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Abstract

How to explore efficiently is a central problem in multi-armed bandits. In this pa-
per, we introduce the metadata-based multi-task bandit problem, where the agent
needs to solve a large number of related multi-armed bandit tasks and can lever-
age some task-specific features (i.e., metadata) to share knowledge across tasks.
As a general framework, we propose to capture task relations through the lens
of Bayesian hierarchical models, upon which a Thompson sampling algorithm is
designed to efficiently learn task relations, share information, and minimize the
cumulative regrets. Two concrete examples for Gaussian bandits and Bernoulli
bandits are carefully analyzed. The Bayes regret for Gaussian bandits clearly
demonstrates the benefits of information sharing with our algorithm. The pro-
posed method is further supported by extensive experiments.

1 Introduction

The multi-armed bandit (MAB) is a popular framework for sequential decision making problems,
where the agent will sequentially choose among a few arms and receive a random reward for the
arm [37]. Since the mean rewards for the arms are not known a priori and must be learned through
partial feedbacks, the agent is faced with the well-known exploration-exploitation trade-off. MAB
is receiving increasing attention and has been widely applied to areas such as clinical trials [19],
finance [54], recommendation systems [70], among others.

How to explore efficiently is a central problem in MAB. In many modern applications, we usually
have a large number of separate but related MAB tasks. For example, in e-commerce, the company
needs to find the optimal display mode for each of many products, and in medical applications, each
patient needs to individually undergo a series of treatment periods to find the personalized optimal
treatment. These tasks typically share similar problem structures, but may have different reward
distributions. Intuitively, appropriate information sharing can largely speed up our learning process
and reduce the regret, while a naive pooling may cause a linear regret due to the bias.

This paper is concerned with the following question: given a large number of MAB tasks, how
do we efficiently share information among them? The central task is to capture task relations in a
principled way [68]. While a few approaches have been proposed (see Section 2), most of them
only utilize the action-reward pairs observed for each task. To our knowledge, none of the existing
works can leverage another valuable information source, i.e., the metadata of each task, which
contains some static task-specific features. Such metadata is commonly available in real applications
[66, 68, 57], such as the demographic features of each customer or patient, or basic information of
each web page or product. Although the metadata can hardly be directly utilized in a single MAB
task, it usually contains intrinsic information about each task, and hence can guide us to learn task
relations and efficiently share knowledge in the multi-task setup. Specifically, suppose task i has a
feature vector xi (i.e., metadata) and its expected reward vector for all arms is ri. We consider a
general formulation that ri is sampled from the conditional distribution P(ri|xi). When P(ri|xi) is
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(a) The meta MAB setting [34,
28, 8], where xi is a constant.

(b) There exists several task clus-
ters, where xi is categorical.

(c) x1 is a continuous variable.

Figure 1: Illustrations of the task distribution P(ri|xi). In the first two subplots, each dot represents a task
and the two axes denote the expected rewards for two arms. In the last subplot, we have three arms, each dot
represents one arm of a task, the x-axis denotes one continuous feature x1, and the y-axis denotes the expected
reward. In the last two settings, the metadata is informative and can guide the exploration to reduce regrets,
while there is still inter-task heterogeneity that can not be captured.

informative, the metadata, being appropriately utilized, can guide our exploration and hence reduce
the regret. Several specific cases of P(ri|xi) are illustrated in Figure 1.

As one of our motivating examples, consider that a company needs to learn about the personal pref-
erence of many users over several options (e.g., message templates), via sequential interactions with
each user. Suppose some user features (e.g., gender, age, geography) are informative in predicting
the preference. Then, even before any interactions with a specific user, we can predict her preference
with high probability, based on her features and our experience with other users. Such knowledge
can be concisely encoded as P(ri|xi). However, ri typically can not be fully determined by xi.
Given the possible heterogeneity of ri conditional on xi, the true reward distribution (and optimal
arm) of this specific user still needs to be learned and confirmed via interactions with herself. There-
fore, we must carefully utilize these features in a multi-task algorithm. Indeed, we conjecture this is
one way how humans adapt to tasks effectively, by constructing a rough first impression according
to features, and then adjusting the impression gradually in the following interactions.

To judiciously share information and minimize cumulative regrets, we design a multi-task bandit
algorithm. Recall that, when P(ri|xi) is known a priori, a Thompson sampling (TS) algorithm [53]
with P(ri|xi) as the prior of ri for each task i is known to be (nearly) optimal in Bayes regret, for
a wide range of problems [37]. However, such knowledge typically is absent, and many concerns
have been raised regarding that TS is sensitive to the prior [42, 25, 7, 23]. In this work, we aim to
aggregate data from all tasks to construct an informative prior for each task. Specifically, we propose
to characterize the task relations via a Bayesian hierarchical model, upon which the Multi-Task TS
(MTTS) algorithm is designed to continuously learn P(ri|xi) by aggregating data. With such a
design, MTTS yields a similar low regret to the oracle TS algorithm which knows P(ri|xi) a priori.
In particular, the metadata xi allows us to efficiently capture task relations and share information.
The benefits can be seen clearly from our experiments and analysis.

Contribution. Our contributions can be summarized as follows. First of all, motivated by the
usefulness of the commonly available metadata, we introduce and formalize the metadata-based
multi-task MAB problem. The related notion of regret (multi-task regret) is defined, which serves
as an appropriate metric for this problem. Second, we propose to address this problem with a uni-
fied hierarchical Bayesian framework, which characterizes the task relations in a principled way.
We design a TS-type algorithm, named MTTS, to continuously learn the task distribution while
minimizing the cumulative regrets. The framework is general to accommodate various reward dis-
tributions and sequences of interactions, and interpretable as one can study how the information
from other tasks affects one specific task and how its metadata determines its prior. Two concrete
examples for Gaussian bandits and Bernoulli bandits are carefully analyzed, and efficient imple-
mentations are discussed. Our formulation and framework open a door to connect the multi-task
bandit problem with the rich literature on Bayesian hierarchical models. Third, we theoretically
demonstrate the benefits of metadata-based information sharing, by deriving the regret bounds for
MTTS and several baselines under a Gaussian bandit setting. Specifically, the average multi-task
regret of MTTS decreases as the number of tasks grows, while the other baselines suffer a linear
regret. Lastly, systematic simulation experiments are conducted to investigate the performance of
MTTS under different conditions, which provides meaningful insights.
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2 Related Work

First of all, our setup subsumes the meta MAB problem [28, 10, 34, 35] as a special case, where xi
degenerates to a constant. Meta MAB assumes the tasks arrive sequentially and are drawn from one
metadata-agnostic distribution. Among these works, meta TS [34] is the most related one, which
assumes the mean reward vectors {ri} are i.i.d. sampled from some distribution f(r;θ), and pool
data to learn θ. The other works either pool data from accomplished tasks to optimize algorithm
hyper-parameters [28] or directly optimize the policy via policy gradient [10, 35]. Compared with
meta MAB, our setting is more general as we allow incorporating metadata to learn and capture task
relations, and also allow the interactions with different tasks to arrive in arbitrary orders. The former
is particularly important when there exists significant heterogeneity among tasks (e.g., setting (c) in
Figure 1), where a naive pooling may lose most information; the latter allows broader applications.
The results developed in this paper are equally applicable to meta MAB.

In addition to meta MAB, there are several other topics concerned with multiple bandit tasks. We
review the most related papers in this section, and provide a comprehensive comparison with addi-
tional related works and concepts in Appendix B. First of all, there is a large number of works on
multi-agent bandits [30, 12, 62, 17] studying that multiple agents interact with the same task concur-
rently. In contrast, we consider there is inter-task heterogeneity. Given such heterogeneity, certain
approaches to capture task relations are then required: when there exist useful network structures
between tasks, [13] and [61] propose to utilize this knowledge to capture task relations; [6] assumes
there is a finite number of task instances, considers the tasks arrive sequentially, and aims to transfer
knowledge about this set of instances; [64] assumes there exist pairwise upper bounds on the differ-
ence in reward distributions; clustering of bandits [22, 40] and latent bandits [26, 27] assume there
is a perfect clustered structure, that tasks in the same cluster share the same reward distribution.
In contrast to all these setups, to our knowledge, this is the first work that can utilize metadata, an
important information source that is commonly available. Practitioners are typically familiar with
feature-based methods and our work adds one useful tool to the multi-task bandits toolbox. Besides,
our modelling-based approach provides nice interpretability and is flexible to accommodate arbi-
trary order of interactions. Lastly, we learn task relations from data automatically, with arguably
fewer structural assumptions.

In the presence of task-specific features, another approach to pool information is to adapt contextual
MAB (CMAB) algorithms [43, 69, 51, 4, 58, 36, 38], by neglecting the task identities and regarding
the metadata as ”contexts”. Specifically, one can assume a deterministic relationship ri = f(xi;θ)
for some function f , and then apply CMAB algorithms to learn θ. However, such a solution heavily
relies on the realizability assumption [21], that ri = f(xi;θ) holds exactly with no variation or
error. When this assumption is violated, a linear regret is generally unavoidable. This limitation
attracts increasing attention [21, 33, 32]. In our setup, the agent will interact with each task multiple
times and the metadata is fixed, which naturally enables us to relax this restrictive assumption by
regarding ri as a random variable sampled from P(ri|xi). To our knowledge, this is the first work
that can handle the realizability issue via utilizing the repeated-measurement structure.

Finally, there exists a rich literature on multi-task supervised learning (see [67] for a survey), where
hierarchical models [44, 55, 63] are a popular choice, [49, 3, 46] studied aggregating historical data
to construct informative priors, and [68] considered leveraging metadata to cluster tasks. Besides,
this work is certainly related to single-task bandits. In particular, Thompson sampling is one of the
most popular approaches with superior performance [1, 53, 60, 34, 2, 18]. Its popularity is partially
due to its flexibility to incorporate prior knowledge [14]. We provide a data-driven approach to
construct such a prior. Our work naturally builds on these two areas to provide an efficient solution
to the metadata-based multi-task MAB problem.

3 Metadata-based Multi-task MAB

In this section, we introduce a general framework for the metadata-based multi-task MAB problem.
For any positive integerM , we denote the set {1, 2, . . . ,M} by [M ]. Let I be the indicator function.
Suppose we have a large number of K-armed bandit tasks with the same set of actions, denoted as
[K] = {1, . . . ,K}. Each task instance i is specified by a tuple (ri,xi), where ri = (ri,1, . . . , ri,K)T

is the vector of mean rewards for the K arms and xi is a p-dimensional vector of task-specific fea-
tures (i.e., metadata). The metadata can include categorical and continuous variables, and even
outputs from pre-trained language or computer vision models [16, 39]. We assume these task in-
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stances are i.i.d. sampled from some unknown task distribution Pr,x, which induces a conditional
distribution P(ri|xi). We will interact with each task repeatedly. For each task i, at its t-th deci-
sion point, we choose one arm Ai,t ∈ [K], and then receive a random reward Ri,t according to
Ri,t =

∑K
a=1 I(Ai,t = a)ri,a + εi,t, where εi,t is a mean-zero error term.

We call this setup multi-task MAB to focus on the fact that there is more than one MAB task. New
tasks may appear and interactions with different tasks may happen in arbitrary orders. When the
tasks arrive in a sequential manner (i.e., task i+ 1 begins only when task i is finished), our setup is
an instance of meta learning [34, 28, 8, 59], which we refer to as the sequential setting in this paper.

Suppose until a time point, we have interacted with N tasks, and for each task i ∈ [N ], we have
made Ti decisions. The performance of a bandit algorithm can be measured by its Bayes regret,

BR(N, {Ti}) = Ex,r,ε

∑
i∈[N ]

∑
t∈[Ti]

(maxa∈[K] ri,a − ri,Ai,t),

where the expectation is taken with respect to the task instances {(ri,xi)}, the random errors, the
order of interactions, and the randomness due to the algorithm. Here, the metadata {xi} and the
order of interactions enter the definition because they might affect the decisions of a multi-task
algorithm. When the algorithm does not share information across tasks, the definition reduces to the
standard single-task Bayes regret [37] accumulated over N tasks. The Bayes regret is particularly
suitable for multi-task bandits, under the task distribution view [67, 34].

Given the existence of inter-task heterogeneity, the Bayes regret of any bandit algorithms will un-
avoidably scale linearly with N . We next introduce a new metric, refer to as the multi-task regret,
which allows us to clearly see the benefits of multi-task learning and can serve as an appropriate
metric for multi-task bandit algorithms.

To begin with, we first review Thompson sampling (TS), which is one of the most popular bandit
algorithm framework [1, 53, 60]. For each task i, the standard single-task TS algorithm requires a
prior Q(ri) as the input, maintains a posterior of ri, and samples an action according to its posterior
probability of being the optimal one. We denote TS(Q(r)) as a TS algorithm with some distribution
Q(r) as the prior. Most Bayes regret guarantees for TS require the specified prior is equal to the true
distribution of r [53, 37]. When this condition is satisfied, it is well-known that this TS algorithm
is (nearly) optimal for a wide range of problems [53, 37]. In our setup, this assumption means that,
for each task i, we will apply TS

(
P(ri|xi)

)
. It is natural to set such an (nearly) optimal algorithm

as our skyline, which we refer to as oracle-TS.

However, it is arguably a strong assumption that the agent can know P(ri|xi) a priori, and a growing
literature finds that TS with a mis-specified prior can yield a poor regret due to over-exploration
[14, 42, 25, 53, 23]. Therefore, a well-designed metadata-based multi-task MAB algorithm should
be able to aggregate data to learn the task distribution pattern (i.e., P(ri|xi)), so as to yield similar
low regrets with oracle-TS. Motivated by these discussions, we define the multi-task regret of an
algorithm as the difference between its Bayes regret and the Bayes regret of oracle-TS, which can
be equivalently written as

MTR(N, {Ti}) = Ex,r,ε

∑
i∈[N ]

∑
t∈[Ti]

(ri,AO
i,t
− ri,Ai,t

),

where AOi,t is the action that oracle-TS takes, and the expectation is additionally taken over its ran-
domness. This regret reflects the price of not knowing the prior a priori, and measures the perfor-
mance of a multi-task algorithm in learning the task distribution pattern while maintaining a low
regret. A similar concept is defined in [7] for meta learning in dynamic pricing.

4 Algorithm: MTTS
4.1 General framework

To address the metadata-based multi-task MAB problem, in this section, we introduce a general
hierarchical Bayesian framework to characterize the information-sharing structure among tasks, and
design a TS algorithm that can continuously learn P(r|x) and yield a low regret. For ease of ex-
position, we assume discrete probability spaces. Our discussion is equally applicable to continuous
settings. Two representative examples are given in the following subsections.

To learn P(r|x), we make a model assumption that ri is sampled from f(ri|xi,θ), for a model f
parameterized by the unknown parameter θ. For example, in Gaussian bandits, f(ri|xi,θ) can be
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Algorithm 1: MTTS: Multi-task Thompson Sampling
Input : Prior P(θ) and known parameters of the hierarchical model

1 SetH = {}
2 for every decision point j do
3 Retrieve the task index i
4 Compute the posterior for ri as P(ri|H), according to the hierarchical model (1) (see

Section 4.2 and 4.3 for examples)
5 Sample a reward vector (r̃i,1, . . . , r̃i,K)T ∼ P(ri|H)
6 Take action Aj = argmaxa∈[K] r̃i,a
7 Receive reward Rj
8 Update the dataset asH ← H∪ {(Aj , Rj ,xi, i)}
9 end

the conditional density function of a linear model with Gaussian errors (see Section 4.2). We denote
the prior of θ as P(θ). Therefore, our full model is the following Bayesian hierarchical model:

(Prior) θ ∼ P(θ),

(Inter-task) ri|xi,θ ∼ f(ri|xi,θ),∀i ∈ [N ],

(Intra-task) Ri,t =
∑

a∈[K]
I(Ai,t = a)ri,a + εi,t,∀i ∈ [N ], t ∈ [Ti].

(1)

We note that P(θ) is specified by the users, and our regret analysis is a worst-case frequentist regret
bound with respect to θ. Besides, the inter-task layer clearly subsumes the meta MAB model ri|θ ∼
f(ri|θ) and the CMAB model ri = f(xi;θ) as two special cases.

Suppose until a decision point, we have accumulated a datasetH = {(Aj , Rj ,xj , i(j))}nj=1, where
the data for all tasks have been combined and re-indexed. Here, i(j) is the task index for the jth
tuple inH, xj = xi(j) is its metadata, Aj is the implemented action and Rj is the observed reward.
Suppose we need to make a decision for task i at this time point. To adapt the TS algorithm,
one needs to compute the posterior of ri as P(ri|H) according to the specified hierarchical model,
sample a reward vector, and then act greedily to it. Based on this framework, we designed the
Multi-Task Thompson Sampling (MTTS) algorithm, which is summarized as Algorithm 1.

Algorithm 1 is natural and general. Once a hierarchical model is specified, the remaining step to
adapt MTTS is to compute the posterior P(ri|H). We will discuss two concrete examples in the
following sections. Before we proceed, we remark that the posterior can be written as

P(ri|H) =

∫
θ

P(θ|H)f(ri|θ,H)dθ ∝ P(Hi|ri)
∫
θ

P(θ|H)f(ri|xi,θ)dθ, (2)

where Hi is the subset of H that contains the history of task i. Note that P(Hi|ri) is the likeli-
hood for task i alone. Therefore, (2) provides a nice interpretation: up to a normalization constant,∫
θ
P(θ|H)f(ri|xi,θ)dθ can be regarded as a prior for task i, and this prior will be continuously up-

dated by pooling data based on the hierarchical model. Specifically, data from all tasks are utilized
to infer θ via P(θ|H), which is then used to infer P(ri|xi) through f(ri|xi,θ). This is consistent
with our motivations, that we would like to utilize the metadata {xi} to guide exploration (via the
prior), while also using the task-specific history Hi (via the likelihood P(Hi|ri)). As a multi-task
algorithm, MTTS yields desired interpretability, as one can study how the information from other
tasks affects one specific task, via investigating how its metadata determines its prior.

In addition, the relationship (2) suggests a computationally efficient variant of Algorithm 1. We note
two facts: (i) it is typically more demanding to compute P(θ|H) than P(Hi|ri)f(ri|xi,θ), since the
former involves a regression problem and usually has no explicit form, while the latter usually has
analytic solutions by choosing conjugate priors; (ii) according to (2), to sample ri from P(ri|H), it
is equivalent to first sample one θ̃ from P(θ|H), and then sample ri with probability proportional
to P(Hi|ri)f(ri|xi, θ̃). Therefore, when it is computationally heavy to sample P(ri|H) every time,
we can instead sample θ̃ from P(θ|H) at a lower frequency, and apply TS

(
f(ri|xi, θ̃)

)
to task i

before sampling the next value of θ. This variant can be regarded as updating the inter-task data
pooling module in a batch mode, and it shows desired regret in our analysis and negligible costs
in our experiments. Under the sequential setting, this variant is described in Algorithm 2, and the
general form is given in Appendix C.2. See Section 4.3 for a concrete example.
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Algorithm 2: Computationally Efficient Variant of MTTS under the Sequential Setting
Input : Prior P(θ) and known parameters of the hierarchical model

1 SetH = {} and P(θ|H) = P(θ)
2 for task i ∈ [N ] do
3 Sample one θ̃ from the current posterior P(θ|H)

4 Apply TS
(
f(ri|xi, θ̃)

)
to task i for Ti rounds, and collect observed data asHi

5 UpdateH = H ∪Hi
6 Update the posterior of θ according to the hierarchical model (1)
7 end

4.2 Gaussian bandits with Bayesian linear mixed models

In this section, we focus on Gaussian bandits, where the error term εi,t follows N (0, σ2) for a
known parameter σ. We will first introduce a linear mixed model to characterize the information-
sharing structure, and then derive the corresponding posterior. We use Im to denote an m × m
identity matrix. Let φ(·, ·) : Rp × [K] → Rd be a known map from the metadata-action pair to a
d-dimensional transformed feature vector, and let Φi = (φ(xi, 1), . . . ,φ(xi,K))T . We focus on
the case that E(ri|xi) is linear in Φi and consider the following linear mixed model (LMM):

ri = Φiθ + δi, ∀i ∈ [N ] (3)

where θ is an unknown vector, and δi
i.i.d.∼ N (0,Σ) for some known covariance matrix Σ. In this

model, the fixed effect term Φiθ captures the task relations through their metadata, and the random
effect term δi allows inter-task heterogeneity that can not be captured by the metadata. We adopt the
prior distribution θ ∼ N (µθ,Σθ) with hyper-parameters µθ and Σθ.

The posterior of ri under LMM has an analytic expression. We begin by introducing some notations.
Recall that the history is H = {(Aj , Rj ,xj , i(j))}nj=1 of size n. Denote R = (R1, . . . , Rn)T and
Φ = (φ(x1, A1), . . . ,φ(xn, An))T . Let Σa,a′ be the (a, a′)-th entry of Σ. The LMM induces an
n×n kernel matrixK, the (l,m)-th entry of which is φT (xl, Al)Σθφ(xm, Am)+ΣAl,Am

I(i(l) =
i(m)). Finally, define a K × n matrix Mi, such that the (a, j)-th entry of Mi is I(i(j) = i)ΣAj ,a.
The posterior of ri follows a multivariate normal distribution, with mean and covariance as

E(ri|H) = Φiµθ + (ΦiΣθΦ
T +Mi)(K + σ2In)−1(R−Φµθ),

cov(ri|H) = (ΦiΣθΦ
T
i + Σ)− (ΦiΣθΦ

T +Mi)(K + σ2In)−1(ΦiΣθΦ
T +Mi)

T .

At each decision point, we can then follow Algorithm 1 to act. The computation is dominated by the
matrix inverse of (K+σ2In). In Appendix C.1, we introduce an efficient implementation via using
the Woodbury matrix identity [50] and the block structure induced by the LMM.
Remark 1. The idea of addressing metadata-based multi-task MAB problems via mixed effect mod-
els is generally applicable. One can replace the linear form of (3) with other functional forms and
proceed similarly. As an example, a mixed-effect Gaussian process model and the corresponding
MTTS algorithm are derived in Appendix D.2.

4.3 Bernoulli bandits with Beta-Bernoulli logistic models

The Bernoulli bandits, where the reward is a binary random variable, is another popular MAB prob-
lem. As a concrete example, we consider the Beta-Bernoulli logistic model (BBLM) to characterize
the information-sharing structure. Recall ri,a is the expected reward of the ath arm of task i. In
BBLM, ri,a follows a Beta distribution with E(ri,a|xi) being a logistic function of φT (xi, a)θ. We
assume the prior θ ∼ N (µθ,Σθ) as well. The BBLM is then defined as

ri,a ∼ Beta
(
logistic(φT (xi, a)θ), ψ

)
, ∀a ∈ [K], i ∈ [N ]

Ri,t ∼ Bernoulli
(∑

a∈[K]
I(Ai,t = a)ri,a

)
,∀t ∈ [Ti], i ∈ [N ],

(4)

where logistic(x) ≡ 1/(1 + exp−1(x)), ψ is a known parameter, and Beta(µ, ψ) denotes a Beta
distribution with mean µ and precision ψ. In regression analysis, the BBLM is popular for binary
responses when there exist multiple levels in the data structure [20, 47].
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One challenge to adapting Algorithm 1 to Bernoulli bandits is that the posterior does not have an
explicit form. This is also a common challenge to generalized linear bandits [38, 36]. In model (4),
the main challenge comes from the Beta logistic model part. We can hence follow the algorithm
suggested by (2) to sample θ at a lower frequency. The nice hierarchical structure of model (4) al-
lows efficient computation of the posterior of θ via approximate posterior inference algorithms, such
as Gibbs sampler [29] or variational inference [9]. For example, with Gibbs sampler, the algorithm
will alternate between the first layer of (4), which involves a Beta regression, and its second layer,
which yields a Beta-Binomial conjugate form. Both parts are computationally tractable. We defer
the details to Appendix C.3 to save space. Finally, we note that, similar models and computation
techniques can be developed for other reward variable distributions with a conjugate prior.

5 Regret Analysis

In this section, we present the regret bound for MTTS under the linear mixed model introduced in
Section 4.2. We will focus on a simplified version of Algorithm 1, due to the technical challenge
to analyze the behaviour of TS with a misspecified prior. Indeed, to analyze MTTS, we need a
tight bound on the difference in Bayes regret between TS with a misspecified prior and TS with
the correct prior. To the best of our knowledge, it is still an open and challenging problem in the
literature [7, 34].

We consider two modifications (see Appendix G for a formal description): (i) we introduce an
”alignment period” for each task, by pulling each arm once in its first K interactions, and (ii) in-
stead of continuously updating the prior as in (2), we fix down a prior for each task after its alignment
period, with the prior learned from data generated during all finished alignment periods. These two
modifications are considered so that we can apply our ”prior alignment” proof technique, which is
inspired by [7] and allows us to bound the multi-task regret. We note similar modifications are im-
posed in the literature as well, due to similar technical challenges [7, 34]. The former modification
causes an additional O(NK) regret, and the latter essentially utilizes less information in construct-
ing the priors than Algorithm 1 and is imposed to simplify the analysis. Even though, the modified
version suffices to show the benefits of information sharing. Besides, the second modification is
consistent with Algorithm 2 and hence we provide certain guarantees to this variant. Finally, the
vanilla MTTS (Algorithm 1) shows desired sublinear regrets in experiments.

For a matrix A, we denote its operator norm and minimum singular value by ||A|| and σmin(A),
respectively. For a vector v, we define ||v|| to be its `2 norm. Õ is the big-O notation that hides
logarithmic terms. We make the following regularity assumptions.
Assumption 1. σmin

(
E(ΦT

i Φi)
)
≥ Kc1 and maxi∈[N ]||ΦT

i Φi|| ≤ KC1 for some positive con-
stants c1 and C1.
Assumption 2. maxa∈[K]||φ(xi, a)|| ≤ C2 and ‖θ‖ ≤ C3 for some positive constants C2 and C3.

Assumption 3. ‖µθ‖, ‖Σθ‖ and ‖Σ‖ are bounded.

These regularity conditions are standard in the literature on Bayesian bandits [52, 37], linear bandits
[2, 11] and feature-based structured bandits [48, 41]. Under these conditions, we can derive the
following regret bound for the modified MTTS. For simplicity, we assume T1 = · · · = TN = T .
Theorem 1. Under Assumptions 1− 3, when d = o(N) and K < min(N,T ), the multi-task regret
of the modified MTTS under the LMM is bounded as

MTR(N, {Ti}) = O
(√

Nlog(NT )(
√
d+
√
log(NT )

)√
TKlogT+log2(NT )

√
(T−K)KlogT+NK

)
= Õ

(√
Nd
√
TK +NK

)
. (5)

We remark this is a worst-case frequentist regret bound with respect to θ. To save space, the proof
of Theorem 1 is deferred to Appendix G. Note that the single-task Bayes regret of oracle-TS is
O(
√
TKlogT ) based on the literature (e.g., [37]). The Bayes regret of the modified MTTS then

follows from the definition of multi-task regret.
Corollary 1. Under the same conditions as Theorem 1, the Bayes regret of the modified MTTS can
be bounded as BR(N, {Ti}) = Õ

(√
Nd
√
TK +NK +N

√
TK

)
.

Discussions. For comparison purposes, we informally summarize the regret bounds of several
baselines in Table 5. To save space, the formal statements and their proofs are deferred to Appendix
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Table 1: A summary of the multi-task regret bounds under the LMM. All logarithmic terms are hidden.

MTTS (the proposed) meta-TS individual-TS linear-TS OSFA

Model ri ∼ f(ri|xi;θ) ri ∼ f(r|θ) ri ∼ P(r) ri = f(xi;θ) ri ≡ r ∼ P(r)

MTR
√
Nd
√
TK +NK N

√
TK N

√
TK NT NT

H. We consider the following algorithms: (i) One TS policy for all tasks, referred to as one-size-
fit-all (OSFA); (ii) An individual TS policy for each task, referred to as individual-TS; (iii) TS for
linear bandits [2], referred to as linear-TS; (iv) Meta-Thompson sampling (meta-TS) proposed in
[34]. Specifically, meta-TS, under the Gaussian bandits setting, assumes ri ∼ N (µ,Σ) for some
unknown vector µ, and it pools data to learn µ. To recap, OSFA ignores the inter-task heterogeneity
and linear-TS assumes ri is fully determined by the metadata, while individual-TS does not share
information and meta-TS fails to utilize the metadata to efficiently share information.

In the MTR bound for MTTS (5), the first term is sublinear in N , which implies MTTS is contin-
uously learning about P(ri|xi) and will behave closer to oracle-TS as N increases. The Õ(NK)
term is due to the imposed K alignment rounds in our analysis. In contrast to MTTS, the multi-
task regrets of these baseline algorithms unavoidably scale linearly in N , since they fail to utilize
knowledge about P(ri|xi), which can efficiently guide the exploration. The regret rates suggest that
MTTS is particularly valuable in task-rich settings (N � d). When d is relatively large compared
with N , certain additional structures (e.g., sparsity) can be considered. We note that, although their
difference in multi-task regret is of the same order as the Bayes regret of oracle-TS, which implies
the Bayes regret of MTTS, meta-TS, and individual-TS will be of the same order, the hidden mul-
tiplicative factors can differ a lot. We observe a substantial gap in the experiments. Finally, OSFA
and linear-TS even suffer a linear regret in T , due to the bias caused by ignoring the heterogeneity.
In contrast, MTTS yields a desired sublinear Bayes regret in T .

An Õ(T 2ε) bound on the additional regret for Bayesian bandit algorithms with a misspecified prior
is provided in [56] under a simple setting, where ε is the total-variation between the true prior and the
misspecified one. [34] adopts a recursive approach to obtain a Õ(

√
NKT 2+N

√
KT ) Bayes regret

bound for meta-TS. Our bound demonstrates the usefulness of the prior alignment proof technique,
which can be applied to meta-TS as well. Moreover, we note that the LMM can be reduced to a
linear bandits with an extended context φ̃T (xi, a) = (1Ti,a,φ

T (xi, a))T , where 1i,a is a length-NK
vector taking value 1 at the ((i−1)N+a)-th entry. Such a reduction is typically ill-conditioned and a
direct application of results for linear bandits [52] gives us a Bayes regret bound Õ((NK+d)

√
NT ),

which reflects the necessity to carefully utilize the information sharing structure. Besides, we note
that the reduction from a hierarchical model to a contextual bandit model is typically not possible.
Finally, similar to some literature on meta bandits [65, 7], we adopt the task distribution viewpoint
by assuming the tasks (and hence {xi}Ni=1) are i.i.d. and considering Assumption 1. It should be
feasible to relax these assumptions following the standard proof approach with adversarial contexts
[2, 15, 5]. See Appendix G for more details.

6 Experiments

6.1 Synthetic Experiments

Setting. We conduct simulation experiments to support our theoretical results and study the em-
pirical performance of MTTS. We use model (3) and (4) as our data generation model for Gaussian
bandits and Bernoulli bandits, respectively. In the main text, we present results with N = 200,
T = 200, K = 8 and d = 15. We set φ(xi, a) = (1Ta , φ̃

T
i,a)T , where 1a is a length-K indicator

vector taking value 1 at the a-th entry, and φ̃i,a is sampled fromN (0, Id−K). The coefficient vector
θ is sampled from N (0, d−1Id). For Gaussian bandits, we set σ = 1 and Σ = σ2

1IK , for different
values of σ1. For Bernoulli bandits, we vary the precision ψ. A higher value of σ1 or ψ implies a
larger inter-task heterogeneity conditional on the metadata. We consider two representative types of
task sequence: (i) the sequential setting, where the (i+1)-th task begins after we finish the i-th task,
and (ii) the concurrent setting, where we interact with all tasks for the t-th time simultaneously.

For Gaussian bandits, we compare MTTS with the four algorithms discussed in Section 5: OSFA,
individual-TS, linear-TS, and meta-TS. Besides, we also investigate the performance of the com-
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(a) Gaussian bandits. The regrets of OSFA are much higher in some subplots and hence hidden.

(b) Bernoulli bandits. A larger value of ψ implies a larger variation of ri condition on xi.

Figure 2: Average Bayes regret for various methods. Shared areas indicate the standard errors of the averages.

putationally efficient variant of MTTS in Algorithm 2, referred to as MTTS-approx. For Bernoulli
bandits, we replace linear-TS with a TS algorithm for generalized linear bandits [36], which is re-
ferred to as GLB-TS. The other baselines are also replaced with their Bernoulli variants. To set the
priors for these TS algorithms, we apply the law of total expectation (variance) to integrate out (x, r)
to specify the mean (variance) term. See Appendix F for more details about the implementations.

Results. Results aggregated over 100 random seeds are presented in Figure 2. Under the concur-
rent setting, the average Bayes regrets per interaction are displayed, which shows the trend with T ;
under the sequential setting, the average Bayes regrets per task are displayed, which shows the trend
with N . Such a choice allows us to see the regret rates derived in Section 5 more clearly. Recall that
the multi-task regret of an algorithm can be calculated as the difference between the Bayes regret of
itself and oracle-TS. For ease of comparison, we also report the multi-task regrets in Appendix E.2.

Overall, MTTS performs favorably compared with the other baselines. Our findings can be sum-
marized as follows. First, in the sequential setting, the Bayes regret of MTTS approaches that of
oracle-TS, which shows that MTTS yields a sublinear multi-task regret in N . This implies MTTS is
learning P(r|x) and will eventually behave similarly to oracle-TS. In contrast, there exists a consis-
tent and significant performance gap between oracle-TS and the other baselines. This demonstrates
the benefit of metadata-based information sharing. Second, in the concurrent setting, MTTS shows
a sublinear Bayes regret in T . This implies MTTS is learning the best arm for each task. Although
individual-TS and meta-TS also yield sublinear trends, their cumulative regrets can be significantly
higher. For example, in Gaussian bandits, the cumulative regret of MTTS is only 53.3% of the re-
gret for individual-TS when σ2

1 = 0.25, and 68.2% when σ2
1 = 0.5. This demonstrates that, with

information sharing and the guidance of metadata, MTTS can explore more efficiently. The benefit
is particularly important when the horizon T is not long, and MTTS enables a jump-start for each
task. Third, the trend with σ2

1 and ψ is clear: when the metadata is less useful (σ2
1 = 1 or ψ = 0.2),

the performance of meta-TS and individual-TS becomes closer to MTTS, while linear-TS (GLB-TS)
and OSFA suffer from the bias; when the metadata is highly informative, the advantage of MTTS
over meta-TS and individual-TS becomes much more significant, and the performance of linear-
TS (GLB-TS) becomes relatively better. Overall, MTTS shows robustness. Lastly, MTTS-approx
yields similar performance with the vanilla MTTS, except when N is still small.

Additional results. Results under other settings are reported in Appendix E.3, where MTTS con-
sistently performs favorably, and shows reasonable trends with hyperparameters such as N , K,
and d. Finally, recall that, to share information, we made a model assumption that ri|xi,θ ∼
f(ri|xi,θ). When this model is correctly specified, MTTS has shown superior theoretical and
numerical performance. Intuitively, this model is designed to pool information to provide an infor-
mative prior. As long as the learned prior provides reasonable information relative to a manually
specified one, the performance of MTTS is expected to be better or at least comparable. The con-
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Figure 3: MovieLens: average regret for various methods. Shared areas indicate the standard errors of the
averages.

jecture is partially supported by Lemma 5 in the appendix, which characterizes the impact of a mis-
specified prior on MTR. We empirically investigate the impact of model misspecication to MTTS in
Appendix E.1, where MTTS demonstrates great robustness.

6.2 MovieLens Experiments

We evaluate the empirical performance on the MovieLens 1M dataset [24], which consists of the
ratings (reward) by 6040 users (tasks) on 3900 movies. Each user has three features (metadata),
including gender, age, and occupation. The movies belong to a few genres (arms). We preprocessed
the dataset to focus on the top 5 genres, top 5 occupations and users with at least 500 data points,
which gives us N = 175 users. We apply Gaussian bandit algorithms considered in Section 6.1 to
recommend movie genres to each user and collect rewards by sampling corresponding records from
the dataset. We repeat the experiment over 100 random seeds, with T = 100.

The regrets against the empirical oracle (which knows the user-specific optimal genre with the high-
est empirical mean reward a priori) are reported in Figure 3. Overall, MTTS performs preferably
and demonstrate the benefits of metadata-based information sharing, compared with individual-TS
and meta-TS. Linear-TS and OSFA seem to suffer a linear regret in T , which emphasizes the ex-
istence of heterogeneity. As expected, the demographical features of an user can partially predict
her interests in movie genres, while there still exists strong heterogeneity even conditional on these
features, which requires further personalization based on her own feedbacks.

7 Discussion
In this paper, we study the metadata-based multi-task MAB problem, where we can utilize the meta-
data to capture and learn task relations, so as to judiciously share knowledge. We formalize this
problem under a general framework and define the notion of regret. We propose to address this
problem with Bayesian hierarchical models and design a TS-type algorithm, MTTS, to share infor-
mation and minimize regrets. Two concrete examples are analyzed and efficient implementations
are discussed. The usefulness of MTTS are further supported by regret bounds as well as experiment
results with both synthetic and real data.

The proposed framework can be extended in several aspects. First, the variance components are
assumed known for the two examples in Section 4. In practice, we can apply empirical Bayes to
update these hyperparameters adaptively. See Appendix D.3 for details. Second, our work can be
extended to contextual bandits, based on the idea of clustering of bandits [22, 40] when the set
of task instances is finite, or the idea of contextual Markov decision process [45] when the set is
infinite. See Appendix D.4 for details. Third, while our analysis for MTTS can be directly extended
to other functional forms, the prior alignment technique does utilize some properties of Gaussian
distributions. A novel analysis of TS with mis-specified priors would be of independent interest.
Besides, to our knowledge, the lower bound for the additional regret with a misspecified prior is
still missing in the literature. Such a bound is the difference between two Bayes regrets and hence
requires a quite precise description of the behaviors of Bayesian bandit algorithms. Lastly, we focus
on TS-type algorithms in this paper since it is straightforward to incorporate side information via the
prior. The Upper-Confidence Bound [37] (UCB) is another popular algorithm framework. Though
directly adapting UCB to our setup is challenging, Bayesian UCB [31] naturally fits our problem
and benefits from information sharing. We believe this is an interesting direction worthy of study.
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