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Abstract— Discovering an informative, or agent-centric, state
representation that encodes only the relevant information while
discarding the irrelevant is a key challenge towards scaling
reinforcement learning algorithms and efficiently applying them
to downstream tasks. Prior works studied this problem in
high-dimensional Markovian environments, when the current
observation may be a complex object but is sufficient to
decode the informative state. In this work, we consider the
problem of discovering the agent-centric state in the more
challenging high-dimensional non-Markovian setting, when the
state can be decoded from a sequence of past observations.
We establish that generalized inverse models can be adapted
for learning agent-centric state representation for this task.
Our results include asymptotic theory as well as negative
results for alternative intuitive algorithms, such as encoding
with only a forward-running sequence model. We complement
these findings with a thorough empirical study on the agent-
centric state discovery abilities of the different alternatives we
put forward. Particularly notable is our analysis of past actions,
where we show that these can be a double-edged sword: making
the algorithms more successful when used correctly and causing
dramatic failure when used incorrectly.

I. INTRODUCTION

Reinforcement Learning (RL) and its associated tasks of
planning and exploration are dramatically easier in a small
Markovian state space than in a high-dimensional, Partially
Observed Markov Decision Process (POMDP). For example,
controlling a car from a set of coordinates and velocities is
much easier than controlling a car from first-person camera
images. This gap explains why many of the successes of RL
have come in domains where this minimal Markovian state
space is given or is simple to learn. At the same time, this
gap suggests an opportunity:

Can we devise an unsupervised learning algorithm for
automatically discovering the informative Markovian state

space from a rich non-Markovian observation space?

Having such capability has many merits. It can allow faster
adaptation for downstream tasks, it simplifies the debugging
of the learned representation, and it enables the use of large
corpuses of unsupervised datasets in an efficient manner.
Learning to extract effective information in complex control
systems can be notoriously difficult in general. Indeed, in
recent years, much effort has been devoted to tackling this
problem in high-dimensional and Markovian systems in the
RL community [1], [2], [3], [4], [5], [6]. However, in many
real-world control and decision problems, the immediate ob-
servation does not contain the complete relevant information
required for optimal behavior, and the environment may be
non-Markovian. Hence, in practice, an algorithm designer
often faces a double challenge: learning in the presence of

both non-Markovian and high-dimensional data. To the best
of our knowledge, no prior work has focused on developing
techniques for state space discovery in such a setting.

In this work, we take a first step towards a solution for
the general problem by considering a special and prevalent
class of non-Markovian environments. We consider the class
of POMDPs with finite-memory, which we refer to as FM-
POMDPs, and design techniques to recover the informative
state in a high-dimensional setting. Intuitively, for an FM-
POMDP, the state can be decoded from a finite sequence of
past observations and is often encountered in control and de-
cision problems (e.g., to decode the velocity or acceleration
of an object, a few previous observations are required). Due
to the significance of such a system, many past works have
put forward techniques for solving and learning in decision
problems with memory, both in practice and theory [7], [8],
[9], [10], [11], [12]). Yet, none explicitly focused on state
discovery.

Provably capturing relevant agent states while discarding
distractors in Markovian environments has become a widely
studied problem in both reinforcement learning theory [5],
[13], [14] and experimentation [15], [16], [6]. These works
have demonstrated the ability to discover an agent-centric
state, which captures all information that is relevant to the
control of the agent while discarding exogenous noise, the
information that is present in the observations but unrelated
to the control of the agent. The multi-step inverse kinematics
algorithm, studied in these prior works, consists of predict-
ing the first action that an agent takes between an initial
observation and an observation after random k steps into the
future; predicting an action that caused a future observation
from current state. Inverse kinematics has become a popular
approach as it is relatively easy to implement and has
theoretical guarantees for filtering exogenous noise. At the
same time, direct implementation of this approach fails for
the FM-POMDP setting because the current observation may
be insufficient to encode the state.

We first show that naive approaches to generalize multi-
step inverse kinematics can fail, both theoretically and empir-
ically in the FM-POMDP setting. For instance, if a sequence
is encoded using an RNN (or any other directed sequence
model) and the hidden states are used to predict actions,
we show that there is an “action recorder” problem where
the model can learn shortcuts to representing the true state.
Under assumptions of past and future decodability, we gen-
eralize inverse models to the high-dimensional FM-POMDP
setting and establish, empirically and theoretically, that it
recovers the latent state. Our results show that our variant of
the multi-step inverse model can indeed succeed in the FM-



Fig. 1: We examine several objectives for generalizing inverse kinematics to FM-POMDPs. MIK+A uses past-decodability
and future-decodability with a gap of k masked steps, FJ+A uses past-decodability with a gap of k steps, while AH uses
past-decodability over the entire sequence.

POMDP setting. This considers the information of sequences
of observations and actions, from both the past and the future,
where we can use a forward-backward sequence model
to learn agent-centric representations. Experimentally, we
validate precise recovery of the state on acceleration-control,
information masking, first-person perspective control, and
delayed signal problems. Finally, we also demonstrate the
usefulness of the proposed objectives in visual offline RL
tasks in presence of exogenous information, where we mask
out randomly stacked frames and add random masking of
patches to learn representations in a partially observable
offline RL setting.

II. BACKGROUND AND PRELIMINARIES

A. Proposed Setting.

We consider a finite-memory POMDP in which the
state is assumed to be decodable from a short history
of observations [10]. Further, as in many applications in
practice, we assume the observations are in high-dimension.
This may give rise to the presence of exogenous noise with
non-trivial time correlation. This setting can be modelled
as an Exogenous Block MDP [5], [16], a rich observation
setting in which the observations consists of an agent-centric
and exogenous part of the state. This definition assumes that
exogenous noise has no interaction with the agent-centric
state, which is stricter than the exogenous MDP definition
introduced by [17]. Our proposed setting combines these
to consider an Agent-Centric FM-POMDP in which we
assume that the agent-centric state is decodable from a short
history of observations.

B. Agent-Centric FM-POMDP.

We consider a finite-memory episodic Partially Observ-
able Markov Decision Process (FM-POMDP), which can be
specified by M = (S,Ξ,O,A, H,P,O, r). Here S is the

unobservable agent-centric state space, Ξ is the unobservable
exogenous state space (for convenience, Z = S × Ξ), O is
the observation space, A is the action space, and H is the
horizon. P = {Ph}Hh=1 is a collection of unknown transition
probabilities with P(z′ | z, a) equal to the probability of
transitioning to z′ after taking action a in state z. O =
{Oh}Hh=1 are the unknown emissions with Oh(o | s, ξ)
equal to probability that the environment emits observation
o when in agent-centric state s and exogenous state ξ at
the hth step. The block assumption holds if the support of
the emission distributions of any two states are disjoint,
supp(q(· | z1)) ∩ supp(q(·|z2)) = ∅ when z1 ̸= z2., where
supp(q(· | z)) = {o ∈ O | q(o | z) > 0} for any state z. We
assume our action space is finite and our agent-centric state
space is also finite.

The agent-centric FM-POMDP is concerned with the
structure of the state space Z . More concretely, the state
space Z = S × Ξ consists of an agent-centric state s ∈ S
and ξ ∈ Ξ, such that z = (s, ξ). The state dynamics are
assumed to factorize as P(s′, ξ′|s, ξ, a) = P(s′|s, a)P(ξ′|ξ).
We do not consider the episodic setting, but only assume
access to a single trajectory. The agent interacts with the
environment, generating an observation and action sequence,
(z1, o1, a1, z2, o2, a2, · · · ) where z1 ∼ µ(·). The latent
dynamics follow zt+1 ∼ T (z′ | zt, at) and observations
are generated from the latent state at the same time step:
ot ∼ q(· | zt). The agent does not observe the latent
states (z1, z2, · · · ), instead it receives only the observations
(o1, o2, · · · ). We use Õm to denote the set of augmented
observations of length m given by Õm = (O × A)m × O.
Moreover, we will introduce the notation that õt =
(ot, at−1), which can be seen as the observation augmented
with the previous action. Lastly, the agent chooses actions
using a policy which can most generally depend on the
entire t-step history of observations and previous actions



π : Õt → ∆(A), so that at ∼ π(·|õ1, ..., õt−1, õt).
We assume that the agent-centric dynamics are determin-

istic and that the diameter of the control-endogenous part
of the state space is bounded. In other words, there is an
optimal policy to reach any state from any other state in
a finite number of steps: the length of the shortest path
between any s1 ∈ S to any s2 ∈ S is bounded by D. These
assumptions are required for establishing the theoretical
guarantees in [16], we built upon in this work.

C. Past and Future Decodability Assumptions.

We now present the key structural assumption of this
paper. We assume that a prefix of length m of the history
suffices to decode the latent state and also that a suffix of
length n of the future suffices to decode the latent state.

Additionally, we will introduce some extra notation for
conditioning on either the past or future segments of a
sequence. Let õP(h,m) = õmax{1,h−m}:h be the past obser-
vations and let õF(h,n) = õmin{1,h+n}:H refer to the future
observations.

assumptionm-step past decodability] There exists an un-
known decoder ϕf

⋆,s : Õm → S such that for every reachable
trajectory τ = s1:H , we have sh = ϕf

⋆,s(õP(h,m)).

assumptionn-step future decodability] There exists an un-
known decoder ϕb

⋆,s : Õn → S such that for every reachable
trajectory τ = s1:H , we have sh = ϕb

⋆,s(õF(h,n)).

We note that the decodability assumption on the observa-
tion and previous action sequence ĩ is more general than an
analogous decodability assumption on the observations alone
o. Indeed, in practical applications it may be the case that
prior actions are required to decode the current state, and
hence we work with this more general assumption. In fact,
in the experimental section we will show that, empirically,
adding actions improves our algorithm’s performance.

III. PROPOSED OBJECTIVES

In this section, we describe in detail a set of possible in-
verse kinematic based objectives for the FM-POMDP setting.
One is All History (AH), which involves using the entire se-
quence of observations to predict actions. Another is Forward
Jump (FJ), in which a partial history of the sequence is used
from both the past and a number of steps in the future. Fi-
nally, Masked Inverse Kinematics uses a partial history of the
sequence from the past and a partial future of the sequence a
number of steps in the future. For all of these objectives, we
will consider a variant which augments each observation in
the input sequence with the previous action. These objectives
are visualized in Figure 1 and summarized in Table I.

Our high-level strategy will be to study which of these
objectives are sufficient to obtain a reduction to the analysis
in [16], which guarantees recovery of the true minimal agent-
centric state. To do this, we will first study the Bayes-optimal
solution of each objective in terms of the true agent-centric
state (section III-A). Following this, we will study which of
these Bayes-optimal solutions are sufficient to complete the
reduction in section III-B.

A. The Bayes Optimal Classifier of Candidate Objectives

We start by analyzing the Bayes optimal solution of few
inverse kinematics objectives, namely, objectives that aim to
predict an action from a sequence of observations. These
closed form solutions will later motivate the design of the
loss objectives, and guide us towards choosing the proper
way of implementing inverse kinematics for the FM-POMDP
setting. These results are proved in Appendix B, C, D.

Proposed Masked-Inverse Kinematics (MIK+A).
Masked inverse kinematics with actions (MIK+A)
achieves the correct Bayes-optimal classifier for the
multi-step inverse model, with dependence on only
the agent-centric part of the state, i.e., st and st+k.
Let st = ϕf

s (õP(t,m)), st+k = ϕb
s(õF(t+k,n)), ξt =

ϕξ(õ1:t), ξt+k = ϕξ(õ1:t+k), zt = (st, ξt). Let k ∼ U(1, D)
. The following result is proved in the appendix for any
agent-centric policy π:

∀k ≥ 1, Pπ(at|õP(t,m), õF(t+k,n)) = Pπ(at|st, st+k)

The MIK objective is essentially the same, ex-
cept that there is no conditioning on past actions:
Pπ(at|oP(t,m), oF(t+k,n)), and would have the same Bayes-
optimal classifier result if we relaxed the past and future
decodability assumptions to not require actions.

All History (AH) Objective. When we condition our
encoder on the entire history, the Bayes-optimal multi-
step inverse model reduces to a one-step inverse model.
Intuitively, the optimal model could simulate an internal
one-step inverse model and store these predicted actions in
an internal buffer, and then retrieve them as necessary to
predict the true actions. The one-step inverse model fails to
learn the full agent-centric state, with counterexamples given
by [5], [16]. Let st = ϕs(o1:t), st+k = ϕs(o1:(t+k)), ξt =
ϕξ(o1:t), ξt+k = ϕξ(o1:t+k), zt = (st, ξt). Let k ∼ U(1, D).
In Appendix C, we prove the following:

∀k ≥ 1, Pπ(at|o1:t, o1:(t+k)) = Pπ(at|st, st+1)

All History with actions (AH+A) Objective. If the
observations are augmented with the last action, then these
actions can simply be stored to a buffer and retrieved to solve
the multi-step inverse modeling problem. Thus the Bayes
optimal multi-step inverse model in this setting can have
no dependence on the state. In the appendix we prove the
following but note that it’s a straightforward consequence of
this objective conditioning on the action at which is being
predicted:

∀k ≥ 1, Pπ(at|õ1:t, õ1:(t+k)) = 1

Forward-Jump Inverse Kinematics (FJ) Objective.
By an almost identical proof as the above, this algorithm
achieves the correct Bayes optimal classifier.



∀k ≥ 1, k > m,

Pπ(at|oP(t,m), oP(t+k,m)) = Pπ(at|st, st+k).

∀k ≥ 1, k ≤ m,

Pπ(at|oP(t,m), oP(t+k,m)) = Pπ(at|st, st+1).

Forward-Jump Inverse Kinematics with Actions
(FJ+A) Objective Likewise, when conditioning on actions
we have:

∀k ≥ 1, k > m,

Pπ(at|õP(t,m), õP(t+k,m)) = Pπ(at|st, st+k).

∀k ≥ 1, k ≤ m,

Pπ(at|õP(t,m), õP(t+k,m)) = 1.

B. Discovering the Complete Agent-Centric State

In previous section we described several inverse kinematic
terms that may be useful for discovering the agent-centric
state representation of an FM-POMDP. We now claim that
among this set of inverse kinematics terms, the MIK+A is
the most favorable one: the main result from [16] (Theorem
5.1) implies that MIK+A recovers the agent-centric state
representation. Further, we elaborate on the failure of the
other inverse kinematic objectives.

C. MIK+A Discovers the Full Agent-Centric State.

Given successful recovery of the Bayes optimal classifier
for the multi-step inverse model, with dependence on only
st and st+k, we can reuse the theory from [16], with slight
modifications, as given in the appendix. The most important
modification is that we roll-out for m + n + D steps, to
ensure that we have enough steps to decode st and st+k,
where D is the diameter of the agent-centric state. With the
above, the reduction to Theorem 5.1 of [16] is natural. There,
the authors showed that, under proper assumptions, if an
encoder ϕ can represent inverse kinematic terms of the form
Pπ(at|st, st+k) for all k ∈ [D] then ϕ is the mapping from
observations to the agent-centric state.

D. Failure of All History (AH) for Discovering Agent-
Centric State Representation.

We showed that the AH objective can be satisfied by only
solving the one-step inverse objective p(at|st, st+1). It was
shown in [18], [16], [5] that the one-step inverse objective
learns an undercomplete representation. Intuitively, it may
incorrectly merge states which have locally similar dynamics
but are actually far apart in the environment.

E. Failure of Forward-Jump (FJ and FJ+A) for Discovering
Agent-Centric State Representation.

Since the Forward-Jump objectives only rely on past-
decodability, it does not have correct Bayes optimal
classifiers for all k ≤ m. Namely, it does not recover the
inverse model with k in this regime. This prevents us from
applying the result of [16], since it requires the set of all

Fig. 2: The Forward Jump objective fails in a counterexample
where the observation can only be seen once every m steps,
preventing the use of k ≤ m inverse kinematics examples,
whereas the inverse examples with k > m provide no signal
for separating the states.

inverse models k ∈ [D], wheres FJ only has access to
k ∈ {1,m,m+1, .., D} but not for k in intermediate values.

Nevertheless, this give rise on an intriguing question: is
there a counterexample that shows FJ or FJ+A does not
work? We establish a counterexample in which the k = 1
examples are insufficient to distinguish all of the states and
where the k > 3 examples are useless. We will then construct
an observation space for an FM-POMDP with m = 3, which
will then cause both the FJ and FJ+A objectives to fail.

Consider the following agent-centric state with two com-
ponents s = (sA, sB). sA receives four values {0, 1, 2, 3}
and follows the dynamics sAt+1 = (sAt +at) mod 4, which is
a simple cycle with a period of 4, controlled by the action a ∈
{0, 1}. sB = at−1 simply records the previous action. We
have an exogenous periodic signal ct+1 = (ct + 1) mod 4.
This FM-POMDP’s agent-centric state has a diameter of
D = 3, and the true state can be recovered with k from 1 to 3.
However, all multi-step inverse problems, under the random
policy, with k > 3 has the same probability of 0.5 for both
actions. Concretely, for any plan to reach a goal with k > 3
steps, multiplying the actions by -1 will still yield an equally
optimal plan with respect to sA, while only the last action
taken has an effect on sB , so the distribution over the first
action will be uniform (MDP shown in appendix figure 8).
Now, let’s turn to the construction of the observation space
of this FM-POMDP. We will use the counter ct to control
when the state can be seen in the observation, so if ct = 0,
we have ot = st, whereas if ct ̸= 0, we have ot = −1
(blank observation). It is apparent that if ct ̸= 0, that we
can’t decode the state from the current observation. However,
with a history of m = 3 past observations, we can decode
the state by finding st when it is present in the observation
(i.e. when ot ̸= −1), and then simulate the last m steps
using the previous actions recorded in the observations. A
simplified version of this construction (showing only sA and
with m = 2) is shown in Figure 2.

To reiterate the claim of the proof, we constructed a FM-
POMDP where it is necessary to use k = 2 and k = 3 multi-
step model examples to separate out the states correctly. Yet
the state can only be perfectly decoded with m = 3 steps of
history. Thus, the FJ and FJ+A objectives fail to learn the
correct representation in this FM-POMDP.



Methods Objective Correct Bayes
Optimal Classifier

Complete
Agent-Centric
State

Assumes
Past
Decodability

Assumes
Future
Decodability

Discards
Exogenous
Noise

AH Pπ(at|o1:t, o1:(t+k)) ✗ ✗ ✓ ✗ ✓
AH+A Pπ(at|õ1:t, õ1:(t+k)) ✗ ✗ ✓ ✗ ✓
FJ Pπ(at|oP(t,m), oP(t+k,m)) ✓ ✗ ✓ ✗ ✓
FJ+A Pπ(at|õP(t,m), õP(t+k,m)) ✓ ✗ ✓ ✗ ✓
MIK Pπ(at|õP(t,m), õF(t+k,n)) ✓ ✗ ✓ ✓ ✓
MIK+A Pπ(at|õP(t,m), õF(t+k,n)) ✓ ✓ ✓ ✓ ✓

TABLE I: A summary of the baseline inverse kinematics approaches which we study. Our final proposed method Masked
Inverse Kinematics with actions (MIK+A) has a significant advantages over the alternatives: it can provably recover the
agent centric state representation.

IV. EXPERIMENTAL RESULTS

We experimentally validate whether the set of inverse
kinematic based objectives can recover the agent-centric state
in the FM-POMDP setting. To do this, we first evaluate the
objectives in a partially observable navigation environment
(section IV) and then study whether these objectives can
learn useful representations, in presence of partially observ-
able offline datasets (section IV-C).

A. Experiment Setup

We first consider the navigation environments in Figure
3, with other figures and details in Appendix figures 12 and
13, and introduce partial observability in these tasks. Details
on experimental setup are provided in appendix E. In this
problem, m-step past decodability is achieved with m=1.
The n-step future decodability assumption subtly violated in
cases where the agent collides into a wall and loses all of
its velocity. The agent’s velocity before hitting the wall is
then not decodable from any number of future observations.
We also consider an optional Self-Prediction (SP) objective
||sg(st+k)− f(st, k), where sg refers to stopping gradients.
This auxiliary objective, inspired by [19], [20] can help to
improve the quality of representations.

B. Experiment Results

In the acceleration-control experiments (Figure 5, Ta-
ble II), we consistently found that MIK+A has the best
performance, which is aligned with theory. The theory also
suggests that AH+A has no state dependence, and we
indeed see that it has the worst performance, when the
maximum k is small. Another striking result is that AH

Objective No
Curtain

Three
Curtains

No History 47.6 52.7
AH 9.9 13.2

AH+A 18.8 18.9
FJ 10.0 15.3

FJ+A 5.8 7.2
MIK 10.1 14.7

MIK+A 6.1 7.4

TABLE II: State Estimation Errors (%) on various tasks with
exogenous noise.

with any maximum k is theoretically equivalent to AH with
maximum k of 1, and these two methods indeed have very
similar errors experimentally. Further evidence comes from
investigating the action prediction losses (Table V), where
we see that AH+A has nearly zero error while AH has a
very low loss, supporting our claim that these objectives fail
because they reduce the bayes optimal predictor to an overly
simple learning objective. Another finding is that FJ+A and
MIK+A are fairly similar, which suggests that the theoretical
counterexample for FJ+A may not imply poor performance.
Extra experiment results of adding next-state prediction or
exogenous noise are provided in appendix E.

C. Visual Offline RL with Partial Observability

We validate the proposed objectives in challenging pixel-
based visual offline RL tasks, using the vd4rl benchmark
dataset [21]. For our experiments, we follow the same setup
as [15], where we pre-train the representations from the
visual observations and then perform fine-tuning on the fixed
representations using the TD3+BC offline RL algorithm. In
our experiments, we compare results using several variations
of our proposed objectives, along with several other base-
lines. We mainly compare with five other baselines, namely
ACRO [15], DRIML [22], HOMER [3], CURL [23] and
1-step inverse action prediction [24].

D. Experiment Setup :

We consider an offline RL setting with partial observa-
tions, as illustrated in figure 7. To do this, we use the
existing vd4rl benchmark dataset [21], and to turn it into
a POMDP setting, we apply masking or patching on the
observation space randomly. In other words, for each batch
of samples from the offline dataset, we randomly patch each
observation with a masking of size 16 × 16 to make the
observations partially observable to the model. In addition to
that, since existing [21] setup uses pixel-based observations
and uses a framestacking of 3, to make the setting even
more challenging, we randomly zero out 2 out of 3 stacked
frames. We do this so that the model can only see both the
stacked frames and each frame partially; with the goal to
see if our proposed objectives using a forward and backward
running sequence model can be more robust with the learnt
representations.



Fig. 3: Visualization of the four navigation environments. From left to right: no curtain, one curtain, three curtains, and
first-person environments. All include some degree of partial observability.
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Fig. 4: Visual offline datasets from [21] with patching (16 × 16) to make the observations partially observable. We
compare several of the proposed objectives discussed earlier, along with few baselines, using the representation learning
setup in [15]. Experimental results are compared across 3 different domains (Cheetah-Run, Walker-Walk and Humanoid-
Walk) and 2 different datasets (Expert and Medium-Expert), across 5 different random seeds.
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Fig. 5: We compare state estimation performance (higher is better) across our various proposed methods. We compare action-
conditioned and action-free variants while also considering a self-prediction auxiliary loss and the maximum prediction span
K. We omit FJ and FJ+A in the maximum K = 1 case because of equivalence to AH and AH+A with a shorter history.
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Fig. 6: A more challenging setting where in addition to the patching of observations, we further apply randomly zeroing
of frame-stacking. We apply frame-stacking for visual observations, where to make the task more difficult and partially
observable, we randomly zero out 2/3 of the frames, on top of the masked observations.
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Fig. 7: Illustration of the visual offline RL experiment setup, in presence of partial observability. We use a forward and
backward sequence model (RNN encoder) to handle past and future observation sequences, to achieve latent state discovery
in FM-POMDPs.

E. Offline-RL Experiment Results

Our experimental results show that in presence of partial
observability, most of the existing baselines as in [15] can
fail considerably, for different domains and datasets. In
contrast, when we consider the history information and also
additionally take into account the action information, then
performance of the proposed models can improve signif-
icantly. Note that all our experiments here only consider
the pixel-based datasets from [21] with only adding partial
observability, without considering any exogenous noise in
the datasets as in the setups in [15]. Figure 4 shows that in
presence of partial observability, all the considered baselines
can fail considerably and performance degrades significantly
compared to what was reported in the fully observed setting.
In comparison, the proposed objectives can be more robust in
partial observability, and notably our key objective (MIK+A)
can perform significantly compared to other model ablations.
Experimental results show that MIK + A can perform
significantly better comopared to baselines, in almost all of
the tasks. Figure 6 shows results for an even more difficult
experiment setup with randomly zeroing stacked frames.
Experimental results show that MIK + A can still perform
relatively better compared to other baselines, in this difficult
setting, since the forward and backward sequence models
capturing the past and future observations can better capture
sufficient information from the partial observations to fully
recover the agent-centric state.

V. RELATED WORK

Our work builds up on two closely related line of work :
(a) on short-term memory POMDPs and (b) learning agent-
centric latent states. We describe closely related work on
partially observable settings, both theoretical and empirical,
and discuss why existing works fail to fully recover the
agent-centric latent state in a partially observed setting.

A. Theoretical Research on FM-POMDPs.

Previous work [10], [11], [12], [25] studied finite-sample
guarantees under closely related m-step past and n-step future
decodability assumptions. Nevertheless, their algorithms
are currently impossible to scale and implement with
standard oracles (such as log-likelihood minimization) since
it requires an optimistic optimization over a set of functions
.Further, unlike our reward-free setting, their algorithm is
dependent on having a reward signal, whereas our work
focuses on reward-free representation learning. Lastly, these
works did not considered the high-dimensional problem in
the presence of exogenous and time correlated noise.

B. Empirical Research on POMDPs.

Partial observability is a central challenge in practical
reinforcement learning settings and, as such, it has been the
focus of a large body of empirical work. Seminal large scale
empirical deep RL research has considered serious partial
observability, such as the OpenAI Five program for Dota
2 [26] and the DeepMind AlphaStar system [27]. Much
of this work has used a recurrent neural network or other



sequence model to handle a state with history. While much
of this work is focused on directly learning a policy or value
function [28], these approaches will fail when reward is
absent. Other work has learned a recurrent forward model
to predict observations as well [29], [30], [31], yet this will
fail when exogenous noise is dominant. To our knowledge,
none of these DeepRL POMDP works have considered our
proposed setting of learning agent-centric state with inverse
kinematics. [32] showed an extensive empirical benchmark
where recurrent online RL is used for POMDPs. This differs
from our work principally in that it’s empirical and focused
on reward-signal, whereas our approach is reward-free and
the motivation for our loss objectives is a consequence of
asymptotic theory we develop.

C. Research on Agent-Centric States and Inverse Kinemat-
ics.

The primary line of theoretical research on inverse kine-
matics and agent-centric states is exclusively concerned with
the MDP setting [16], [13], [33], [5], [15], [34], [35]. In
particular, much of this work has focused on analysis show-
ing that the agent-centric state can be provably recovered
under some assumptions. The PPE method [5] introduced
multi-step inverse kinematics in the deterministic dynamics,
episodic setting with fixed start states. [16] extended this
to the non-episodic setting, while [13] handles a stochastic
dynamics setting. [36], [15] considered multi-step inverse
models for offline-RL, while only considering the fully-
observed setting. While [37] used pre-trained multi-step and
one-step inverse models for online RL, still in the fully-
observed setting. [38], [39], [40], [41], [18] all use one-step
inverse objective in fully-observed setting to improve em-
pirical performance. [42] InfoPower used a one-step inverse
objective along with an RNN to encode the history. [14]
showed discovery of agent-centric state using causal indepen-
dence tests and was restricted to the fully-observed setting.
[6] studied learning a recurrent forward model with a factor-
ization of the state space into agent-centric and exogenous
components. This method naturally handles POMDPs, but re-
quires learning both the agent-centric and exogenous states to
satisfy the future observation prediction objective, so differs
significantly from our algorithmic approach, that allows to
directly avoid learning information on the exogenous noise.

D. Work related to both POMDPs and Multi-step Inverse
Kinematics.

To our knowledge, ours is the first work to explicitly
consider inverse kinematics for learning agent-centric states
in the POMDP setting. Our counter-examples to AH and
AH+A objectives, where the model can fail to learn the
state by memorizing actions, is reminiscent of the causal
confusion for imitation learning work [43] . [44] considers a
one-step inverse model using a transformer encoder, to learn
an action-labeling model. While this is equivalent to our
All History (AH) approach, the focus of that work was not
on learning representations. [45], [46] consider a sequence
learning setup where a bidirectional sequence model masks

observations and actions in the input and predicts the
masked actions. While these approaches seem consistent
with our theoretical analysis, they use a bidirectional model
and therefore learn an entangled model of ϕf

s and ϕb
s in their

internal representations, where the correct usage for planning
and exploration is unclear. This makes their setting different
from our focus on learning an explicit state representation
and their work doesn’t provide a theoretical analysis,

VI. CONCLUSION

Partially observable settings in RL are often difficult to
work with, theoretically without strong assumptions, and
empirically with a implementable algorithm, despite the
generality of non-Markovian observations that can arise
naturally in practice. To recover the agent-centric full latent
state that can be considered as an information state, is quite
difficult in the FM-POMDP setting. Several works using
multi-step inverse kinematics has recently been proposed for
latent state discovery, in the theoretical and empirical RL
communities. However, despite the popularity, how to apply
multi-step inverse kinematics in the FM-POMDP setting
has not been previously studied. Our work shows that it’s
possible to succeed in discovering agent-centric states in
FM-POMDPs while many intuitive algorithms fail. We made
the assumptions of past-decodability [10] while introducing a
new future-decodability assumption. In this work, we demon-
strated several examples showing that the full agent-centric
state can be recovered from partially observable, offline
pre-collected data for acceleration and control. Additionally,
we showed that MIK+A, taking the action information from
past and future into account, can be effective for learning
a latent representation that can improve performance
empirically on a challenging partially observable offline
RL task. A natural topic for future work is developing an
online algorithm which discovers a policy that achieves
these decodability properties rather than assuming them.
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APPENDIX

*Appendix In the appendix, we include proofs and coun-
terexamples for our theoretical results, and environment
details and additional results for the experimental setup.

A. Structural Lemma

We now describe a structural result of the agent-centric
FM-POMDP model, closely following the proof in [5]. We
say that π is an agent-centric policy if it is not a function
of the exogenous noise. Formally, for any history of action-
augmented observations o1 and o2, if ϕf

⋆,s(o1) = ϕf
⋆,s(o2)

then π(· | o1) = π(· | ϕf
⋆,s(o2)). Let Pπ(s

′ | s, h) be the
probability to observe the control-endogenous latent state
s = ϕf

⋆,s(õP(h,m)), h time steps after observing step t, s′ =
ϕb
⋆,s(õP(t+h,m)) and following policy π, starting with action

a. Note that the claim will also hold if s or s′ use either the
forward or the backward encoder. Let the exogenous state be
defined similarly as ξ = ϕ⋆

ξ(õ1:t) and ξ′ = ϕ⋆
ξ(õ1:t+h). The

following result shows that, when executing an endogenous
policy, the future h time step distribution of the observation
process conditioning on any o has a decoupling property.

theoremDecoupling property for endogenous policies [5]]
Let µ be the initial distribution. Assume that the agent-centric
and exogenous part is decoupled for the initial distribution,
µ(s, ξ) = µ(s)µ(ξ), and that π is an endogenous policy.
Then, for any t ≥ 1 it holds that Pπ(o

′ | o, a, h) = q(o′ |
s′, ξ′)Pπ(s

′ | s, a, h)P(ξ′ | ξ, h).

This lemma is a key result for analyzing the Bayes optimal
solution of the different inverse kinematic objectives de-
scribed in this work. We assume that the policy only depends
on the state so that it rules out the known hard problems
with unobserved confounders. Some recent work in causal
inference literature mitigate the unobserved confounding
issue by integrating the offline and online datasets [47], [48].

B. Proof that the MIK+A objective has the right Bayes
optimal classifier

We analyze the Bayes optimal classifier of the MIK+A
objective, by first applying Bayes theorem on the action at
and the future observation sequence starting from t+ k. We
then use the decodability assumption to introduce the latent
variable zt+k and then apply the Markov assumption on the
latent space on step t + k. We then cancel the probability
over future observations because it has no action dependence
and also cancel the exogenous-noise part of the latent state.

We use the following notation for all t:

st = ϕf
s (õP(t,m))

st+k = ϕb
s(õF(t+k,n))

ξt = ϕξ(õ1:t)

ξt+k = ϕξ(õ1:t+k)

zt = (st, ξt).

We have that for all k > t:

Pπ(at|õP(t,m), õF(t+k,n)) =

=
Pπ(õF(t+k,n)|õm(t), at)π(at|õP(t,m))∑
a′ Pπ(õF(t+k,n)|õP(t,m), a′)π(a′|õP(t,m))

=
Pπ(õF(t+k,n)|zt, at)π(at|zt)∑
a′ Pπ(õF(t+k,n)|zt, a′)π(a′|zt)

=
Pπ(õF(t+k,n), zt+k|zt, at)π(at|zt)∑
a′ Pπ(õF(t+k,n), zt+k|zt, a′)π(a′|zt)

=
Pπ(õF(t+k,n)|zt+k)Pπ(zt+k|zt, at)π(at|zt)∑
a′ Pπ(õF(t+k,n)|zt+k)p(zt+k|zt, a′)π(a′|zt)

=
Pπ(zt+k|zt, at)π(at|zt)∑
a′ Pπ(zt+k|zt, a′)π(a′|zt)

=
Pπ(st+k|st, at)P(ξt+k|ξt)π(at|st)∑
a′ Pπ(st+k|st, a′)P(ξt+k|ξt)π(a′|st)

=
Pπ(st+k|st, at)π(at|st)∑
a′ Pπ(st+k|st, a′)π(a′|st)

= Pπ(at|st, st+k).

The first relation holds by Bayes rule. The third relation
holds since zt+k is a deterministic function of õF(t+k,n)

under the future decodability assumption. The forth relation
holds by Bayes rule, along with the assumption that the
future observations following t + k are conditionally inde-
pendent with (zt, at) given zt+k (since we assume π on time
step t only depends on st, since it’s an agent-centric policy).
The sixth relation holds by the decoupling lemma, Lemma .

C. Proof that All-History (AH) reduces to one-step inverse
model

We analyze the Bayes-optimal classifier of the AH objec-
tive. We first apply Bayes theorem between the observation
sequence and the predicted action at. We then use the past-
decodability assumption to introduce latent variables zt and
zt+1. We apply the chain rule of probability and then markov
independence of the observations given the latent states. The
observations conditioned on the latents then cancel, and then



the exogenous noise dynamics also cancel, leaving the one-
step inverse model over the latent states.

We use the following notation for all t.

st = ϕf
s (o1:t)

st+k = ϕf
s (o1:(t+k))

ξt = ϕξ(o1:t)

ξt+k = ϕξ(o1:t+k)

zt = (st, ξt)

The following relations hold.
P(at|o1:t, o1:t+k) =

= P(at|o1:t+k)

=
P(o1:t+k|at)P(at)∑
a′ P(o1:t+k|a′)P(a′)

=
P(o1:t, o(t+1):t+k, zt, zt+1|at)P(at)∑
a′ P(o1:t, o(t+1):t+k, zt, zt+1|a′)P(a′)

=

P(o1:t|at)P(zt|o1:t, at)P(zt+1|o1:t, zt, at)P(o(t+1):t+k|o1:t, zt, zt+1, at)P(at)∑
a′ P(o1:t|a′)P(zt|o1:t, a′)P(zt+1|o1:t, zt, a′)P(o(t+1):t+k|o1:t, zt, zt+1, a′)P(a′)

=
P(o1:t|at)P(zt|o1:t)P(zt+1|zt, at)P(o(t+1):t+k|zt+1)P(at)∑
a′ P(o1:t|a′)P(zt|o1:t)P(zt+1|zt, a′)P(o(t+1):t+k|zt+1)P(a′)

=
P(o1:t)P(zt|o1:t)P(zt+1|zt, at)P(o(t+1):t+k|zt+1)π(at|o1:t)∑
a′ P(o1:t)P(zt|o1:t)P(zt+1|zt, a′)P(o(t+1):t+k|zt+1)π(a′|o1:t)

=
P(o1:t)P(zt|o1:t)P(zt+1|zt, at)P(o(t+1):t+k|zt+1)π(at|st)∑
a′ P(o1:t)P(zt|o1:t)P(zt+1|zt, a′)P(o(t+1):t+k|zt+1)π(a′|st)

=
P(zt+1|zt, at)π(at|st)∑
a′ P(zt+1|zt, a′)π(a′|st)

=
P(st+1|st, at)P(ξt+1|ξt)π(at|st)∑
a′ P(st+1|st, a′)P(ξt+1|ξt)π(a′|st)

=
P(st+1|st, at)π(at|st)∑
a′ P(st+1|st, a′)π(a′|st)

= Pπ(at|st, st+1).

The second relation holds by Bayes rule. The third relation
holds by since zt and zt+1 are deterministic functions of the
observation sequence by the decodability assumptions. The
sixth relation holds by using:

P(o1:t | at)P(at) = P(o1:t)π(at | o1:t)

due to Bayes rule. The seventh relation holds by the fact we
assume π is agent centric. The ninth relation holds by the
decoupling lemma, Lemma .

D. Proof that All-History with Actions (AH+A) has no State
Dependence

The Bayes-optimal classifier for the AH+A objective can
be perfectly satisfied without using the state, by simply
memorizing the sequence of actions and retrieving them.
Note that in practice, this is easiest to achieve when the
maximum K value is small.

The following relations holds for all k > t since there is
an explicit conditioning in the probability distribution.

P(at|x1:t, a1:t, x1:t+k, a1:t+k) = P(at|a1:t+k) = P(at|at) = 1.

This implies the AH+A Bayes solution erases the informa-
tion on the agent-centric state, since the action can be directly
predicted.

Figure 8 contains a counter-example for the forward-jump
(FJ) objective, for why FJ fails to capture the agent-centric
state in partial observability.

With a small computer program we generated the inverse
kinematics examples for this MDP from k = 1 to k = 10.
First, we generated the 16368 inverse kinematic examples
and verified that examples with 4 ≤ k ≤ 10 have a uniform
distribution for the first action.

All of the inverse kinematics examples up to k = 6 are
included in a text file in the supplementary materials. A
subset where the initial state is either (0,−1) or (0, 1) is
shown below to give a flavor of the structure, in which k = 4
has uniform probability over the first action whereas k = 2
has more useful inverse kinematic examples:
k = 2 examples:

(0, -1)→ (0,−1) via a:(1, -1)
(0,−1) → (0, 1) via a:(-1, 1)
(0,−1) → (2,−1) via a:(-1, -1)
(0,−1) → (2, 1) via a:(1, 1)
(0, 1) → (0,−1) via a:(1, -1)
(0, 1) → (0, 1) via a:(-1, 1)
(0, 1) → (2,−1) via a:(-1, -1)
(0, 1) → (2, 1) via a:(1, 1)

k = 4 examples:
(0, -1)→ (0,−1) via a:(-1, -1, -1, -1)
(0,−1) → (0,−1) via a:(-1, 1, 1, -1)
(0,−1) → (0,−1) via a:(1, -1, 1, -1)
(0,−1) → (0,−1) via a:(1, 1, -1, -1)
(0,−1) → (0, 1) via a:(-1, -1, 1, 1)
(0,−1) → (0, 1) via a:(-1, 1, -1, 1)
(0,−1) → (0, 1) via a:(1, -1, -1, 1)
(0,−1) → (0, 1) via a:(1, 1, 1, 1)
(0,−1) → (2,−1) via a:(-1, -1, 1, -1)
(0,−1) → (2,−1) via a:(-1, 1, -1, -1)
(0,−1) → (2,−1) via a:(1, -1, -1, -1)
(0,−1) → (2,−1) via a:(1, 1, 1, -1)
(0,−1) → (2, 1) via a:(-1, -1, -1, 1)
(0,−1) → (2, 1) via a:(-1, 1, 1, 1)
(0,−1) → (2, 1) via a:(1, -1, 1, 1)
(0,−1) → (2, 1) via a:(1, 1, -1, 1)
(0, 1) → (0,−1) via a:(-1, -1, -1, -1)
(0, 1) → (0,−1) via a:(-1, 1, 1, -1)
(0, 1) → (0,−1) via a:(1, -1, 1, -1)
(0, 1) → (0,−1) via a:(1, 1, -1, -1)
(0, 1) → (0, 1) via a:(-1, -1, 1, 1)
(0, 1) → (0, 1) via a:(-1, 1, -1, 1)
(0, 1) → (0, 1) via a:(1, -1, -1, 1)
(0, 1) → (0, 1) via a:(1, 1, 1, 1)
(0, 1) → (2,−1) via a:(-1, -1, 1, -1)
(0, 1) → (2,−1) via a:(-1, 1, -1, -1)
(0, 1) → (2,−1) via a:(1, -1, -1, -1)
(0, 1) → (2,−1) via a:(1, 1, 1, -1)
(0, 1) → (2, 1) via a:(-1, -1, -1, 1)
(0, 1) → (2, 1) via a:(-1, 1, 1, 1)
(0, 1) → (2, 1) via a:(1, -1, 1, 1)
(0, 1) → (2, 1) via a:(1, 1, -1, 1)

The result in [16] showed that given all examples of the
multi-step inverse model from 1 to the diameter of the MDP,



Fig. 8: The full underlying MDP of the counterexample for the Forward Jump objective. Each of the eight states shows
(sA, sB), with the coloring used to reflect sB and the action which can reach it. The special property of this MDP is that
its multi-step inverse model examples with k ≥ 4 are uninformative while its k = 1 examples are insufficient. This creates
a counterexample for methods solely relying on past-decodability, because the length of history required to decode the state
may overlap and prevent access to the k = 2 and k = 3 inverse kinematics examples.

achieves the full agent-centric state in a deterministic MDP.
Our claim is a reduction to this proof.

E. Pointmass Environment Details

1) Top View: The navigation environments were based on
maze2d-umaze from D4RL [49]. The state of the navigation
is four-dimensional, including the pointmass’ position x, y
and velocities vx, vy . The action space is acceleration in each
dimension, ax, ay . For our observation, we disable rendering
of the goal in the environment, render images from a camera
at the top of the maze, and down-scale them to 100x100. For
the curtain experiments, the environment was modified to
include both one and three visual occlusions. Environments
are visualized in Figure 3.

The data is collected using the built-in planner with
Gaussian noise added to the actions. Rather than sampling
goals from the fixed set of goals in D4RL, we allow goals to

be sampled uniformly at random inside of the maze. The data
is collected with no resets, and goals are re-sampled when
the pointmass is sufficiently close to the target position.

The original environment is partially observable because
it cannot capture the velocity of the pointmass in a single
frame. In addition to lacking velocity, the curtain environ-
ments also contain regions where the pointmass is partially or
fully occluded, and thus the position of the pointmass is not
observed. With three curtains, there is additional uncertainty
in the position of the pointmass with a single frame, as the
pointmass could be under any of the three different curtains.
A trajectory can be seen in Figure 13.

2) First Person View: In addition to the original D4RL
environment, we create a new environment that navigates
the maze from a first person view (FPV). To do this, we
add an angle, θ and angular velocity, vθ to the pointmass’
state and change the action space to angular velocity, vθ̃ and



acceleration along the axis the pointmass is facing, ax. The
Cartesian velocities vx, vy , are computed as:

vx += ax · cos θ ·∆t, vy += ax · sin θ ·∆t

where ∆t the angular velocity is set to vθ̃ and the MuJoCo
simulator is stepped for frame skip timesteps. We render
images from a camera on the pointmass facing the same
direction as the axis of acceleration and use that as our
observation.

Since the action space has changed, we train a policy to
navigate to goals using PPO [50] and use the resulting policy
to collect our dataset. Goals and images are modified the
same as in the top view environment.

The FPV environment is partially observable for a number
of reasons. Like the top view, the velocities cannot be
inferred from a single observation. In this environment,
however, the global location is not necessarily inferable from
any one frame. As can be seen in Figure 12, there are
a number of different states in the maze with a similar
observation. Having a history of previous observations is
required to keep track of the position. Figure 13 shows four
frames from the environment.

3) Experiment Implementation Details and Extra Experi-
ment Results: The total sample size of the offline data for
training is 500k for each navigation environment, where each
sample is a (100 × 100 × 3)-dimensional image. At each
training iteration, we randomly sample 16 batches with time
horizon 64 in each batch. The total number of iterations of
training is 200k. All the numbers presented in the tables and
Figure 5 is the average over the last 10k iterations of the
training process. The state estimation errors are the average
absolute errors between the true states and the estimated
states. The results across different baselines and different
navigation environments are provided in Table III. Since all
the numbers is bounded by 1, for better visualization, we
provide a barplot of state prediction accuracy (defined as (1−
state estimate error) × 100) in Figure 5. With decomposing
the state error into the position (observable) and velocity
(observable) errors, the results are provided in Table IV.

In terms of the optimizer, we use Adam optimizer to opti-
mize the losses with learning rate 1e-4. To avoid overfitting,
we add L2 regularization on forward-running states with
the decaying regularization amount. In terms of the neural
networks we are training on, there are three neural networks
(Encoder, Probe, Action Prediction) with details provided in
the following.

Encoder The images are encoded using MLP-Mixer
[51] with 8 layers and patch size 10, and GRU [52] with
2 layers and hidden size 256 is used as the sequence model.
For MIK and MIK+A, there is a 2nd GRU network which
runs backwards for decoding the future. Alternatively, using
a bidirectional RNN for the future works roughly equally
well but requires a slightly more involved implementation.

Probe We use a 2-hidden layer MLP with hidden size 256
aiming to train a mapping from the latent states to the true
states, which in our case is a 4-dimensional vector containing
the position and velocity of the agent. The loss for the probe

is square loss, and no gradients pass from the probe to the
representation, such that the use of the probe does not affect
the learned representation.

Action Prediction To train a mapping from the current
and next latent state to the current action, we use an em-
bedding layer to embed the discrete variable, and then apply
a 2-hidden layer MLP with hidden size 256 with the cross
entropy loss. In processing the sequence, we compute the
action prediction loss for all pairs of time-steps in parallel,
thus covering all k values up to a hyperparameter maxk.
Experimentally we investigated both maxk=1 and maxk=15.
Action prediction losses are provided in Table V. AH+A
contains all the history which is a trivial question for action
prediction so that it has almost 0 loss. One optional extra
step is to add Self-Prediction (SP) here, by doing this, we
use a 3-layer MLP with hidden size 512. The self-prediction
objective allows gradients to flow into st but blocks gradients
into st+k. Adding self-prediction leading to improvement as
shown in Table VI. Importantly, it somewhat reduces the
degree of difference seen between the various objectives
but the overall ordering of results is similar to when self-
prediction is not used.

Exogenous Noise To construct exogenous noise, we
randomly sample images from the CIFAR-10 dataset [53] as
the exogenous noise and add them to the original images.
Some examples of the no-curtain navigation environment
with exogenous noise are provided in Figure 14 as an
illustration. The results are provided in Table VII.

F. Offline RL Experiment Details and Setup

We include details on our offline RL experiments including
partial observability in the datasets. Figure 9 shows few sam-
ple observations from the Cheeta-Run domain when adding
random patches to each observation. For our experiments,
we use the visual dataset v-d4rl [21] and to make it partially
observable, we randomly add patches of size (16×16) to each
observation. This makes the observations non-Markovian in
general, such that it is difficult to learn the agent-centric state
directly from the observations.

For the experimental setup, we follow the same pre-
training of representations procedure from [15], where we
train the encoders learning latent space during pre-training.
We then follow the fine-tuning procedure using the fixed
representations from the encoders (keep them frozen) and
then do offline RL (specifically TD3 + BC) on top of the
learnt representations. We use TD3 + BC since it has been
already shown to be a minimalistically useful algorithm to
learn from offline datasets. We do not use any other offline
RL algorithm since in this work, we mainly prioritize on the
ability of the encoders to be able to recover the agent-centric
state.

Our results show that the inverse kinematics based ob-
jectives can be quite useful for recovering the agent-centric
state, as stated and justified from our theoretical results; and
experimental results show that by using a forward-backward
sequence model to handle past and future observations, such
inverse kinematics based objectives can be useful especially



Objective Kmax No-Curtain One-Curtain Three-Curtains First Person
No History 1 49.3 49.9 53.7 11.8
No History 15 46.8 49.1 52.6 11.4

AH 1 8.6 12.7 12.8 5.3
AH 15 8.9 12.0 11.8 4.6

AH+A 1 44.3 45.6 46.8 25.3
AH+A 15 19.1 20.0 18.7 18.3

FJ 15 7.3 12.9 13.6 5.3
FJ+A 15 3.7 5.4 6.2 5.4
MIK 1 15.3 16.4 16.2 6.0
MIK 15 6.6 12.3 13.1 4.9

MIK+A 1 12.5 8.1 8.0 6.0
MIK+A 15 3.4 4.7 6.0 4.8

TABLE III: State Estimation Errors (%) on various tasks with maxk=1 vs. maxk=15, with SP=False, no-exo.

Objective P/V No-Curtain One-Curtain Three-Curtains First Person
No History P 2.2 6.5 13.3 7.7

AH P 7.5 7.1 5.6 5.0
AH+A P 22.9 24.0 22.4 25.1

FJ P 3.2 7.1 7.1 5.0
FJ+A P 2.2 5.1 6.4 5.5
MIK P 2.5 6.1 6.5 4.7

MIK+A P 1.7 3.7 6.2 4.9
No History V 91.5 91.7 91.9 15.2

AH V 10.0 16.9 18.1 4.3
AH+A V 15.2 16.0 15.0 11.5

FJ V 11.3 18.6 20.1 5.7
FJ+A V 5.2 5.8 6.0 5.4
MIK V 10.7 18.1 19.5 5.0

MIK+A V 5.0 5.6 5.7 4.7

TABLE IV: Position and Velocity Estimation Errors (%) on various tasks with no exogenous noise, with no self-prediction
loss, and with maxk=15.

Objective No-Curtain One-Curtain Three-Curtains First Person
No History 230.8 266.9 281.0 75.4

AH 9.2 54.9 61.7 12.4
AH+A 0.5 0.5 0.5 0.4

FJ 143.4 182.7 191.5 57.8
FJ+A 123.7 134.6 136.9 57.9
MIK 118.5 162.3 171.4 46.4

MIK+A 99.6 112.5 114.1 37.4

TABLE V: Action-Prediction Loss (%) with Various Objectives.

in presence of non-Markovian observation spaces. Our ex-
peirmental results are indeed quite better compared to the
recently proposed ACRO method [15] on such visual offline
datasets. We study the ability of the learnt encoders to be
able to learn robust representations from partially observable
offline datasets.



Objective Self-Prediction No-Curtain One-Curtain Three-Curtains First Person
No History N 46.8 49.1 52.6 11.4
No History Y 46.9 48.4 52.3 11.3

AH N 8.9 12.0 11.8 4.6
AH Y 4.1 7.9 9.2 9.9

AH+A N 19.1 20.0 18.7 18.3
AH+A Y 18.7 17.9 19.4 11.5

FJ N 7.3 12.9 13.6 5.3
FJ Y 6.2 10.1 10.9 3.8

FJ+A N 3.7 5.4 6.2 5.4
FJ+A Y 3.3 3.6 3.8 4.1
MIK N 6.6 12.3 13.1 4.9
MIK Y 6.0 9.9 10.7 3.7

MIK+A N 3.4 4.7 6.0 4.8
MIK+A Y 3.3 3.5 3.8 3.8

TABLE VI: State Estimation Errors (%) on various tasks without exogenous noise and with maxk=15, where we show the
effect of adding the self-prediction objective, which generally improves the quality of results but leaves the ordering of the
methods’ performance mostly unchanged.

Objective No-Curtain One-Curtain Three-Curtains First Person
No History 47.6 49.2 52.7 12.1

AH 9.9 13.3 13.2 4.9
AH+A 18.8 18.8 18.9 18.3

FJ 10.0 14.7 15.3 5.7
FJ+A 5.8 7.1 7.2 5.8
MIK 10.1 14.4 14.7 5.3

MIK+A 6.1 7.1 7.4 5.4

TABLE VII: State Estimation Errors (%) on various tasks with exogenous noise, and with no-SP, with maxk=15.

Fig. 9: Illustration of patched observations from the visual offline datasets, adapted from [21]. In addition, during frame-
stacking when learning from pixel-based observations, we also randomly add zero padding to 2 out of 3 of the stacked
frames, to make the pixel-based offline RL setting even more challenging.
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Fig. 10: Patching of Observations : Full of Experimental Results comparing All the Inverse Kinematics based objectives
to other baselines on the 16× 16 patched observation setup.
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Fig. 11: Random-Zeroing of FrameStacks : Full of Experimental Results comparing All the Inverse Kinematics based
objectives to other baselines on the randomly zeroing of framestacks setup, where in addition to this, we also apply patching
of size 16× 16.



Fig. 12: Observations from the first person view environment. Unlike the top view, the global position of the pointmass
cannot always be directly inferred from a single observation. Additionally, the maze has many different states with similar
looking observations.



Fig. 13: Trajectories from the three curtain and first person environments.

Fig. 14: No-curtain navigation environment with exogenous noise.
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