collected in 2023 by McAuley Lab. We use 9 cat-
egories of Item Metadata in Amazon Reviews including All Beauty, Amazon Fashion, Appliances,
Arts Crafts and Sewing, Automotive, CDs and Vinyl, Digital Music, Health and Personal Care, and
Magazine Subscriptions.

Backbone Architectures. Since our HLogformer is designed as a versatile plugin capable of in-
tegrating with any transformer architecture, we will experiment with a variety of backbone models
to demonstrate its adaptability and effectiveness. Specifically, we will employ several transformer
architectures, including the vanilla Transformer (Devlin et al., 2018) with random initialization,
pretrained Transformer (Devlin et al., 2018) with pretrained parameters in bert-base-uncase
and four efficient transformers: Linear Transformer (Katharopoulos et al., 2020), Reformer (Kitaev
et al., 2020), Routing Transformer (Roy et al., 2021), and Sparse Transformer (Child et al., 2019).

Hyperparameters. We use 8 transformer blocks for backbone models and 1 block for our HLog-
former. We set the number of training epochs to 100, the masking rate to 0.2, and the length of the
summary vector to 10 tokens. We use Adam optimizer with the learning rate of {0.01,0.005, 0.001
}, the Adam weight decay of {0.01, 0.001,0.0001}, Adam β1 of {0.3,0.6, 0.9}, and Adam β2 of {
0.9, 0.99, 0.999}. For each dataset, the training/validation/testing ratio is set as 5:1:1.

4.2 SELF-SUPERVISED LEARNING TASK

To demonstrate the effectiveness and efficiency of our HLogformer, we train the models with masked
language modeling loss and present the loss and the number of parameters in the transformer block
in Table 1 (Security datasets) and Table 2 (Amazon Reviews datasets). From these tables, we can
make the following observations:

• Our hierarchical framework is a highly effective plug-in module that significantly and consistently
reduces masked language modeling loss and therefore improves the ability to capture contextual
information.

• Our HLogformer requires only a small-sized transformer block while achieving better results than
the backbone models. As we mentioned in the hyperparameters section, we use only 1 transformer
block in HLogFormer to handle the segments at each step, while the backbone models require 8
blocks to be able to process the large log data.

Architecture CloudTrail OKTA TrailDiscover #Parameter
Vanilla Transformer 5.692 4.221 5.676 12636160
Vanilla-HLogformer (Ours) 4.158 2.888 4.921 789760
Pretrained Transformer 4.414 3.872 5.078 12636160
Pretrained-HLogformer (Ours) 3.850 2.611 4.995 789760
Linear Transformer 5.341 4.449 5.786 12636160
Linear-HLogformer (Ours) 4.092 2.833 5.101 789760
Reformer 4.184 3.504 5.460 13602048
Reformer-HLogformer (Ours) 4.106 3.215 5.004 8537856
Routing Transformer 6.937 5.313 9.716 10522624
Routing-HLogformer (Ours) 4.186 2.748 5.323 1315328
Sparse Transformer 8.421 5.446 8.871 4212736
Sparse-HLogformer (Ours) 4.766 3.789 5.508 526592

Table 1: Masked language modeling loss on security datasets.
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Beauty Fashion Appliances Arts Auto CDs Music Health Magazine
Vanilla Transformer 4.571 4.82 5.029 5.267 5.018 4.345 4.316 5.021 4.054
Vanilla-HLogformer (Ours) 3.686 3.46 3.999 4.372 4.57 3.449 3.565 3.936 3.159
Linear Transformer 4.690 4.668 5.078 5.124 6.176 4.208 4.360 5.023 4.126
Linear-HLogformer (Ours) 3.758 3.871 3.695 4.285 4.841 3.425 3.499 3.839 2.963
Reformer 4.069 4.212 4.389 4.581 4.741 3.545 3.978 4.349 3.283
Reformer-HLogformer (Ours) 3.593 4.003 4.014 4.095 4.150 3.386 3.540 3.976 2.785
Routing Transformer 8.494 8.503 7.871 8.771 8.665 7.454 7.532 8.561 7.400
Routing-HLogformer (Ours) 3.773 3.955 4.196 4.473 4.470 3.538 3.521 4.173 3.253
Sparse Transformer 9.680 7.654 7.470 10.196 9.666 8.629 9.561 9.567 8.687
Sparse-HLogformer (Ours) 4.127 3.994 5.071 4.967 4.798 3.718 4.147 4.611 3.837

Table 2: Masked language modeling loss on Amazon Review datasets.

4.3 SUPERVISED LEARNING TASK ON TRAILDISCOVER

Architecture Task 1 Task 2
Vanilla Transformer 67.059 69.412
Vanilla-HLogformer (Ours) 95.294 77.647
Linear Transformer 65.882 51.765
Linear-HLogformer (Ours) 92.941 57.647
Reformer 65.882 70.588
Reformer-HLogformer (Ours) 64.706 77.647
Routing Transformer 83.529 75.294
Routing-HLogformer (Ours) 90.588 78.824
Sparse Transformer 69.412 35.294
Sparse-HLogformer (Ours) 72.941 38.823

Table 3: Supervised classification task.

In addition to self-supervised learning, we also
perform experiments on a supervised classi-
fication task. We utilize the TrailDiscover
dataset which contains two features for each
data point: "usedInWild" which is a binary
feature and takes two values of True or False,
and "MITRE Attack Tactics" which is
a feature that takes ten different values of attack
type. Task 1 is the binary classification task
on "usedInWild" and Task 2 is the multi-
class classification task on "MITRE Attack
Tactics" . The experimental results in Ta-
ble 3 show the significant improvement of our
HLogformer over the backbone transformers.

4.4 SYNTHETIC ANOMALY DETECTION

After conducting the self-supervised training, we obtain the representation of log data as well as the
summary vector. Since we assume the model is trained with real data, fake data is likely to exhibit
a different distribution or representation pattern compared to real data. Motivated by this, we can
utilize the representations and summary vectors to perform fake data detection. To construct the
fake dataset, we mismatch the key-value pairs in the real data with a probability of p = 0.2. In this
section, we divide the fake detection into three parts: (1) detection by loss, (2) detection by fake
rate, and (3) detection by visualization.

Data CloudTrail OKTA TrailDiscover
Real 3.925/0.575 3.379/0.578 4.580/1.833
Fake 5.841/1.540 4.076/1.195 5.487/2.738

Table 4: Synthetic anomaly detection
by MLM/VHM loss.

Detection by loss. In this experiment, we train the model
with the total loss as LMLM + 0.1 · LV HM . As we train
with the real data, we expect the MLM and VHM losses
for real and fake data to show significant differences. Our
results in Table 4 demonstrate that the losses for fake data
are significantly higher than those for real data. This indi-
cates that self-supervised learning effectively captures the hierarchical context information of data.

Detection by fake rate. For each masked token i, we obtain an output probability ŷmaski
. We then

construct a candidate set Candidatei with the top T highest likelihoods. If the real value xmaski
∈

Candidatei, we consider token i as normal; otherwise, it is considered fake. Therefore, the fake rate
can be calculated as:

Fake Rate =
number of fake tokens

number of all masked tokens
× 100%.

We leave the detailed results with various T and threshold α in Appendix A.3 due to the space limit.

Detection by visualization. With VHM loss, we expect the summary vector of real data to be
closely mapped to the center of the hypersphere. Consequently, the representations of real and fake
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data should exhibit significantly different patterns. To validate this, we use locally linear embed-
ding (LLE) (Roweis & Saul, 2000), principal component analysis (PCA) and t-distributed stochastic
neighbor embedding (t-SNE) (Van der Maaten & Hinton, 2008) to perform the dimension reduction
and visualization for the summary vectors obtained from real and fake data. The following figures
in Figure 4 demonstrate that the representations of these two data sources are separable and form
distinct clusters.

Figure 4: Visualization of summary vectors.

4.5 PRODUCT RECOMMENDATION TASK

Precision-K (%) 1 3 5 8 10
Transformer 83.50 80.67 76.10 70.81 66.65
HLogformer 94.50 89.17 81.90 74.37 69.45

Table 5: Average precision at different K.

To further demonstrate the effectiveness and
advantages of our proposed HLogformer, we
conduct a product recommendation down-
stream task using the pretrained representa-
tions on Amazon Reviews dataset (Hou et al.,
2024a). Specifically, we select 200 users with the highest number of purchased items and collect
pretrained embeddings for all these items. For each user, the last 10 items purchased are treated as
positive samples, while 10 items randomly selected from the available item repository are treated
as negative samples. The average embedding of the remaining items is computed to represent the
user’s embedding. We then calculate the cosine similarity between each item’s embedding (both
positive and negative) and the user’s embedding to generate a score list. This score list is sorted,
and precision at K (precision-K) is computed based on the top K scores. Finally, we report the
average precision-K across all users, as shown in Table 5. The results demonstrate a significant and
consistent advantage of our HLogformer over the vanilla transformer across all the K.

4.6 ABLATION STUDIES

Architecture CloudTrail OKTA TrailDiscover
HLogformer 3.850 2.611 4.995
w/o pretrained 4.158 2.888 4.921
w/o hierarchy 5.692 3.269 5.676
w/o bi-direction 4.857 4.221 5.194
w/o summary 4.388 3.081 5.131

Table 6: Ablation studies.

To evaluate the effectiveness of our
HLogformer, we conduct ablation
studies on all of the components. We
report the MLM loss in the Table 6,
and the results show the effectiveness
of all the components in our HLog-
former.

5 CONCLUSION

In this paper, we propose a novel and efficient hierarchical log transformer for dictionary-like log
data. Our hierarchical transformers are specifically designed for log data such as CloudTrail and
employ an adaptively recursive architecture tailored to this data. Our hierarchical framework is uni-
versal, making it orthogonal and compatible with various transformer backbones to further enhance
performance and efficiency. Furthermore, our preliminary experiments show that the hierarchical
representation learned through self-supervised learning exhibits great potential for encoding log
data from events to groups and for various downstream tasks.
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A APPENDIX

A.1 SUMMARY VECTOR VISUALIZATION

With VHM loss, we expect the summary vector representations for the real and fake data exhibit
significantly different patterns. We visualize the learned summary vector representations using LLE,
PCA and t-SNE in Figure 5 The results show evident separable clusters for real/fake data.

Figure 5: Visualization of summary vectors.
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A.2 TRAINING LOSS CURVE

To validate the efffectiveness of our hierarchical framework, we track the training/testing loss during
the training in Figure 6. As can be observed in the curve, our hierarchical transformer exhibits faster
convergence and better performance.

Figure 6: Loss curve during training.

A.3 ANOMALY DETECTION BY FAKE RATE

Table 7 shows the significant differences in fake rates across different datasets under various T
values.

Data T=50 T=20 T=10 T=5 T=1
Real 4.08% 11.27% 18.03% 31.23% 73.54%
Fake 32.72% 45.36% 55.94% 68.73% 86.65%

Table 7: Fake rate of different datasets under various T .

By setting different thresholds α, we can predict whether a log is fake or not, i.e., a fake rate > α
indicates the log is fake. Consequently, we can calculate the accuracy for both real and fake logs
separately and then compute their average to determine the overall accuracy of the model. With T =
10, we show the average accuracy at different threshold levels in Table 8. The results demonstrate
that using the fake rate can achieve high accuracy (up to 95.96%) in synthetic anomaly detection.

Threshold α 25% 30% 35% 40%
Accuracy 91.92% 95.45% 95.96% 92.42%

Table 8: Average accuracy at different threshold levels.
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