
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HLOGFORMER: A HIERARCHICAL TRANSFORMER
FOR REPRESENTING LOG DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have gained widespread acclaim for their versatility in handling di-
verse data structures, yet their application to log data remains underexplored. Log
data, characterized by its hierarchical, dictionary-like structure, poses unique chal-
lenges when processed using conventional transformer models. Traditional meth-
ods often rely on manually crafted templates for parsing logs, a process that is
labor-intensive and lacks generalizability. Additionally, the linear treatment of log
sequences by standard transformers neglects the rich, nested relationships within
log entries, leading to suboptimal representations and excessive memory usage.
To address these issues, we introduce HLogformer, a novel hierarchical trans-
former framework specifically designed for log data. HLogformer leverages the
hierarchical structure of log entries to significantly reduce memory costs and en-
hance representation learning. Unlike traditional models that treat log data as flat
sequences, our framework processes log entries in a manner that respects their in-
herent hierarchical organization. This approach ensures comprehensive encoding
of both fine-grained details and broader contextual relationships. Our contribu-
tions are threefold: First, HLogformer is the first framework to design a dynamic
hierarchical transformer tailored for dictionary-like log data. Second, it dramati-
cally reduces memory costs associated with processing extensive log sequences.
Third, comprehensive experiments demonstrate that HLogformer more effectively
encodes hierarchical contextual information, proving to be highly effective for
downstream tasks such as synthetic anomaly detection and product recommenda-
tion.

1 INTRODUCTION

In recent years, transformers have garnered significant attention due to their versatility in handling
various data structures, including images, text, graphs, tabular data, and temporal graphs (Vaswani
et al., 2017; Dosovitskiy et al., 2020; Veličković et al., 2017; Huang et al., 2020; Wu et al., 2024; Hou
et al., 2024b). Despite their widespread application, there remains a notable gap in research focused
on log data. Log data inherently possesses a hierarchical, dictionary-like structure, where each log
entry is composed of nested fields and attributes. For instance, a single log entry might include
metadata like timestamps, user IDs, and event types at the top level, while containing nested details
such as specific actions taken, resources affected, and additional contextual information. Examples
of log data include Amazon EC2 logs, IAM logs, and web server access logs.

Traditional methods for processing log data often involve manually applying templates to parse
the logs before utilizing existing transformers. These templates are predefined rules or patterns
designed to extract structured information from unstructured log messages. While this approach can
be effective for certain types of logs, it has several limitations. Template-based methods can be labor-
intensive, requiring domain-specific knowledge to create and maintain the templates. Additionally,
they may not generalize well to diverse or evolving log formats, leading to incomplete or inaccurate
parsing.

When lengthy log sequences are input into transformers for representation learning and downstream
tasks, several challenges arise. Firstly, the memory requirements become excessive due to the sheer
volume of log data, making it difficult to process efficiently. Secondly, capturing the necessary
contextual information demands larger and more complex transformer models, which can be com-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

putationally expensive and resource-intensive. Lastly, there is a tendency to treat log data as linear
sequences, which neglects the hierarchical and structured nature of log entries. This linear treat-
ment fails to leverage the rich, nested relationships inherent in log data, resulting in sub-optimal
representation and analysis.

To address these challenges, researchers have proposed several approaches aimed at extending con-
text length and reducing memory costs. Sparse transformers (Child et al., 2019) leverage predefined
patterns to limit the number of attention connections each token has. Local attention restricts the
attention mechanism to a fixed-size window around each token, ensuring that only nearby tokens are
considered. This approach is efficient for capturing local dependencies and reduces the overall com-
putational burden. Strided attention extends this idea by allowing tokens to attend to other tokens at
fixed intervals, further reducing the number of attention connections while maintaining the ability to
capture broader context across the sequence. Other methods, such as the ones proposed by Roy et al.
(2021) and Kitaev et al. (2020), take this concept further by making the sparsity pattern learnable.

Additionally, models like Longformer (Beltagy et al., 2020), ETC (Extended Transformer Construc-
tion) (Ainslie et al., 2020), and Big Bird (Zaheer et al., 2020) introduce global memory tokens to
address the limitations of traditional transformers in handling long sequences. These global mem-
ory tokens are specialized tokens that have attention connections to all other tokens in the sequence.
This mechanism enables the models to maintain a broader contextual understanding without the
quadratic memory and computational overhead typically associated with the self-attention mech-
anism in standard transformers. There are techniques such as Transformer-XL (Dai et al., 2019)
and Compressive Transformer (Rae et al., 2019) which employ segment-based recurrence to signif-
icantly reduce memory and computational costs. Despite their effectiveness, these approaches are
not tailored to the unique characteristics of log data.

There are several hierarchical transformers (Nawrot et al., 2021; Pappagari et al., 2019; Pan et al.,
2021; Liu et al., 2021b) that modify the vanilla transformer architecture to obtain hierarchical rep-
resentations of the data. However, these architectures primarily build the hierarchy by encoding
the tokens using downsampling, pooling, or segmentation techniques, which are not specifically
designed for the hierarchical log data we are interested in.

In this paper, we introduce a novel and efficient hierarchical transformer framework specifically
designed for log data, termed HLogformer. Our HLogformer framework addresses the unique chal-
lenges of log data by significantly reducing memory costs, making it feasible to apply transformers
to lengthy log sequences. Furthermore, HLogformer captures and leverages the inherent hierar-
chical structural information within the data, thereby enhancing representation learning. Our key
contributions are as follows:

• HLogformer is the first framework to design a dynamic hierarchical transformer tailored for
dictionary-like nested log data.

• HLogformer dramatically reduces memory costs associated with processing extensive log data.

• Comprehensive experiments demonstrate that HLogformer more effectively encodes hierarchical
contextual information, proving to be highly effective for downstream tasks such as synthetic
anomaly detection and product recommendation.

The rest of the paper is organized as follows. Section 2 reviews the related work, providing context
and background that underpins our study. In Section 3, we delve into the proposed methodology and
training strategy, detailing the innovative approaches and techniques we employ. Finally, Section 4
presents the experiments and results, showcasing the effectiveness and practical implications of our
proposed model.

2 RELATED WORKS

The related work in this area can be categorized into 2 main groups: efficient transformers includ-
ing incorporating global memory tokens, sparse attention mechanisms, segment-based recurrence
methods, and hierarchical architectures. Each category offers distinct approaches to addressing the
challenges of processing long sequences with transformers.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 EFFICIENT TRANSFORMERS

Global Memory Tokens in Transformers. Models like Longformer (Beltagy et al., 2020), ETC
(Extended Transformer Construction) (Ainslie et al., 2020), and Big Bird (Zaheer et al., 2020) in-
troduce global memory tokens to address the limitations of traditional transformers with long se-
quences. These tokens maintain attention connections to all other tokens in the sequence, allowing
the models to capture broader contextual understanding while avoiding the quadratic memory and
computational overhead of standard self-attention mechanisms.

Sparse Attention Mechanisms. Sparse transformers (Child et al., 2019) employ fixed patterns with
local and strided attention to address the inefficiencies of traditional transformers in processing long
sequences. Other methods, such as those proposed by (Roy et al., 2021) and (Kitaev et al., 2020),
enhance this concept by making the sparsity pattern learnable. These approaches adapt the attention
patterns during training to better capture the data structure.

Segment-based Recurrence. Segment-based recurrence methods, such as Transformer-XL (Dai
et al., 2019) and Compressive Transformer (Rae et al., 2019), introduce mechanisms to maintain and
leverage contextual information across segments, significantly reducing memory and computational
costs.

Despite their effectiveness, these approaches are not specifically tailored to the unique characteristics
of log data, which often exhibit a hierarchical, dictionary-like structure. This gap underscores the
need for models designed to capture and leverage the intrinsic structure of log data.

2.2 HIERARCHICAL ARCHITECTURES

Existing hierarchical transformer architectures (Nawrot et al., 2021; Pappagari et al., 2019; Pan et al.,
2021; Liu et al., 2021b; He et al., 2021) that primarily focus on compressing or encoding fine-grained
information and decoding it back to the original size if necessary. For example, Hourglass (Nawrot
et al., 2021) utilizes downsampling and upsampling techniques to create hierarchical and efficient
transformers. Pappagari et al. (2019) design hierarchical transformers by segmenting the input into
smaller chunks and feeding each chunk into the base model, effectively managing long documents.
Swin Transformer (Liu et al., 2021b) employs a shifted windows scheme to design an efficient
hierarchical architecture. sentence-level information in text data. However, these architectures often
prioritize compression and encoding efficiency over accurately representing the hierarchical nature
of data. They focus on reducing the size of the data for efficient processing and storage, and then
decoding it back when needed. These approaches do not fully align with the unique characteristics
of log data, which require capturing and leveraging their inherent hierarchical structure.

2.3 TRUSTWORTHINESS IN LANGUAGE MODELING

Trustworthiness in language modeling attract more attention in recent years (Morris et al., 2020;
Tao et al., 2024a;b; Luo et al., 2024). For instance, Li et al.Li et al. (2020) enhance text-to-speech
transformers by modifying attention and position embedding. Liu et al.(Liu et al., 2021a) introduce
an attention-based classifier for crisis detection. TableFormer (Yang et al., 2022) improves tabular
data encoding for robustness. However, these models are task-specific and lack generalizability. Han
et al. (Han et al., 2023) address this by proposing a general self-attention framework using robust
kernel density estimation (RKDE).

3 PROPOSED METHODOLOGY

In this section, we discuss the hierarchical structure inherent in log data and introduce our novel
model, HLogformer, designed to leverage this structure.

3.1 HIERARCHICAL STRUCTURE OF LOG DATA

As illustrated in Figure 1 log data, such as AWS CloudTrail Logs, can be represented in two distinct
ways: as a linear sequence (Figure 1 (a)) or as a hierarchical tree (Figure 1 (b)).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Log as a sequence (b) Log as a hierarchical tree

Figure 1: Different representations of log data: (a) treating log data as a sequence, and (b) treating
the log data as a hierarchical tree.

When log data is represented as a sequence (Figure 1 (a)), each log entry is treated as a part of a
continuous stream. This sequential representation allows for the application of traditional language
modeling techniques, where each log entry is analogous to a token in a sentence. By leveraging
vanilla language models it is possible to derive meaningful representations of the log data.

However, treating log data as a sequence can oversimplify the complex, nested relationships inherent
in the logs. Each log entry in systems like CloudTrail contains multiple fields and attributes orga-
nized in a hierarchical structure, reflecting the nested nature of the recorded events. For example,
user identity as a log entry contains nested attributes such as account Id, username, session context,
principal Id, where session context itself has a nested structure and contains attributes such as ses-
sion issuer, session arn, etc. Representing this data as a flat sequence can obscure these relationships
and result in a loss of critical contextual information.

Representing log data as a hierarchical tree (Figure 1 (b)) acknowledges and preserves the nested
structure of the log entries. In this representation, each node in the tree corresponds to a component
of the log entry, with parent-child relationships reflecting the inherent hierarchy. This approach
captures the multi-level dependencies and relationships within the data more effectively, allowing
for a richer and more accurate representation.

Figure 2: Schematic overview of HLogformer: HLogformer encapsulates the context segment into a
summary vector, which is then passed from low-level to high-level (left). Specifically, at each step,
we concatenate all the child nodes’ tokens Si and the previous summary vector σi−1 as the input.
The language model is then applied over this input to obtain the updated summary vector and the
token representation (right).

3.2 HLOGFORMER: A HIERARCHICAL LOG TRANSFORMER

To fully leverage the hierarchical structure inherent in log data, we introduce a novel architecture
called HLogformer, illustrated in Figure 2 . This architecture is inspired by context compression
techniques (Chevalier et al., 2023), but unlike them, HLogformer segments log data according to
its hierarchical tree structure. This segmentation process progresses systematically from low-level

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

details to high-level summaries, mirroring the natural organization of the data. Each segment corre-
sponds to a distinct level of the hierarchical structure, ensuring that the model respects and utilizes
the nested relationships within the log entries.

We can first represent the log data as a directed graph G = (V, E) where si denotes the text in node
vi ∈ V while eij = (vi, vj) ∈ E denotes the parent-child relationship in the log data. For step i, we
concatenate all the child nodes’ text of node i as the segment Si = Concat[{sj : eij ∈ G}].
The processing pipeline of HLogformer operates step-by-step as shown in Figure 2 (right), begin-
ning with the most granular details of the log data. At each step, the architecture processes a segment
of the log data, extracting and summarizing the relevant information. These summary vectors encap-
sulate the essential context and dependencies at the current level of the hierarchy. Once processed,
these summary vectors are passed to the next step, where higher-level segments are processed simi-
larly. At each step i, the segment Si is processed along with the summary vector from the previous
step σi−1. This process ensures that the hierarchical context is preserved and progressively refined
as we move through the log data. The following equation formalizes this process, where the log data
segment Si and the summary vector from the previous step σi−1are combined and processed by the
language model LM:

Zi, σi = LM([Si, σi−1]) (1)

In this equation, LM represents the language model that generates the new summary vector σi

and the intermediate representation Zi, capturing both the current segment’s information and the
accumulated context from previous segments.

Bidirectional Hierarchical Compression Paradigm. In the primary architecture described above,
summary vectors are passed exclusively from low-level to high-level segments. This allows high-
level tokens to access low-level information through the summary vectors, but it may result in low-
level tokens missing out some corresponding high-level context. To address this limitation, we
propose a bidirectional summary passing technique. This involves initially passing the summary
from low-level to high-level, and then reversing the process to ensure that low-level tokens can also
benefit from high-level information.

Complexity Analysis. Our HLogformer provides an efficient framework for handling long context
in log data. Assume the entire sequence has a length of L and is split into M equal-sized segments.
Then the vanilla transformer has a memory complexity of O(L2), while HLogformer reduces this to
O(L2/M).

Advantages. This progressive approach offers several key advantages: (1) By segmenting the
log data according to its hierarchical structure, HLogformer captures both fine-grained details and
broader contextual relationships, building a comprehensive and layered representation at each step;
(2) This method significantly reduces memory and computational costs by summarizing information
at each level and passing only the accumulated summary vectors to the next step, efficiently man-
aging the data’s complexity and size; (3) Additionally, HLogformer enhances the model’s ability
to perform downstream tasks such as anomaly detection, log classification, and predictive main-
tenance. By maintaining and leveraging the hierarchical structure, the model can more accurately
identify patterns and anomalies within the data.

3.3 TRAINING STRATEGY

Figure 3: Self-supervised Learning.

After building the hierarchical log
transformer, we need to adopt an ap-
propriate training strategy to obtain
informative representations and per-
form downstream tasks. Given that
log data typically lack labels, we pro-
pose a self-supervised learning ap-
proach using masked language mod-
eling loss and volume hypersphere
minimization loss, as illustrated in
Figure 3.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Masked Language Modeling. To capture the contextual information of log data, we utilize the
masked language modeling (MLM) task, which has proven effective in various natural language
processing applications. This approach involves randomly selecting a subset of tokens from the input
data and replacing them with a special [MASK] token. The model is then tasked with predicting the
original tokens that were masked, allowing it to learn rich contextual representations of the log data.

The training objective for this task is defined by the cross-entropy loss function, which measures the
discrepancy between the predicted tokens and the actual tokens at the masked positions. Formally,
the MLM loss is expressed as:

LMLM =
1

M

M∑
i=1

ymaski
log ŷmaski

,

where M is the number of masked tokens, ymaski
represents the actual token at the i-th masked

position, and ŷmaski
is the predicted token at the same position. This loss function encourages the

model to accurately predict the masked tokens, thereby forcing it to learn the underlying patterns
and dependencies in the log data.

Volume Hypersphere Minimization. Given our assumption that all training data represents real
or normal instances, the task aligns well with one-class classification problems. In this context, we
draw inspiration from the One-Class Deep SVDD (Ruff et al., 2018) methodology. Our objective
is to map normal data points as closely as possible to the center of a hypersphere. This approach
effectively captures the notion of normality by ensuring that the representations of normal data points
are densely clustered.

To achieve this, we seek to minimize the volume of the hypersphere by positioning its center, denoted
as c, such that the mean distance of all data representations to this center is minimized. Formally,
this minimization problem is expressed through the following loss function:

LV HM =
1

N

N∑
i=1

∥Si − c∥,

where N is the number of data points, Si represents the accumulated summary vector of i-th data
point, and c = 1

N

∑N
i=1 S

i is the calculated center of all the data representations. This center c is
dynamically computed as the average of all summary vectors, ensuring that it accurately reflects the
central tendency of the normal data points.

By minimizing this loss, we encourage the model to produce representations that are not only com-
pact but also concentrated around a central point. This is crucial for downstream tasks such as
anomaly detection, where deviations from this central cluster can be effectively identified as anoma-
lies.

4 EXPERIMENTS

In this section, we will begin by evaluating the effectiveness of our HLogformer model in masked
language modeling tasks. This will involve assessing its ability to accurately predict masked tokens
within a sequence, thereby demonstrating its understanding of the underlying log data. Following
this, we will apply our model to several downstream tasks to further validate its utility and perfor-
mance. These tasks include fake log detection, where the model will be tested on its capability to
identify fraudulent or synthetic log entries, and visualization analysis, where we will leverage the
model’s outputs to generate insightful visual representations of the log data.

4.1 EXPERIMENTAL SETTING

In this section, we detail the dataset utilized for our experiments, the backbone architecture under-
pinning our models, and the hyperparameters selected to optimize performance.

Datasets. We use the following datasets in our experiments:

(1) CloudTrail Logs Dataset: It is an anonymized public log data from flaws.could that covers
over 3.5 years of data and 1,939,207 number of events.

6

https://summitroute.com/blog/2020/10/09/public_dataset_of_cloudtrail_logs_from_flaws_cloud/


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(2) OKTA: This log data is a private dataset which monitors and audits authentication activity to an
internal system.

(3) TrailDiscover: It is an evolving repository of CloudTrail events with detailed descriptions,
MITRE ATT&CK insights, real-world incidents, references and security implications.

(4) Amazon Reviews (Hou et al., 2024a): It is collected in 2023 by McAuley Lab. We use 9 cat-
egories of Item Metadata in Amazon Reviews including All Beauty, Amazon Fashion, Appliances,
Arts Crafts and Sewing, Automotive, CDs and Vinyl, Digital Music, Health and Personal Care, and
Magazine Subscriptions.

Backbone Architectures. Since our HLogformer is designed as a versatile plugin capable of in-
tegrating with any transformer architecture, we will experiment with a variety of backbone models
to demonstrate its adaptability and effectiveness. Specifically, we will employ several transformer
architectures, including the vanilla Transformer (Devlin et al., 2018) with random initialization,
pretrained Transformer (Devlin et al., 2018) with pretrained parameters in bert-base-uncase
and four efficient transformers: Linear Transformer (Katharopoulos et al., 2020), Reformer (Kitaev
et al., 2020), Routing Transformer (Roy et al., 2021), and Sparse Transformer (Child et al., 2019).

Hyperparameters. We use 8 transformer blocks for backbone models and 1 block for our HLog-
former. We set the number of training epochs to 100, the masking rate to 0.2, and the length of the
summary vector to 10 tokens. We use Adam optimizer with the learning rate of {0.01,0.005, 0.001
}, the Adam weight decay of {0.01, 0.001,0.0001}, Adam β1 of {0.3,0.6, 0.9}, and Adam β2 of {
0.9, 0.99, 0.999}. For each dataset, the training/validation/testing ratio is set as 5:1:1.

4.2 SELF-SUPERVISED LEARNING TASK

To demonstrate the effectiveness and efficiency of our HLogformer, we train the models with masked
language modeling loss and present the loss and the number of parameters in the transformer block
in Table 1 (Security datasets) and Table 2 (Amazon Reviews datasets). From these tables, we can
make the following observations:

• Our hierarchical framework is a highly effective plug-in module that significantly and consistently
reduces masked language modeling loss and therefore improves the ability to capture contextual
information.

• Our HLogformer requires only a small-sized transformer block while achieving better results than
the backbone models. As we mentioned in the hyperparameters section, we use only 1 transformer
block in HLogFormer to handle the segments at each step, while the backbone models require 8
blocks to be able to process the large log data.

Architecture CloudTrail OKTA TrailDiscover #Parameter
Vanilla Transformer 5.692 4.221 5.676 12636160
Vanilla-HLogformer (Ours) 4.158 2.888 4.921 789760
Pretrained Transformer 4.414 3.872 5.078 12636160
Pretrained-HLogformer (Ours) 3.850 2.611 4.995 789760
Linear Transformer 5.341 4.449 5.786 12636160
Linear-HLogformer (Ours) 4.092 2.833 5.101 789760
Reformer 4.184 3.504 5.460 13602048
Reformer-HLogformer (Ours) 4.106 3.215 5.004 8537856
Routing Transformer 6.937 5.313 9.716 10522624
Routing-HLogformer (Ours) 4.186 2.748 5.323 1315328
Sparse Transformer 8.421 5.446 8.871 4212736
Sparse-HLogformer (Ours) 4.766 3.789 5.508 526592

Table 1: Masked language modeling loss on security datasets.

7

https://github.com/adanalvarez/TrailDiscover/tree/main
https://amazon-reviews-2023.github.io/main.html


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Beauty Fashion Appliances Arts Auto CDs Music Health Magazine
Vanilla Transformer 4.571 4.82 5.029 5.267 5.018 4.345 4.316 5.021 4.054
Vanilla-HLogformer (Ours) 3.686 3.46 3.999 4.372 4.57 3.449 3.565 3.936 3.159
Linear Transformer 4.690 4.668 5.078 5.124 6.176 4.208 4.360 5.023 4.126
Linear-HLogformer (Ours) 3.758 3.871 3.695 4.285 4.841 3.425 3.499 3.839 2.963
Reformer 4.069 4.212 4.389 4.581 4.741 3.545 3.978 4.349 3.283
Reformer-HLogformer (Ours) 3.593 4.003 4.014 4.095 4.150 3.386 3.540 3.976 2.785
Routing Transformer 8.494 8.503 7.871 8.771 8.665 7.454 7.532 8.561 7.400
Routing-HLogformer (Ours) 3.773 3.955 4.196 4.473 4.470 3.538 3.521 4.173 3.253
Sparse Transformer 9.680 7.654 7.470 10.196 9.666 8.629 9.561 9.567 8.687
Sparse-HLogformer (Ours) 4.127 3.994 5.071 4.967 4.798 3.718 4.147 4.611 3.837

Table 2: Masked language modeling loss on Amazon Review datasets.

4.3 SUPERVISED LEARNING TASK ON TRAILDISCOVER

Architecture Task 1 Task 2
Vanilla Transformer 67.059 69.412
Vanilla-HLogformer (Ours) 95.294 77.647
Linear Transformer 65.882 51.765
Linear-HLogformer (Ours) 92.941 57.647
Reformer 65.882 70.588
Reformer-HLogformer (Ours) 64.706 77.647
Routing Transformer 83.529 75.294
Routing-HLogformer (Ours) 90.588 78.824
Sparse Transformer 69.412 35.294
Sparse-HLogformer (Ours) 72.941 38.823

Table 3: Supervised classification task.

In addition to self-supervised learning, we also
perform experiments on a supervised classi-
fication task. We utilize the TrailDiscover
dataset which contains two features for each
data point: "usedInWild" which is a binary
feature and takes two values of True or False,
and "MITRE Attack Tactics" which is
a feature that takes ten different values of attack
type. Task 1 is the binary classification task
on "usedInWild" and Task 2 is the multi-
class classification task on "MITRE Attack
Tactics" . The experimental results in Ta-
ble 3 show the significant improvement of our
HLogformer over the backbone transformers.

4.4 SYNTHETIC ANOMALY DETECTION

After conducting the self-supervised training, we obtain the representation of log data as well as the
summary vector. Since we assume the model is trained with real data, fake data is likely to exhibit
a different distribution or representation pattern compared to real data. Motivated by this, we can
utilize the representations and summary vectors to perform fake data detection. To construct the
fake dataset, we mismatch the key-value pairs in the real data with a probability of p = 0.2. In this
section, we divide the fake detection into three parts: (1) detection by loss, (2) detection by fake
rate, and (3) detection by visualization.

Data CloudTrail OKTA TrailDiscover
Real 3.925/0.575 3.379/0.578 4.580/1.833
Fake 5.841/1.540 4.076/1.195 5.487/2.738

Table 4: Synthetic anomaly detection
by MLM/VHM loss.

Detection by loss. In this experiment, we train the model
with the total loss as LMLM + 0.1 · LV HM . As we train
with the real data, we expect the MLM and VHM losses
for real and fake data to show significant differences. Our
results in Table 4 demonstrate that the losses for fake data
are significantly higher than those for real data. This indi-
cates that self-supervised learning effectively captures the hierarchical context information of data.

Detection by fake rate. For each masked token i, we obtain an output probability ŷmaski
. We then

construct a candidate set Candidatei with the top T highest likelihoods. If the real value xmaski
∈

Candidatei, we consider token i as normal; otherwise, it is considered fake. Therefore, the fake rate
can be calculated as:

Fake Rate =
number of fake tokens

number of all masked tokens
× 100%.

We leave the detailed results with various T and threshold α in Appendix A.3 due to the space limit.

Detection by visualization. With VHM loss, we expect the summary vector of real data to be
closely mapped to the center of the hypersphere. Consequently, the representations of real and fake

8

https://github.com/adanalvarez/TrailDiscover/tree/main


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

data should exhibit significantly different patterns. To validate this, we use locally linear embed-
ding (LLE) (Roweis & Saul, 2000), principal component analysis (PCA) and t-distributed stochastic
neighbor embedding (t-SNE) (Van der Maaten & Hinton, 2008) to perform the dimension reduction
and visualization for the summary vectors obtained from real and fake data. The following figures
in Figure 4 demonstrate that the representations of these two data sources are separable and form
distinct clusters.

Figure 4: Visualization of summary vectors.

4.5 PRODUCT RECOMMENDATION TASK

Precision-K (%) 1 3 5 8 10
Transformer 83.50 80.67 76.10 70.81 66.65
HLogformer 94.50 89.17 81.90 74.37 69.45

Table 5: Average precision at different K.

To further demonstrate the effectiveness and
advantages of our proposed HLogformer, we
conduct a product recommendation down-
stream task using the pretrained representa-
tions on Amazon Reviews dataset (Hou et al.,
2024a). Specifically, we select 200 users with the highest number of purchased items and collect
pretrained embeddings for all these items. For each user, the last 10 items purchased are treated as
positive samples, while 10 items randomly selected from the available item repository are treated
as negative samples. The average embedding of the remaining items is computed to represent the
user’s embedding. We then calculate the cosine similarity between each item’s embedding (both
positive and negative) and the user’s embedding to generate a score list. This score list is sorted,
and precision at K (precision-K) is computed based on the top K scores. Finally, we report the
average precision-K across all users, as shown in Table 5. The results demonstrate a significant and
consistent advantage of our HLogformer over the vanilla transformer across all the K.

4.6 ABLATION STUDIES

Architecture CloudTrail OKTA TrailDiscover
HLogformer 3.850 2.611 4.995
w/o pretrained 4.158 2.888 4.921
w/o hierarchy 5.692 3.269 5.676
w/o bi-direction 4.857 4.221 5.194
w/o summary 4.388 3.081 5.131

Table 6: Ablation studies.

To evaluate the effectiveness of our
HLogformer, we conduct ablation
studies on all of the components. We
report the MLM loss in the Table 6,
and the results show the effectiveness
of all the components in our HLog-
former.

5 CONCLUSION

In this paper, we propose a novel and efficient hierarchical log transformer for dictionary-like log
data. Our hierarchical transformers are specifically designed for log data such as CloudTrail and
employ an adaptively recursive architecture tailored to this data. Our hierarchical framework is uni-
versal, making it orthogonal and compatible with various transformer backbones to further enhance
performance and efficiency. Furthermore, our preliminary experiments show that the hierarchical
representation learned through self-supervised learning exhibits great potential for encoding log
data from events to groups and for various downstream tasks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary Fisher, Philip Pham,
Anirudh Ravula, Sumit Sanghai, Qifan Wang, and Li Yang. Etc: Encoding long and structured
inputs in transformers. arXiv preprint arXiv:2004.08483, 2020.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to
compress contexts. arXiv preprint arXiv:2305.14788, 2023.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Xing Han, Tongzheng Ren, Tan Minh Nguyen, Khai Nguyen, Joydeep Ghosh, and Nhat Ho. Design-
ing robust transformers using robust kernel density estimation. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=BqTv1Mtuhu.

Dailan He, Yusheng Zhao, Junyu Luo, Tianrui Hui, Shaofei Huang, Aixi Zhang, and Si Liu. Transre-
fer3d: Entity-and-relation aware transformer for fine-grained 3d visual grounding. In Proceedings
of the 29th ACM International Conference on Multimedia, MM ’21. ACM, October 2021. doi:
10.1145/3474085.3475397. URL http://dx.doi.org/10.1145/3474085.3475397.

Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi Chen, and Julian McAuley. Bridging language
and items for retrieval and recommendation. arXiv preprint arXiv:2403.03952, 2024a.

Zhichao Hou, Weizhi Gao, Yuchen Shen, and Xiaorui Liu. Protransformer: Robustify transformers
via plug-and-play paradigm. In ICLR 2024 Workshop on Reliable and Responsible Foundation
Models, 2024b.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Naihan Li, Yanqing Liu, Yu Wu, Shujie Liu, Sheng Zhao, and Ming Liu. Robutrans: A robust
transformer-based text-to-speech model. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 8228–8235, 2020.

Junhua Liu, Trisha Singhal, Lucienne TM Blessing, Kristin L Wood, and Kwan Hui Lim. Crisisbert:
a robust transformer for crisis classification and contextual crisis embedding. In Proceedings of
the 32nd ACM conference on hypertext and social media, pp. 133–141, 2021a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021b.

10

https://openreview.net/forum?id=BqTv1Mtuhu
https://openreview.net/forum?id=BqTv1Mtuhu
http://dx.doi.org/10.1145/3474085.3475397


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Junyu Luo, Xiao Luo, Kaize Ding, Jingyang Yuan, Zhiping Xiao, and Ming Zhang. Robustft: Robust
supervised fine-tuning for large language models under noisy response, 2024. URL https:
//arxiv.org/abs/2412.14922.

John X Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. Textattack: A frame-
work for adversarial attacks, data augmentation, and adversarial training in nlp. arXiv preprint
arXiv:2005.05909, 2020.

Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski, Łukasz Kaiser, Yuhuai Wu, Christian Szegedy,
and Henryk Michalewski. Hierarchical transformers are more efficient language models. arXiv
preprint arXiv:2110.13711, 2021.

Zizheng Pan, Bohan Zhuang, Jing Liu, Haoyu He, and Jianfei Cai. Scalable vision transformers
with hierarchical pooling. In Proceedings of the IEEE/cvf international conference on computer
vision, pp. 377–386, 2021.

Raghavendra Pappagari, Piotr Zelasko, Jesús Villalba, Yishay Carmiel, and Najim Dehak. Hierar-
chical transformers for long document classification. In 2019 IEEE automatic speech recognition
and understanding workshop (ASRU), pp. 838–844. IEEE, 2019.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. science, 290(5500):2323–2326, 2000.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguis-
tics, 9:53–68, 2021.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexan-
der Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In International
conference on machine learning, pp. 4393–4402. PMLR, 2018.

Yiyi Tao, Yixian Shen, Hang Zhang, Yanxin Shen, Lun Wang, Chuanqi Shi, and Shaoshuai
Du. Robustness of large language models against adversarial attacks, 2024a. URL https:
//arxiv.org/abs/2412.17011.

Yiyi Tao, Zhuoyue Wang, Hang Zhang, and Lun Wang. Nevlp: Noise-robust framework for ef-
ficient vision-language pre-training. arXiv preprint arXiv:2409.09582, 2024b. URL https:
//arxiv.org/abs/2409.09582.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Liming Wu, Zhichao Hou, Jirui Yuan, Yu Rong, and Wenbing Huang. Equivariant spatio-temporal
attentive graph networks to simulate physical dynamics. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Jingfeng Yang, Aditya Gupta, Shyam Upadhyay, Luheng He, Rahul Goel, and Shachi Paul. Table-
Former: Robust transformer modeling for table-text encoding. In Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pp. 528–537, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.40. URL
https://aclanthology.org/2022.acl-long.40.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

11

https://arxiv.org/abs/2412.14922
https://arxiv.org/abs/2412.14922
https://arxiv.org/abs/2412.17011
https://arxiv.org/abs/2412.17011
https://arxiv.org/abs/2409.09582
https://arxiv.org/abs/2409.09582
https://aclanthology.org/2022.acl-long.40


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 SUMMARY VECTOR VISUALIZATION

With VHM loss, we expect the summary vector representations for the real and fake data exhibit
significantly different patterns. We visualize the learned summary vector representations using LLE,
PCA and t-SNE in Figure 5 The results show evident separable clusters for real/fake data.

Figure 5: Visualization of summary vectors.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A.2 TRAINING LOSS CURVE

To validate the efffectiveness of our hierarchical framework, we track the training/testing loss during
the training in Figure 6. As can be observed in the curve, our hierarchical transformer exhibits faster
convergence and better performance.

Figure 6: Loss curve during training.

A.3 ANOMALY DETECTION BY FAKE RATE

Table 7 shows the significant differences in fake rates across different datasets under various T
values.

Data T=50 T=20 T=10 T=5 T=1
Real 4.08% 11.27% 18.03% 31.23% 73.54%
Fake 32.72% 45.36% 55.94% 68.73% 86.65%

Table 7: Fake rate of different datasets under various T .

By setting different thresholds α, we can predict whether a log is fake or not, i.e., a fake rate > α
indicates the log is fake. Consequently, we can calculate the accuracy for both real and fake logs
separately and then compute their average to determine the overall accuracy of the model. With T =
10, we show the average accuracy at different threshold levels in Table 8. The results demonstrate
that using the fake rate can achieve high accuracy (up to 95.96%) in synthetic anomaly detection.

Threshold α 25% 30% 35% 40%
Accuracy 91.92% 95.45% 95.96% 92.42%

Table 8: Average accuracy at different threshold levels.

13


	Introduction
	Related Works
	 Efficient Transformers
	Hierarchical Architectures
	Trustworthiness in Language Modeling

	Proposed Methodology
	Hierarchical Structure of Log Data
	HLogformer: A Hierarchical Log Transformer
	Training Strategy

	 Experiments
	Experimental Setting
	Self-Supervised Learning Task
	Supervised Learning Task on TrailDiscover
	Synthetic Anomaly Detection
	Product Recommendation Task
	Ablation Studies

	Conclusion
	Appendix
	Summary vector visualization
	Training Loss Curve
	Anomaly Detection by Fake Rate


