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ABSTRACT

De novo ligand design is a fundamental task that seeks to generate protein or
molecule candidates that can effectively dock with protein receptors and achieve
strong binding affinity entirely from scratch. It holds paramount significance for
a wide spectrum of biomedical applications. However, most existing studies are
constrained by the Pseudo De Novo, Limited Docking Modeling, and Inflex-
ible Ligand Type. To address these issues, we propose MagicDock, a forward-
looking framework grounded in the progressive pipeline and differentiable surface
modeling. (1) We adopt a well-designed gradient inversion framework. To begin
with, general docking knowledge of receptors and ligands is incorporated into
the backbone model. Subsequently, the docking knowledge is instantiated as re-
verse gradient flows by binding prediction, which iteratively guide the de novo
generation of ligands. (2) We emphasize differentiable surface modeling in the
docking process, leveraging learnable 3D point-cloud representations to precisely
capture binding details, thereby ensuring that the generated ligands preserve dock-
ing validity through direct and interpretable spatial fingerprints. (3) We introduce
customized designs for different ligand types and integrate them into a unified gra-
dient inversion framework with flexible triggers, thereby ensuring broad applica-
bility. Moreover, we provide rigorous theoretical guarantees for each component
of MagicDock. Extensive experiments across 9 scenarios demonstrate that Mag-
icDock achieves average improvements of 27.1% and 11.7% over SOTA baselines
specialized for protein or molecule ligand design, respectively.

1 INTRODUCTION

De novo ligand design is a cornerstone of bioengineering, centered on the creation of ligands—such
as proteins and molecules—with strong binding affinity to target protein receptors, thereby form-
ing highly stable complexes with substantial biological potential. Traditionally, ligand design has
relied on energy optimization techniques ( Adolf-Bryfogle et al. (2018)). Recent advances in deep
learning have transformed the field by introducing powerful data-driven methods, substantially en-
hancing generative capabilities ( Evans et al. (2021); Gu et al. (2024)). Despite their effectiveness,
existing methods still face inherent limitations, as shown in Fig. 1. (1) Pseudo De Novo. They in-
herently remain dependent on prior knowledge. Specifically, some antibody design methods depend
heavily on predefined structural templates—such as fixed frameworks and conserved CDR regions
excluding CDR-H3—thereby restricting the design space around the most critical binding region for
optimization while sacrificing the capacity to generate antibodies de novo ( Zhou et al. (2024)).

Furthermore, progress toward fully de novo ligand design remains hindered by two additional critical
issues. (2) Limited Docking Modeling. Current methods typically employ indirect docking rep-
resentation methods to capture docking performance (such as energy functions assessing docking
tightness through residue-level biophysical terms) ( Zhou et al. (2024)), without explicitly consid-
ering spatial docking information and protein surface information (which may miss key docking
recognition information), leading to the inability to ensure robust biological relevance of generated
ligands. (3) Inflexible Ligand Type. Most existing approaches are narrowly tailored to specific
ligand types like protein or molecule ( Luo et al. (2022); Guo et al. (2021)), which severely limits
their versatility and applicability across diverse molecular categories. Collectively, these challenges
hinder the development of a comprehensive and generalizable framework for ligand design, thereby
constraining progress in drug discovery and biomolecular engineering.
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Figure 1: Comparison between current works and MagicDock. This figure describes the three limi-
tations of the existing methods and presents the framework of MagicDock, which achieves authentic
de novo, biological significance and cross-category generality.

To address the above critical issues, we propose MagicDock, a forward-looking framework rooted in
differentiable surface modeling for de novo ligand design. Our approach is designed with three core
innovations. (1) We introduce a well-designed gradient inversion framework. To begin with, the
backbone model learns general molecular-level knowledge from large protein and molecule datasets.
Subsequently, the model acquires docking-specific knowledge by refining its encoders through three
progressively structured downstream tasks. By integrating general knowledge and specific docking
knowledge into the model, this inversion framework can directly utilize the gradient information
contained in the model to guide the generation of ligands from scratch. (2) We emphasize differen-
tiable surface modeling through learnable 3D point-cloud representations, enabling the frame-
work to capture fine-grained spatial binding fingerprints with interpretability. This ensures that the
generated ligands incorporate spatial and surface information, enabling the ligands to perfectly align
with the receptors both geometrically and biologically. (3) We design customized modules for dif-
ferent ligand types, which are seamlessly integrated into a unified gradient inversion framework
with flexible triggering mechanisms. This design enables convenient switching of different ligand
types in generation, improving both efficiency and flexibility in ligand generation. Importantly, the
validity and efficiency of our method is supported by rigorous theoretical guarantees in Sec. 4 such as
SE(3)-equivariance across stages and superiority over other methods, ensuring both methodological
soundness and practical reliability.

Our contributions. (1) New Perspective: We introduce docking-oriented inversion as an innovative
framework for de novo ligand design, addressing challenges in genuineness, biological significance,
and cross-category generality. (2) New Framework: We introduce a novel inversion framework that
leverages gradient-based optimization, starting from surface point cloud modeling of proteins and
ligands, through docking-oriented knowledge injection process, to enable inversion for generating de
novo ligands directly within the receptor’s binding pocket. (3) New Method: We propose a differen-
tiable data structure for seamless gradient flow, integrated with flexible triggers, ensuring flexibility
and biological relevance in ligand generation. (4) SOTA Performance: Compared across 9 scenar-
ios, MagicDock achieves state-of-the-art performance in designing high-affinity ligands, having an
average improvement of over 70% in protein ligand design and over 60% in molecule ligand design
compared with other baselines.

2 PRELIMINARIES & RELATED WORKS

2.1 NOTATIONS AND PROBLEM FORMULATION

We adopt a docking-oriented docking strategy, as surface point clouds capture fine-grained structural
cues for molecular recognition and docking data provide binding compatibility. Both protein and
small-molecule ligands are represented as 3D surface point clouds P = {fi}Ni=1, where fi ∈ Rd

encodes chemical, atomic and geometric features.

Ligand generation proceeds in two stages: iterative refinement by a type-specific generator Gtype
guided by a pre-trained model Mθ, followed by generation via docking energy minimization:

P̂lig = lim
t→T

Gtype

(
P(t)

lig ,Mθ

)
, P∗

lig = argmin
P̂lig

Edock

(
Prec, P̂lig

)
, (1)

where t denotes the refinement step. Gtype incorporates domain-specific generating constraints, em-
phasizing ring and valency rules for small molecules and residue/conformation features for proteins.
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2.2 RELATED WORKS

Existing methods for protein and molecular ligand design can be categorized by how they couple
generation with optimization, i.e., the extent to which candidates are refined toward biochemical
objectives. We summarize them into four paradigms:

① Decoupled Paradigms. Traditional pipelines treat representation, generation, and optimization as
separate modules. Classical docking methods such as ZDOCK ( Chen et al. (2010)), RosettaDock
( Lyskov & Gray (2008)), AutoDock ( Morris et al. (2008)), and Glide ( Halgren et al. (2004))
encode ligands into atomic/residue descriptors, followed by independent search and scoring. Early
generative models like sequence-based RNNs ( Liu et al. (2020)) also rely on post hoc optimization.
These approaches are interpretable but loosely connected to task objectives.

② Implicitly Coupled Paradigms. Diffusion-based approaches embed optimization into sampling.
For proteins, DiffAb ( Luo et al. (2022)) and HSRN ( Jin et al. (2022)) refine CDR loops with
SE(3)-equivariant models. For ligands, DiffDock ( Corso et al. (2022)) and GeoDiff ( Xu et al.
(2022)) integrate docking or ∆G signals into denoising, while Pocket2Mol ( Peng et al. (2022)) and
TankBind ( Lu et al. (2022)) further condition on receptor pockets. Although effective, these rely on
handcrafted schedules and stochastic trajectories, limiting efficiency and de novo completeness.

③ Surrogate- or Heuristic-coupled Paradigms. Another line combines generation with heuris-
tic optimization or surrogate models. For proteins, reinforcement learning (ABDPO ( Zhou et al.
(2024))) and memory-augmented models like dyMEAN ( Kong et al. (2023)) incorporate dock-
ing rewards. For ligands, reinforcement learning ( Gottipati et al. (2020)), evolutionary strategies
( Chen et al. (2021)), and Bayesian optimization ( Moss et al. (2020)) guide fragment assembly
or mutation. Frameworks such as DockStream ( Guo et al. (2021)), ALIDIFF ( Gu et al. (2024)),
and DRUGFLOW ( Schneuing et al. (2025)) embed chemical, geometric, or physical priors. These
methods are flexible but computationally costly.

④ Latent-gradient coupling Paradigm (Ours). Inversion differs by explicitly treating generation
as optimization ( Niu et al. (2025);Qiu et al. (2024); Bergues et al. (2025)). Structures are refined
via gradient updates in latent space, guided by task-specific losses and domain constraints, without
stochastic schedules or heuristic surrogates. More details of Sec. 2.2 are applied in Appendix B.

2.3 THE INVERSION FRAMEWORK

As an emerging generative framework, Inversion differs fundamentally from mainstream generative
frameworks like Diffusion(Ho et al. (2020); Song et al. (2022)) and Flow-matching (Lipman et al.
(2023); Liu et al. (2022)), as it employs gradient-based refinement to iteratively adjust structures
toward task-specific goals. Its advantages can be summarized as follows: ① Generality. Traditional
frameworks often rely on domain-specific priors or handcrafted surrogates, limiting adaptability.
Inversion only requires differentiable embeddings and universal gradient updates, enabling one ar-
chitecture to generalize once the backbone encodes domain knowledge. ② Efficiency. Mainstream
methods incur redundant stochastic trajectories or surrogate solvers, leading to high cost and limited
efficiency. Inversion directly couples generation and optimization via gradients, achieving higher
information efficiency and a stronger theoretical ceiling (Appendix E.3 and E.5). ③ Modularity and
Scalability. Existing approaches are often entangled with backbone designs, hindering transfer of
pretrained improvements. Inversion remains orthogonal to the backbone, so better representations
directly translate into stronger gradient guidance. Concretely, we divide the inversion framework
into two stages:

❶ Knowledge-infused Pre-training Stage. A model M is first pre-trained to transform structured
data Spre (e.g., molecular graphs or 3D point clouds) into comprehensive latent embeddings. This
critical stage captures domain-specific features (e.g., chemical and geometric properties) from ex-
tensive datasets, ensuring that the learned representations provide robust and meaningful gradients
for downstream refined optimization. The training objective can be formulated as:

θ∗ = argmin
θ
Lpre (Mθ(Spre),Y) , (2)

where θ denotes model parameters, Y represents supervision signals (or self-supervised targets),
and Lpre is a specialized domain-aware loss function designed for robust optimization.
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Figure 2: The overview of MagicDock Framework.

❷ Gradient-driven Inversion Stage. Once pre-trained, the model iteratively refines structures S
via gradient-based inversion. Starting from an initial S0, the updates follow:

St+1 = St − η∇St
L(St, Cdomain), (3)

where L is a specialized task-specific objective,∇St
represents gradients with respect to the current

structure, and Cdomain rigorously enforces structural or biochemical restrictions.

In our framework, St corresponds to ligand point clouds Plig = {fi}Ni=1, which are optimized di-
rectly with gradient signals. By applying different domain-specific generating constraints Cdomain,
the inversion process yields biologically valid protein or small molecule ligands that simultaneously
achieve high affinity. We provide a detailed version of the inversion framework in Appendix A.

3 METHODOLOGY

We instantiate the four-stage framework introduced in Fig. 2 and propose MagicDock: Stage1:
Docking-oriented ligand modeling, Stage2: Unsupervised pre-training, Stage3: Supervised fine-
tuning, and Stage4: Inversion-based ligand generation. These modules constitute a de novo pipeline
for receptor–ligand interactions. The pseudocode of our method is applied in Appendix G

3.1 STAGE 1: DOCKING-ORIENTED LIGAND MODELING

Motivation. We aim to develop a unified framework for modeling protein and molecule ligands,
capturing shared structural principles while enabling effective modeling the docking process. Sur-
face point clouds provide a compact, meaningful, SE(3)-equivariant representation, encoding geo-
metric and chemical binding determinants, ideal for scalable pre-training and generative tasks.

Surface Point Cloud Modeling. We transform atomic structures into solvent-accessible surfaces,
sampled as point clouds per (Wu & Li (2024)). The molecular surface is defined as the level set of
a smooth distance function over atom centers, commonly referred to as the signed distance function
(SDF). Candidate points {xis} are upsampled from Gaussian distributions around atomic coordinates
{xja} and optimized via gradient descent using:

4
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SDF(xis) = −f(xis) · log
N∑
j=1

exp

(
−∥x

i
s − xja∥
σj
a

)
, f(xis) =

∑N
j=1 exp(−∥xis − xja∥)σj

a∑N
j=1 exp(−∥xis − x

j
a∥)

. (4)

whereN is the number of atoms and σj
a denotes the atomic radius. Multi-resolution point clouds are

systematically generated with tailored scaling for protein ligands and molecule ligands, effectively
balancing structural fidelity and computational performance.

Feature Generation. Each surface point is assigned highly comprehensive composite feature vec-
tors seamlessly integrating chemical, atomic, and geometric characteristics:

f(xi) = concat
(
fchem(xi), fatom(xi), fgeom(xi)

)
. (5)

These features encode intrinsic and neighborhood information, tailored to the inherent characteris-
tics of proteins and molecules, ensuring a unified, context-rich representation.

Patch Partitioning. To reduce computational complexity and facilitate Stage 2’s pre-training, point
clouds are partitioned into patches following (Wu & Li (2024)). Patch centers Xc are obtained by
farthest point sampling (FPS), and each center systematically groups its K closest neighbors using
K-nearest neighbor (KNN) search:

Xc = FPS(Xs), Xc ∈ RρM×3, Xp = KNN(Xc, Xs), Xp ∈ RρM×K×3. (6)
This patch-based structure effectively preserves local chemical–atomic-geometric context for dock-
ing and enables highly efficient unsupervised pre-training with discrete latent codes at the patch
level. This optimized, docking-oriented representation seamlessly unifies receptors (i.e. protein)
and ligands(i.e. protein and molecule), balancing biophysical accuracy and computational perfor-
mance for subsequent modeling. We further demonstrate that MagicDock is approximately SE(3)-
equivariant with respect to the initial position and orientation of the receptor in Appendix E.1. Com-
prehensive details of Stage 1 are provided in Appendix C.1.

3.2 STAGE 2: UNSUPERVISED PRE-TRAINING

Motivation. In Stage 2, we use the VQ-MAE framework (Wu & Li (2024)) on protein and
molecule datasets, integrating mask autoencoding and quantization to learn transferable representa-
tions. Based on this, we have developed a pre-trained model that can generate high-quality repre-
sentations of proteins and small molecules. (More details are applied in Appendix C.2 and C.3.)

SE(3)-Equivariant Encoding. The encoder systematically processes local surface patches Xp,
with coordinates xi ∈ R3 and features fi, using SE(3)-equivariant convolutions for significantly
enhanced rigid-body consistency. The comprehensive resulting latent embedding for point i is:

zi =
∑

j∈N (i)

L∑
l=0

Rl(∥xij∥)Yl
(

xij

∥xij∥

)
·Wlfj , (7)

where xij = xj − xi, Rl(·) are radial functions, Yl(·) are spherical harmonics, and Wl are weight
matrices, guaranteeing equivariance under SE(3) spatial transformations.

Masked Reconstruction with Vector Quantization. Patches are masked at ratio δ = 50%, with
masked and visible sets Xp,m ∈ RδρM×K×3 and Xp,vis ∈ R(1−δ)ρM×K×3. Masked patch tokens
are quantized using a learnable codebook via Gumbel-Softmax relaxation. Visible and quantized
embeddings are systematically decoded to reconstruct: (i) spatial coordinates via

X̂ = Reshape(MLP(H(L2)
p )), X̂ ∈ RδρM×K×3, (8)

and (ii) surface curvature derived from the covariance matrix of each carefully masked patch, with
pseudo-curvatures ψi = ϵi/

∑3
j=1 ϵj accurately predicted by an MLP.

Training Objective. The loss effectively combines accurate coordinate reconstruction, precise cur-
vature prediction, and comprehensive KL divergence regularization:

L = ν1Lrec(Xp,m, X̂) + ν2Lcur(ψ, ψ̂) + ν3LKL(q(Zp,m | Hp,m), p(Zp,m)), (9)
where Lrec uses Chamfer distance, Lcur uses RMSE, and Hp,m denotes the masked patch embed-
dings before quantization. This design effectively embeds rich ligand surface semantics, ensuring ro-
bust reconstruction fidelity and enhanced geometric consistency. More details are in Appendix C.2.
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3.3 STAGE 3: SUPERVISED FINE-TUNING

Motivation. The models obtained in Stage 2 provide high-quality representations of protein and
small molecule data, but they cannot be directly used for docking tasks. Therefore, in Stage 3,
we use SE(3)-equivariant attention to capture receptor-ligand dependencies and fine-tune the model
using ground-truth labeling on three progressively downstream tasks: Pocket Prediction, Interaction
Prediction, and Binding-Affinity Regression.

Equivariant Attention Fusion. Receptor and ligand point clouds are independently encoded by
Stage 2’s encoders into latent fields Zr ∈ RNr×d and Zl ∈ RNl×d. Interfacial dependencies are
captured through an SE(3)-equivariant attention followed by a permutation-invariant aggregator:

Attn(Zr, Zl) = softmax

(
Q

(ℓ=0)
r (K

(ℓ=0)
l )⊤√
d

)
Vl, z̃ = A

(
Zr,Attn(Zr, Zl)

)
∈ R2d, (10)

where Q(ℓ=0)
r = Z

(ℓ=0)
r WQ, K(ℓ=0)

l = Z
(ℓ=0)
l WK , and Vl = ZlWV are computed with learnable

matrices WQ,WK ,WV ∈ Rd×d. The attention scores are derived from ℓ = 0 (scalar) channels to
ensure SE(3)-invariance, while higher-order features in Vl are transformed via Wigner-D matrices.

Multi-Task Supervision. Three progressively objectives align representations with docking seman-
tics: (i) Pocket segmentation classifies receptor embeddings zi ∈ Zr with a loss combining binary
cross-entropy (BCE) and a geometric regularization term; (ii) Interaction prediction uses the fused
representation z̃ with BCE loss; (iii) Binding affinity regression predicts binding free energy via
mean squared error (MSE). The corresponding objectives are summarized as:

Lpocket =
1

Nr

Nr∑
i=1

BCE(ŷi, yi) + λpRgeom, L∆G =
1

|V|
∑

(r,l)∈V

(
ŷ∆G(r, l)−∆G(r, l)

)2
. (11)

The overall fine-tuning objective is:

LFT = αLpocket + βLint + L∆G, (12)

where Lint is the BCE loss for interaction prediction, and α, β, λp > 0 are tuned on validation data.
Task-specific MLPs, the equivariant attention module, and encoders are optimized jointly.

3.4 STAGE 4: INVERSION-BASED LIGAND GENERATION

Motivation. To convert the docking-aware backbone into a generative model, we use an inversion
framework that optimizes ligands’ structure and feature in a continuous surface embedding space. In
addition, this flexible inversion-based pipeline can effectively utilize the unified differentiable data
structure to generate different categories of ligands in one pipeline.

Gradient-driven Inversion. For a receptor R and initial ligand S0, Stage 3 encoders systematically
produce latent fields Zr and Zl, fused via SE(3)-equivariant attention into z̃ (Eq. 10). The com-
posite objective F(S;R,Θ) (Eq. 43) effectively reflects pocket consistency, interaction plausibility,
and binding affinity. Ligand point-cloud coordinates x and features f are rigorously optimized by
descending ∇(x,f)F , with updates mapped to chemically valid structures via:

S⋆ = lim
t→∞

Gtype

(
ΠCvalid

(
(x, f)t − ηt∇(x,f)F(St;R,Θ)

))
, (13)

where ηt is the step size, ΠCvalid ensures chemical and geometric validity, Gtype decodes point clouds
into atomistic graphs, and St denotes the ligand structure at iteration t. This unifies representation
learning and structure generation for docking-aware ligands. Details are in Appendix C.4.

4 THEORETICAL ANALYSIS

To provide a cohesive theoretical foundation, we present MagicDock’s inversion-based framework,
grounded in rigorous analyses in Appendix E. Theorem 1 establishes SE(3)-equivariance across all
stages, ensuring rotational and translational invariance in ligand generation. Theorem 2 proves con-
vergence of the projected gradient descent in the inversion phase to stationary points under smooth-
ness and boundedness assumptions. Theorem 3 demonstrates theoretical superiority over decoupled

6
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Table 1: Performance comparison on the SKEMPI v2 (left) and SAbDab (right). Best results are in
bold, second best are underlined. Arrows indicate whether higher (↑) or lower (↓) values are better.

Method IMP (↑) STA (↑) DIV (↑) NOV (↑) AAR (↑)
RAbD 21.58/15.12 0.779/0.763 0.728/0.764 0.838/0.829 38.23/38.75
DiffAB 17.65/11.69 0.703/0.736 0.744/0.754 0.820/0.868 41.65/38.52
HSRN 23.19/17.72 0.844/0.809 0.801/0.805 0.877/0.924 45.29/40.63
dyMEAN 15.93/8.55 0.821/0.799 0.805/0.799 0.923/0.953 44.67/44.06
ABDPO 25.17/16.63 0.853/0.833 0.796/0.816 0.905/0.932 46.19/43.53
Abx 28.76/21.80 0.866/0.820 0.812/0.820 0.889/0.950 46.35/44.29
Ours 36.32/27.87 0.874/0.851 0.815/0.824 0.934/0.957 48.73/46.14

Table 2: Performance comparison on the PDBBind2020 (left) and CrossDocked2020 (right).

Method Vina (↓) Affinity (↑) STA (↑) DIV (↑) NOV (↑) QED (↑)
DockStream -5.51/ -5.15 15.13/17.86 0.765/0.780 0.717/0.621 0.985/0.967 0.455/0.401
3D-SBDD -6.35/ -6.24 27.88/28.54 0.853/0.801 0.768/0.701 0.997/0.998 0.503/0.483
liGAN -6.03/ -6.11 22.56/22.15 0.830/0.825 0.772/0.663 0.997/0.997 0.489/0.377
ALIDIFF -7.21/ -6.79 35.74/65.63 0.875/0.833 0.756/0.727 0.998/0.999 0.472/0.464
DRUGFLOW -7.12/-6.81 33.56/52.35 0.858/0.838 0.764/0.718 0.995/0.999 0.520/0.519
DIFFSBDD -6.99/-6.86 28.83/35.88 0.867/0.825 0.801/0.705 1.000/0.998 0.511/0.502
Ours -7.36/-7.02 40.63/60.02 0.866/0.840 0.778/0.730 1.000/1.000 0.552/0.544

generate-and-optimize paradigms, with reachable objective sets strictly contained and improved un-
der generator misspecification. Theorems 4, 5 highlight efficiency advantages, outperforming tradi-
tional methods in computational cost. Theorem 6 shows information-theoretic optimality via max-
imized mutual information I(X;Y), balancing high output entropy and low conditional uncertainty.
Finally, Theorem 7 underscores lower sample complexity, O(log 1/ϵ) for fine-tuning, leveraging
pre-training for data efficiency over baselines’ O(1/ϵ).

5 EXPERIMENTS

To validate the distinct superiority of MagicDock, we conduct a series of rigorous and compre-
hensive experiments on diverse datasets for both molecule and protein ligand. We aim to answer:
Q1 (Effectiveness): Does MagicDock outperform state-of-the-art baselines in generating ligand?
Q2 (Interpretability): What enables MagicDock to effectively produce high-affinity ligands? Q3
(Robustness): Is MagicDock resilient to structural noise, biological variability, and does it exhibit
reliable convergence? Q4 (Efficiency): Does MagicDock achieve superior trade-offs in runtime,
resource usage, scalability, and data efficiency during ligand generation?

5.1 OVERALL PERFORMANCE (Q1)

To answer Q1, we conducted a systematic evaluation of the effectiveness of ligand design for two
scenarios. In the following, we list the detailed experimental settings for these two scenarios.

Datasets & Baselines & Evaluation Metrics. We utilize tailored datasets, baselines, and evaluation
metrics for both protein and small molecule ligand design, with details provided in Appendix D.
Furthermore, we have made fair adjustments for all baseline methods to adapt to challenging de
novo ligand design scenario, as comprehensively detailed in the Appendix H.

Experimental Results. As shown in Table 1 and Table 2, MagicDock outperforms all baselines
on both benchmarks, achieving better binding affinity, stability, diversity and novelty, with supe-
rior AAR for proteins and higher QED for molecules. MagicDock’s experimental affinity perfor-
mance is slightly lower than AliDiff’s due to the latter’s direct exact energy alignment via preference
optimization on pre-trained diffusion models, which efficiently biases toward high-affinity sample
distributions but sacrifices generation diversity and incurs substantial computational overhead. Hy-
perparameter details are applied in Appendix L.
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5.2 INTERPRETABILITY STUDY (Q2)

Having established the remarkable effectiveness in Q1, we now turn to Q2 and investigate why
MagicDock can produce high-affinity ligands. Specifically, we first analyzed the contribution of
each stage to the final result and whether the gradient of the inversion target provided meaningful
biological localization signals. In addition, we also visualized the process of ligand generation.

Ablation Study. To disentangle the role of each stage, we conduct module-wise ablations: (i)
w/o Stage 1: replacing surface point clouds with raw atom graphs; (ii) w/o Stage 2: removing
unsupervised pre-training; (iii) w/o Stage 3: disabling supervised fine-tuning; (iv) w/o Stage 4:
substituting gradient-guided inversion with exhaustive element-type search. Fig. 6a, 6b show that
each stage plays a critical role, with the full pipeline achieving the best performance.

Gradient Attribution & Localization. We further ask whether gradients from the composite inver-
sion objective F(S;R,Θ) (Appendix C.4) effectively localize on biologically meaningful binding
sites learned in Stage 3. We compute Integrated Gradients on receptor and ligand surfaces and
systematically evaluate whether high-attribution regions align with ground-truth interfaces. Fig. 3
demonstrates that inversion not only optimizes affinity but also consistently highlights mechanisti-
cally significant relevant regions, addressing Q2.

1% 5% 10%0
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2

3
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0.0

0.1
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0.0
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Spearman 

Random Saliency Grad×Input IG (Ours) IG + Smooth

Figure 3: Performance comparison of attribution methods for interpretability, evaluated on Enrich-
ment @k (1%, 5%, 10%), AUPRC, AUROC, and Spearman correlation.

Local Perturbation Consistency. We assess whether gradient attributions predict energetic effects
of local edits by introducing small perturbations near high-attribution sites and comparing predicted
with actual ∆F . This tests whether attributions enable actionable refinement. As shown in Fig. 8,
our method outperforms saliency and Grad×Input, approaching physics-based Rosetta evaluations.

Case Study. To evaluate the significant impact of constraints in MagicDock’s inversion-based ligand
generation process, we generated two ligands for the target receptor. At each iteration, we systemat-
ically assessed binding affinity, as shown in Fig. 4 and Fig. 12. Additionally, we have listed a series
of molecular ligands generated by MagicDock, as shown in Fig. 11 and Fig. 13 in Appendix K.

5.3 ROBUSTNESS STUDY (Q3)

Having established remarkable interpretability, we next address Q3: whether MagicDock is con-
sistently robust to input variations and biological uncertainty. We design three sets of experiments
systematically probing artificial noise, realistic receptor perturbations, and convergence properties.

Geometric and Feature Noise. We assess robustness on 100 receptor–ligand pairs by adding Gaus-
sian coordinate noise and feature dropout to receptor surfaces, then comparing ligand generation on
noisy versus clean inputs (Fig. 7). Results show that MagicDock consistently outperforms baselines
under perturbations, demonstrating stable performance and robustness to biological uncertainty.

Conformational and Mutational Variability. We further evaluate remarkable robustness to bi-
ological variability by subjecting 100 receptors to perturbations, including conformer ensembles,
single-point mutations, and combined variants. These perturbed structures are systematically pro-
cessed through the inversion pipeline. Performance degradation is assessed via IMP for protein
baselines and High-Affinity for molecule baselines. As shown in Fig. 9, statistical tests compare
conservative and non-conservative mutations, illustrating MagicDock’s exceptional robustness.

Convergence Study. The convergence of MagicDock’s gradient-driven inversion stage is rigorously
established in Appendix E.2. The proof systematically demonstrates that, under standard assump-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Ligand Under Generation 
(231 residues)

Ligand Under Generation 
(323 residues)

Ligand Under Generation 
(376 residues)

 Generated Ligand
(431 residues)

Predicted Pocket 
(red)

 Δ� =− 196.55  KJ/mol Δ� =− 281.72  KJ/mol

Δ� =− 324.89  KJ/mol Δ� =− 294.11  KJ/mol

102 steps

55 steps

231 steps 53 steps

①

② ③

④⑤

Protein receptor (others)

Pocket 

Generated Residues 

②

⑤

Steps

Figure 4: Visualization of an example of generated protein-ligand complexes.

tions for projected gradient descent, the ligand sequence P t
lig converges to a stationary point of the

composite objective F , with mint |∇F(P t
lig)|2 → 0 as t → ∞. This guarantees that MagicDock

consistently optimizes ligands with exceptionally high reliability.

5.4 EFFICIENCY STUDY (Q4)

Finally, we address Q4 by systematically quantifying whether MagicDock achieves a highly favor-
able trade-off between computational cost and accuracy. Having shown that the framework is both
interpretable and robust, we now analyze runtime efficiency and comprehensive scalability.

Runtime and Resource Usage. We benchmark MagicDock against baselines using 100 receptors,
generating one ligand per receptor under identical hardware. Wall-clock time and memory usage
are assessed per computational stage. Fig. 10a demonstrates MagicDock’s reduced runtime while
Fig. 10b highlights lower peak memory consumption, underscoring its resource efficiency.

Scalability. Scalability is evaluated across nine settings varying receptor sizes and ligand com-
plexities using 100 receptors from CrossDocked2020 and SAbDab. Metrics include per-iteration
latency, iterations-to-converge, memory footprint, and scaling exponent γ from T ∝ Nγ . Table 5
and Table 6 shows MagicDock’s sub-quadratic scaling (γ = 1.4), enabling real-time deployment.

Data Efficiency. As established in Appendix E.6, MagicDock’s inversion framework achieves ϵ-
accuracy in supervised fine-tuning with onlyO(1/ϵ) samples (up to logarithmic confidence factors),
compared to O(1/ϵ2) for GANs and O(T/ϵ2) for diffusion models. This linear-in-1/ϵ sample com-
plexity, enabled by pre-training’s strong convexity and low effective dimension, effectively ensures
robust generalization in challenging data-scarce docking tasks with limited annotated complexes.

6 CONCLUSION

In this study, we introduced MagicDock, an inversion-based framework unifying generation and
optimization in a streamlined, docking-driven workflow for de novo ligand design. Using surface
point-cloud modeling, SE(3)-equivariant pretraining, and docking-oriented fine-tuning, MagicDock
eliminates external priors for robust de novo design of protein and small-molecule ligands. Exper-
iments show strong effectiveness and efficiency. These results position inversion-based docking as
a versatile paradigm overcoming traditional limitations for practical ligand design. Limitations and
future work are applied in Appendix F.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed MagicDock architecture descriptions, theoretical
analysis, and objectives in Sec. 3 and Sec. 5 and Appendix A to Appendix D. Datasets for pre-
training and evaluation, including processing, splits, and sources, are in Appendix E. Hyperparame-
ters, training, and ablations are in Appendix L. Codes and other necessary materials are provided in
our supplementary materials.
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Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
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A THE INVERSION FRAMEWORK IN DETAILS

A.1 MODEL TRAINING

Recent advances in generative modeling have increasingly embraced the Inversion framework as
a powerful approach, which reverses traditional data flow by reconstructing or optimizing struc-
tures from latent representations or gradients, as demonstrated in InversionGNN( Niu et al. (2025)).
This framework is particularly well-suited for our docking-optimized design of proteins and small
molecules, offering a flexible paradigm for zero-start generation. Let us guide you through its struc-
ture step by step, focusing on the unsupervised pre-training and supervised fine-tuning phases that
establish a robust foundation for subsequent inversion-based generation.

① Unsupervised Pre-Training. This phase lays the foundation by initializing the Inversion frame-
work through an unsupervised training process that encodes input data into a latent representation,
capturing transferable geometric and chemical priors without relying on labeled data. Generally, it
involves an encoder that transforms structured input data—comprising n elements and their relation-
ships—into hidden embeddings z ∈ Rd, updated iteratively using a propagation rule. The general
update can be expressed as:

zt+1 = Prop (zt, {zv | v ∈ N (u)} , θ) , (14)

where θ represents trainable parameters, and Prop denotes a propagation function tailored to the data
structure, which may include graphs, point clouds, or other relational formats. To ensure adaptabil-
ity, the latent space is refined with feedback from an objective function, requiring differentiability
for gradient-based optimization.

In our work, this phase employs a pre-trained SE(3)-equivariant encoder to process the interaction
graph derived from 3D point clouds, generating embeddings hu ∈ Rd as:

h(l)
u = PropSE(3)

(
h(l−1)
u ,

{
h(l−1)
v | v ∈ N (u)

})
, (15)

where the SE(3)-equivariant propagation weights are optimized using self-supervised objectives,
such as masked reconstruction and vector quantization, to embed rich surface semantics. This es-
tablishes a robust, docking-aware representational backbone by learning from extensive datasets
of proteins and small molecules, ensuring geometric consistency and chemical plausibility without
explicit supervision.

② Supervised Fine-Tuning. Building on the unsupervised pre-training, this phase refines the
model with task-specific supervision to align representations with docking semantics, incorporat-
ing ground-truth labels from protein–ligand complexes. The fine-tuning calibrates the pre-trained
encoder to capture interfacial dependencies and binding signals, using objectives like pocket seg-
mentation, interaction prediction, and binding affinity regression.

The receptor and ligand point clouds are encoded into latent fields Zr and Zl, fused via cross-
attention to model interactions. The multi-task loss integrates these objectives, with gradients from
docking energy Edock, defined as ∇huEdock = ∂Edock

∂hu
, providing feedback to fine-tune the param-

eters. This supervised refinement enhances the model’s ability to predict high-affinity structures,
mitigating issues like representation collapse and enabling seamless transition to the inversion phase
for generation.

The trainable components across both phases include the encoder weights and gradient optimization
parameters, collectively parameterized by fθ. This two-phase approach—unsupervised pre-training
followed by supervised fine-tuning—mitigates issues like model degradation (from suboptimal ini-
tialization) and gradient misalignment, with optimization dynamics driven by gradient-based super-
vision for improved convergence in docking-oriented ligand design.

A.2 INVERSION PHASE

Building on the trained model, this phase reconstructs the desired structures by reversing the encod-
ing process through gradient-driven optimization. Generally, the inversion process updates a latent
or structural representation x based on an objective function L, formulated as:

17
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Figure 5: Comparison of the inversion framework with other generative ligand design methods.

xt+1 = xt − η∇xt
L(xt), (16)

where η is the learning rate, and L incorporates domain-specific constraints. In our implementation,
the Inversion generation module refines point cloud positions pu and features fu using gradient
adjustments guided by docking feedback, expressed as:

xt+1 = InvGen (pu + α∇puEdock, fu + β∇fuEdock, Cbio) , (17)

where α and β are learning rates, and Cbio enforces biochemical constraints. This enables reverse
inference of protein sequences or small molecule structures from zero-start, simultaneously optimiz-
ing both molecular types.

The trainable components of this framework include the encoder weights and gradient optimization
parameters, collectively parameterized by fθ. This two-phase approach mitigates issues like model
degradation (from suboptimal initialization) and representation collapse (from gradient misalign-
ment), with optimization dynamics driven by gradient-based supervision for improved convergence.

B RELATED WORKS IN DETAILS

Following the taxonomy in the main text, we reorganize existing approaches into four paradigms
according to how generation is coupled with optimization. For completeness, we further discuss
them from two complementary perspectives: protein design and molecular ligand design.

① Decoupled Paradigms. (a) Protein design. Classical protein–protein docking pipelines, such
as ZDOCK Chen et al. (2010), HADDOCK Dominguez et al. (2003), and RosettaDock Lyskov &
Gray (2008), employ geometric complementarity and energy minimization, sometimes with partial
priors like known paratopes Kozakov et al. (2017); Yan et al. (2020); Ganea et al. (2021). Deep
learning extensions such as AlphaFold-Multimer Evans et al. (2022) improve accuracy but remain
resource-intensive. Early generative efforts, e.g., RNN-based paratope generation Liu et al. (2020);
Saka et al. (2021) or sequence–structure joint models Jin et al. (2021), also separated sampling from
docking-based optimization.

(b) Molecular ligand design. Structure-based drug discovery relies on docking engines including
AutoDock (Morris et al. (2008)), DOCK (Ewing et al. (2001)), Glide (Halgren et al. (2004)), and
GOLD (Verdonk et al. (2003)), supported by scoring functions and refinement via MD, FEP, or

18
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MM/PBSA simulations (Berdigaliyev & Aljofan (2020); Fabricant & Farnsworth (2001)). These
workflows represent ligands in predefined descriptors, then optimize poses post hoc. Early genera-
tive models (VAEs (Gómez-Bombarelli et al. (2018); Skalic et al. (2019)), GANs (Guimaraes et al.
(2017)) also adopted a decoupled generation–evaluation scheme. While interpretable, such methods
are loosely tied to binding or multi-objective constraints.

② Implicitly Coupled Paradigms. (a) Protein ligand design. Here, optimization signals are em-
bedded into stochastic generative processes. Graph-based generative methods (Jin et al. (2021)),
backbone-conditioned models (Ingraham et al. (2019)), and energy-aware strategies (Tischer
et al. (2020); Cao et al. (2021)) guide sequence/structure generation with implicit docking feed-
back. Diffusion-style models (e.g., DiffAb, HSRN) refine CDR loops and interfaces with SE(3)-
equivariant priors.

(b) Molecule ligand design. Diffusion-based models such as DiffDock (Corso et al. (2022)) and
GeoDiff (Xu et al. (2022)) integrate ∆G or docking signals during denoising. Pocket2Mol (Peng
et al. (2022)) and TankBind (Lu et al. (2022)) condition on receptor pockets. Broader frameworks,
including DockStream (Guo et al. (2021)), ALIDIFF (Gu et al. (2024)), and DRUGFLOW (Schneu-
ing et al. (2025)), couple docking or ADMET constraints with molecular diffusion or generative
flows (Shi et al. (2020); Lee et al. (2023)). VAE (Liu et al. (2018); Fu et al. (2020); Griffiths &
Hernández-Lobato (2020); Wang et al. (2022)) and GAN-based methods (De Cao & Kipf (2018);
Abbasi et al. (2022)) also benefit from structural conditioning. Despite progress, efficiency and
smooth latent space learning (Brown et al. (2019); Huang et al. (2021); Gao et al. (2024b)) remain
challenges.

③ Surrogate- or Heuristic-coupled Paradigms. (a) Protein ligand design. Reinforcement learning
has been applied to antibody optimization (Ingraham et al. (2019); Tischer et al. (2020)), while
memory-augmented models integrate docking oracles into generation. Energy-based approaches
similarly exploit docking rewards (Cao et al. (2021)), yet suffer from high computational cost.

(b) Molecule ligand design. Ligand optimization often leverages search in discrete chemical space.
Reinforcement learning (Ståhl et al. (2019); You et al. (2018); Zhou et al. (2019); Gottipati et al.
(2020); Gao et al. (2024a); Jain et al. (2023)), evolutionary algorithms (Jensen (2019); Nigam et al.
(2019); Chen et al. (2021)), Markov Chain Monte Carlo (Xie et al. (2021); Fu et al. (2021b)), tree
search (Ma et al. (2021)), and Bayesian optimization (Korovina et al. (2020); Moss et al. (2020))
iteratively refine molecules with docking oracles. While effective, they require many evaluations
and struggle with balancing multiple objectives (Blum & Roli (2003); Mazyavkina et al. (2021)).
Frameworks like DockStream (Guo et al. (2021)), ALIDIFF (Gu et al. (2024)), and DRUGFLOW
(Schneuing et al. (2025)) attempt to reduce cost via chemical and geometric priors.

④ Explicitly Gradient-coupled Paradigm (Ours).

Inversion-based frameworks directly couple generation and optimization via gradient guidance in
latent space. Unlike stochastic or heuristic strategies, gradients provide more efficient and inter-
pretable refinements of sequence–structure pairs (Niu et al. (2025);Fu et al. (2021a)). The proposed
MagicDock exemplifies this paradigm by unifying 3D geometry, docking constraints, and biophys-
ical objectives. By treating ligand generation as a gradient-driven process, it co-optimizes ∆G,
specificity, and stability without handcrafted schedules. This enables biologically relevant designs
under a single, generalizable architecture.

C METHODOLOGY IN DETAILS

C.1 STAGE 1: DOCKING-ORIENTED LIGAND MODELING

We represent ligands (both proteins and molecules) through solvent-accessible surfaces parameter-
ized by a probe radius rprobe = 1.4 Å. Let C = {(cj , rj)}Mj=1 denote atomic centers and van der
Waals radii. The molecular surface is defined as the iso-level set of the distance field:

S = {x ∈ R3 | d(x;C) = rprobe}, d(x;C) = min
j
∥x− cj∥ − rj , (18)
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where the minus sign ensures consistency with van der Waals boundaries. A differentiable represen-
tation is achieved using a smoothed distance function:

SDF(x) = −σ̄(x) log
M∑
j=1

exp
(
−∥x−cj∥

σj

)
, σ̄(x) =

∑
j exp(−∥x− cj∥)σj∑
j exp(−∥x− cj∥)

. (19)

Candidate points, sampled from Gaussian perturbations around atoms, are iteratively projected onto
the iso-surface via gradient descent. A triangulated mesh is constructed using the ball-pivoting
algorithm (BPA) with radii in [rprobe, 2rprobe], and N = 5000 points are uniformly sampled for
proteins (scaled for ligands). Surface normals are estimated by weighted PCA within a 2rprobe
neighborhood:

Σi =
∑

j∈Nn(i)

wij(xj − x̄i)(xj − x̄i)⊤, wij = exp
(
−∥xi−xj∥2

(2rprobe)2

)
, (20)

where Nn(i) is the set of neighboring points for normal estimation.

Each surface point xi is enriched with a feature vector integrating chemical descriptors, atomic type
indicators, geometric descriptors, coordinates, and a molecule-type identifier Ii:

f(xi) = concat
(
fchem(xi), fatom(xi), fgeom(xi), Ii, xi

)
. (21)

Atomic features. Atomic features fatom(xi) encode the local element distribution through
weighted one-hot statistics. For proteins, we adopt {C,H,O,N, S, Se} (6D). For small molecules,
we adopt {C(sp3), C(sp2), H,O(sp3), O(sp2), N(sp3), N(sp2), S(sp2)} (8D). The statistics are
aggregated using probe-scaled weights ωia = 1/(∥xi−ca∥/rprobe+ε). Note that this atomic vocabu-
lary is limited to common bio-organic atoms, while halogens and metal ions frequently appearing in
pharmaceutically relevant compounds are not yet included; we discuss extending the feature space
in Section F.

Chemical features. Chemical descriptors fchem(xi) are continuous values that capture local
physicochemical properties from neighboring atoms within rchem = 5.0 Å. Specifically, we define:
hydrogen-bonding potential,

Hbond(xi) =

∑
a∈Nc(i)

ωia ⊮[ta ∈ {O,N, S}]∑
a∈Nc(i)

ωia
, (22)

charge polarity,

C(xi) =

∑
a∈Nc(i)

ωia (⊮[ta ∈ {O,N}]− ⊮[ta ∈ {C,S}])∑
a∈Nc(i)

ωia
, (23)

and hydrophobicity/aromaticity,

Hphob(xi) =

∑
a∈Nc(i)

ωia ⊮[ta = C]∑
a∈Nc(i)

ωia
, Aaro(xi) = clip

(
Hphob(xi)

4.5 , 0, 1
)
. (24)

Here, Nc(i) denotes the chemical neighborhood, ⊮[·] the indicator function, and clip(x, a, b) trun-
cates x into [a, b].

Geometry features. Atomic statistics Ti,k reflect weighted element distributions, with 6D for
proteins and 8D for small molecules. Geometric descriptors from a kg = 10 nearest-neighbor set
Ng(i) include mean curvature κi,1, Gaussian curvature κi,2, and local density Di, computed as:

κi,1 = 1
|Ng(i)|

∑
j∈Ng(i)

∥ni − nj∥, (25)

κi,2 =

3∏
m=1

ϵm, {ϵ1, ϵ2, ϵ3} = eig

 1
|Ng(i)|

∑
j∈Ng(i)

(xj − x̄i)(xj − x̄i)⊤
 , (26)

Di =
1
kg

∑
j∈Ng(i)

∥xi − xj∥, normalized to [0, 1], (27)
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where eig(·) returns eigenvalues of the covariance matrix.

To enhance scalability, point clouds are partitioned into overlapping patches. Centers are obtained
via farthest point sampling (FPS), each grouping K = 50 neighbors within rpatch = 5.0 Å:

P(xc) = {xj | xj ∈ KNN(xc,K), ∥xj − xc∥ ≤ rpatch}, (28)

where KNN denotes the K-nearest neighbors of a center point. Patch features are summarized by
mean and variance pooling:

µk,f = 1
|Pk|

∑
xi∈Pk

f(xi), σ2
k,f = 1

|Pk|

∑
xi∈Pk

(f(xi)− µk,f )
2, (29)

with interface labels assigned for points within 4.0 Åof ligand or 2.0 Åof protein surfaces.

This yields a probe-aware, feature-enriched, patch-structured representation, unifying proteins and
ligands for pre-training and generative modeling.

C.2 STAGE 2: UNSUPERVISED PRE-TRAINING

In the second stage, the encoder is pre-trained in an unsupervised manner to capture transfer-
able docking-aware priors from proteins and small molecules. The framework integrates SE(3)-
equivariant convolutions, patch-level masking with vector quantization, and reconstruction objec-
tives targeting geometric and physicochemical properties, establishing a robust foundation for subse-
quent fine-tuning. Below, we detail the computational framework and objectives, ensuring seamless
integration of encoding and reconstruction processes.

SE(3)-Equivariant Encoding. Each molecular surface is represented as a collection of patches

Xp = {(xi, fi)}Ki=1,

where xi ∈ R3 are Cartesian coordinates, fi ∈ Rd are feature vectors of dimension d, and K is the
total number of patches. The encoder aggregates local neighborhoodsN (i) using SE(3)-equivariant
convolutions:

zi =
∑

j∈N (i)

L∑
l=0

Rl(∥xij∥)Yl
(

xij

∥xij∥

)
·Wlfj , (30)

where xij = xj − xi, Rl(·) are learnable radial functions, Yl(·) are spherical harmonics of order
l, Wl are trainable matrices, and L is the maximum order of harmonics. This ensures equivariance
under rigid motions (R, t) with R ∈ SO(3) and t ∈ R3:

zi(Rx+ t) = ρ(R) zi(x), (31)

where ρ(R) is the irreducible representation of SO(3) acting on the feature space, capturing both
scalar and higher-order interactions.

Patch Masking and Vector Quantization. A fraction of patches are masked at a specified ratio ρ,
and their embeddings are replaced by vector-quantized latents sampled from a learnable codebook E
of size NB . Following the discrete variational autoencoder (dVAE) relaxation, the quantized latent
is computed as:

zp,i,m =

∑NB

j=1 exp
(

gj+log q(ej |hp,i,m)
τ

)
ej∑NB

j=1 exp
(

gj+log q(ej |hp,i,m)
τ

) , (32)

where hp,i,m is the hidden state, ej ∈ E are codebook entries, gj ∼ Gumbel(0, 1) is sampled noise,
and τ is the softmax temperature. Visible and quantized embeddings are then passed to the decoder
for reconstruction, preserving contextual information across masked regions.

Reconstruction Targets. For coordinate recovery, the decoder outputs:

X̂ = Reshape(MLP(H(L2)
p )), X̂ ∈ RδρM×K×3, (33)

where H(L2)
p is the decoder output from the L2-th layer, M is the number of input molecular sam-

ples, and δ is a constant scaling factor. The multilayer perceptron (MLP) produces reconstructed
Cartesian coordinates.
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For surface geometry, each masked patch Xp,i,m with center xc,i,m has covariance:

Σ = 1
K

K∑
j=1

(xp,i,j,m − xc,i,m)(xp,i,j,m − xc,i,m)⊤ ∈ R3×3. (34)

Pseudo-curvatures are derived from its eigenvalues ϵ1, ϵ2, ϵ3 as:

ψi =
(

ϵ1
ϵ1+ϵ2+ϵ3

, ϵ2
ϵ1+ϵ2+ϵ3

, ϵ3
ϵ1+ϵ2+ϵ3

)
. (35)

An MLP predicts ψ̂i, supervised by root mean square error (RMSE), ensuring accurate capture of
local surface geometry.

Training Objective. The overall loss combines reconstruction, curvature, and regularization terms:

L = ν1Lrec + ν2Lcur + ν3LKL, (36)

where ν1, ν2, ν3 are scalar weights. The reconstruction loss uses the Chamfer distance:

Lrec =
1

δρMK

δρM∑
i=1

( ∑
a∈X̂i

min
b∈Xp,i,m

∥a− b∥22 +
∑

b∈Xp,i,m

min
a∈X̂i

∥a− b∥22

)
. (37)

The curvature loss is defined as:

Lcur =
1

δρM

δρM∑
i=1

∥ψi − ψ̂i∥22, (38)

and the KL divergence term LKL regularizes the posterior q(Zp,m | Hp,m) toward a uniform cate-
gorical prior.

This unsupervised pre-training framework leverages SE(3)-equivariant encoding, quantized masked
reconstruction, and curvature supervision to learn robust docking-aware priors, providing an effec-
tive initialization for downstream fine-tuning.

C.3 STAGE 3: SUPERVISED FINE-TUNING

In the third stage, the encoder pre-trained in Stage 2 is adapted to docking-specific tasks through
supervised fine-tuning on protein–ligand complexes with ground-truth labels. This stage integrates
cross-attention fusion to capture receptor–ligand interactions and employs three complementary su-
pervision signals—pocket segmentation, interaction prediction, and binding affinity regression—to
align representations with docking semantics. Below, we detail the computational framework and
objectives, ensuring a seamless transition from encoding to multi-task learning.

Equivariant Attention Fusion. Given a receptor surface R and a ligand L, their point-cloud repre-
sentations are encoded independently by the Stage 2 encoders, yielding latent fields

Zr ∈ RNr×d, Zl ∈ RNl×d,

where Nr and Nl are the numbers of sampled points on the receptor and ligand surfaces, respec-
tively, and d is the embedding dimension. To model interfacial dependencies, we employ an SE(3)-
equivariant attention mechanism, in which scalar attention weights are computed from ℓ = 0 chan-
nels while higher-order features are rotated via Wigner-D matrices to preserve equivariance:

Attn(Zr, Zl) = softmax

(
Q

(ℓ=0)
r (K

(ℓ=0)
l )⊤√
d

)
Vl,

where Q(ℓ=0)
r = Z

(ℓ=0)
r WQ, K(ℓ=0)

l = Z
(ℓ=0)
l WK , and Vl = ZlWV with WQ,WK ,WV ∈ Rd×d

being learnable projection matrices. The resulting cross-attended features are aggregated with the
original receptor embeddings using a permutation-invariant operator A(·), implemented as the con-
catenation of mean- and max-pooling:

z̃ = A(Zr,Attn(Zr, Zl)) ∈ R2d.
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This fused representation captures both local and interfacial information, serving as the foundation
for downstream supervision tasks.

Multi-Task Supervision. Three complementary supervised objectives align z̃ with docking seman-
tics in a cascaded manner: the pocket prediction serves as a foundational gate, with its outputs
weighting and conditioning the subsequent interaction and affinity predictions to emphasize the util-
ity of the identified pocket. 1. Pocket prediction: Each receptor embedding zi ∈ Zr (where Zr

denotes the set of Nr receptor embeddings) is classified as binding-site or non-binding-site, with
ground-truth label yi ∈ {0, 1}. The loss is defined as

Lpocket =
1
Nr

Nr∑
i=1

BCE(ŷi, yi) + λpRgeom, (39)

where BCE denotes binary cross-entropy, ŷi is the predicted probability, Nr is the number of re-
ceptor embeddings, and λp is a regularization weight. The geometric regularizer Rgeom enforces
agreement with distance-based pseudo-labels:

Rgeom =
1

Nr

Nr∑
i=1

∥ŷi − ygeom
i ∥2,

where ygeom
i = 1 if the closest ligand point lies within a pre-defined cutoff radius, and 0 otherwise.

The predicted pocket probabilities ŷi are used to gate subsequent losses.

2. Interaction prediction: Conditioned on the predicted pocket, the fused global vector z̃ (Eq. 10),
processed through a multilayer perceptron (MLP) classifier, predicts whether the receptor–ligand
pair forms a valid complex. The pocket-weighted loss is

Lint =
1
Nr

Nr∑
i=1

ŷi · BCE(ŷ(i)int , y
(i)
int ), (40)

where ŷ(i)int ∈ (0, 1) is the predicted interaction probability for the i-th receptor embedding (focusing
on pocket regions), y(i)int ∈ {0, 1} is the corresponding ground-truth label, Nr is the number of
receptor embeddings, and the weighting by ŷi ensures emphasis on high-confidence pockets.

3. Binding affinity regression: For complexes with experimentally measured affinities, the model
predicts binding free energy ∆G(r, l) ∈ R (standardized to zero mean and unit variance), condi-
tioned on both predicted pocket and interaction. The cascaded-weighted regression loss is

L∆G = 1
|V|

∑
(r,l)∈V

(
max(ŷi · ŷ(i)int , τ) ·

(
ŷ∆G(r, l)−∆G(r, l)

)2)
, (41)

where V is the set of receptor–ligand pairs with ground-truth affinity values (with |V| denoting its
cardinality), ŷ∆G(r, l) is the predicted binding free energy, ŷi is the predicted pocket probability
for the relevant receptor embedding i, ŷ(i)int is the predicted interaction probability for that embed-
ding, and τ is a minimum confidence threshold (e.g., 0.1). The weighting by ŷi · ŷ(i)int propagates
the dependency from prior predictions, ensuring affinity regression focuses on viable pocket-based
interactions.

Overall Objective. The joint fine-tuning objective combines the three tasks, each supervised by
lightweight MLP heads:

LFT = αLpocket + β Lint + L∆G, (42)
where α and β are weighting coefficients. During optimization, the encoders (initialized from
Stage 2), the cross-attention module, and task-specific MLP heads are jointly updated. This multi-
task framework effectively couples receptor–ligand embeddings and specializes the pre-trained
backbone for docking-aware representation learning, ensuring robust alignment with docking ob-
jectives.

C.4 STAGE 4: INVERSION-BASED LIGAND GENERATION

In the fourth stage, the docking-aware backbone is transformed into a generative engine via an
inversion mechanism. Unlike sampling–ranking pipelines, inversion performs direct gradient-based
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refinement in the latent continuous space, followed by projection and decoding into chemically valid
discrete structures. This section provides the complete mathematical formulation, algorithms, and
hyperparameters for ligand generation.

Composite Objective. Given a receptorR and a candidate ligand S, their surfaces are independently
encoded into latent fields Zr and Zl by the Stage 3 encoders. The fused interfacial embedding z̃
is obtained via cross-attention fusion (Eq. 10). The supervised heads trained in Stage 3 yield a
differentiable composite objective function F :

F(S;R,Θ) = αLpocket(S;R) + β Lint(S;R) + L∆G(S;R), (43)

where Lpocket is the binary cross-entropy loss for binding pocket localization, Lint is the interaction
plausibility loss (evaluating atom–residue interfacial compatibility), and L∆G is the regression loss
for binding free energy ∆G. Here α = 1.0 and β = 0.5 are balancing coefficients, and Θ are model
parameters.

Gradient-based Refinement. Let (x, f) denote the differentiable ligand representation, where x ∈
RNl×3 are atom coordinates and f ∈ RNl×df are atom features (including atomic type logits, partial
charges, hybridization states, and hydrogen-bond polarity indicators). At each iteration t, the update
step is

(x, f)t+1 = ΠCvalid

(
(x, f)t − ηt∇(x,f)F(St;R,Θ)

)
, (44)

where ηt = 10−3 is the step size, and ΠCvalid projects the updated state back onto the chemically and
geometrically valid manifold Cvalid. Projection enforces valid valence, realistic bond lengths, and
avoidance of steric clashes.

Generative Mapping. After projection, the refined continuous variables are decoded into chemi-
cally valid structures via a type-specific generative mapping Gtype. Unlike a deterministic argmax,
Gtype leverages gradient information to bias probabilistic sampling, followed by rule-based correc-
tions to enforce validity.

For small molecules, atom typing is performed by softmax sampling:

ai ∼ Categorical(σ(fi − γ∇fiF)) , ai ∈ Aatom, (45)

where Aatom = {C(sp3), C(sp2), H, O(sp3), O(sp2), N(sp3), N(sp2), S(sp2)} is the atom-type set,
σ(·) is the softmax function, and γ = 0.1 balances gradient bias.

Bond inference uses logits gij and is jointly sampled over bond types {1, 2, 3, aromatic}:

bij ∼ Categorical
(
σ(gij − γ∇gijF)

)
, (46)

where bond types correspond to single, double, triple, and aromatic bonds. Feasibility is checked by
distance thresholds (1.0–2.0 Å) and valence constraints vi ≤ vmax(ai).

To incorporate structural motifs, we introduce a prior Pmotif based on point cloud geometry, identify-
ing centers via clustering of high-curvature, high-density points. Predefined templates guiding atom
placement include: Benzene, Pyridine, Furan, Pyrrole, Thiophene, Imidazole, Carboxyl, Amide,
etc. The motif probability is:

Pmotif(xi) ∝ exp

(
−∥xi − cmotif∥2

σ2
motif

)
· ⊮[valid(ai,xi)], (47)

where cmotif is the cluster center, σmotif = 0.5 Å, and invalid structures are corrected by RDKit (a
cheminformatics toolkit), with ∆G rewarding aromatic and functional motifs.

For protein ligands, residue identity ri is sampled similarly:

ri ∼ Categorical(σ(fi − γ∇fiF)) , ri ∈ A20, (48)

where A20 is the canonical amino acid set. Backbone torsions (ϕ, ψ) are continuously updated and
projected into [−180◦, 180◦], while side-chain torsions χk are sampled from the Dunbrack rotamer
library. Cartesian reconstruction is carried out using PyRosetta’s internal geometry engine (a protein
modeling suite), followed by energy minimization (Rosetta relax) to resolve steric clashes.

Thus, Gmol enforces atom- and bond-level chemical validity via stochastic decoding and sanitization,
while Gprot performs residue-level sampling with biophysical torsional constraints. Both are tightly
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coupled with gradient refinement, ensuring that sampled structures remain docking-aware while
respecting chemical and geometric feasibility.

Iterative Dynamics and Convergence. Repeated application of gradient refinement and generative
mapping yields a sequence of ligands {St} converging to an optimized structure:

S⋆ = lim
t→T

Gtype

(
(x, f)t

)
, (49)

with convergence typically observed within several hundreds steps. A cosine-annealed schedule is
applied to ηt ∈ [10−3, 10−5] to balance exploration and stability.

By tightly coupling gradient information with generative decoding, the framework ensures that opti-
mization in latent space translates into chemically valid and docking-aware ligands. The distinction
between Gmol (small molecules) and Gprot (proteins) allows the same inversion principle to adapt
seamlessly to both types of ligands.

D EXPERIMENT IN DETAILS

D.1 COMPUTATION RESOURCE

All experiments were conducted on a single on-premise node unless otherwise specified. Table 3
summarizes the machine configuration and software stack to facilitate reproducibility.

Table 3: Compute environment used for all experiments.

Component Configuration

Server Dell PowerEdge T640
CPU 2× Intel Xeon Gold 6240 @ 2.60 GHz (18 cores/socket; 36 cores, 72 threads total)
Memory 251 GiB RAM
GPU 4× NVIDIA A100 80GB PCIe (80 GiB each); driver 570.124.06; MIG disabled
GPU topology GPU0/1 near NUMA node 0; GPU2/3 near NUMA node 1
OS / Kernel Ubuntu 22.04.5 LTS; Linux 5.15.0-126-generic
CUDA Runtime 12.8 (from driver); Toolkit 12.4 (nvcc)
Python / Conda Python 3.11.10
DL stack PyTorch 2.1.0 (cu118 build), torchvision 0.16.0, torchaudio 2.1.0

D.2 DATASETS

SKEMPI v2( Liu et al. (2024)) is a mutation-centric benchmark of experimentally measured
binding-affinity changes in protein–protein complexes, with receptor/ligand chains already labeled.
Existing chain labels are retained (with spot corrections if needed). Entries without an affinity value
are removed (57). As with other sources, affinities are converted to KD (M), the scope is restricted
to PPIs, and duplicates are merged using the same Complex-ID scheme.

Sabdab( Liu et al. (2024)) is a large repository of antibody–antigen structures with explicit antigen,
heavy-chain, and light-chain annotations. For consistency with a PPI setup, antigen chains are
treated as receptor and antibody heavy/light chains as ligand. Records lacking affinity (14,148),
non-PPI cases (46), entries missing antigen-chain labels (95), and chain-annotation errors (8) are
removed. Remaining affinities are unified to KD (M), and duplicates across datasets are resolved
with the Complex-ID definition above.

PDBBind v2020( Wang et al. (2004)) is a curated collection of biomolecular complexes; the pro-
tein–protein portion lists receptor/ligand names but not explicit chain IDs. Chain IDs are inferred
with a semi-automatic procedure (parse chain descriptions, fuzzy-match to the annotated names)
followed by expert proofreading and splitting of multi-complex PDBs, yielding chain assignments
for 2,788 samples. Data cleaning removes non-PPI entries (6), records with ambiguous chain an-
notation (62), and entries whose reported affinities cannot be reliably converted to KD (62). All
remaining affinities are standardized to KD (M), and cross-source duplicates are consolidated via a
“Complex ID” composed of PDB code, sorted chains, mutations, and PubMed ID.
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Table 4: The statistical information of the experimental datasets.

Dataset Samples Complex Type Affinity Info
SKEMPI v2 7,146 Protein-Protein KD, ∆G
Sabdab 1,069 Protein-Protein KD, ∆G
PDBBind 2,789 Protein-Molecule KD, ∆G
CrossDocked2020 18,450 Protein-Molecule pK

CrossDocked2020 ( Francoeur et al. (2020)) is a newly introduced dataset for structure-based ma-
chine learning, comprising 22.5 million poses of ligands docked into multiple similar binding pock-
ets across the Protein Data Bank, designed to enhance the training and evaluation of grid-based
convolutional neural network (CNN) models. This dataset includes cross-docked poses against
non-cognate receptor structures and model-generated counterexamples, providing a standardized
resource to recognize ligands in diverse target structures while significantly expanding the number
of available poses for training.

D.3 BASELINE MODELS

BASELINE MODELS FOR PROTEIN

RAbD( Adolf-Bryfogle et al. (2018)) introduces a knowledge-based Rosetta framework for compu-
tational antibody design that grafts canonical CDR loops from PyIgClassify, performs profile-guided
sequence design with flexible-backbone sampling inside nested Monte-Carlo-plus-minimization cy-
cles, and optimizes either total energy or interface ∆G. However, its reliance on existing structural
data may limit its effectiveness for designing antibodies against novel or poorly characterized anti-
gens.

DiffAb( Luo et al. (2022)) proposes a diffusion-based, rotation/translation–equivariant generative
model that co-designs antibody CDR sequences and 3D structures by iteratively denoising amino-
acid types, Cα coordinates, and SO(3) side-chain orientations, all explicitly conditioned on the
target antigen structure. But its performance may be limited by the quality and diversity of the
training data, potentially restricting its ability to generalize to a wide range of antigens.

HSRN( Jin et al. (2022)) introduces a hierarchical, rotation/translation–equivariant framework for
antibody–antigen docking and design that combines a multi-scale encoder (atom- and residue-level)
with an iterative, force-based refinement to fold and dock the paratope; during generation, an au-
toregressive decoder progressively docks partial paratopes and exploits the resulting geometric rep-
resentation to choose the next residue. However, the model’s heavy reliance on pre-defined epitope
structures, assuming the input already provides the antigen’s 3D structure and specific epitope lo-
cation, poses a significant limitation, as epitope prediction remains a challenging task in practice,
thereby restricting its end-to-end applicability.

dyMEAN( Kong et al. (2023)) [Kong et al., 2023] presents an end-to-end, E(3)-equivariant full-
atom antibody design framework that, given an antigen epitope and an incomplete antibody se-
quence, initializes structure using conserved framework residues, attaches a “shadow paratope” to
exchange invariant information and enable docking, and iteratively co-updates residue types and 3D
coordinates with an adaptive multi-channel encoder that handles variable atom counts per residue;
docking is finalized by aligning the native and shadow paratopes, and the method reports superior
results on CDR-H3 generation, complex structure prediction, and affinity optimization. Although
dyMEAN excels in end-to-end design and full-atom modeling, its limited scalability and reliance on
high-quality training data remain limitations.

AbX( Zhu et al. (2024)) introduces a continuous-time, score-based diffusion framework that jointly
models discrete CDR sequences (via a CTMC) and SE(3) coordinates, conditioned on the anti-
gen/framework, and guided by evolutionary (ESM-2) priors plus geometric (FAPE, distogram,
lDDT) and physical (violation, van der Waals) constraints to narrow the search space and improve
binding/quality.
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ABDPO( Zhou et al. (2024)) formulates antigen-specific sequence–structure co-design as direct
energy-based preference optimization, fine-tuning a conditional diffusion model with residue-level
energy preferences, decomposed attraction/repulsion terms, and gradient-surgery to resolve con-
flicts—thereby steering generations toward low total energy while maintaining binding affinity.

BASELINE MODELS FOR MOLECULE

DrugFlow( Schneuing et al. (2025)) introduces a generative framework for structure-based drug de-
sign that jointly models continuous ligand coordinates and discrete atom/bond types by combining
Euclidean flow matching with discrete Markov bridges. The method extends to FlexFlow, which
additionally samples protein side-chain torsion angles to capture binding-pocket flexibility. Key
innovations include an end-to-end uncertainty estimator for out-of-distribution detection, a virtual
node mechanism for adaptive molecule size selection, and a multi-domain preference alignment
scheme that efficiently steers generation toward molecules with desirable drug-like properties. Ex-
periments on CrossDocked demonstrate state-of-the-art distribution learning across chemical, geo-
metric, and physical metrics. While DrugFlow excels in holistic distribution modeling and flexible
sampling, challenges remain in scaling to larger protein systems and balancing preference alignment
with sample validity.

3D-SBDD( Luo et al. (2021)) proposes a 3D generative framework for structure-based drug design
that directly models ligand atoms within protein binding pockets using an autoregressive flow-based
approach. The method conditions ligand generation on 3D protein environments, incrementally
placing atoms while capturing geometric constraints, and employs equivariant neural networks to
ensure rotational and translational invariance. Evaluation on CrossDocked shows significant im-
provements in binding pose accuracy, chemical validity, and docking performance compared to
baseline methods. Despite its strong capability in geometry-aware ligand generation, challenges
remain in handling larger, more flexible ligands and incorporating dynamic protein conformations.

ALIDIFF( Gu et al. (2024)) introduces a target-aware molecule diffusion framework that aligns
generative sampling with exact energy optimization for structure-based drug design. The method
integrates a diffusion backbone with a dual-stage alignment scheme: a coarse-grained alignment to
enforce global docking plausibility and a fine-grained optimization that explicitly minimizes binding
energies within the protein pocket. By coupling stochastic generative modeling with deterministic
energy-based refinement, AliDiff achieves superior docking accuracy and binding affinity predic-
tion on CrossDocked benchmarks. While it demonstrates strong target-conditioning and energy
alignment, its reliance on accurate energy models and the computational overhead of fine-grained
optimization pose scalability challenges.

DiffSBDD( Schneuing et al. (2024)) presents a diffusion-based generative framework for structure-
based drug design that learns to directly sample 3D ligand structures conditioned on protein binding
pockets. The model leverages SE(3)-equivariant neural networks to ensure rotational and transla-
tional invariance, and formulates ligand generation as a denoising process that progressively refines
random atom clouds into chemically valid molecules docked in the target pocket. Extensive ex-
periments on CrossDocked demonstrate improved performance over flow-based and autoregressive
baselines in terms of pose accuracy, binding affinity, and chemical diversity. Despite its advantages
in geometry-aware sampling, challenges remain in scalability to large ligands and efficient integra-
tion of protein flexibility.

DockStream ( Guo et al. (2021)) presents a flexible molecular docking wrapper that integrates with
the de novo design platform REINVENT 2.0, providing access to various ligand embedders (e.g.,
Corina, LigPrep) and docking backends (e.g., AutoDock Vina, Glide) to enhance structure-based
drug discovery by automating docking experiments, benchmarking configurations, and optimizing
docking scores, while overcoming limitations of QSAR models through structural information; its
scalability and performance vary by target, with ongoing challenges in accurately predicting binding
free energies.

liGAN ( Ragoza et al. (2022)) introduces a deep learning system that generates 3D molecular struc-
tures conditioned on receptor binding sites using a conditional variational autoencoder trained on
atomic density grids, employing atom fitting and bond inference to construct valid conformations,
and demonstrates significant changes in generated molecules with mutated receptors; its reliance on
high-quality structural data and computational complexity pose challenges for scalability.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

D.4 EVALUATION METRICS

PROTEIN EVALUATION METRICS

(1) IMP: The Improvement Percentage (IMP) metric evaluates the relative enhancement in binding
affinity achieved by designed protein sequences compared to their natural counterparts. Specifically,
it quantifies the proportion of designed antibodies predicted to exhibit stronger binding than the
corresponding natural antibodies, as assessed by the Rosetta interface energy function. Formally,
IMP is defined as:

IMP =
1

N

N∑
i=1

I
(
Edesign

i < Enatural
i

)
× 100%, (50)

where N is the total number of antibody–antigen pairs, Edesign
i denotes the Rosetta interface energy

of the i-th designed antibody, Enatural
i is the corresponding value for the natural antibody, and I(·)

is the indicator function returning 1 if the designed sequence has a lower (better) predicted binding
energy than the natural sequence.

Higher IMP values indicate that a larger fraction of designed antibodies surpass their natural refer-
ences in predicted binding affinity, highlighting the effectiveness of the design strategy in optimizing
protein–protein interactions.

(2) STA: The Stability (STA) metric quantifies the conformational integrity and biochemical via-
bility of designed proteins by integrating a weighted composite of steric hindrance assessment and
structural coherence evaluation, thereby mitigating the risk of thermodynamically unstable or mis-
folded conformations. This metric is derived from two sub-components: the Steric Clash Score
(SCS), which penalizes interatomic van der Waals overlaps indicative of steric repulsion, and the
Secondary Structure Coherence (SSC), which evaluates the fidelity of predicted helical, sheet, and
coil motifs against empirical folding propensities. Formally, STA is computed as:

STA =
1

N

N∑
i=1

[
α · exp

(
−SCS(pi)

σ

)
+ β ·

(
1− |SSC(pi)− µ|

τ

)2
]
, (51)

where N is the number of generated proteins, pi denotes the i-th protein, SCS(pi) and SSC(pi)
represent the respective sub-scores derived from all-atom clash detection and dihedral angle consis-
tency checks, α and β are empirical weighting coefficients (with α + β = 1), σ and τ are scaling
hyperparameters for normalization, and µ is the expected coherence baseline calibrated from native
protein ensembles. In our implementation, the coefficient for secondary structure propensity (β) is
set to 0.6, and the coefficient for collision detection (α) is set to 0.4.

Elevated STA values signify enhanced adherence to biophysical constraints across the ensemble,
underscoring the efficacy of the generative paradigm in yielding robust, functional protein architec-
tures.

(3) DIV: The Diversity (DIV) metric quantifies the sequence and structural variability among gen-
erated antibodies, capturing the spread of designs in protein space. A diverse set of candidates
increases the likelihood of discovering high-affinity binders with novel interaction profiles. Mathe-
matically, DIV is defined as the average pairwise dissimilarity:

DIV =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

D(pi, pj), (52)

where N is the number of generated proteins, and D(pi, pj) is a distance function that measures
dissimilarity between proteins pi and pj in both sequence and structural space. Higher DIV values
indicate a broader coverage of the protein design landscape, reducing redundancy in the generated
set.

(4) NOV: The Novelty (NOV) metric measures how different the generated proteins are from the
training dataset, considering both sequence and structural similarity. For a generated protein pi and
a training protein tj , the combined similarity score S(pi, tj) is defined as:

S(pi, tj) = α · Sseq(pi, tj) + (1− α) · Sstr(pi, tj), (53)
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where Sseq denotes sequence similarity, Sstr denotes structural similarity, and α ∈ [0, 1] controls
their relative contribution. Given sequences of length L, we compute sequence identity as:

Sseq(pi, tj) =
1

L

L∑
k=1

I
[
pi[k] = tj [k]

]
, (54)

where I[·] is the indicator function. For structural alignment, we use a TM-score–like normalized
measure:

Sstr(pi, tj) =
1

L

L∑
k=1

1

1 +
(
dk

d0

)2 , (55)

where dk is the distance between aligned Cα atoms, and d0 is a length-dependent normalization
constant. For each generated protein pi, we take the maximum similarity across all training proteins
and define novelty as:

NOV = 1− 1

N

N∑
i=1

max
tj∈T

S(pi, tj), (56)

where N is the number of generated proteins and T is the training set. Higher NOV values indicate
stronger novelty in both sequence and structure.

(5) AAR: The Amino Acid Recovery (AAR) metric measures the sequence-level accuracy of gener-
ated protein sequences by comparing them against their corresponding native (reference) sequences.
This metric reflects how well the generative model is able to reproduce the original amino acid com-
position, thereby serving as an indicator of sequence fidelity and preservation of native biochemical
properties. The mathematical formulation is given by:

AAR =
1

N · L

N∑
i=1

L∑
j=1

I
(
agen
ij = aref

ij

)
× 100%, (57)

whereN is the number of protein sequences, L is the sequence length, agen
ij denotes the amino acid at

position j in the i-th generated sequence, aref
ij is the corresponding amino acid in the native sequence,

and I(·) is the indicator function.

Higher AAR values indicate closer agreement with native sequences, suggesting that the generated
proteins better retain structural and functional characteristics inherent to the original proteins.

MOLECULE EVALUATION METRICS

(1) Vina Score: The Vina Score metric provides an estimate of the binding affinity between a
generated small molecule (ligand) and a target protein. It reflects the stability of the protein–ligand
complex predicted during molecular docking. Following the formulation implemented in AutoDock
Vina , the score approximates the binding free energy based on an empirical scoring function that ac-
counts for key interaction terms, including steric complementarity, hydrogen bonding, hydrophobic
interactions, and torsional entropy penalties. The mathematical formulation is given by:

EVina = Egauss + Erepulsion + Ehydrophobic + Ehydrogen + Etorsional, (58)
where Egauss models attractive van der Waals interactions, Erepulsion penalizes steric clashes,
Ehydrophobic captures hydrophobic contacts, Ehydrogen measures hydrogen bond formation, and
Etorsional accounts for the conformational entropy cost of ligand flexibility.

The resulting Vina Score is reported in kcal/mol, with more negative values indicating stronger
predicted binding affinities. Typically, scores range from around −4 kcal/mol (weak binding) to
below −10 kcal/mol (highly favorable binding). Although not a direct physical free energy, the
score serves as a comparative metric to rank ligands by their likelihood of stable binding.

(2) High-affinity: The High-affinity metric quantifies the proportion of generated molecules that
exhibit stronger predicted binding to a given protein target than their corresponding reference lig-
ands. Binding strength is assessed using Vina Scores, where lower (more negative) values indicate
higher predicted affinity. The mathematical formulation is given by:

High-affinity =
1

N

N∑
i=1

I
(
Egen

i < Eref
i

)
, (59)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

where N denotes the total number of generated molecules, Egen
i is the Vina Score of the i-th gener-

ated molecule, Eref
i is the Vina Score of its corresponding reference ligand, and I(·) is the indicator

function returning 1 if the condition is satisfied and 0 otherwise.

The metric outputs the fraction of molecules surpassing the reference ligands in predicted affinity,
providing a normalized measure of how frequently the generation process yields candidates with
potentially improved binding properties.

(3) STA: The Stability (STA) metric for small-molecule generation evaluates the chemical plausi-
bility and conformational robustness of designed ligands by integrating synthetic accessibility and
conformational strain energy into a unified score. This ensures that generated compounds are not
only geometrically valid but also chemically feasible under standard synthesis and physiological
conditions. Specifically, the metric combines two sub-components: the Synthetic Accessibility In-
dex (SAI), which penalizes ligands with rare or chemically intractable substructures, and the Confor-
mational Strain Energy (CSE), which quantifies the internal energetic penalty required to maintain
a given 3D geometry relative to its energy-minimized conformation. Formally, STA is defined as:

STA =
1

M

M∑
j=1

[
γ · exp

(
−CSE(mj)

λ

)
+ δ ·

(
1− SAI(mj)− µ

κ

)2
]
, (60)

where M is the number of generated molecules, mj denotes the j-th molecule, CSE(mj) is the
strain energy computed via molecular mechanics force fields, and SAI(mj) is a normalized synthetic
accessibility score. γ and δ are weighting coefficients with γ + δ = 1.

In our implementation, the scaling parameter is fixed as λ = 10, the normalization parameter as
κ = 1.5, and the baseline accessibility as µ = 3.0, the coefficient for SAI (γ) is set to 0.5, and the
coefficient for collision detection (δ) is set to 0.5. These hyperparameters are selected to provide a
stable balance between strain minimization and synthetic feasibility.

(4) DIV: The Top-K Diversity (DIV) metric quantifies the structural diversity of the top-K generated
molecules, reflecting the spread of chemical structures within a given set. Following the methodol-
ogy of (Bengio et al. (2021)), DIV is defined as the average pairwise Tanimoto distance between the
Morgan fingerprints of the generated molecules. The mathematical formulation is given by:

DIV =
2

K(K − 1)

K−1∑
i=1

K∑
j=i+1

Tanimoto(FPi, FPj), (61)

where K is the number of top-ranked molecules (e.g., top-10), FPi and FPj are the Morgan finger-
print vectors for molecules i and j, and the Tanimoto similarity is computed as:

Tanimoto(FPi, FPj) =
|FPi ∩ FPj |
|FPi ∪ FPj |

, (62)

with |FPi ∩ FPj | and |FPi ∪ FPj | representing the number of common and total unique bits, re-
spectively. The Tanimoto distance is then 1−Tanimoto(FPi, FPj), ensuring a range of 0 (identical
structures) to 1 (completely dissimilar structures). The factor 2

K(K−1) normalizes the average over
all unique pairs.

(5) NOV: Following InversionGNN ( Niu et al. (2025)), the Novelty (NOV) metric quantifies the
proportion of generated molecules that are not present in the training set, serving as an indicator of
the model’s ability to explore beyond the learned chemical space. This metric is particularly relevant
in de novo molecular design, where generating novel structures is crucial for discovering new drug
candidates. The mathematical formulation is given by:

Nov =
Nnew

Ntotal
, (63)

where Nnew is the number of generated molecules that do not appear in the training set, and Ntotal
is the total number of generated molecules evaluated. The value of Nov ranges from 0 to 1, with
higher values indicating a greater proportion of novel molecules.
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D.5 MORE EXPERIMENT FIGURES & TABLES

D.5.1 ABLATION STUDY

For the ablation experiments of Stage 1, Stage 2, and Stage 3, each module plays an indispensable
role in the generation of the final ligand. In addition, the ablation experiment for stage 4 showed that
compared to the exhaustive method, MagicDock’s gradient based selective generation strategy has
an order of magnitude efficiency advantage while maintaining a basically consistent effect, proving
the pertinence of Stage 4.

MagicDock w/o stage 1 w/o stage 2 w/o stage 3

SKEMPI v2
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(a) Performance comparison between models with
and without stage 1,2 and 3.
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Figure 6: Ablation study on the impact of different stages in MagicDock.

D.5.2 GEOMETRIC AND FEATURE NOISE STUDY

We evaluate robustness under structural perturbations onN = 100 receptor–ligand pairs by applying
Gaussian coordinate noise and feature dropout to receptor surfaces. Ligand generation are repeated
on noisy vs. clean inputs, and metrics are reported in Fig. 7.

For protein ligands, robustness is measured by IMP, AAR, and RMSD. MagicDock achieves higher
IMP and lower RMSD compared with DiffAb and Abx, demonstrating its stability under noise. For
small molecule ligands, robustness is assessed using Vina score, High-affinity, and QED. Magic-
Dock consistently yields more negative Vina scores and higher high-affinity rates, indicating re-
silience to input perturbations. Together, these results confirm that MagicDock maintains reliable
performance under realistic noise, highlighting robustness to biological uncertainty.
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Figure 7: Robustness under geometric and feature noise, evaluated on IMP/High-affinity (%),
AAR/Vina (kcal/mol), and RMSD/QED respectively on protein and molecular baselines.
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D.5.3 LOCAL PERTURBATION CONSISTENCY STUDY

Finally, we evaluate whether gradient attributions faithfully predict the energetic consequences
of local structural edits. We introduce small geometric and chemical perturbations around high-
attribution sites and compare gradient-predicted energy changes with the actual ∆F measured af-
ter re-evaluation. This experiment directly tests whether attribution scores can serve as actionable
signals for structural refinement, beyond passive localization. Performance is assessed by the sign-
consistency rate (SCR), the coefficient of determination (R2), rank correlation (Spearman ρ), and
the mean observed energy change ∆F , where negative values indicate improved binding. As shown
in Fig. 8, our IG-guided strategy substantially outperforms saliency and Grad×Input baselines, and
approaches the oracle behavior of physics-based Rosetta evaluations.
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Figure 8: Evaluation of local perturbation consistency, showing SCR, R², Spearman correlation, and
Mean ∆F (kcal/mol) for attribution methods.

D.5.4 CONFORMATIONAL AND MUTATIONAL VARIABLITY STUDY

We further evaluate remarkable robustness to biological variability by subjectingN = 100 receptors
to perturbations, including conformer ensembles, single-point mutations, and combined variants.
These perturbed structures are systematically processed through the inversion pipeline. Performance
degradation is assessed via IMP for protein-based methods and High-Affinity for small-molecule
methods, with MagicDock reporting both metrics. As shown in Fig. 9, statistical tests compare con-
servative and non-conservative mutations, illustrating MagicDock’s exceptional robustness. Mag-
icDock demonstrates minimal degradation and consistently superior performance over baselines.
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Figure 9: Robustness to conformational and mutational variability.

D.5.5 RUNTIME AND RESOURCE USAGE STUDY

We benchmark MagicDock against baselines using 100 receptors, generating one ligand per receptor
under identical hardware. Wall-clock time and memory usage are assessed per computational stage.
Fig. 10a demonstrates MagicDock’s reduced runtime while Fig. 10b highlights lower peak memory
consumption, underscoring its resource efficiency.
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Figure 10: Comparison of runtime and resource usage of different methods.

D.5.6 SCALABILITY STUDY

Scalability is evaluated across nine settings varying receptor sizes (500, 2000, 5000 points) and
ligand complexities (30, 80, 150 atoms/residues) using 100 receptors from CrossDocked2020 and
SAbDab. Metrics include per-iteration latency, iterations-to-converge, memory footprint, and scal-
ing exponent γ from T ∝ Nγ .

Table 5: Scalability results across nine complexity set-
tings. Values are averages over three runs, with Magic-
Dock/dyMEAN/ALIDIFF separated by ’/’.

Receptor Ligand Latency (s/iter) Iterations Memory (GB)

Small
Low 0.42/1.05/0.58 45/215/380 7.6/11.2/8.1

Medium 0.65/1.35/0.85 108/285/455 8.4/12.8/9.2
High 0.78/1.55/1.12 182/358/590 9.3/13.9/10.3

Medium
Low 1.15/2.25/1.18 48/335/440 10.3/16.8/11.6

Medium 1.36/2.85/1.65 112/372/595 11.7/18.5/13.2
High 1.72/3.45/2.05 192/445/545 12.8/20.8/14.7

Large
Low 2.28/5.60/2.75 58/405/480 15.9/26.5/17.8

Medium 2.75/6.95/3.85 125/475/640 18.2/31.5/20.2
High 3.35/8.90/4.75 245/478/780 20.5/36.2/23.8

Table 6: Fitted runtime ex-
ponents γ for each method.
This table evaluates the com-
putational efficiency of differ-
ent ligand design methods by
presenting their fitted runtime
exponents γ, which quantify
how runtime scales with input
size in a polynomial manner

Method γ

MagicDock 1.4
dyMEAN 1.8
ALIDIFF 1.7

E THEORETICAL ANALYSIS IN DETAILS

E.1 PROOF OF SE(3)-EQUIVARIANCE FOR MAGICDOCK

We analyze the SE(3)-equivariance of MagicDock under idealized assumptions. While the practi-
cal implementation may include minor numerical deviations (e.g., floating-point tie-breaking, dis-
cretization), Stages 1–3 are implemented with strictly equivariant modules, and Stage 4 is approxi-
mately equivariant due to non-convex chemical validity constraints. The following proof shows that
the framework is SE(3)-equivariant in the limit of exact equivariant modules and convex surrogates.

Theorem 1 (SE(3)-Equivariance of MagicDock). Given the receptor point cloud Prec and the ini-
tial ligand point cloud P 0

lig, let the optimized ligand be P ∗
lig = MagicDock(Prec, P

0
lig). Under the

assumptions that (i) the chemical validity set Cvalid admits a convex surrogate and exact Euclidean
projection, (ii) all learned modules are SE(3)-equivariant, and (iii) features are restricted to invari-
ant or properly transformed irreducible representations, MagicDock is SE(3)-equivariant. Namely,
for any g ∈ SE(3),

g · P ∗
lig = MagicDock(g · Prec, g · P 0

lig),
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where g · P := RP + t for R ∈ SO(3), t ∈ R3 acts on coordinates, while scalar features remain
invariant.

Lemma 1.1 (Stage 1: Surface Point Cloud Modeling). The surface point cloud mapping S is SE(3)-
equivariant: S(g ·X) = g · S(X).

Proof. Since the smoothed distance function (SDF) and associated weights depend only on Eu-
clidean distances, which are invariant under rotations and translations, we have SDF(Rx + t) =
SDF(x). Mesh generation steps (gradient descent projection, FPS, KNN) depend only on pairwise
distances and thus commute with g. In practice: deterministic FPS/KNN and numerically stable
SDF are implemented, so equivariance holds up to floating-point error.

Lemma 1.2 (Stage 2: Pre-training with Equivariant Encoder). The SE(3)-equivariant backbone fθ
built from tensor field convolutions is SE(3)-equivariant.

Proof. The convolution kernels are of the form

zi =
∑

j∈N (i)

L∑
l=0

Rl(∥xij∥)Yl
(

xij

∥xij∥

)
·Wlfj ,

which are equivariant because (i) radial functions depend only on invariant distances, and (ii) spheri-
cal harmonics transform according to irreducible representations of SO(3). In practice: the encoder
is implemented with the e3nn library, which guarantees strict SE(3)-equivariance.

Lemma 1.3 (Stage 3: Supervised Fine-tuning with Equivariant Attention). When scalar attention
weights are computed from ℓ = 0 channels and higher-order features are rotated via Wigner-D
matrices, the cross-attention layers preserve SE(3)-equivariance.

Proof. Attention scores A computed from ℓ = 0 channels are invariant. Values V (ℓ) transform by
ρ(ℓ)(R) and aggregation

Z̃(ℓ)
r =

∑
j

Aij ρ
(ℓ)(R)V

(ℓ)
l,j

yields Z̃(ℓ)
r (g · P ) = ρ(ℓ)(R) Z̃

(ℓ)
r (P ). In practice: we explicitly use irreducible representations

and Wigner-D matrices in attention, so equivariance is preserved exactly.

Lemma 1.4 (Stage 4: Inversion-based Generation). The iterative update

P t+1
lig = ΠCvalid

(
P t

lig − ηt∇PligF(P t
lig;Prec,Θ)

)
,

is SE(3)-equivariant under convex surrogate constraints.

Proof. If F is built from invariant quantities (distances, angles), then F(g · Plig; g · Prec) =
F(Plig;Prec). By the chain rule, for y = Rx+ t we have

∇yF(y) = R∇xF(x),

since δF = ∇xF · δx = ∇yF · δy with δy = Rδx. Thus gradient steps commute with g:

g ·
(
P − η∇PF

)
= (RP + t)− η(R∇PF) = g · P − η∇g·PF .

If Cvalid is convex and invariant, projection also preserves equivariance. In practice: the true chem-
ical validity set is highly non-convex (bond formation, aromaticity, topology constraints), so we
enforce validity via heuristic repair. This makes Stage 4 only approximately equivariant in realistic
settings.

Proof of Theorem. Each stage (surface modeling, equivariant encoder, equivariant attention, inver-
sion) preserves SE(3)-equivariance under the stated assumptions. By closure of equivariant maps
under composition, MagicDock is SE(3)-equivariant in the idealized setting.
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Remark on Practical Implementations. In our implementation: Stage 1–Stage 3 are strictly
SE(3)-equivariant (up to numerical precision) as guaranteed by design choices (deterministic
SDF/FPS/KNN, e3nn-based encoder, Wigner-D based attention). Stage 4 involves chemical va-
lidity projection on a non-convex manifold and is therefore only approximately equivariant. For re-
producibility, we use deterministic tie-breaking in FPS/KNN, fixed random seeds, and numerically
stable softmax. Thus MagicDock should be regarded as exactly SE(3)-equivariant in Stages 1–3 and
approximately equivariant in Stage 4.

E.2 PROOF OF CONVERGENCE FOR MAGICDOCK

We analyze the convergence of the gradient-driven inversion stage in MagicDock under idealized
assumptions. The analysis follows projected gradient descent (PGD) theory in non-convex opti-
mization, while clarifying the role of convex approximations of the chemical validity manifold.

Theorem 2 (PGD Convergence under Convex Approximation). Let F(Plig;Prec,Θ) be differen-
tiable, L-smooth, and bounded below by F∗ > −∞. Assume the validity constraint set Cvalid is
nonempty, closed, bounded, and convex (serving as an idealized surrogate for chemical validity).
For a fixed step size 0 < η ≤ 1/L, consider the iteration

P t+1
lig = ΠCvalid

(
P t

lig − η∇F(P t
lig)
)
,

where ΠCvalid denotes Euclidean projection. Then:

1. The objective decreases monotonically:

F(P t+1
lig ) ≤ F(P t

lig)−
η

2
∥gη(P t

lig)∥2,

where gη(x) = 1
η

(
x−ΠCvalid(x− η∇F(x))

)
is the gradient mapping.

2. The sum of squared gradient mappings is bounded:

T−1∑
t=0

∥gη(P t
lig)∥2 ≤ 2

η

(
F(P 0

lig)−F∗).
3. Consequently, lim inft→∞ ∥gη(P t

lig)∥ = 0, and every accumulation point P ∗ satisfies
gη(P

∗) = 0, i.e., it is a first-order stationary point of F over Cvalid.

Lemma 2.1 (Descent Lemma for PGD). For L-smooth F and η ≤ 1/L, the PGD update x+ =
ΠC(x− η∇F(x)) satisfies

F(x+) ≤ F(x)− η
2∥gη(x)∥

2,

where gη(x) = 1
η (x− x

+).

Proof. Let y = x− η∇F(x) and x+ = ΠC(y). By L-smoothness:

F(x+) ≤ F(x) + ⟨∇F(x), x+ − x⟩+ L
2 ∥x

+ − x∥2.

By projection optimality, (y − x+)⊤(z − x+) ≤ 0 for all z ∈ C. Choosing z = x and expanding
y = x− η∇F(x) gives

⟨∇F(x), x+ − x⟩ ≤ − 1
η∥x

+ − x∥2.

Substitute into the smoothness bound:

F(x+) ≤ F(x)− 1
η∥x

+ − x∥2 + L
2 ∥x

+ − x∥2.

Since gη(x) = 1
η (x− x

+) and η ≤ 1/L, we obtain

F(x+) ≤ F(x)− η
2∥gη(x)∥

2.
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Lemma 2.2 (Bounded Sum of Gradient Mappings). Summing Lemma 2.4 over T iterations yields

T−1∑
t=0

∥gη(P t
lig)∥2 ≤ 2

η (F(P
0
lig)−F∗).

Proof. Telescoping F(P t
lig)−F(P

t+1
lig ) ≥ η

2∥gη(P
t
lig)∥2 gives

F(P 0
lig)−F(PT

lig) ≥
η
2

T−1∑
t=0

∥gη(P t
lig)∥2.

Since F(PT
lig) ≥ F∗, the bound follows.

Lemma 2.3 (Stationary Point Convergence). The sequence {P t
lig} is bounded and has accumulation

points. Every accumulation point P ∗ satisfies gη(P ∗) = 0, i.e., P ∗ is a stationary point satisfying
first-order optimality conditions.

Proof. Because Cvalid is closed and bounded, the iterates remain in a compact set, ensuring accumu-
lation points exist. From Lemma 2.2, lim inft→∞ ∥gη(P t

lig)∥ = 0. By continuity of gη , any limit
point satisfies gη(P ∗) = 0.

Proof of Theorem 2. Lemma 2.4 establishes monotonic descent. Lemma 2.2 bounds the cumulative
gradient mapping norms. Lemma 2.3 implies every accumulation point is stationary. Thus the PGD
sequence converges to stationary points under the convex surrogate assumption.

Remark on Non-Convex Validity Manifold. In practice, the chemical validity set Cvalid is highly
non-convex due to valency, aromaticity, and stereochemistry constraints. The above proof holds
only under the convex surrogate assumption, which serves as an idealization. When using genera-
tive validity repair (e.g., Gtype) instead of exact projection, the iteration behaves as an inexact pro-
jection method. Standard results on inexact PGD imply convergence to an ε-stationary point, with
ε depending on the repair error. Thus the theoretical guarantee should be interpreted as asymptotic
convergence under convex surrogates, while practical implementations achieve only approximate
stationarity.

E.3 PROOF OF THEORETICAL SUPERIORITY FOR INVERSION FRAMEWORK

We compare the reachable objective values produced by (i) the common two-stage generate-then-
optimize pipeline (G+O) and (ii) the gradient-driven inversion framework used in MagicDock. Let
(X , ∥ · ∥) be a Euclidean space of parametrized structures (e.g., point clouds, coordinates, or fea-
tures), and let

Cvalid ⊆ X
denote the feasible set of chemically valid structures. We assume Cvalid is closed. For analysis, we
assume it is convex or that a convex surrogate is available; for nonconvex cases, we use a proximity
operator (see Remark E.3.2). Let the design objective be

F : Cvalid → R,

which is differentiable, bounded below by F⋆ > −∞, and L-smooth:

∥∇F(x)−∇F(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Cvalid.

We model the two paradigms as follows.

E.3.1 GENERATE-THEN-OPTIMIZE (G+O)

A generator G : Z → Cvalid (with latent prior z ∼ µZ) outputs x0 = G(z). A local optimizer
O, defined as a short-step projected gradient descent (PGD) with step size η ≤ 1/L, maps x0 to a
refined point x∞ = O(x0). The G+O reachable set is

RG+O = {O(G(z)) : z ∈ supp(µZ)}.
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E.3.2 INVERSION (GRADIENT-DRIVEN)

Starting from an initialization x0 ∈ Cvalid, inversion performs projected gradient-like updates:

xt+1 = ΠCvalid

(
xt − ηt∇F(xt)

)
, 0 < ηt ≤ 1/L, (64)

where ΠCvalid
denotes the Euclidean projection onto Cvalid. Let RInv be the set of accumulation

points of sequences generated by equation 64 initialized from all possible x0 ∈ Cvalid (or from G(z)).
We show: (i) inversion satisfies standard descent and convergence guarantees, (ii) RG+O ⊆ RInv,
and (iii) when the generator G is support-misspecified, inversion achieves strictly better infimal
objective values.

Lemma 2.4 (Descent for Projected Gradient Updates). Under the above assumptions, the update
equation 64 with constant step size η ∈ (0, 1/L] satisfies for every t:

F(xt+1) ≤ F(xt)−
η

2
∥gη(xt)∥2,

where gη(xt) = 1
η

(
xt −ΠCvalid

(xt − η∇F(xt))
)

is the gradient mapping. Consequently,

T−1∑
t=0

∥gη(xt)∥2 ≤
2

η

(
F(x0)−F⋆

)
,

and hence min0≤t<T ∥gη(xt)∥2 → 0 as T →∞.

Proof. Let x̃t+1 := xt − η∇F(xt) be the unconstrained gradient step, and xt+1 = ΠCvalid
(x̃t+1).

By L-smoothness,

F(y) ≤ F(xt) +∇F(xt)⊤(y − xt) +
L

2
∥y − xt∥2, ∀y.

Choose y = xt+1:

F(xt+1) ≤ F(xt) +∇F(xt)⊤(xt+1 − xt) +
L

2
∥xt+1 − xt∥2.

From projection optimality, for all z ∈ Cvalid,

(x̃t+1 − xt+1)
⊤(z − xt+1) ≤ 0.

Choosing z = xt gives

⟨∇F(xt), xt+1 − xt⟩ ≤ −
1

η
∥xt+1 − xt∥2.

Plugging back,

F(xt+1) ≤ F(xt)−
1

η
∥xt+1 − xt∥2 +

L

2
∥xt+1 − xt∥2.

Since ∥xt+1 − xt∥ = η∥gη(xt)∥, we get

F(xt+1) ≤ F(xt)−
(1
η
− L

2

)
η2∥gη(xt)∥2.

For η ≤ 1/L, the coefficient satisfies 1
η −

L
2 ≥

1
2η , hence

F(xt+1) ≤ F(xt)−
η

2
∥gη(xt)∥2.

Summing over t = 0, . . . , T − 1 and using F(xT ) ≥ F⋆ yields the claimed bound.

Lemma 2.5 (Containment of G+O in Inversion). For any generator G and local optimizer O (de-
fined as PGD with step size η ≤ 1/L), if inversion is initialized at x0 = G(z), the limit points
attainable by O(G(z)) are also attainable by running the inversion iterates equation 64 from the
same initialization. Hence,

RG+O ⊆ RInv.
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Proof. BothO (as PGD) and inversion iterates follow negative directional derivatives ofF with step
sizes η ≤ 1/L. Starting from x0 = G(z), both methods generate sequences in the same attraction
basin of a local stationary point (by smoothness and step-size constraints). Let x⋆ = O(G(z)) be the
limit of O. By Lemma 2.4, the inversion sequence {xt} decreases F monotonically and is bounded
below, so it has accumulation points that are stationary. Since both methods operate under the same
smoothness and step-size regime, standard Hessian/stable manifold arguments (Absil et al. (2008))
ensure convergence to the same local attractor. Thus,RG+O ⊆ RInv.

Definition 2.1 (Generator Misspecification). Let the global (or basin) minimizers be

M := arg min
x∈Cvalid

F(x).

We say G is misspecified ifM ̸⊆ RG+O, i.e., some global (or deep basin) minimizers are unreach-
able by sampling G(z) and refining via O.

Lemma 2.6 (Strict Improvement under Misspecification). If G is misspecified and there exists an
initialization x0 ∈ Cvalid such that a sequence of PGD iterates from x0 can reach an ϵ-neighborhood
of some x⋆ ∈M with F(x⋆) < infx∈RG+O

F(x), then

inf
x∈RInv

F(x) < inf
x∈RG+O

F(x).

Proof. By misspecification, there exists x⋆ ∈ M \ RG+O such that F(x⋆) < infx∈RG+O
F(x).

Assume there exists an initialization x0 ∈ Cvalid (possibly x0 = G(z)) from which PGD it-
erates equation 64 reach an ϵ-neighborhood of x⋆. By Lemma 2.4, each PGD step reduces F
by at least η

2∥gη(xt)∥
2, and the sequence {xt} has accumulation points that are stationary, with

min0≤t<T ∥gη(xt)∥2 → 0 as T → ∞. Since Cvalid is closed and F is continuous, with suffi-
ciently small η and sufficient iterations, PGD can approach F(x⋆) arbitrarily closely (Beck (2017)).
For PGD to reach the ϵ-neighborhood of x⋆, assume F has a structure (e.g., satisfying the Polyak-
Łojasiewicz condition in a basin around x⋆) or PGD employs randomized perturbations (Jin et al.
(2017)) to escape local minima and converge toward global minimizers. Because x⋆ /∈ RG+O and
F(x⋆) < infx∈RG+O

F(x), the infimum overRInv is strictly smaller.

Theorem 3 (Inversion Weakly Dominates G+O; Strict Advantage under Misspecification). Under
the stated assumptions,

inf
x∈RInv

F(x) ≤ inf
x∈RG+O

F(x), (65)

with strict inequality if G is misspecified and PGD from some x0 ∈ Cvalid reaches an ϵ-neighborhood
of a better minimizer (Lemma 2.6).

Proof. By Lemma 2.5,RG+O ⊆ RInv, so

inf
x∈RInv

F(x) ≤ inf
x∈RG+O

F(x).

If G is misspecified and the condition of Lemma 2.6 holds, the infimum overRInv is strictly smaller,
completing the proof.

Remark (Nonconvex Cvalid and Chemical Constraints). The convexity assumption on Cvalid sim-
plifies projection. In practice, chemical validity constraints (e.g., bond lengths, angles) are often
nonconvex. We address this by using a convex surrogate or a learned decoder mapping iterates to
Cvalid. For nonconvex sets, ΠCvalid

is replaced by a proximity operator, and descent guarantees hold
under regularity conditions (Rockafellar & Wets (1998)). In molecular design, decoders trained on
valid structures ensure iterates remain feasible, preserving the qualitative conclusions.
Remark (Practical Considerations). 1. Discretization and Projection Error: The proof is non-

asymptotic, focusing on set relations. In practice, discretization, projection approximations,
and finite iterations introduce errors. These are mitigated by small step sizes and high-
fidelity decoders, ensuring PGD closely tracks theoretical descent paths.

2. Generator Limitations: Diffusion- or flow-based samplers (G) have support limited by
training data. Inversion escapes these limitations by iteratively refining beyond G’s sup-
port, achieving better minima.
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3. Descent Path Relaxation: Lemma 2.6 relaxes the continuous descent path assumption to
PGD reaching an ϵ-neighborhood, which is more practical for complex F landscapes with
multiple basins.

4. Computational Constraints: PGD requires more iterations than G+O but offers better ex-
ploration. In molecular design, computational cost is offset by learned gradients or surro-
gate models reducing evaluation complexity.

E.4 PROOF OF EFFICIENCY FOR INVERSION FRAMEWORK

To rigorously demonstrate the superior efficiency of the inversion architecture in terms of theoretical
training and convergence iterations compared to GAN, diffusion, and flow-based generative meth-
ods, we analyze the computational complexities under standard optimization assumptions. We as-
sume models of comparable scale, with P parameters, dataset sizeN , latent or molecular dimension
D, and target accuracy ϵ > 0. The inversion pre-training phase minimizes a convex reconstruction
loss via gradient descent, while the generation phase optimizes a smooth, potentially non-convex
objective per sample. In contrast, alternative methods incur overheads from adversarial dynam-
ics, timestep iterations, or invertible transformations. The proofs derive big-O bounds on iterations
required for ϵ-accuracy, highlighting inversion’s reduced complexity.

Theorem 4 (Training Efficiency). Under µ-strong convexity and L-smoothness assumptions for
the loss, inversion pre-training converges in O((L/µ) log 1/ϵ) iterations, outperforming GAN’s
O(1/ϵ2) lower bound for saddle-point equilibria, diffusion’s O(T/ϵ2) with diffusion steps T , and
flow-based models’ O(D2 log 1/ϵ) per iteration due to Jacobian computations.

Proof. We derive the complexities sequentially for each method, starting from fundamental opti-
mization rates and incorporating method-specific costs.

For inversion pre-training, consider a µ-strongly convex and L-smooth loss L(θ), minimized via
gradient descent: θk+1 = θk − η∇L(θk) with η = 2/(µ+ L). The suboptimality gap satisfies

L(θk+1)− L∗ ≤ (1− µ/L)(L(θk)− L∗)

≤ (1− µ/L)k(L(θ0)− L∗),

yielding k = O((L/µ) log 1/ϵ) iterations for ϵ-accuracy. Per iteration cost is O(NP ), leading to
total complexity O(NP (L/µ) log 1/ϵ).

By contrast, GAN training solves the non-convex non-concave minimax problem
minG maxD E[logD(x)] + E[log(1 − D(G(z)))]. Without global convergence guarantees,
lower bounds for finding ϵ-local Nash equilibria require O(1/ϵ2) iterations in the worst case,
derived from the quadratic growth of subgradients near equilibria and stochastic gradient oracle
queries. Empirical instability further amplifies effective iterations, with total cost O(2NP/ϵ2)
accounting for dual networks.

Similarly, diffusion models train a denoiser over T timesteps, minimizing
∑T

t=1 E[∥ϵ− ϵ̂(xt, t)∥2].
For empirical risk minimization with variance O(1/t), stochastic gradient descent converges in
O(T/ϵ2) iterations to achieve ϵ-error, as the timestep aggregation scales the variance bound linearly
with T . Per iteration cost O(NP ) results in total complexity O(NPT/ϵ2), where T is typically
large to capture fine-grained noise schedules.

For flow-based models, exact likelihood maximization involves − log p(x) = − log p(z) −
log |detDf |, with Jacobian determinant computation costingO(D3) for general flows orO(D2) for
structured autoregressive variants. Convergence mirrors VAEs at O((L/µ) log 1/ϵ) iterations, but
augmented per-iteration cost yields O(N(P +D2)(L/µ) log 1/ϵ), dominated by the determinant in
high-dimensional molecular spaces.

Given that log 1/ϵ ≪ 1/ϵ2 for small ϵ, and T,D2 ≫ (L/µ), inversion exhibits lower training
complexity.

Theorem 5 (Generation Efficiency). For generating M samples to ϵ-stationarity under L-
smooth non-convex objectives, inversion requires O(M/ϵ2) iterations, fewer than diffusion’s
O(MT log 1/ϵ), GAN’s training-dominant cost, and flow’s O(MD) per-sample inversion.
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Proof. Continuing the sequential derivation, we focus on per-sample generation complexities post-
training.

In inversion generation, per-sample optimization of an L-smooth non-convex F(x) via gradient de-
scent achieves mink ∥∇F(xk)∥2 ≤ O(L(F(x0)−F∗)/K) after K steps, requiring K = O(1/ϵ2)
for ϵ-stationarity. Total cost: O(MP/ϵ2).

In GAN generation, post-training sampling is a single forward pass, O(MP ), but the adversarial
training overhead dominates overall efficiency, rendering it less favorable for iterative refinement
tasks.

Diffusion sampling reverses T timesteps, with accelerated solvers (e.g., DDIM) converging
in O(T log 1/ϵ) steps to ϵ-fidelity via controlled noise reduction. Thus, total generation:
O(MPT log 1/ϵ).

Flow-based sampling inverts the bijective transform, costing O(M(P + D)) due to sequential or
matrix operations in high dimensions.

With 1/ϵ2 ≪ T log 1/ϵ,D in practice, inversion’s generation phase is more efficient for large M .

To elucidate these complexities and underscore the potential of inversion architectures, we present
a comparative summary in Table 7. The table delineates the asymptotic bounds for training and
generation phases, revealing inversion’s advantages in reduced dependence on auxiliary factors like
timesteps T or dimension D. This manifests in faster convergence and lower overall computational
overhead, particularly beneficial for de novo ligand design where iterative optimization aligns natu-
rally with docking-driven objectives.

Table 7: Complexity Comparison of Generative Frameworks

Architecture Training Complexity Generation Complexity (per M samples)

Inversion O(NP log 1/ϵ) O(MP/ϵ2)
GAN O(NP/ϵ2) O(MP ) (training-dominant)
Diffusion O(NPT/ϵ2) O(MPT log 1/ϵ)
Flow-Based O(N(P +D2) log 1/ϵ) O(M(P +D))

E.5 PROOF OF INFORMATION-THEORETIC SUPERIORITY FOR INVERSION FRAMEWORK

To rigorously establish the superiority of the inversion architecture from an information-theoretic
perspective, we derive bounds on mutual information and entropy, demonstrating enhanced infor-
mation transfer from docking signals to generated ligands compared to GAN, diffusion, and flow-
based models. This analysis underscores inversion’s ability to maximize diversity (entropy) while
minimizing conditional uncertainty, leading to more faithful and varied de novo designs.

Theorem 6. Let I(X;Y ) denote the mutual information between docking signals X (receptor
features and affinity objectives) and generated ligands Y . The inversion framework maximizes
I(X;Y ) = H(Y ) − H(Y | X) relative to alternatives, with H(Y ) > H(YGAN) (countering
mode collapse) and H(Y | X) < H(Y | XDiffusion) (reducing noise-induced uncertainty), implying
superior information efficiency and diversity.

Proof. We derive the bounds sequentially, leveraging variational information decompositions and
kernel entropy approximations for multi-modal molecular distributions.

Consider the joint distribution p(X,Y ) under each architecture. Mutual information I(X;Y ) =∫
p(x, y) log p(x,y)

p(x)p(y) dxdy = H(Y )−H(Y | X), where H(Y ) quantifies output diversity (entropy
over ligand space) and H(Y | X) measures conditional uncertainty given docking signals.
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For inversion, the process optimizes a conditional energy F(Y ;X), yielding p(Y | X) ∝
exp(−βF(Y ;X)). Using the Gibbs variational principle, the conditional entropy satisfies

H(Y | X) = −Ep(Y |X)[log p(Y | X)]

≤ logZX + βEp(Y |X)[F(Y ;X)],

where ZX =
∫
Cvalid

exp(−βF(y;X)) dy is the partition function bounded by the valid chemical
space volume. Gradient-driven minimization ofF reduces the expectation term, yielding lowH(Y |
X) (precise signal-to-structure mapping). Simultaneously, basin exploration via continuous flows
maximizes H(Y ) ≈ log |Cvalid| − βminF , enhancing diversity.

By contrast, GANs approximate p(Y ) via adversarial minimization of Jensen-Shannon divergence,
but mode collapse truncates support: H(YGAN) ≤ H(Y ) − ∆, where ∆ =

∑
i pi log(1/pi) over

dropped modes i (from Fano’s inequality on collapsed distributions). Thus,

I(X;YGAN) = H(YGAN)−H(YGAN | X)

≤ H(Y )−∆−H(Y | X) + o(1),

reducing mutual information due to diminished diversity.

Diffusion models parameterize a timestep-dependent process p(Yt | Yt−1, X), with reverse chain
entropy decomposed as H(Y | X) =

∑T
t=1H(Yt | Yt−1, X). Noise variance at each step inflates

conditional terms: H(Yt | Yt−1, X) ≥ 1
2 log(2πeσ

2
t ), yielding

H(Y | X) ≥
T∑

t=1

1

2
log(2πeσ2

t )

=
T

2
log(2πeσ̄2) > H(Y | X)Inversion,

where σ̄2 is average noise variance, increasing with T and reducing I(X;YDiffusion).

Flow-based models enforce exact likelihood via invertible transforms, but information is con-
strained by the Jacobian: H(Y ) = H(Z) + E[log |detDf |], with base entropy H(Z) (e.g., Gaus-
sian) limiting expressivity. For high-dimensional D, the determinant approximation error bounds
H(Y ) ≤ H(Z) +O(D logD), often lower than inversion’s exploration of full Cvalid.

Aggregating these, inversion maximizes I(X;Y ) by balancing high H(Y ) and low H(Y | X),
proving the theorem.

To contextualize these advantages, Table 8 compares key information-theoretic metrics across ar-
chitectures, revealing inversion’s potential for optimal signal utilization in ligand generation without
entropy penalties from collapse, noise, or invertibility constraints.

Table 8: Information-Theoretic Metric Comparison

Architecture I(X;Y ) Bound H(Y ) Factor Limitation

Inversion ≈ H(Y )− o(1) log |Cvalid| None
GAN ≤ H(Y )−∆ Suboptimal Mode Collapse
Diffusion ≤ H(Y )− T

2 log σ̄2 O(T logD) Noise Variance
Flow-Based = H(Z) +O(D logD) Gaussian-Bounded Transform Rigidity

The table underscores inversion’s maximal mutual information and entropy, free from method-
specific artifacts, highlighting its superiority in capturing diverse, docking-informed distributions.

E.6 PROOF OF SAMPLE COMPLEXITY ADVANTAGE FOR INVERSION FRAMEWORK

We provide a theoretical justification for the data efficiency of inversion-based fine-tuning, clarifying
the distinction between sample complexity (number of labeled examples required) and optimization
complexity (number of gradient iterations).
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Theorem 7 (Sample Complexity for Fine-Tuning with Pretrained Features). Assume that the pre-
trained backbone is frozen and only a linear prediction head w ∈ Rdeff is fine-tuned. Suppose the
supervised loss is µ-strongly convex and L-smooth in w, the observation noise is sub-Gaussian with
variance proxy σ2, and the feature representation is bounded as ∥ϕ(x)∥ ≤ B almost surely. Then,
with probability at least 1− δ, the excess risk satisfies

L(ŵ)− L(w⋆) ≤ ϵ whenever n = O

(
σ2B2 deff

µ ϵ
log 1

δ

)
.

Proof. With frozen features, fine-tuning reduces to empirical risk minimization of a linear predictor
in deff dimensions under strong convexity. Standard results in stochastic convex optimization and
statistical learning theory (e.g., Bernstein inequalities for sub-Gaussian noise with bounded features)
yield the high-probability bound

L(ŵ)− L(w⋆) = O

(
σ2B2deff
nµ

log 1
δ

)
.

Solving for n to guarantee excess risk ≤ ϵ with probability at least 1 − δ establishes the stated
bound. Note that µ enters as the curvature modulus, B2deff captures the effective feature scale, and
σ2 scales the variance.

Remark. The log(1/ϵ) dependence often cited in the optimization literature refers to the iteration
complexity of gradient descent for strongly convex losses, where the optimization error decreases
geometrically. Here, however, we are concerned with statistical sample complexity, which scales as
O(1/ϵ) (up to logarithmic confidence factors) under convexity and low effective dimension. If the
linear prediction head cannot fully capture the target mapping, an additional approximation error
term L(wbest)− L(w⋆) should be included.

Comparison to Generative Models. In contrast, empirical evidence and partial theoretical anal-
yses suggest that end-to-end generative models such as GANs or diffusion models typically require
more labeled samples due to higher variance and larger hypothesis classes. GAN training involves
min–max optimization with adversarial variance, while diffusion models require denoising across
multiple timesteps, effectively inflating variance with horizon length T . Although deriving univer-
salO(1/ϵ2) orO(T/ϵ2) bounds is challenging and problem-specific, empirical findings consistently
indicate substantially higher sample demands compared to inversion-based fine-tuning, particularly
in scarce-data docking regimes. These comparisons should be interpreted as qualitative rather than
universal guarantees.

F LIMITATIONS AND FUTURE WORK

Although MagicDock presents a promising unified framework for docking-oriented de novo lig-
and design, it is not without limitations. One primary concern lies in the reliance on gradient-
driven inversion, which, while effective for end-to-end optimization, may converge to local min-
ima in highly non-convex energy landscapes, potentially overlooking globally optimal configura-
tions. Additionally, the surface point cloud representation, though versatile for unifying proteins and
small molecules, inherently abstracts away internal volumetric details and dynamic conformational
changes, which could compromise accuracy in scenarios involving flexible receptors or allosteric ef-
fects. Computational demands also pose a challenge; the iterative refinement in the inversion stage
and the need for SE(3)-equivariant pre-training require substantial resources, limiting scalability
for very large molecular systems or high-throughput applications. Furthermore, the framework’s
performance is contingent on the quality and diversity of fine-tuning data, raising questions about
generalization to underrepresented protein families or novel therapeutic targets. Finally, the current
atomic-level feature set is limited, as it mainly accounts for common organic atoms (e.g., C, H, O, N,
S, Se), while neglecting halogens and metal ions that frequently appear in pharmaceutically relevant
ligands and cofactors, potentially restricting applicability in broader chemical spaces.

Looking ahead, future work could address these limitations through several avenues. Enhancing the
inversion process with stochastic or meta-learning techniques might mitigate local optima issues,
enabling more robust exploration of the chemical space. Integrating hybrid representations that
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combine surface abstractions with volumetric or graph-based models could capture richer biophys-
ical interactions, while advances in efficient equivariant architectures may reduce computational
overhead. Extending the atom feature vocabulary to include halogens (e.g., F, Cl, Br, I) and metal
centers (e.g., Mg, Zn, Fe, Cu) would broaden the framework’s coverage of bioactive compounds and
metalloproteins. In practice, incorporating halogens only requires minor adjustments to the feature
extraction process, and preliminary experiments indicate that ligand generation performance with
halogen atoms is largely consistent with the results reported in this work. In contrast, the inclusion
of metal elements remains more challenging: many metal centers participate in complex coordina-
tion phenomena that cannot be easily captured by the current modeling framework, leading to sub-
optimal results. Addressing these cases may require specialized representations or physics-inspired
modeling of coordination chemistry. Expanding the scope to incorporate multi-objective optimiza-
tion—such as balancing binding affinity with pharmacokinetic properties—or real-time adaptive
docking for dynamic simulations would broaden applicability. Finally, empirical validation on di-
verse wet-lab datasets and collaboration with experimental biologists could refine the model, paving
the way for practical deployment in drug discovery pipelines.

G ALGORITHMS IN PSEUDO CODE

G.1 STAGE 1: DOCKING-ORIENTED LIGAND MODELING

The algorithm generates protein surface point clouds via Gaussian sampling around atoms weighted
by van der Waals radii, computes SDFs, and encodes multi-level (chemical, atomic, geometric)
patch features for efficient docking hotspot representation in de novo design.

Algorithm 1: Stage 1 — Surface Point-Cloud Construction and Patching

Require: Atomic coordinates {xja}Nj=1, atom types, radii {σj
a}, molecule type (protein/small

molecule).
Ensure: Surface points Xs, normals N , features F , patches (Xp, Fp).

1: Hyper-parameters:
2: Protein: ηp, rpiso, Mp; Small molecule: ηm, rmiso, Mm.
3: Shared: σupsample, Tsdf, αsdf, ρ, K.
4: // (A) Candidate surface points
5: for each atom xja do
6: Sample ηp or ηm candidates x̃ ∼ N (xja, σ

2
upsampleI) based on molecule type.

7: end for
8: Collect candidates {xis}.
9: // (B) Smooth distance function (SDF)

10: Compute SDF(xis) per Eq. 4.
11: // (C) Converge to iso-surface
12: for t = 1 . . . Tsdf do
13: Update xis ← xis − αsdf∇xi

s
(SDF(xis)− riso)

2.
14: end for
15: // (D) Sampling and normals
16: Sample Mp (protein) or Mm (small molecule) points⇒ Xs.
17: Compute normals Ni = ∇SDF(xi)/∥∇SDF(xi)∥.
18: // (E) Feature generation
19: if protein then
20: f(xi) = concat(fpchem, fatom, fgeom), f

p
chem: 6D one-hot {C,H,O,N, S, Se}.

21: else
22: f(xi) = concat(fmchem, fatom, fgeom), fmchem: 8D one-hot {C(sp3), C(sp2), . . .}.
23: end if
24: Shared: fatom (6D/8D), fgeom (curvatures, density, coords; 6D).
25: // (F) Patch partitioning
26: Patch centers Xc = FPS(Xs, ρ).
27: For each c ∈ Xc, patch P (c) = KNN(c,Xs;K).
28: Form Xp ∈ RρM×K×3, Fp ∈ RρM×K×d.
29: return (Xs, N, F,Xp, Fp).
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G.2 STAGE 2: UNSUPERVISED PRE-TRAINING

The algorithm details SE(3)-equivariant pre-training via masked reconstruction, encoding surface
patches into invariant features with spherical harmonics and graph convolutions.

Algorithm 2: Stage 2 — Unsupervised Pre-Training
Require: Patch sets {(Xp, Fp)} from Stage 1
Ensure: Encoder EΘ, decoder DΦ, codebook E = {ej}NB

j=1

1: Hyper-params: δ, NB , τ , L, K, B, η
2: for each epoch do
3: for each minibatch (Xp, Fp) do
4: Compute SE(3)-equivariant zi for each patch point (Eq. 7)
5: Mask δ fraction of patchesM, visible V = M̄
6: For i ∈M, get hidden hp,i,m, sample codebook (Eq. 32)
7: Concat tokens H(0)

p = concat({zi}i∈V , {zp,i,m}i∈M)

8: Decode H(0)
p ⇒ H

(L2)
p

9: Compute coords (Eq. 33), curvature via covariance (Eq. 34), eigenvalues, ψ̂i (Eq. 35)
10: Compute losses: Chamfer (Eq. 37), Lcur =

1
δρM

∑δρM
i=1 ∥ψi − ψ̂i∥22, LKL(q, p)

11: Total loss (Eq. 9)
12: Update Θ, Φ, codebook via backprop
13: end for
14: end for
15: return EΘ, DΦ, E

G.3 STAGE 3: SUPERVISED FINE-TUNING

The algorithm employs SE(3)-equivariant supervised fine-tuning via attention-based aggregation of
receptor-ligand latent fields for pocket prediction, interaction modeling, and geometric regulariza-
tion, boosting docking affinity with BCE and MSE losses.

Algorithm 3: Stage 3 — Supervised Fine-Tuning with Equivariant Attention
Require: Labeled complexes {(R,L, ypocket, yint,∆G)}, encoder EΘ
Ensure: Fine-tuned E∗Θ, heads hpocket, hint, h∆G

1: Hyper-params: ηenc, ηhead, B, α, β, λp, E
2: for each epoch do
3: for each minibatch do
4: Encode receptor/ligand patches: Zr = EΘ(Xr

p , F
r
p ), Zl = EΘ(X l

p, F
l
p)

5: Split features into irreps: Zr = {Z(ℓ)
r }Lℓ=0, Zl = {Z(ℓ)

l }Lℓ=0

6: For each ℓ, build Q(ℓ)
r = Z

(ℓ)
r W

(ℓ)
Q , K(ℓ)

l = Z
(ℓ)
l W

(ℓ)
K , V (ℓ)

l = Z
(ℓ)
l W

(ℓ)
V

7: Compute scalar attention scores (using ℓ = 0 channels only):A = softmax
(

Q(0)
r (K

(0)
l )⊤√

d0

)
8: Aggregate values equivariantly: Z̃(ℓ)

r =
∑

j Aij ρ
(ℓ)(R)V

(ℓ)
l,j , ∀ℓ = 0, . . . , L

where ρ(ℓ)(R) is the Wigner-D matrix ensuring SO(3)-equivariance.
9: Concatenate updated irreps Z̃r = {Z̃(ℓ)

r }Lℓ=0
10: Predict pocket labels: ŷi = σ(hpocket(z̃i))
11: Predict interaction: ŷint = σ(hint(z̃))
12: Predict affinity: ŷ∆G = h∆G(z̃)
13: Compute Lpocket,Lint,L∆G

14: Total loss LFT (Eq. 43)
15: Update encoder and heads by gradient descent
16: end for
17: end for
18: return E∗Θ, hpocket, hint, h∆G
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G.4 STAGE 4: INVERSION-BASED LIGAND GENERATION

The algorithm uses gradient-based inversion to generate ligands from noise, iteratively updating
coordinates via backpropagation to minimize docking energy, validity, and structural losses. Equiv-
ariant graphs project updates into valid chemical space, enabling direct high-affinity design without
generative models.

Algorithm 4: Stage 4 — Inversion-based Ligand Generation
Require: Receptor structure R, fine-tuned encoder E∗Θ (Stage 3), docking heads hpocket, hint, h∆G,

initial ligand/protein seed S(0).
Ensure: Optimized ligand/protein S⋆ with high binding affinity.

1: Initialization: Perform one round of (A) encoding and (B) supervision on initial seed S(0).
2: for t = 0 . . . Tgen − 1 do
3: (A) Encoding. Construct surface point clouds for R and S(t), and encode via E∗Θ. Fuse

embeddings using Eq. 10 to obtain z̃(t).
4: (B) Supervision. Compute docking-related predictions (pocket, interaction, affinity).

Evaluate L(t)
FT (Eq. 43) and obtain gradients ∇Zl

L(t)
FT .

5: (C) Gradient-guided modification.
6: Identify positions (residues/atoms) with high gradient magnitude.
7: Select candidate operations: add, modify, delete.
8: Accept modification with probability

P (o) =
exp(−∆∆G(t,o)/τacc)∑
o′ exp(−∆∆G(t,o′)/τacc)

.

Update to S(t+1).
9: (D) Biochemical constraints and relaxation.

10: if Protein then
11: Enforce structural feasibility: check residue packing, adjust backbone torsions, perform

local energy minimization.
12: else if Small molecule then
13: Apply chemical constraints: enforce valence, test aromaticity and ring closure, adjust

stereochemistry, perform local energy optimization.
14: end if
15: (E) Convergence check.
16: if |ŷ(t+1)

∆G − ŷ(t)∆G| < ϵ∆G or ŷ(t+1)
∆G ≤ ∆Gtarget then

17: break
18: end if
19: end for
20: Return S⋆ = S(t+1).

G.5 OVERALL PIPELINE

The algorithm integrates stages—from surface modeling to inversion—via pocket initialization, en-
coder/head/updates, and beam search filtering for scalable, equivariant design. It begins with con-
structing receptor surface point clouds and patches, followed by pre-training an encoder using VQ-
MAE to capture structural features. The encoder and docking heads are then fine-tuned for task-
specific predictions. Starting with an initial ligand seed, the algorithm iteratively updates ligand
coordinates and features using gradients from fine-tuned heads, guided by an equivariant attention
mechanism. A beam search filters candidates, ensuring scalability and convergence to an optimal
ligand with high binding affinity.
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Algorithm 5: MagicDock pipeline
Require: Target receptor raw structure.
Ensure: Generated ligand S⋆.

1: Stage 1: construct surface point clouds (Xs, N, F ) and patches (Xp, Fp) for receptor (Alg. 1).
2: Stage 2: pre-train encoder with VQ-MAE on patches (Alg. 2).
3: Stage 3: fine-tune encoder and learn docking heads (Alg. 3).
4: Initialize ligand seed S(0).
5: for t = 0 . . . Tgen − 1 do
6: Stage 1 (partial): construct updated surface point clouds and features for current ligand S(t).
7: Encode receptor and updated ligand via pre-trained and fine-tuned model.
8: Stage 4: perform inversion-based generation using gradients from Stage 3 heads to

iteratively update (x, f) and decode to discrete S.
9: if convergence criteria met (affinity threshold) then

10: break
11: end if
12: end for
13: Return generated ligand S⋆ = S(t).

H ADAPTATIONS TO BASELINES FOR FAIR COMPARISON

To ensure a fair and rigorous evaluation, we adapted the DiffAb model (Luo et al., 2022)—a
diffusion-based generative approach for antigen-specific antibody design—to align with the zero-
start and de novo scenarios addressed by MagicDock. Originally, DiffAb assumes known backbone
information and focuses on designing or optimizing specific complementarity-determining regions
(CDRs), such as CDR-H3. This setup provides additional structural priors (e.g., framework residues
and epitope details), which are not available in truly zero-start de novo design or when optimizing
unknown antibody components. By modifying DiffAb to operate under reduced information and
broader design scopes, we enable a direct comparison on equal footing, emphasizing the challenges
of designing from scratch without relying on pre-existing structural templates.

We implemented three variants of DiffAb:

1. Original Version: Utilizes known backbone and epitope information, targeting CDR-H3
design (as per the original setup).

2. Modified Version 1: Removes information about the antibody to be optimized (e.g., no
prior knowledge of other CDRs or framework), targeting CDR-H3 for optimization.

3. Modified Version 2: Retains partial information about the antibody to be optimized but
extends the target to all CDRs (de novo design across the full variable region).

These adaptations simulate progressively more challenging conditions, transitioning from region-
specific refinement to full de novo generation, mirroring MagicDock’s end-to-end paradigm. Table 9
summarizes the IMP scores for these variants alongside MagicDock. The declining IMP scores in
modified versions highlight the increased difficulty without structural priors, underscoring the need
for fair baselines in zero-start evaluations.

Table 9: IMP Scores for DiffAb Variants and MagicDock

Method Known Information Target Region IMP Score (%)

DiffAb (Original) Backbone + Epitope CDR-H3 38.80
DiffAb (Modified 1) Epitope Only CDR-H3 31.67
DiffAb (Modified 2) Epitope Only De Novo Design 17.65
MagicDock Receptor Only Full Ligand (De Novo) 36.32

To maintain consistency and equity across all comparisons, we applied similar adaptive modifica-
tions to other baselines. These adaptations ensure that all models are evaluated under comparable
information constraints, preventing inflated performance from auxiliary priors and providing a bal-
anced assessment of their capabilities in realistic docking-oriented de novo design tasks.
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I POTENTIAL SOCIETAL IMPACTS

Our work on docking-oriented de novo ligand design can be used in developing potent therapeutic
ligands and accelerate the research process of drug discovery. The generality of our method extends
beyond its current application; it is adaptable for various computer-aided design scenarios including,
but not limited to, small molecule, protein, and biomaterial design. It is also needed to ensure the
responsible use of our method and refrain from using it for harmful purposes.

J GENAI USAGE DISCLOSURE

In the preparation of this manuscript, we have utilized generative artificial intelligence (GenAI)
tools, specifically GPT-4o and Grok-4, to assist with text polishing and refinement, as well as to
support the drafting and modification of code snippets. These tools have been employed to enhance
the clarity and readability of the narrative and to facilitate the development of auxiliary code, en-
suring a streamlined presentation of our work. However, we emphasize that GenAI was not utilized
in the derivation of mathematical formulas, the design or implementation of key algorithms, or the
formulation of core scientific insights. All critical theoretical proofs, algorithmic developments, and
experimental validations were conducted independently by the authors to maintain the integrity and
originality of the research. We have rigorously reviewed and verified all generated text to ensure
accuracy and alignment with the scientific content, thereby upholding the reliability of the presented
results.

K VISUALIZATION OF GENERATED LIGAND

K.1 PROTEIN LIGAND

The protein-ligand case study and visualization is discussed in Sec. 5.2 and Fig. 4, where Magic-
Dock generates de novo protein ligand for a target receptor pocket. We evaluate binding affinity,
pose accuracy, and structural validity using metrics like docking scores and RMSD, demonstrating
superior performance over baselines in high-throughput screening simulations.

The protein selected for this case study is Integrin beta-4 (ITGB4, PDB: 3F7P), a key component of
hemidesmosomes that anchors epithelial cells to the basement membrane through interactions with
the cytolinker protein plectin. The 3F7P structure specifically captures a fragment of ITGB4’s cyto-
plasmic tail containing fibronectin type III (FNIII) domains in complex with plectin’s actin-binding
domain, highlighting the molecular interface essential for stable adhesion. Mutations in ITGB4 that
disrupt this interaction are linked to forms of epidermolysis bullosa. In this study, MagicDock lever-
ages surface point cloud representations to design ligands targeting the FNIII domains of ITGB4.

K.2 MOLECULE LIGAND

Fig. 11 illustrates the 1A99 protein structure, representing the Putrescine Receptor (PotF) from Es-
cherichia coli, bound to a small-molecule ligand. The protein is rendered as a ribbon model, with
structure details such as alpha-helices and beta-sheets depicted in light blue and gray tones, high-
lighting its intricate folded architecture. The central ligand, illustrated in magenta with blue and
red atomic features, represents putrescine (1,4-diaminobutane), a polyamine critical for bacterial
transport systems. The red Pocket regions, marked with crosses and plus signs, indicate hydrogen
bonding sites or key interaction points, stabilizing the protein-ligand complex. The 1A99 protein,
PotF, functions as a periplasmic binding protein, selectively capturing putrescine from the environ-
ment and delivering it to the membrane-bound transporter complex, essential for bacterial growth
and DNA stabilization. Putrescine, the ligand, plays a vital role in modulating gene expression and
cell signaling, supporting bacterial survival under stress. The binding nature between PotF and pu-
trescine is characterized by high affinity, driven by electrostatic interactions and hydrogen bonds
within the Pocket, where the ligand’s positively charged amino groups align with negatively charged
residues, enhancing specificity and stability. Web resources, including PDBBind v2020 data, con-
firm this interaction’s importance in microbial physiology, offering insights into potential antimicro-
bial targets. This visualization thus bridges computational modeling with biological function, aiding
in drug design and molecular studies.
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Figure 11: Visualization of an example of generated protein-ligand complexes.

Figure 12: Illustration of a chemical synthesis process for bis-benzimidazole derivatives, showing
stepwise transformations from benzimidazole and heterocyclic precursors to the final DNA-binding
agent.

The chemical synthesis process depicted in Fig. 12 involves a stepwise transformation of organic
molecules. It begins with a benzimidazole derivative reacting with an amine NH2, followed by the
introduction of a methyl group CH3 to form an intermediate. This intermediate undergoes further
reaction to yield a symmetric bis-benzimidazole compound. Concurrently, a related process starts
with a complex heterocyclic molecule with multiple methyl groups, which is simplified through a
series of reactions to produce another benzimidazole-based structure.

The four small molecules shown in Fig.13 are protein-binding ligands with unique structures facil-
itating hydrogen bonding, π-π stacking, hydrophobic contacts, and metal coordination. Molecule
1 features a benzimidazole core with a methyl and carboxamide group, enabling enzyme inhibition
like tubulin polymerases via nitrogen bonding and aromatic stacking. Molecule 2 has a purine-
like tricyclic system with an acetamide side chain, acting as a kinase inhibitor by binding to ATP
pockets with nitrogen hydrogen bonds and methyl van der Waals contacts. Molecule 3 includes a
dihydropyrimidine ring with a mercury group, used in crystallography for covalent cysteine binding.
Molecule 4 combines an indole-like structure with hydroxyl and carboxyl groups, targeting serine
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proteases or transporters through polar and hydrophobic interactions, modulating enzyme activity
with its amphipathic nature.

(a) benzimidazole core
with methyl and carbox-
amide

(b) purine-like tricyclic
system with an acetamide
side chain

(c) structure of a dihy-
dropyrimidine ring with a
mercury group

(d) indole-like structure
with hydroxyl and car-
boxyl

Figure 13: Comparison of four generated small-molecule ligands, each with unique structures for
protein binding.

L HYPERPARAMETERS IN DETAILS

For the baselines, we adopt the hyperparameters and training procedure in their official releases. We
list the values of these hyperparameters as well as those of our MagicDock in Table 10, Table 12,
and Table 11.
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L.1 PROTEIN BASELINES

Table 10 enumerates critical hyperparameters for existing baselines, including learning rates and
batch sizes, facilitating fair comparisons in protein-ligand docking performance evaluation.

Table 10: Hyperparameters for protein baselines.

Hyperparameter Value Description

RAbD
N outer cycles 3 Number of outer Monte Carlo cycles.
N inner cycles 10 Number of inner Monte Carlo cycles.
Packing shell distance 6 Å Distance for creating a shell around the CDR for optimization.
Interface distance 8 Å Threshold for defining interface residues during docking.
Docking outer cycles 3 Shortened high-resolution docking outer cycles.
Docking inner cycles 10 Shortened high-resolution docking inner cycles.

DiffAB
hidden size 128 Size of hidden states in the model.
pair size 64 Size of residue-pair features.
n layers 6 Number of layers in the MPN.
n steps 100 Number of the diffusion steps.

HSRN
Hidden dimension 128 Size of hidden states in each MPN.
Number of layers (docking) 4 Layers in hierarchical encoder for docking.
Number of layers (generation) 3 Layers in hierarchical encoder for generation.
RBF interval (hydropathy) 0.1 Interval for hydropathy features.
RBF interval (volume) 10 Interval for volume features.
Epochs (docking) 20 Training epochs for docking.
Epochs (generation) 10 Training epochs for generation.
Dropout 10% Dropout rate.
Optimizer Adam Optimizer used for training.

dyMEAN
embed size 64 Size of the residue type & position number embedding.
hidden size 128 Size of the hidden states in the MPN.
n layers 3 Number of layers in the MPN.
n iter 3 Number of iterations in the progressive full-shot decoding.
k neighbors 9 Number of neighbors for each node in the KNN graph.
d 16 Size of the attribute vector of each channel.

ABDPO
Hidden state size 128 Size of hidden states in MLPs.
Number of layers 6 Layers for features processing MLPs.
Diffusion steps 100 Number of diffusion steps.
Batch size (pre-training) 16 Batch size during pre-training.
Batch size (fine-tuning) 48 Batch size during fine-tuning.
Learning rate (pre-training) 10−4 Initial learning rate for pre-training.
Learning rate (fine-tuning) 10−5 Initial learning rate for fine-tuning.
Optimizer Adam Optimizer used.
Adam betas (0.9, 0.999) Betas for Adam optimizer.
Clip gradient norm 100 Gradient clipping norm.
β 0.01 / 0.005 Values for preference optimization.
Energy weights 8:8:2 Res CDR Etotal, Res CDR-Ag EnonRep, and Res CDR-Ag ERep.

Abx
batch size 1 Batch size used in inference and design.
num samples 100 Number of samples generated.
Learning rate 10−4 Learning rate for Adam optimizer.
Number of sampling steps 100 Number of steps in the diffusion sampling process.
Adam betas (0.9, 0.999) Beta values for Adam optimizer.
Hidden dimension Dh 256 Dimension of node embeddings in the neural network.
Number of layers L 4 Number of layers in the FrameDiff neural network.
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L.2 MOLECULE BASELINES

Table 11 details key hyperparameters for molecular baselines, such as diffusion steps and noise
schedules, enabling standardized benchmarking of generative models in ligand design tasks.

Table 11: Hyperparameters for the small molecule baselines.

Hyperparameter Value Description

DockStream
Docking Poses (AutoDock Vina) 2 Number of poses returned by AutoDock Vina.
Grid Box Size (AutoDock Vina) 15× 15× 15 Å Grid box dimensions for AutoDock Vina.
pH Settings 7.0± 2.0 Target pH and tolerated range for RDKit-based optimization.
Force Field UFF Force field for RDKit-based optimization.
Maximum Iterations 600 Max iterations for RDKit with TautEnum.

3D-SBDD
Exhaustiveness (AutoDock Vina) 8 Exhaustiveness parameter for docking.
Max Binding Modes 9 Maximum number of binding modes.
Energy Range 3 Energy range for docking.
Search Box Padding 12.5 Å Padding for search box coordinates.
Min Box Length 30 Å Minimum search box length.
Batch Size 8 Batch size mentioned in related models.
Initial Learning Rate 10−4 Initial learning rate in related models.
Cross-Validation Folds 5 Folds for hyperparameter selection.
Training Epochs 10 Epochs for graph neural networks.
Budget Evaluations 5000 Budget for de novo design evaluations.
Population Size (GA) 250 Population size for genetic algorithm.
Offspring Size (GA) 25 Offspring size for genetic algorithm.
Mutation Rate (GA) 0.01 Mutation rate for genetic algorithm.

liGAN
Batch Size 32 Batch size for training.
Learning Rate 10−4 Learning rate for Adam optimizer.
Epochs 100 Number of training epochs.
Latent Dimension 256 Dimension of latent space in GAN.
Discriminator Layers 3 Number of layers in discriminator.
Generator Layers 4 Number of layers in generator.

ALIDIFF
Batch Size 4 Batch size during pretraining.
Learning Rate (Pretraining) 0.001 Learning rate for Adam optimizer in pretraining.
Learning Rate (Fine-tuning) 5× 10−6 Initial learning rate for fine-tuning.
Adam Betas (0.95, 0.999) Beta values for Adam optimizer.
Gradient Norm Clipping 8 Gradient norm during pretraining.
Atom Type Loss Scaling 100 Scaling factor for atom type loss.
Gaussian Noise Std 0.1 Standard deviation for data augmentation.
β 5 Beta value for fine-tuning.

DRUGFLOW
Virtual Nodes Nmax 10 Maximum virtual nodes, remove 5 on average.
Sampling Steps 500 Number of sampling steps.
Training Epochs 600 Epochs for DrugFlow and DrugFlow-OOD.
β (PA) 100 Beta for preference alignment.
λcoord, λatom, λbond 1, 0.5, 0.5 Weight for coordinate, atom, bond loss.
λw, λl 1, 0.2 Weight for w, l loss.
Regularization λ (OOD) 10 Regularization for uncertainty estimation.
Scheduler k (FlexFlow) 3 Polynomial scheduler exponent.

DIFFSBDD
Batch Size 32 Batch size for training.
Learning Rate 10−4 Learning rate for Adam optimizer.
Diffusion Steps 1000 Number of diffusion steps.
Number of Layers 6 Number of layers in the model.
Hidden Size 128 Hidden state size.
Training Epochs 100 Number of training epochs.
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L.3 MAGICDOCK

Table 12 outlines MagicDock’s core hyperparameters, like inversion iterations and loss weights,
supporting reproducible optimization for docking-oriented de novo ligand generation.

Table 12: Hyperparameters for MagicDock.

Hyperparameter Value Description

MagicDock
Hidden units in MLP 128 Hidden units in two-layer MLP for pseudo-curvature prediction.
Batch size (fine-tuning) 16 Batch size during supervised fine-tuning.
Learning rate (fine-tuning) 10−4 Learning rate for Adam optimizer in fine-tuning.
Weight decay 10−5 Weight decay for Adam optimizer in fine-tuning.
Optimizer Adam Optimizer used for training.
Patch size K 32 Patch size for point cloud patches.
Max spherical order L 2 Max spherical order for SE(3) convolutions.
Codebook size NB 512 Codebook size for vector quantization.
Gumbel temperature τ 1.0 Temperature for Gumbel-softmax in pre-training.
Loss weights α, β 5.0, 50.0 Weights for pocket and interaction losses in composite objective.
Loss weight λp 1.0 Weight for delta-G loss in fine-tuning.
SDF-GD steps Tsdf 50 Number of gradient descent steps in SDF projection.
Learning rate αsdf 0.1 Learning rate for SDF gradient descent.
Inversion iterations T 200 Number of iterative refinement steps in inversion.
Step size ηt 0.01 Step size for gradient updates in inversion stage.
Pre-training epochs 100 Number of epochs for pre-training stage.
Fine-tuning epochs 20 Number of epochs for fine-tuning stage.
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