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Abstract

We study the Hamiltonian flow for optimization (HF-opt), which simulates the
Hamiltonian dynamics for some integration time and resets the velocity to 0 to
decrease the objective function; this is the optimization analogue of the Hamiltonian
Monte Carlo algorithm for sampling. For short integration time, HF-opt has the
same convergence rates as gradient descent for minimizing strongly and weakly
convex functions. We show that by randomizing the integration time in HF-opt, the
resulting randomized Hamiltonian flow (RHF) achieves accelerated convergence
rates in continuous time, similar to the rates for accelerated gradient flow. We
study a discrete-time implementation of RHF as the randomized Hamiltonian
gradient descent (RHGD) algorithm. We prove that RHGD achieves the same
accelerated convergence rates as Nesterov’s accelerated gradient descent (AGD) for
minimizing smooth strongly and weakly convex functions. We provide numerical
experiments to demonstrate that RHGD is competitive with classical accelerated
methods such as AGD across all settings and outperforms them in certain regimes.

1 Introduction

Optimization plays a central role in machine learning, with algorithms such as gradient descent (GD)
and accelerated gradient descent (AGD) [Nesterov, 1983] serving as essential tools for optimizing
objective functions. A growing body of work has explored optimization algorithms in the framework
of continuous-time dynamical systems, which provides insights into algorithmic behaviors and con-
vergence properties. In this paper, we develop a novel family of accelerated optimization algorithms
that are designed based on the Hamiltonian flow.

Hamiltonian flow (HF) originates from classical mechanics, describing the continuous-time evolution
of physical systems. At a fundamental level, Hamiltonian flow governs how the positions and
momenta of moving bodies evolve while conserving energy. Beyond its roots in physics, Hamiltonian
flows have inspired computational algorithms such as Hamiltonian Monte Carlo (HMC) [Duane
et al., 1987], a classical method widely employed for sampling from complex, high-dimensional
probability distributions [Neal et al., 2011, Betancourt, 2017, Hoffman et al., 2014]. Due to its
effectiveness, HMC has found extensive applications in Bayesian inference, statistical physics, and
machine learning [Gelman et al., 1995, Kruschke, 2014, Lelievre and Stoltz, 2016].

There has been growing interest in exploring the connections between optimization and sampling, as
they share deep theoretical foundations and many algorithmic similarities. Notably, the Langevin
dynamics for sampling can be viewed as the gradient flow for minimizing the relative entropy or
Kullback–Leibler (KL) divergence in the space of probability distributions [Jordan et al., 1998].
Many works build on this perspective to use techniques from optimization to analyze Langevin-based
algorithms [Wibisono, 2018, Bernton, 2018, Durmus et al., 2019, Ma et al., 2021] or develop novel
sampling algorithms inspired by optimization [Salim et al., 2020, Lee et al., 2021, Lambert et al.,
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2022, Chen et al., 2022, Diao et al., 2023, Das and Nagaraj, 2023, Suzuki et al., 2023, Fu and Wilson,
2024, Chen et al., 2025]. In this paper, we strengthen the links between optimization and sampling in
the opposite direction, by studying how to translate the Hamiltonian Monte Carlo (HMC), a classical
sampling algorithm, to design new optimization algorithms, particularly for accelerated methods.

In the links between optimization and sampling, there is a significant theoretical gap regarding
acceleration. In optimization, it is well known that greedy methods such as GD can be outperformed
by accelerated methods such as AGD [Nesterov, 1983] which have faster and optimal convergence
rates with square-root dependence on the condition number for minimizing smooth and strongly
convex functions under the standard first-order oracle model; see Appendix C.1 for a review. A
similar acceleration phenomenon in sampling is still elusive, but there are some promising candidates.
The underdamped (or kinetic) Langevin dynamics has an accelerated convergence rate in continuous
time [Cao et al., 2023], but in discrete time, algorithms based on its discretization still do not
have the desired accelerated rates [Ma et al., 2021, Zhang et al., 2023]. Another candidate is
the randomized Hamiltonian Monte Carlo (RHMC) [Bou-Rabee and Sanz-Serna, 2017], which is
obtained by randomizing the integration time in HMC, and has been conjectured to have an accelerated
convergence rate for sampling [Jiang, 2023]. In continuous time, the idealized RHMC indeed has an
accelerated convergence rate in χ2-divergence for log-concave target distributions [Lu and Wang,
2022]. On the algorithmic side, recent works have shown that for a Gaussian target distribution, HMC
with carefully chosen integration time, either determined by the roots of Chebyshev polynomials or
randomly drawn from exponential distributions, indeed achieves an accelerated mixing time with
square-root dependence on the condition number [Wang and Wibisono, 2023a, Jiang, 2023, Apers
et al., 2024]. However, the proof that RHMC achieves acceleration in discrete time for a general
target distribution remains missing. In this work, we study the optimization analogue of this question,
by designing a new accelerated optimization algorithm based on the randomized Hamiltonian flow.

While Hamiltonian flows have found great success in sampling, their direct use in designing opti-
mization algorithms is still relatively limited. Most existing Hamiltonian-based optimization methods
can be seen as the discretization of the accelerated gradient flow (AGF) [Su et al., 2016, Wibisono
et al., 2016], which is the combination of HF with a damping term for dissipating energy; this is
different from the HF we study in this work which does not have damping. We provide additional
discussion of related work in Appendix A. Pure HF without damping terms have rarely been studied
for optimization. In fact, it obeys the law of energy conservation rather than dissipation, which is
opposite to optimization tasks. Notable prior works include Teel et al. [2019], Diakonikolas and
Jordan [2021], De Luca et al. [2023], Wang [2024]. Particularly, Wang [2024] show that Hamiltonian
flows with velocity refreshment and Chebyshev-based integration times can achieve accelerated
convergence for strongly convex quadratic functions, which is comparable to AGF with refreshment.
Beyond quadratic functions, we demonstrate that HF with short-time integration and periodic ve-
locity refreshment achieves the same non-accelerated convergence rates as GD up to constants (see
Theorem 1). This naturally prompts a question:

Can we develop accelerated optimization methods based on the Hamiltonian flow?

In this work, we answer this question affirmatively and demonstrate that HF with randomized
integration time and its discretization yield accelerated convergence rates for minimizing strongly
and weakly convex functions. Our principal contributions are:

• We propose the randomized Hamiltonian flow (RHF) for optimization as an analogue of RHMC. We
establish its accelerated convergence rates of O(exp(−

√
α/5 t)) for α-strongly convex functions

and O(1/t2) for weakly convex functions. These rates match the optimal accelerated convergence
rates of AGF [Su et al., 2016, Wibisono et al., 2016] up to constants.

• We study the randomized Hamiltonian gradient descent (RHGD) which is a discretization of RHF.
Under L-smoothness assumption, RHGD achieves the overall iteration complexity of Õ(

√
L/α)

for α-strongly convex functions and O(
√
L/ε) for weakly convex functions to generate an ε-

accurate solution in expectation, matching the optimal accelerated rates of AGD [Nesterov, 1983,
2018] and its randomized variant [Even et al., 2021].

Organization The remainder of this work is organized as follows. Section 2 presents notations,
definitions and a review of the Hamiltonian flow (HF) for designing optimization algorithms. Section
3 proposes the definition of the randomized Hamiltonian flow (RHF) and its accelerated convergence
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rates. Section 4 describes how to discretize continuous-time RHF into an implementable optimization
algorithm RHGD and establishes its accelerated convergence rates. Section 5 presents numerical
experiments validating the effectiveness of our proposed methods. Section 6 concludes the paper and
discusses its limitations.

2 Preliminaries and reviews

2.1 Notations and definitions

Let ∥·∥ := ∥·∥2 denote the Euclidean norm on the d-dimensional Euclidean space Rd. A differentiable
function f : Rd → R is α-strongly convex if f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + α

2 ∥y − x∥
2 for

any x, y ∈ Rd, where f is (weakly) convex if α = 0. We say f is α-gradient-dominated if
∥∇f(x)∥2 ≥ 2α(f(x) − f(x∗)) for any x ∈ Rd where x∗ = argminx∈Rd f(x) is a minimizer
of f . We say f is L-smooth if f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + L

2 ∥y − x∥2 or equivalently
∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥ for any x, y ∈ Rd. We assume α ≤ 1 ≤ L. We say x̂ is an
ε-accurate solution in expectation if E[f(x̂) − f(x∗)] ≤ ε. Let κ := L/α denote the condition
number. We use ġt := d

dtgt to denote the time derivative of a time-dependent quantity gt. We define
the flow map HFη : Rd × Rd → Rd × Rd as HFη(X0, Y0) = (Xη, Yη), which is the solution to
Hamiltonian flow (HF) at time η starting from (X0, Y0). Given a time-dependent random variable
Zt, we use ρZt to denote its probability distribution. We identify probability distributions with their
density functions. Let Exp(γ) denote the exponential distribution with mean 1/γ for γ > 0. Let
[n] := {1, 2, ..., n}. We use a = O(b) to denote a ≤ Cb for constant C > 0 and use a = Õ(b) to
denote a = O(b) up to logarithmic factors. We use a = Θ(b) to denote a = Cb for constants C > 0.

Problem setting. Our goal is to solve the following optimization problem:

min
x∈Rd

f(x), (1)

where f : Rd → R is a differentiable function, and x∗ = argminx∈Rd f(x) is a minimizer of f .

2.2 Hamiltonian flow for optimization

The Hamiltonian flow (HF) is a system of ordinary differential equations for (Xt, Yt) ∈ Rd × Rd:

Ẋt = Yt, Ẏt = −∇f(Xt). (HF)

Define the energy (or Hamiltonian) function H(x, y) := f(x) + 1
2∥y∥

2. A fundamental property of
the Hamiltonian flow (HF) is that it conserves energy; see Appendix B.1 for the proof.
Lemma 1 (Energy Conservation). Along (HF), H(Xt, Yt) = H(X0, Y0) for all t ≥ 0.

We can exploit the conservation property of the Hamiltonian flow to design an optimization algorithm
by periodically refreshing the velocity to 0. This idea results in the following Hamiltonian flow for
optimization (HF-opt) algorithm, which was also proposed and studied by Teel et al. [2019], Wang
[2024]. Below, Π1(x, y) = x is the projection operator to the first component.

Algorithm 1 Hamiltonian Flow for Optimization (HF-opt)
1: Initialize x0 ∈ Rd. Choose integration time ηk > 0 for k ≥ 0.
2: for k = 0, 1, . . . ,K − 1 do
3: xk+1 = Π1 ◦ HFηk

(xk, 0) ▷ (evolve (HF) for time ηk and project to first component)
4: end for
5: return xK

Lemma 1 implies the following descent lemma of HF-opt; see Appendix B.1 for the proof.
Lemma 2. For any k and ηk > 0, HF-opt (Algorithm 1) satisfies f(xk+1) ≤ f(xk).

HF-opt is an instance of a new optimization principle, the “Lift-Conserve-Project” (LCP) scheme,
which is the same principle that underlies HMC for sampling; see Appendix B for more details.
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HF-opt is an idealized algorithm since it assumes we can solve the Hamiltonian flow (HF) exactly.
We study its convergence properties in this and the next sections, and we study how to implement it
as a concrete discrete-time algorithm in Section 4. When f is smooth, we show that HF-opt with
short integration time ηk has the following convergence rates under gradient domination and weak
convexity in Theorem 1. Note that the first conclusion in Theorem 1 also holds under α-strong
convexity since it implies α-gradient domination. We provide the proof in Appendix D.1.
Theorem 1. Assume f is L-smooth. Along Algorithm 1 with ηk = h ≤ 1√

L
, from any x0 ∈ Rd:

1. If f is α-gradient-dominated, then f(xk)− f(x∗) ≤
(
1− 1

2αh
2
)k

(f(x0)− f(x∗)).

2. If f is weakly convex, then f(xk)− f(x∗) ≤
34∥x0 − x∗∥2

h2k
.

Up to constants, the results in Theorems 1 match the convergence rates of GD under the same
assumptions (see Theorem 8 in Appendix C.1.1 and Theorem 12 in Appendix C.1.2) and are derived
based on the exact simulation of (HF). If we replace HFηk

with a one-step leapfrog integrator [Sanz-
Serna, 1992] for implementation, then HF-opt recovers exactly the GD algorithm (see Appendix D.2),
and thus inherits the same convergence guarantees as GD.

In this paper, we aim to achieve accelerated convergence rates analogous to Nesterov’s accelerated
gradient descent (AGD). Wang [2024] show that HF-opt achieves the accelerated convergence rate
for minimizing strongly convex quadratic functions when the integration time ηk is selected based
on the roots of Chebyshev polynomials. Inspired by the randomized Hamiltonian Monte Carlo
(RHMC) algorithm for sampling [Bou-Rabee and Sanz-Serna, 2017] where the integration time
is independently drawn from an exponential distribution, we study its optimization counterpart to
explore accelerated convergence rates for a broader class of objectives beyond quadratic functions.

3 Randomized Hamiltonian flow for optimization

We propose a new optimization counterpart of RHMC, called the randomized Hamiltonian flow for
optimization (RHF-opt), where the integration time is drawn from an exponential distribution.

Algorithm 2 Randomized Hamiltonian Flow for Optimization (RHF-opt)
1: Initialize x0 ∈ Rd. Specify γ(t) > 0 for all t ≥ 0.
2: for k = 0, 1, . . . ,K − 1 do
3: Set the current time Tk =

∑k−1
i=0 τi (set T0 = 0)

4: Independently sample τk ∼ Exp (γ(Tk))
5: Set xk+1 = Π1 ◦ HFτk(xk, 0) ▷ (evolve (HF) for time τk and project to first component)
6: end for
7: return xK

In Algorithm 2, the k-th integration time τk is a random variable drawn from an exponential distribu-
tion with mean 1/γ(Tk), where Tk is the current time. Note that γ(t) can depend on time. Below, we
choose γ(t) to be a constant when f is strongly convex, and γ(t) ∝ 1/t when f is weakly convex.

3.1 Reformulation of RHF-opt as a continuous-time process

To rigorously state convergence rates of Algorithm 2 (RHF-opt), we first describe an equivalent
formulation of RHF-opt as the following piecewise deterministic continuous-time process that we
refer to as the randomized Hamiltonian flow (RHF):

1. Evolve (HF) between velocity refreshment events.
2. At random jump times governed by an inhomogeneous Poisson process with rate γ(t), we

refresh the velocity to 0, and continue evolving (HF).

In the continuous-time perspective, t ≥ 0 denotes the actual time variable. The sequence {Tk}k≥0

in Algorithm 2 (RHF-opt) represents the random refreshment times generated by cumulative sums
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of independent exponential random variables with rates γ(Tk). Equivalently, the continuous-time
process described above can be modeled as the following stochastic process:{

dXt = Yt dt,

dYt = −∇f(Xt) dt− Yt dNt,
(RHF)

where dNt :=
∑

k≥1 δTk
(dt) is the Poisson point process with rate γ(t), and Tk is the k-th time an

event happens. Let Yt− be the left limit of Yt. At each random time Tk, the second line in (RHF)
updates YTk

− YT−
k

= −YT−
k

, which refreshes the velocity to YTk
= 0. See also Even et al. [2021,

Appendix C] for a review of the Poisson point measure and the left limit update described above.

3.2 Accelerated convergence rates of the randomized Hamiltonian flow

We establish the accelerated convergence rates of (RHF) for minimizing strongly and weakly convex
functions. Our proofs use the continuity equation along (RHF); see Lemma 13 in Appendix F.

3.2.1 For strongly convex functions

We show the following convergence rate of (RHF) under strong convexity; see Appendix F.1 for the
proof. In the result below, the expectation is over the randomness in (Xt, Yt) ∈ R2d, which comes
from the random integration times in (RHF).

Theorem 2. Assume f is α-strongly convex. Let (Xt, Yt) evolve following (RHF) with the

choice γ(t) =
√

16α
5 , from any X0 ∈ Rd with Y0 = 0. Then for any t ≥ 0, we have

E [f(Xt)− f(x∗)] ≤ exp

(
−
√
α

5
t

)
E
[
f(X0)− f(x∗) +

α

10
∥X0 − x∗∥2

]
.

Compared with HF-opt with short integration time (Theorem 1), RHF achieves faster convergence
for strongly convex functions without smoothness assumption. Recall that the convergence rates
for minimizing α-strongly convex functions are O(exp(−2αt)) for the gradient flow (GF) and
O(exp(−

√
αt)) for the accelerated gradient flow (AGF) [Wibisono et al., 2016] (see Theorems 6

and 7 in Appendix C.1.1). In comparison, RHF achieves a faster convergence rate than GF when α
is small, and it matches the accelerated rate of AGF up to constants, albeit in expectation.

3.2.2 For weakly convex functions

We show the convergence rate of (RHF) under weak convexity; see Appendix F.2 for the proof.

Theorem 3. Assume f is weakly convex. Let (Xt, Yt) evolve following (RHF) with the choice
γ(t) = 6

t+1 , from any X0 ∈ Rd with Y0 = 0. Then for any t ≥ 0, we have

E [f(Xt)− f(x∗)] ≤
5 · E

[
f(X0)− f(x∗) + ∥X0 − x∗∥2

]
(t+ 1)2

.

Compared with HF-opt with short integration time (Theorem 1), RHF achieves faster convergence
for weakly convex functions without smoothness assumption. Recall the convergence rates for
minimixing weakly convex functions are O(1/t) for GF and O(1/t2) for AGF [Su et al., 2016,
Wibisono et al., 2016] (see Theorems 10 and 11 in Appendix C.1.2). In this case as well, RHF
improves upon the rate of GF and matches the accelerated rate of AGF, albeit in expectation.

The convergence guarantees in Theorems 2 and 3 are still idealized because they assume we can
exactly simulate Hamiltonian flow (HF). In Section 4, we discuss a practical implementation of RHF.

4 Randomized Hamiltonian gradient descent

We study the discretization and implementation of the randomized Hamiltonian flow (RHF) as a
discrete-time algorithm. We consider two sources of approximation in the discretization process.
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Approximate Poisson process. In RHF, velocity is refreshed at random times governed by a
Poisson process with rate γ(t). For a small time increment h > 0, the probability of a refreshment
event occurring in [t, t+h) is approximately γ(t) ·h, with the probability of multiple events occurring
in the same interval being negligible (order o(h)). Thus, given x0 ∈ Rd and y0 = 0, RHF can be
approximated by alternating between a deterministic integration step of (HF) over time h to generate
a proposal and a probabilistic accept-refresh step for k ≥ 0:

1. Generate proposal: (xk+1, ỹk+1) = HFh(xk, yk)

2. Accept-refresh: yk+1 =

{
ỹk+1 with probability 1−min(γ(kh) · h, 1)
0 with probability min(γ(kh) · h, 1)

As h→ 0, the process above recovers RHF.

Approximate Hamiltonian flow. In practice, we need to simulate the Hamiltonian flow (HF) using
a numerical integrator, such as the leapfrog integrator [Leimkuhler and Reich, 2004, Sanz-Serna,
1992, Bou-Rabee and Sanz-Serna, 2018]. Accordingly, we replace the exact flow map HFh with a
discrete-time integrator Th : Rd × Rd → Rd × Rd given stepsize h. As a first step, we consider Th

to be the implicit (backward Euler) integrator. The update for (xk+1, ỹk+1) = Th(xk, yk) satisfies
the following system of implicit equations:

xk+1 − xk = hỹk+1, (2a)
ỹk+1 − yk = −h∇f(xk+1). (2b)

By substituting ỹk+1 in (2a) with yk − h∇f(xk+1) from (2b), updates (2) can be reformulated as

xk+1 = Proxh2f (xk + hyk), (3a)
ỹk+1 = yk − h∇f(xk+1). (3b)

where Proxh2f (x) = argminy∈Rd

{
f(y) + 1

2h2 ∥y − x∥2
}

is the proximal operator. If we can
implement the proximal operator for f , then the updates (3) above yield a concrete algorithm that we
call the randomized proximal Hamiltonian descent (RPHD); see Appendix G.1 for more details
on RPHD and its convergence analysis. However, the proximal step (3a) is not explicit for general f ,
and thus we make one further approximation to turn it into a concrete algorithm.

Algorithm. Let xk+ 1
2
:= xk + hyk. We approximate the proximal step (3a) by gradient descent:

xk+1 = xk+ 1
2
− h2∇f(xk+ 1

2
). (4)

This modification leads to a practical algorithm that we call the randomized Hamiltonian gradient
descent (RHGD), summarized in Algorithm 3. Note that as h→ 0, RHGD recovers RHF.

Algorithm 3 Randomized Hamiltonian Gradient Descent (RHGD)
1: Initialize x0 ∈ Rd and y0 = 0. Choose stepsize h > 0 and refreshment rate γk > 0.
2: for k = 0, 1, . . . ,K − 1 do
3: xk+ 1

2
= xk + hyk

4: xk+1 = xk+ 1
2
− h2∇f(xk+ 1

2
)

5: ỹk+1 = yk − h∇f(xk+1)

6: yk+1 =

{
ỹk+1 with probability 1−min (γk · h, 1)
0 with probability min (γk · h, 1)

7: end for
8: return xK

4.1 Accelerated convergence rates of RHGD

RHGD serves as a practical implementation of the randomized Hamiltonian flow (RHF). In the
following, we analyze the convergence rates of RHGD under both strong and weak convexity.
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4.1.1 For strongly convex functions

We show the following accelerated convergence rate of RHGD for minimizing smooth and strongly
convex functions. The proof is deferred to Appendix G.3.1.

Theorem 4. Assume f is α-strongly convex and L-smooth. Then for all k ≥ 0, RHGD
(Algorithm 3) with h ≤ 1

4
√
L

, γk =
√
α, and from any x0 ∈ Rd satisfies

E[f(xk)− f(x∗)] ≤
(
1 +

√
αh

6

)−k

E
[
f(x0)− f(x∗) +

α

72
∥x0 − x∗∥2

]
.

Corollary 1. Assume f is α-strongly convex and L-smooth. To generate xK satisfying E[f(xK)−
f(x∗)] ≤ ε, it suffices to run Algorithm 3 with h = 1

4
√
L

, γk =
√
α, and from any x0 ∈ Rd for

K ≥ (24
√
κ+ 1) · log

(
E
[
f(x0)− f(x∗) + α

72∥x0 − x
∗∥2
]

ε

)
.

Corollary 1 shows that RHGD requires O(
√
κ log(1/ε)) iterations to generate an ε-accurate solution

in expectation under smoothness and strong convexity. Recall under the same assumptions, GD
achieves the iteration complexity of O(κ log(1/ε)), whereas AGD achieves the improved iteration
complexity of O(

√
κ log(1/ε)) (see Corollaries 3 and 4 in Appendix C.1.1). In comparison, RHGD

is faster than GD, and matches the accelerated rate of AGD, albeit in expectation.

4.1.2 For weakly convex functions

We show the following convergence rate of RHGD for minimizing smooth and weakly convex
functions. The proof is deferred to Appendix G.3.3.

Theorem 5. Assume f is weakly convex andL-smooth. Then for all k ≥ 0, RHGD (Algorithm 3)
with h ≤ 1

7
√
L

, γk = 17
2(k+9)h , and from any x0 ∈ Rd satisfies

E[f(xk)− f(x∗)] ≤
14 · E

[
∥x0 − x∗∥2

]
h2(k + 8)2

.

Corollary 2. Assume f is weakly convex and L-smooth. To generate xK satisfying E[f(xK) −
f(x∗)] ≤ ε, it suffices to run Algorithm 3 with h = 1

7
√
L

, γk = 17
2(k+9)h and any x0 ∈ Rd for

K ≥
√

686L · E [∥x0 − x∗∥2]
ε

.

Corollary 2 shows that RHGD requires O(
√
L/ε) iterations to generate an ε-accurate solution in ex-

pectation under L-smoothness and weak convexity. Recall under the same assumptions, GD achieves
the iteration complexity of O(L/ε), whereas AGD achieves the improved iteration complexity of
O(
√
L/ε) (see Corollaries 5 and 6 in Appendix C.1.2). In comparison, RHGD is faster than GD,

and matches the accelerated rate of AGD, albeit in expectation.

4.2 Discussion

Unlike the convergence rates of GD and AGD, which hold deterministically for f(xk) − f(x∗),
the convergence rate of RHGD holds in expectation, i.e., E[f(xk) − f(x∗)] due to the random
refreshment. Nevertheless, convergence in expectation can still imply high-probability bounds for
f(xk)−f(x∗) via Markov’s inequality. We also remark that the continuized version of AGD (CAGD)
proposed by Even et al. [2021] and studied by Wang and Wibisono [2023b], where the two variables
continuously mix following a linear ordinary differential equation and take gradient steps at random
times, similarly achieves an accelerated convergence rate in expectation.

7



Proof Sketch. We first establish the convergence of the ideal algorithm RPHD (Algorithm 5).
Using a Lyapunov functionEk, we show that it preserves the accelerated convergence viaEk+1 ≤ Ek

(see Theorems 14 and 15). The analysis for the practical algorithm RHGD follows similarly but
accounts for the approximation of the proximal step (3a) using gradient descent (4). We bound the
resulting error, which depends on the gradient norm (see Proposition 1), and then incorporate it into
the Lyapunov decrease. Unlike prior works (e.g.,[Wilson et al., 2021]), our analysis avoids explicitly
tracking intermediate iterates, enabling flexibility in the choice of approximation for (3a).

5 Numerical experiments

In this section, we validate the empirical effectiveness of RHGD (Algorithm 3) through numerical
experiments on two canonical convex optimization problems: (1) quadratic minimization and (2)
logistic regression. We compare our proposed algorithm RHGD with GD, AGD, and its continuized
version CAGD [Even et al., 2021], whose pseudocodes are listed in Appendix H.3 as Algorithms 6, 7,
and 8, respectively. We evaluate their performance under various condition numbers with fine-tuned
or adaptive stepsizes. For the quadratic problem, we also evaluate the robustness of RHGD to the
misspecification of strong convexity constant α. We denote the stepsize of GD, AGD and CAGD
by η and the stepsize of RHGD by h to reflect their different scales in smoothness constant L.
See Appendix H for full details on our experiments. Code is available at https://github.com/
QiangFu09/RHGD.

5.1 Minimizing quadratic functions

Consider the quadratic optimization problem: min
x∈Rd

{
f(x) = 1

2x
⊤Ax

}
, where A ∈ Rd×d is a

positive semi-definite matrix with the smallest eigenvalue 0 ≤ α ≤ 1 and the largest eigenvalueL ≥ 1.
In our experiments, we set d = 100, select the stepsize for each algorithm via a grid search and choose
the largest value that ensures convergence and stability. Larger stepsizes result in numerical instability
or divergence. Specifically, we optimize η over geometric sequence SLη := {c/L : c = 2n, n ∈ Z}
with ratio 2, and optimize h over geometric sequence SLh := {

√
c/L : c = 2n, n ∈ Z} with ratio√

2. See Tables 2 and 3 in Appendix H.1.3 for the optimal stepsizes via grid search of each setting.

We consider both strongly convex (α > 0) and weakly convex (α = 0) quadratic minimization. For
the strongly convex case, we fix L = 500 and test three condition numbers κ ∈ {103, 105, 107}
with α = L/κ. Since AGD, CAGD, and RHGD require α to compute momentum parameters and
refreshment rates, we first compare all algorithms using the exact value of α. Notably, when the
condition number κ is large, the strong convexity constant α can be extremely small (e.g., κ = 107,
α = 5 × 10−5), which makes an accurate estimation of α challenging in practice. To evaluate
robustness, we also test with misspecified values α̂ ∈ {0.01, 0.1, 1} > α. In this section, we report
results for κ = 107 and α̂ = 0.01; additional results are deferred to Appendix H.1.1. For the
weakly convex case, we evaluate the same algorithms with appropriately configured parameters (see
Appendix H.3). In particular, RHGD uses decaying γk = 17

2(k+9)h instead of a constant.

Figure 1: Comparison between GD, AGD, CAGD, and RHGD (ours) on minimizing quadratic
functions with L = 500 in three settings: (1) κ = 107 with exact α (left); (2) κ = 107 with
misspecified α̂ = 0.01 (middle); (3) α = 0 (right). We use optimal stepsizes via grid search for each
setting. Each plot shows results averaged over 5 runs.
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Summary of experimental results. Figure 1 presents results for the strongly convex setting with
exact α (left), misspecified α̂ = 0.01 (middle), and the weakly convex setting (right). In the left
plot, all accelerated methods clearly outperform GD. While slower than AGD and CAGD, which are
known to be optimal under exact parameter knowledge, RHGD remains highly competitive during
the early iterations. The middle plot highlights the robustness of RHGD to misspecification. The
momentum parameters of AGD and CAGD, and the refreshment rate of RHGD are computed using
overestimated values α̂ = 0.01, which are significantly larger than the true value α = 5 × 10−5.
While AGD and CAGD degrade significantly when using overestimated α̂, RHGD maintains stable
performance and outperforms them in later stages. The right plot shows that RHGD achieves the
fastest convergence among all algorithms, consistently improving over AGD and CAGD throughout
the iterations, demonstrating its advantage in the weakly convex setting.

5.2 Minimizing logistic regression loss

We construct a synthetic binary classification task using logistic regression with ℓ2-regularization:

min
x∈Rd

{
f(x) =

1

n

n∑
i=1

log
(
1 + exp(−bia⊤i x)

)
+
α

2
∥x∥2

}
,

where we set d = 100 and n = 500. Details on objective generation is provided in Appendix H.2.
We consider the strongly convex (α ∈ {10−3, 10−4, 10−5}) and weakly convex (α = 0) settings. We
report results for α ∈ {10−4, 0} and defer the others to Appendix H.2. Since the smoothness constant
L is unknown, we evaluate GD, AGD and CAGD using adaptive stepsizes the same way as in Hinder
et al. [2020] through line search (see Algorithms 9, 10 and 11 in Appendix H.3). For implementation
of RHGD, we also adopt a similar adaptive stepsize strategy inspired by the line search in Hinder et al.
[2020] (see Algorithm 12 in Appendix H.3). We initialize the stepsize h = 1. At each iteration, h is
updated based on checking the condition: f(x̃k+1) < f(xk+ 1

2
)− h2

2 ∥∇f(xk+ 1
2
)∥2. If the condition

is satisfied, then we increase the stepsize by setting h←
√
1.1 ·h and accept x̃k+1 as xk+1; otherwise,

we decrease the stepsize by setting h←
√
0.6 · h and reject x̃k+1 by setting xk+1 ← xk.

Figure 2: Comparison of GD, AGD, CAGD and RHGD on logistic regression with α ∈ {10−4, 0}.
We run each algorithm using adaptive stepsizes. For RHGD, we evaluate γk =

√
α and γk = 2

√
α

for α > 0, and evaluate γk = 17/(2k + 18)h for α = 0.

Summary of experimental results. Figure 2 presents the convergence behavior of all tested
algorithms on a logistic regression task with α ∈ {10−4, 0} and adaptive stepsizes. We observe
from the left plot that using a slightly larger refreshment rate, γk = 2

√
α, results in faster and

more stable convergence, while Theorem 4 suggests setting the refreshment rate to γk =
√
α. Our

proposed algorithm RHGD with γk = 2
√
α and γk =

√
α are faster than GD in the late iterations

and comparable to AGD and CAGD. The right plot presents the results in the weakly convex setting
with adaptive stepsizes. For RHGD, we choose the decaying refreshment rate γk = 17

2(k+9)h . All
accelerated methods consistently outperform GD, and RHGD exhibits comparable performance to
baseline accelerated algorithms AGD and CAGD.
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6 Conclusion and limitations

In this work, we propose the randomized Hamiltonian flow (RHF) and its discretization, the random-
ized Hamiltonian gradient descent (RHGD), and establish their accelerated convergence guarantees
for both strongly and weakly convex functions. Numerical experiments on quadratic minimization
and logistic regression tasks demonstrate that RHGD is faster than GD, and consistently matches or
outperforms baseline accelerated algorithms such as AGD and CAGD.

We outline several promising directions for future research that build upon and extend this work. First,
it would be valuable to explore other integrators for discretization, such as the leapfrog integrator,
which is commonly used in Hamiltonian Monte Carlo (HMC) and may improve numerical stability
or efficiency in the optimization context.

Second, a natural extension is to study whether our framework and convergence analysis can be
generalized to broader classes of non-convex functions, such as quasar-convex functions [Hardt et al.,
2018], for which recent works have shown potential for accelerated convergence [Hinder et al., 2020,
Fu et al., 2023, Wang and Wibisono, 2023b].

Moreover, an important direction is the development of a stochastic variant of RHGD, where gradients
are estimated using mini-batches or variance reduction. This would make the method more suitable
for large-scale optimization tasks where computing full gradients is computationally prohibitive.
Finally, we hope that our analysis of randomized Hamiltonian flows for optimization can provide
theoretical tools and insights toward validating a long-standing conjecture in sampling: randomized
Hamiltonian Monte Carlo can achieve accelerated mixing time in KL divergence for sampling from
strongly log-concave distributions.

Limitations. Similar to CAGD [Even et al., 2021], our convergence guarantees for RHF and
RHGD hold in expectation due to their inherent randomness. While this differs from deterministic
algorithms like GD and AGD, we can extend our results to high-probability bounds via concentration
inequality. Additionally, while our rates O(exp(−

√
α/5 t)) for RHF and O((1 +

√
αh/6)−k) for

RHGD exhibit the same
√
α dependence as optimal accelerated methods (AGF and AGD, see

Appendix C.1.1), the constants are somewhat larger. Nevertheless, our algorithm RHGD is still faster
than GD and competitive with AGD in both theory and practice.
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of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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Guidelines:
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• If the paper includes experiments, a No answer to this question will not be perceived
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
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• While NeurIPS does not require releasing code, the conference does require all submis-
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Justification: This research does not involve human subjects, user studies, or crowdsourcing.
Therefore, Institutional Review Board (IRB) approval or equivalent was not required.
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A Related work

Hamiltonian Monte Carlo (HMC). HMC and its variants are widely-used sampling algorithms
implemented as the default samplers in popular Bayesian inference packages such as Stan [Carpenter
et al., 2017] and PyMC3 [Salvatier et al., 2016]. Notably, the No-U-Turn Sampler (NUTS) [Hoffman
et al., 2014], a celebrated HMC-based algorithm that automatically tunes its parameters, serves as
the default sampling method in Stan. However, establishing rigorous theoretical guarantees, such as
non-asymptotic convergence rates and developing principled acceleration methods, remain active
areas of research [Talay, 2002, Pakman and Paninski, 2013, Beskos et al., 2013, Betancourt et al.,
2014, Seiler et al., 2014, Durmus et al., 2017, Mangoubi and Smith, 2017, Lee et al., 2018, Bou-Rabee
and Sanz-Serna, 2018, Lee and Vempala, 2018, Mangoubi and Vishnoi, 2018, Mangoubi and Smith,
2019, Bou-Rabee et al., 2020, Chen et al., 2020, Bou-Rabee and Eberle, 2021, Mangoubi and Smith,
2021, Lu and Wang, 2022, Wang and Wibisono, 2023a, Monmarché, 2022, Jiang, 2023, Chen and
Gatmiry, 2023, Camrud et al., 2023, Bou-Rabee and Schuh, 2023, Bou-Rabee and Eberle, 2023,
Monmarché, 2024, Bou-Rabee and Marsden, 2025]. Many recent works focus on understanding
the non-asymptotic behavior of HMC [Wang and Wibisono, 2023a, Jiang, 2023, Monmarché, 2024,
Bou-Rabee and Marsden, 2025]. These analyses not only quantify convergence rates to the target
distribution but also provide guidance on selecting optimal hyperparameters and developing robust
stopping criteria, thereby offering further insights for algorithmic improvement. A variant of HMC,
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known as Randomized Hamiltonian Monte Carlo (RHMC), has been studied in [Bou-Rabee and
Sanz-Serna, 2017]. An intriguing connection between RHMC and underdamped Langevin dynamics
is explored in [Riou-Durand and Vogrinc, 2022, Cao et al., 2023, Jiang, 2023, Leimkuhler et al.,
2024]: specifically, the stochastic differential equation (SDE) characterizing RHMC reduces to the
underdamped Langevin dynamics in the limit [Cheng et al., 2018, Cao et al., 2020, Zhang et al.,
2023]. Additionally, several variants of HMC have been proposed to address different challenges.
Some works introduce stochastic gradients to scale HMC to large datasets [Chen et al., 2014, Zou
and Gu, 2021]. Others explore non-Euclidean geometry [Brofos and Lederman, 2021] or altered
dynamics, such as magnetic [Tripuraneni et al., 2017], reflection-based [Mohasel Afshar and Domke,
2015], or discontinuous dynamics [Nishimura et al., 2020]. There are also efforts on adaptation and
tuning [Hoffman et al., 2019, Hoffman and Sountsov, 2022], as well as decentralized or parallel
implementations [Gürbüzbalaban et al., 2021]. Recent work has further proposed application-specific
improvements [Monnahan et al., 2017, Robnik et al., 2023]. Additional developments also include
continuous-time formulations [Zhang et al., 2012], probabilistic integrators [Dinh et al., 2017],
nonparametric extensions [Mak et al., 2021], and entropy-aware methods [Hirt et al., 2021].

Accelerated gradient flow for optimization. Classical accelerated optimization algorithms are
the heavy-ball method proposed by Polyak [1964] and accelerated gradient descent (AGD) proposed
by Nesterov [1983]. The continuous-time limit of these two methods corresponds to the accelerated
gradient flow (AGF), which is the combination of (HF) with a damping term for dissipating energy
(see Appendix C.1 for a review), and is different from the pure HF we study in this work. Most existing
Hamiltonian-based optimization methods can be seen as the discretization of (AGF). Moreover,
Su et al. [2016], Krichene et al. [2015], Wibisono et al. [2016], Wilson et al. [2021], Suh et al.
[2022] study continuous-time limits of (AGD), and Hu and Lessard [2017], Maddison et al. [2018],
Muehlebach and Jordan [2019], O’Donoghue and Maddison [2019], Hinder et al. [2020], Wilson
et al. [2021], Even et al. [2021], Attouch et al. [2022], Shi et al. [2022], Fu et al. [2023], Wang and
Wibisono [2023b] design and analyze the accelerated methods as the discretization of (AGF) even
beyond convexity.

Hamiltonian flow for optimization. To the best of our knowledge, only a few previous works have
explored optimization algorithms explicitly based on energy-conserving Hamiltonian flow of the form
(HF). Teel et al. [2019] studied optimization methods derived from Hamiltonian flow with a velocity
refreshment strategy. Specifically, they refresh the velocity to zero whenever the iterate approaches the
boundary of a region defined as {(x, y) ∈ Rd ×Rd : ⟨∇f(x), y⟩ ≤ 0, ∥y∥2 ≥ ∥∇f(x)∥2/L} where
L is the smoothness constant, or after a fixed timer expires. They established uniform global stability
and convergence guarantees for minimizing smooth and strongly convex functions. Diakonikolas
and Jordan [2021] analyzed generalized Hamiltonian dynamics characterized by a time-dependent
Hamiltonian H(x, y, τ) = h(τ)f(x/τ) + ψ∗(y), where h(τ) is a positive function of scaled time τ
and ψ∗(·) is strongly convex and differentiable. They showed that along these Hamiltonian flows, the
average gradient norm ∥ 1t

∫ t

0
∇f(xτ )dτ∥ decreases at an O(1/t) rate. Moreover, they demonstrated

that a broad family of momentum methods, applicable in both Euclidean and non-Euclidean spaces,
can be derived from these generalized dynamics. This family includes classical methods such as
Nesterov’s accelerated gradient method [Nesterov, 1983, 2018], Heavy-Ball method [Polyak, 1964],
and other well-known accelerated methods [Wibisono et al., 2016, Wilson et al., 2021] as special
cases, which are different from what we consider in this paper. De Luca et al. [2023] propose a
Hamiltonian-based method with the Hamiltonian defined asH(x, y) = λ log(F (x)−F0)+log(∥y∥2)
where λ > 0 and F0 are user-specified parameters. They show that the proposed method together
with some heuristics is competitive with Adam [Kingma and Ba, 2015] in some deep learning
experiments, but no convergence-rate analysis was performed in the work. Wang [2024] studies
the Hamiltonian flow with velocity refreshment for minimizing strongly convex quadratic functions
f(x) = 1

2x
⊤Ax− b⊤x with A ∈ Rd×d and αI ⪯ A ⪯ LI; importantly, (HF) can be solved exactly

when f is quadratic, which facilitates the analysis. By choosing the integration time ηk related to the
roots of Chebyshev polynomials, Wang [2024] shows that HF-opt achieves the convergence rate of
O((1−Θ(1/

√
κ))k) and the total integration time Θ(1/

√
α), which matches the total integration of

accelerated gradient flow with refreshment [Suh et al., 2022].

Randomization in optimization. The technique of randomly selecting integration times has been
explored in optimization contexts. Even et al. [2021] study the “continuized” version of Nesterov
acceleration, which also considers random update times to combine continuous-time and discrete-time
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perspectives. In their framework, the algorithmic variables follow a linear ODE and take gradient
steps at random intervals, maintaining the simplicity of continuous-time methods and allowing for
efficient discrete-time implementations. While based on a linear ODE rather than Hamiltonian flow,
this continuized approach shares a similar spirit with our randomized integration time perspective:
both demonstrate how randomness in timing can yield rigorous theoretical guarantees and practical
acceleration in optimization.

B Lift-Conserve-Project scheme

We describe a new methodology to reason about optimization tasks based on conservation rather than
dissipation properties, which we call the Lift-Conserve-Project (LCP) scheme, and which serves as a
unifying principle across optimization and sampling.

Suppose we want to solve the following optimization problem:

min
x∈X

f(x), (5)

where X is the domain of optimization; for example, X can be Rd, a constraint set, or the space
of probability distributions P(Rd). Suppose we are currently at a state x0 ∈ X . We describe a
procedure to update x0 to a new state with smaller function value. We need the following ingredients:

• A space Z and an energy functionH : Z → R.
• A lifting map L : X → Z which preserves f , i.e., f(x) = H(L(x)).
• A conservation map C : Z → Z which preservesH, i.e.,H(z) = H(C(z)).

• A projection map P : Z → X which reduces f , i.e.,H(z) ≥ f(P(z)).

The LCP scheme is an algorithm LCP : X → X that applies the lifting L, conservation C and
projection P maps sequentially:

LCP := P ◦C ◦ L.
Lemma 3. The LCP scheme is a descent method, i.e., f(LCP(x)) ≤ f(x).

Proof. By construction, f(LCP(x)) = f(P ◦C ◦L(x)) ≤ H(C ◦L(x)) = H(L(x)) = f(x).

B.1 LCP scheme for optimization: Hamiltonian flow for optimization

Before describing HF-opt (Algorithm 1) as a LCP scheme, we first prove Lemmas 1 and 2 below.

Lemma 1. Along (HF), for all t ≥ 0, H(Xt, Yt) = H(X0, Y0).

Proof. Applying the chain rule and the (HF) dynamics, we obtain

d

dt
H(Xt, Yt) = ⟨∇xH(Xt, Yt), Ẋt⟩+ ⟨∇yH(Xt, Yt), Ẏt⟩

= ⟨∇f(Xt), Yt⟩+ ⟨Yt,−∇f(Xt)⟩ = 0.

Thus, H(Xt, Yt) is invariant along (HF) and H(Xt, Yt) = H(X0, Y0).

Lemma 2. For any k and ηk > 0, Algorithm 1 satisfies f(xk+1) ≤ f(xk).

Proof. In one step of Algorithm 1, we run (HF) from (X0, Y0) = (xk, 0) to reach (Xηk
, Yηk

) =
(xk+1, yk+1) for some yk+1 ∈ Rd. By Lemma 1, f(xk+1) = f(xk)− 1

2∥yk+1∥2 ≤ f(xk).

Since (HF) is a conservative flow by Lemma 1, we can choose X = Rd, Z = Rd × Rd, H = H ,
which is the Hamiltonian function defined by H(x, y) = f(x) + 1

2∥y∥
2, L(x) = (x, 0), C = HFη

which is the Hamiltonian flow map with integration time η > 0, and P = Π1, which is the projection
to the first coordinate. Given x0 ∈ Rd, the LCP scheme is described as
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1. Lift: Lift the point x0 ∈ Rd to the augmented phase space Rd × Rd via

L(x0) = (x0, 0).

Note here y0 = 0 is the minimizer of the kinetic energy 1
2∥y∥

2.

2. Conserve: Evolve the Hamiltonian flow (HF) starting from (x0, 0) for a duration η to obtain

(xη, yη) = HFη(x0, 0).

3. Project: Project (xη, yη) back to the original space by discarding the velocity:

Π1(xη, yη) = xη.

By Lemma 3, we have f(xη) ≤ f(x0). This is exactly the HF-opt (Algorithm 1).

B.2 LCP scheme for sampling: Hamiltonian Monte Carlo

In sampling, the goal is to generate a random variable X ∈ Rd from a target distribution ν ∈ P(Rd).
This is a fundamental problem that frequently arises in Bayesian statistics. Sampling algorithms
typically employ random walks, where each iteration applies a stochastic update to the current point.
When the target distribution has the form ν ∝ exp(−f), the sampling problem can be equivalently
formulated as minimizing the relative entropy (Kullback–Leibler (KL) divergence) with respect to ν
over the space of probability distributions P(Rd):

Sample X ∼ ν ∝ exp(−f) ⇐⇒ min
ρ∈P(Rd)

KL(ρ ∥ ν), (6)

where KL(ρ ∥ ν) =
∫
Rd ρ(x) log

ρ(x)
ν(x) dx is the KL divergence between ρ and ν. Many sampling

algorithms can be interpreted as implementing optimization methods to solve the optimization
problem (6) in the space of distributions; for example, the Langevin dynamics is the gradient flow for
minimizing KL divergence under the Wasserstein geometry [Jordan et al., 1998, Wibisono, 2018].
In contrast, another classical and widely used sampling algorithm is the Hamiltonian Monte Carlo
(HMC, Algorithm 4) [Duane et al., 1987, Neal et al., 2011], which often achieves better performance
in practice compared to Langevin-based methods.

Algorithm 4 Hamiltonian Monte Carlo (HMC)
1: Initialize x0 ∈ Rd. Choose integration time ηk > 0 for k ≥ 0.
2: for k = 0, 1, . . . ,K − 1 do
3: Sample velocity ξ ∼ N (0, Id).
4: Set (xk+1, vk+1) = HFηk

(xk, ξ).
5: end for
6: return xK

B.2.1 Distributional properties of Hamiltonian flow

Define an auxiliary probability distribution ν̃(x, y) ∝ exp
(
−f(x)− 1

2∥y∥
2
)

on the phase space
Rd×Rd. The following lemma demonstrates that KL divergence in the phase space with respect to ν̃
is conserved along HF. In the proof below, for simplicity we suppress the arguments in the integrals.

Lemma 4. Let (xt, yt) = HFt(x0, y0) denote the solution to (HF) at time t where (xt, yt) ∼ ρt.
Then we have

KL(ρt ∥ ν̃) = KL(ρ0 ∥ ν̃). (7)

Proof. Since (xt, yt) satisfies (ẋt, ẏt) = (yt,−∇f(xt)), using the continuity equation in Lemma 14
with the Hamiltonian vector field vt(x, y) = (y,−∇f(x))⊤ yields

∂tρt(x, y) +∇ ·
(
ρt(x, y)

(
y

−∇f(x)

))
= 0.
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Computing the time derivative of KL(ρt∥ν̃) along (HF), we obtain
d

dt
KL(ρt∥ν̃) =

d

dt

∫
ρt log

ρt
ν̃t

=

∫
∂tρt log

ρt
ν̃t

+

∫
ρt
∂tρt
ρt

(7)
= −

∫
∇ ·
(
ρt

(
y

−∇f(x)

))
log

ρt
ν̃t

+

∫
∂tρt︸ ︷︷ ︸
=0

=

∫ 〈
∇ log

ρt
ν̃
,

(
y

−∇f(x)

)〉
ρt

=

∫ 〈
∇ log ρt,

(
y

−∇f(x)

)〉
ρt +

∫ 〈(
∇f(x)
y

)
,

(
y

−∇f(x)

)〉
︸ ︷︷ ︸

=0

ρt

=

∫ 〈
∇ρt,

(
y

−∇f(x)

)〉
= −

∫
∇ ·
(

y
−∇f(x)

)
ρt = 0,

where ∇ := (∇x,∇y)
⊤, and the third and the last equations follow from integration by part. Thus

d
dtKL(ρt∥ν̃) = 0, which implies KL(ρt∥ν̃) = KL(ρ0∥ν̃).

The next lemma shows the chain rule decomposition of KL divergence. For a joint distribution
ρ ∈ P(Rd × Rd), let ρX(x) =

∫
ρ(x, y) dy be the X-marginal of ρ, and ρY |X(y | x) = ρ(x,y)

ρX(x)
the

conditional distribution, so we have the factorization ρ(x, y) = ρX(x)ρY |X(y | x).
Lemma 5. For any joint distributions ρ, π ∈ P(Rd × Rd), we have

KL(ρ ∥π) = KL(ρX ∥πX) + EρX

[
KL(ρY |X ∥πY |X)

]
. (8)

Proof. Using the definition of KL divergence and the conditional distribution, we obtain

KL(ρ ∥π) =
∫
ρ log

ρ

π
=

∫
ρXρY |X log

ρXρY |X

πXπY |X

=

∫
ρXρY |X log

ρX

πX
+

∫
ρXρY |X log

ρY |X

πY |X

=

∫
ρX log

ρX

πX
+

∫
ρXρY |X log

ρY |X

πY |X

= KL(ρX ∥πX) + EρX

[
KL(ρY |X ∥πY |X)

]
.

B.2.2 Hamiltonian Monte Carlo as an LCP scheme

We now describe that HMC is an instance of the LCP scheme on the space of probability distributions.
Note one step of HMC from xk to xk+1 can be described as follows:

1. Lift: lift ρX0 ∈ P(Rd) to ρ0(x, y) ∝ ρX0 (x) · exp
(
− 1

2∥y∥
2
)
∈ P(Rd × Rd).

2. Conserve: run Hamiltonian flow (HF) from an initial point (x0, y0) ∼ ρ0 with an integration
time η to get (xη, yη) := HFη(x0, y0) ∼ ρη.

3. Project: marginalize ρη(x, y) to get ρXη (x) :=
∫
ρη(x, y)dy.

In the above, if xk ∼ ρX0 , then along HMC, xk+1 ∼ ρXη where η = ηk is the integration time.

In the initial lifting, since ρY |X
0 = ν̃Y |X = N (0, I), by Lemma 5 we have KL(ρX0 ∥ ν) = KL(ρ0 ∥ ν̃).

Then we have
KL(ρXη ∥ ν) ≤ KL(ρη ∥ ν̃) = KL(ρ0 ∥ ν̃) = KL(ρX0 ∥ ν),

where the first inequality follows from Lemma 5 and the next equality follows from Lemma 4.

This shows HMC is an instance of the LCP scheme, and that it is a descent method in KL divergence.
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C Optimization and sampling: algorithms and connections

In this section, we review foundational algorithms in convex optimization and log-concave sampling,
with a focus on their theoretical convergence behavior and structural similarities. We first review
the convergence guarantees of optimization algorithms for minimizing strongly and weakly convex
functions. We then review sampling algorithms commonly used for generating samples from log-
concave distributions. Based on these algorithms, we draw connections between optimization and
sampling, emphasizing both their algorithmic parallels and the fundamental gap in convergence
guarantees—most notably, the presence of acceleration in optimization and its absence in current
sampling algorithms. These insights motivate our development of randomized Hamiltonian-based
methods that aim to unify and extend ideas from both domains.

C.1 Review of optimization algorithms with convergence rates

In this section, we revisit some classical optimization methods (for minimizing f ) along with
their convergence rates. The classical greedy methods in optimization are gradient flow (GF) in
continuous-time and gradient descent (GD) in discrete-time with stepsize η > 0, given by

Ẋt = −∇f(Xt), (GF)

xk+1 = xk − η∇f(xk). (GD)

The classical accelerated methods in optimization are accelerated gradient flow (AGF) in continuous-
time [Su et al., 2016, Wibisono et al., 2016] and accelerated gradient descent (AGD) in discrete-
time [Nesterov, 1983, 2018] with stepsize η > 0, given by

Ẍt + β(t)Ẋt +∇f(Xt) = 0, (AGF){
xk+1 = yk − η∇f(yk),
yk+1 = xk+1 + βk(xk+1 − xk),

(AGD)

where β(t) > 0 is the damping parameter and βk > 0 is the momentum parameter.

C.1.1 Convergence under strong convexity or gradient domination

Now we review the convergence guarantees of the methods mentioned above for strongly convex or
gradient-dominated functions. Notably, strong convexity implies gradient domination, and thus any
convergence guarantee under gradient domination also holds under strong convexity.

Continuous-time flows.
Theorem 6. Assume f : Rd → R is α-gradient-dominated. Let Xt ∈ Rd evolve following (GF) from
any X0 ∈ Rd. Then for any t ≥ 0, we have

f(Xt)− f(x∗) ≤ exp(−2αt)(f(X0)− f(x∗)).

Proof. Taking the time derivative of f(Xt)− f(x∗), we obtain

d

dt
(f(Xt)− f(x∗)) = ⟨∇f(Xt), Ẋt⟩ = −∥∇f(Xt)∥2 ≤ −2α(f(Xt)− f(x∗)),

where the inequality follows from α-gradient domination. Applying Grönwall’s inequality completes
the proof.

Theorem 7. Assume f : Rd → R is α-strongly convex. Let Xt ∈ Rd evolve following (AGF) with
β(t) = 2

√
α from any X0 ∈ Rd. Then for any t ≥ 0, we have

f(Xt)− f(x∗) ≤ exp(−
√
αt)

(
f(X0)− f(x∗) +

α

2

∥∥∥∥X0 +
1√
α
Ẋ0 − x∗

∥∥∥∥2
)
.

Proof. Define the continous-time Lyapunov function:

Et = exp(
√
αt)

(
f(Xt)− f(x∗) +

α

2

∥∥∥∥Xt +
1√
α
Ẋt − x∗

∥∥∥∥2
)
.
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We can show Ėt ≤ 0 along (AGF) with β(t) = 2
√
α for t ≥ 0. For a complete proof, see the proof

of Wilson et al. [2021, Proposition 3].

Remark 1. Comparing Theorem 6 and Theorem 7, we observe that (GF) converges at a rate of
exp(−2αt) under α-gradient domination, which also holds under α-strong convexity. In contrast,
(AGF) achieves a faster rate of exp(−

√
αt) under α-strong convexity. Since

√
α > 2α for small

α < 1
4 , this demonstrates the acceleration effect of (AGF) compared to (GF).

Discrete-time algorithms.
Theorem 8. Assume f : Rd → R is α-gradient-dominated and L-smooth. Then for all k ≥ 0, along
(GD) with η ≤ 1

L from any x0 ∈ Rd, we have

f(xk)− f(x∗) ≤ (1− αη)k(f(x0)− f(x∗)).

Proof. Define the discrete-time Lyapunov function: Ek = (1−αη)−k(f(xk)−f(x∗)). We can show
Ek+1 ≤ Ek for all k ≥ 0 along (GD). See Wilson [2018, Appendix B.1.1] for more details.

Corollary 3. Assume f : Rd → R is α-gradient-dominated and L-smooth. To generate xK satisfying
f(xK)− f(x∗) ≤ ε, it suffices to run (GD) with η = 1

L and from any x0 ∈ Rd for

K ≥ κ · log
(
f(x0)− f(x∗)

ε

)
.

Theorem 9. Assume f : Rd → R is α-strongly convex and L-smooth. Then for all k ≥ 0, along
(AGD) with βk =

1−√
αη

1+
√
αη , η ≤ 1

L from any x0 = y0 ∈ Rd, we have

f(xk)− f(x∗) ≤ (1−√αη)k
(
f(x0)− f(x∗) +

α

2
∥x0 − x∗∥2

)
.

Proof. A complete proof can be found in the proof of d’Aspremont et al. [2021, Corollary 4.1.5].

Corollary 4. Assume f : Rd → R is α-strongly convex and L-smooth. To generate xK satisfying
f(xK)−f(x∗) ≤ ε, it suffices to run (AGD) with βk =

√
κ−1√
κ+1

, η = 1
L and from any x0, y0 ∈ Rd for

K ≥
√
κ · log

(
f(x0)− f(x∗) + α

2 ∥x0 − x
∗∥2

ε

)
.

Remark 2. Comparing Corollary 3 and Corollary 4, we observe that (AGD) improves upon (GD)
by reducing the iteration complexity from O(κ log(1/ε)) to O(

√
κ log(1/ε)), where κ = L/α is the

condition number. This demonstrates the acceleration effect of (AGD) over (GD) for strongly convex
functions.

C.1.2 Convergence under weak convexity

Now we review convergence guarantees of the aforementioned methods for weakly convex functions.

Continuous-time flows.
Theorem 10. Assume f : Rd → R is weakly convex. Let Xt ∈ Rd evolve following (GF) from any
X0 ∈ Rd. Then for any t ≥ 0, we have

f(Xt)− f(x∗) ≤
∥X0 − x∗∥2

2t
.

Proof. Define the continuous-time Lyapunov function: Et = 1
2∥Xt − x∗∥2 + t(f(Xt)− f(x∗)). We

can show Ėt ≤ 0 along (GF) for t ≥ 0. See Wilson [2018, Appendix B.2.2] for more details.

Theorem 11. Assume f : Rd → R is weakly convex. Let Xt ∈ Rd evolve following (AGF) with
β(t) = 3

t from any X0 ∈ Rd and Ẋ0 ∈ Rd. Then for any t ≥ 0, we have

f(Xt)− f(x∗) ≤
2∥X0 − x∗∥2

t2
.
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Proof. Define the continuous-time Lyapunov function:

Et = t2(f(Xt)− f(x∗)) + 2

∥∥∥∥Xt +
t

2
Ẋt − x∗

∥∥∥∥2 .
We can show Ėt ≤ 0 along (AGF) with β(t) = 3/t for t ≥ 0. A complete proof can be found in the
proof of Su et al. [2016, Theorem 3].

Remark 3. Comparing Theorem 10 and Theorem 11, we observe that (GF) achieves a convergence
rate ofO(1/t), while (AGF) improves this toO(1/t2). This confirms the acceleration effect of (AGF)
over (GF) for weakly convex functions.

Discrete-time algorithms.
Theorem 12. Assume f : Rd → R is weakly convex and L-smooth. Then for all k ≥ 0, along (GD)
with η ≤ 1

L from any x0 ∈ Rd, we have

f(xk)− f(x∗) ≤
∥x0 − x∗∥2

2ηk
.

Proof. Define the discrete-time Lyapunov function: Ek = 1
2∥xk − x

∗∥2 + ηk(f(xk)− f(x∗)). We
can show Ek+1 ≤ Ek along (GD) for all k ≥ 0. A complete proof can be found in Wilson [2018,
Section 2.1.2].

Corollary 5. Assume f : Rd → R is weakly convex and L-smooth. To generate xK satisfying
f(xK)− f(x∗) ≤ ε, it suffices to run (GD) with η = 1

L from any x0 ∈ Rd for

K ≥ L∥x0 − x∗∥2

ε
.

Theorem 13. Assume f : Rd → R is weakly convex and L-smooth. Then for all k ≥ 0, along (AGD)
with βk = k−1

k+2 , η ≤ 1
L from any x0, y0 ∈ Rd, we have

f(xk)− f(x∗) ≤
2∥x0 − x∗∥2

ηk2
.

Proof. A complete proof can be found in the proof of Su et al. [2016, Theorem 6].

Corollary 6. Assume f : Rd → R is weakly convex and L-smooth. To generate xK satisfying
f(xK)− f(x∗) ≤ ε, it suffices to run (AGD) with βk = k−1

k+2 , η = 1
L and any x0, y0 ∈ Rd for

K ≥
√

2L∥x0 − x∗∥2
ε

.

Remark 4. Comparing Corollary 5 and Corollary 6, we observe that to reach an ε-accurate solution,
(GD) requires O(L/ε) iterations, while (AGD) only needs O(

√
L/ε) iterations. This confirms the

accelerated convergence of (AGD) for smooth and weakly convex functions.

C.2 Review of sampling algorithms

A natural greedy dynamics for sampling ν ∝ e−f is the Langevin dynamics (LD) in continuous-time:

dXt = −∇f(Xt)dt+
√
2dBt, (LD)

where Bt is the standard Brownian motion. A simple discretization of (LD) is called the unadjusted
Langevin algorithm (ULA):

xk+1 = xk − η∇f(xk) +
√

2ηξk, (ULA)

where ξk ∼ N (0, I) is an independent Gaussian noise, and η > 0 is stepsize. However, (ULA)
is a biased algorithm, which means for each fixed step size η, it converges to a biased limiting
distribution [Roberts and Tweedie, 1996]. There have been many results on the biased convergence
guarantee of ULA [Dalalyan, 2017a,b, Durmus and Moulines, 2017, Cheng and Bartlett, 2018,
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Durmus et al., 2019, Vempala and Wibisono, 2019, Chewi et al., 2024], but due to the bias, it does
not have a matching convergence rate with the continuous-time Langevin dynamics.

An alternative, unbiased discretization of (LD) is the Proximal Sampler (Prox-S) [Lee et al., 2021].
Given the stepsize η > 0, the update is given by:{

yk | xk ∼ ν̃Y |X(· | xk) = N (xk, ηI),

xk+1 | yk ∼ ν̃X|Y (· | yk),
(Prox-S)

where ν̃(x, y) ∝ exp
(
−f(x)− 1

2η∥x− y∥
2
)
. The Proximal Sampler has been shown to have

convergence guarantees that match the Langevin dynamics convergence rates from continuous time;
see e.g. Lee et al. [2021], Chen et al. [2022], Mitra and Wibisono [2025], Wibisono [2025]. Note that
HMC (Algorithm 4) with ηk = h is also a greedy sampling method in discrete-time assuming we can
simulate (HF) exactly.

Accelerated methods for sampling remain an active area of research. A natural candidate is the
underdamped Langevin dynamics (ULD):{

dXt = Yt dt,

dYt = −βYt dt−∇f(Xt) dt+
√
2β dBt,

(ULD)

where β > 0 is the damping parameter. Lu and Wang [2022] show that (ULD) has accelerated
convergence rate in χ2-divergence in continuous time. However, establishing similar acceleration
in KL divergence remains challenging. Furthermore, standard discretizations of (ULD) suffer from
being biased [Ma et al., 2021, Zhang et al., 2023] and thus do not exhibit acceleration.

Another candidate to achieve the same acceleration as (AGF) in KL divergence and 2-Wasserstein
distance is the accelerated information gradient flow (AIG) [Wang and Li, 2022, Chen et al., 2025]:{

Ẋt = Yt,

Ẏt = −βYt −∇f(Xt)−∇ logµt(Xt),
(AIG)

where µt is the law of Xt. However, discretizing the AIG flow as a concrete algorithm poses
significant challenges: the implementation is hindered by the unknown score function∇ logµt, and
the analysis is further complicated by the non-smoothness property of the entropy functional under the
Wasserstein metric. Thus, both the development of accelerated sampling methods and the improved
analysis of existing methods to show acceleration are still largely open.

C.3 Connection and comparison between optimization and sampling

Langevin dynamics (LD) can be interpreted as the Wasserstein gradient flow of the Kullback–Leibler
(KL) divergence. More precisely, consider the target distribution ν(x) ∝ exp(−f(x)). Then the
Fokker-Planck equation of (LD), which corresponds to the evolution of the law of (LD) is

∂tµt = ∇ ·
(
µt∇ log

µt

ν

)
,

where µt = Law(Xt) and ∇W2KL(µ ∥ ν) = −∇ ·
(
µ∇ log µ

ν

)
is the Wasserstein gradient of the

functional KL(µ∥ν) with respect to the 2-Wasserstein metric in the space of probability distributions
P2(Rd). This interpretation, originally developed by Jordan et al. [1998] and later formalized in the
language of optimal transport by Otto [2001], provides a variational characterization of Langevin
dynamics and connects sampling algorithms with the theory of gradient flows in metric spaces; see
also [Wibisono, 2018] for a discussion on the algorithmic guarantees.

We summarize the convergence and mixing rates of the aforementioned optimization and sampling
methods in Table 1 under the following assumptions:

(SC) f is α-strongly convex⇐⇒ ν is α-strongly log-concave⇐⇒ KL(· ∥ ν) is α-strongly convex.

(WC) f is weakly convex⇐⇒ ν is weakly log-concave⇐⇒ KL(· ∥ ν) is weakly convex.

(Sm) f is L-smooth⇐⇒ ν is L-log-smooth.
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Method Assumption Optimization Sampling

Greedy (cont.)
(WC) GF: 1/t LD: 1/t

(SC) GF: exp(−2αt) LD: exp(−2αt)

Greedy (disc.)
(WC)+(Sm) GD: 1/(ηk) Prox-S: 1/(ηk)

(SC)+(Sm) GD: (1− αη)k HMC:
(
1− αh2/4

)k
Accel. (cont.)

(WC) AGF: 1/t2 AIG: 1/t2

(SC) AGF: exp(−
√
αt) AIG: exp(−

√
αt)

Accel. (disc.)
(WC)+(Sm) AGD: 1/(ηk2) —: missing

(SC)+(Sm) AGD: (1−√αη)k —: missing

Table 1: Comparison of convergence rates for optimization and sampling methods under different
assumptions omitting constants, where t denotes the continuous time; k denotes the iteration count; η
denotes the stepsize and h denotes integration time of HMC.

Under Assumption (A1), the convergence rates are given in squared distance for optimization (e.g.,
∥xk − x∗∥2) and 2-Wasserstein distance for sampling (e.g.,W2

2 (µk, ν)). Under Assumption (A2),
the convergence rates are given in sub-optimality gap for optimization (e.g. f(xk)− f(x∗)) and KL
divergence for sampling (e.g., KL(µk∥ν)).
Table 1 highlights the structural parallels between optimization and sampling methods under various
convexity and smoothness assumptions. In both continuous and discrete-time settings, classical
greedy methods exhibit matching convergence behavior: gradient flow (GF) corresponds to Langevin
dynamics (LD), and gradient descent (GD) aligns with the proximal sampler (Prox-S) or Hamiltonian
Monte Carlo (HMC). Similarly, accelerated gradient flow (AGF) and the accelerated information flow
(AIG) achieve analogous accelerated rates in continuous time. However, an essential gap emerges
in the discrete-time setting: while accelerated optimization methods such as accelerated gradient
descent (AGD) are well established and enjoy fast convergence rates, their counterparts in sampling
are notably absent.

D Hamiltonian flow with short-time integration

In this section, we show that HF-opt (Algorithm 1) achieves the non-accelerated convergence rate
with short integration time ηk for gradient-dominated and weakly convex functions. These rates
matches the convergence rate of gradient descent (GD) (with η = h2) under the same assumptions.
We first show a descent lemma for HF-opt similar to that of GD.

Lemma 6. Assume f is L-smooth. Then Algorithm 1 with ηk = h ≤ 1√
L

satisfies

f(xk+1) ≤ f(xk)−
h2

4
∥∇f(xk)∥2.

Before proving Lemma 6, we introduce the following lemmas that are useful to the proof.

Lemma 7 (Lee et al. [2018] Lemma A.5). Given a continuous function y(t) and positive scalars
m, L such that 0 ≤ y(t) ≤ m+ L

∫ t

0
(t− s)y(s) ds, we have y(t) ≤ m cosh(

√
Lt).

We can show the following bound on the velocity along Hamiltonian flow.

Lemma 8. Assume f is L-smooth. Then along (HF) from any X0 ∈ Rd with Y0 = 0, we have

∥Yt∥ ≤ t∥∇f(X0)∥ cosh(
√
Lt).
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Proof. Note that along (HF), we have

d

dt
∥Yt∥ =

−⟨Yt,∇f(Xt)⟩
∥Yt∥

≤ ∥Yt∥∥∇f(Xt)∥
∥Yt∥

= ∥∇f(Xt)∥. (9)

Furthermore, we have

d

dt
∥∇f(Xt)∥ =

⟨∇f(Xt),∇2f(Xt)Yt⟩
∥∇f(Xt)∥

≤ ∥∇2f(Xt)Yt∥ ≤ L∥Yt∥. (10)

Integrating (10) yields

∥∇f(Xt)∥ ≤ ∥∇f(X0)∥+ L

∫ t

0

∥Ys∥ ds. (11)

Integrating (9) and applying (11) yields

∥Yt∥ ≤ ∥Y0∥+
∫ t

0

∥∇f(Xs)∥ds ≤ t∥∇f(X0)∥+ L

∫ t

0

(t− s)∥Ys∥ ds.

Suppose t ≤ h. Then we have ∥Yt∥ ≤ h∥∇f(X0)∥+L
∫ t

0
(t−s)∥Ys∥ ds. By Lemma 7, we conclude

that for 0 ≤ t ≤ h:

∥Yt∥ ≤ h∥∇f(X0)∥ cosh(
√
Lt).

Choosing t = h completes the proof.

We can also show the following lower bound on velocity along Hamiltonian flow for short time.
Lemma 9. Assume f is L-smooth. Then along (HF) with 0 ≤ t ≤ 1√

L
from any X0 ∈ Rd with

Y0 = 0, we have ∥Yt∥ ≥ t√
2
∥∇f(X0)∥.

Proof. Note that along (HF), we have

Ẋt = Yt, Ẏt = −∇f(Xt), Ÿt = −∇2f(Xt)Yt.

Therefore, by Taylor expansion around t = 0, we have

Yt = Y0 + tẎ0 +Rt = −t∇f(X0) +Rt,

where Rt = Yt − (Y0 + tẎ0) is the remainder term which can be written as

Rt =

∫ t

0

∫ s

0

Ÿr dr ds =

∫ t

0

(t− s)Ÿs ds = −
∫ t

0

(t− s)∇2f(Xs)Ys ds.

Thus we have

∥Rt∥2 ≤
∫ t

0

(t− s)
∥∥∇2f(Xs)Ys

∥∥ ds ≤ L
∫ t

0

(t− s)∥Ys∥ ds

Applying Lemma 8 with ∥Yt∥ ≤ t∥∇f(X0)∥ cosh(
√
Lt), we obtain

∥Rt∥ ≤ L
∫ t

0

(t− s)s∥∇f(X0)∥ cosh(
√
Ls) ds

≤ L∥∇f(X0)∥ cosh(
√
Lt)

∫ t

0

(t− s)sds

≤ 1

6
t3L∥∇f(X0)∥ cosh(

√
Lt).

If t ≤ 1√
L

, then we have

t2L cosh(
√
Lt) ≤ cosh (1) ≤ 6

(
1− 1√

2

)
.
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Therefore, by triangle inequality,

∥Yt∥ ≥ t∥∇f(X0)∥ − ∥Rt∥

≥ t∥∇f(X0)∥ −
1

6
t3L∥∇f(X0)∥ cosh(

√
Lt)

= t

(
1− 1

6
t2L cosh(

√
Lt)

)
∥∇f(X0)∥

≥ t√
2
∥∇f(X0)∥.

Proof of Lemma 6. We are now ready to prove Lemma 6.

Proof. Let (xk+1, yk+1) = HFh(xk, 0) be the solution of (HF) at time h starting from (xk, 0). By
Lemma 1, we have f(xk+1) = f(xk)− 1

2∥yk+1∥2. Applying Lemma 9 with h ≤ 1√
L

, we obtain

f(xk+1) ≤ f(xk)−
h2

4
∥∇f(xk)∥2.

D.1 Proof of Theorem 1

Theorem 1. Assume f is L-smooth. Along Algorithm 1 with ηk = h ≤ 1√
L

, from any x0 ∈ Rd:

1. If f is α-gradient-dominated, then f(xk)− f(x∗) ≤
(
1− 1

2αh
2
)k

(f(x0)− f(x∗)).

2. If f is weakly convex, then f(xk)− f(x∗) ≤
34∥x0 − x∗∥2

h2k
.

Proof. If f is α-gradient-dominated, using Lemma 6 yields

f(xk+1) ≤ f(xk)−
αh2

2
(f(xk)− f(x∗)) ⇐⇒ f(xk+1)− f(x∗) ≤

(
1− αh2

2

)
(f(xk)− f(x∗)),

which implies

f(xk)− f(x∗) ≤
(
1− αh2

2

)k

(f(x0)− f(x∗)).

Theorem 2 in Wilson et al. [2019] establish the convergence rates for weakly convex functions
based on a descent lemma similar to Lemma 6. Thus we directly invoke that theorem to prove our
Theorem 1. If f is weakly convex and h ≤ 1√

L
, then Theorem 2 in Wilson et al. [2019] implies

f(xk)− f(x∗) ≤
32∥x0 − x∗∥2 + 4h2(f(x0)− f(x∗))

h2k
≤ (32 + 2Lh2)∥x0 − x∗∥2

h2k

≤ 34∥x0 − x∗∥2

h2k
.

D.2 Implementation of HF-opt via leapfrog integrator as GD

Let Leapfrogh : Rd × Rd → Rd × Rd denote the leapfrog integrator map with stepsize h ≥ 0,
which is a numerical approximation of HFh. More specifically, if we denote (xk+1, yk+1) =
Leapfrogh(xk, yk), then it satisfies

yk+ 1
2
= yk −

h

2
∇f(xk), (12a)
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xk+1 = xk + hyk+ 1
2
, (12b)

yk+1 = yk+ 1
2
− h

2
∇f(xk+1). (12c)

Replacing yk+ 1
2

in (12b) and (12c) with with (12a), we can rewrite (12) as

xk+1 = xk + hyk −
h2

2
∇f(xk), (13a)

yk+1 = yk −
h

2
(∇f(xk) +∇f(xk+1)) . (13b)

Thus if we replace HFηk
(xk, 0) in Algorithm 1 (HF-opt) with Leapfrogηk

(xk, 0), we obtain

xk+1 = xk −
η2k
2
∇f(xk),

which is equivalent to gradient descent with stepsize η2k/2. Note that we refresh yk+1 to be zero
before the next iteration, and thus we only focus on the update of x. This shows that we can view
gradient descent not only as a discretization of gradient flow, but also as a discretization of HF-opt
with a one-step leapfrog integrator.

E Examples of HF-opt and RHF-opt on quadratic functions

Example 1 (Quadratic functions). Consider the quadratic function f(x) = 1
2x

⊤Ax, where A ∈
Rd×d is symmetric and αI ⪯ A ⪯ LI , then HF-opt with ηk = h ≤ 1

2
√
L

satisfies

∥xk − x∗∥2 ≤
(
1− αh2

4

)k

∥x0 − x∗∥2.

If h = 1
2
√
L

, the total integration time to achieve ∥xK−x∗∥2 ≤ ε satisfiesK ·h ≥ 8
√
L

α log ∥x0−x∗∥2

ε .

Example 2 (RHF-opt for quadratic functions). Consider the quadratic function f(x) = 1
2x

⊤Ax,
where A ∈ Rd×d is symmetric and αI ⪯ A ⪯ LI , then RHF-opt with γ(t) = γ > 0 satisfies

E
[
∥xk − x∗∥2

]
≤
(
1− 2α

γ2 + 4α

)k

E
[
∥x0 − x∗∥2

]
.

If γ = 2
√
α, the expected total integration time to achieve E

[
∥xK − x∗∥2

]
≤ ε is K · E[τk] ≥

2√
α
log

E[∥x0−x∗∥2]
ε , matching that of accelerated gradient flow with refreshment and HF-opt with

Chebyshev-based integration time [Wang, 2024]. Note that the expected total integration time of
RHF-opt is smaller than the total integration time of HF-opt shown in Example 1.

Before proving the conclusions in Examples 1 and 2, we first invoke two lemmas from Wang [2024]:

Lemma 10 (Wang [2024] Lemma 2.2). For quadratic function f(x) = 1
2x

⊤Ax, RHF-opt (Algo-
rithm 2) satisfies

xK − x∗ =

(
K−1∏
k=0

cos(ηk
√
A)

)
(x0 − x∗),

where
√
A is the matrix square root of A, i.e.,

√
A
√
A = A.

Lemma 11 (Wang [2024] Lemma A.4). The eigenvalues of the matrix
∏K

k=1 cos
(
ηk
√
A
)

are

λj :=
∏K−1

k=0 cos
(
ηk
√
σj
)
, j ∈ [d], where σ1, σ2, . . . , σd are the eigenvalues of A.

Proof of Example 1
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Proof. Using Lemmas 10 and 19, if ηk = h ≤ 1
2
√
σd

= 1
2
√
L

. we obtain

∥xK − x∗∥2 =

∥∥∥∥∥
(

K−1∏
k=0

cos(h
√
A)

)
(x0 − x∗)

∥∥∥∥∥
2

≤

(
max
j∈[d]

K−1∏
k=0

cos2(h
√
σj)

)
∥x0 − x∗∥2

≤
(
1− αh2

4

)K

∥x0 − x∗∥2.

Thus the total integration time to generate a solution satisfying ∥xK − x∗∥2 ≤ ε is

h ·K = h · 4

αh2
· log 1

ε
=

4

αh
· log 1

ε
≥ 8
√
L

α
· log 1

ε
,

where the equality holds when h = 1
2
√
L

.

Lemma 12. If τ ∼ Exp(γ), then we have E[cos2(
√
στ)] = 1− 2σ

γ2+4σ .

Proof. See the proof of Proposition 2 in Jiang [2023].

Proof of Example 2

Proof. Using Lemma 10 and taking the expectation, we obtain

E∥xK − x∗∥2 = E

∥∥∥∥∥
(

K−1∏
k=0

cos(τk
√
A)

)
(x0 − x∗)

∥∥∥∥∥
2

≤

(
max
j∈[d]

K−1∏
k=0

E[cos2(τk
√
σj)]

)
E∥x0 − x∗∥2

=

(
1− min

j∈[d]

2σj
γ2 + 4σj

)K

E∥x0 − x∗∥2

≤ exp

(
−min

j∈[d]

2σjK

γ2 + 4σj

)
E∥x0 − x∗∥2,

where the second equality follows from Lemma 12. Thus the expected total integration time is

E[τk] ·max
j

γ2 + 4σj
2σj

· log 1

ε
=

1

γ
·max
j∈[d]

γ2 + 4σj
2σj

· log 1

ε
=

(
γ

2α
+

2

γ

)
· log 1

ε
≥ 2√

α
· log 1

ε
,

where equality holds when γ = 2
√
α.

F Convergence analysis of the randomized Hamiltonian flow

Let ΠY denote the operator that maps a function ϕ : Rd × Rd → R to ΠY ϕ : Rd × Rd → R given
by (ΠY ϕ)(x, y) = ϕ(x, 0). Then we provide the following continuity equation for any smooth test
functions along the randomized Hamiltonian flow (RHF) defined in Section 3, which is the essential
tool for establishing its convergence.

Lemma 13. Let Zt = (Xt, Yt) ∼ ρZt evolve following RHF. For any smooth ϕt : R2d → R,

d

dt
E[ϕt(Zt)] = E

[
∂ϕt
∂t

(Zt) + ⟨∇ϕt(Zt), b(Zt)⟩+ γ(t)((ΠY ϕt)(Zt)− ϕt(Zt))

]
, (14)

where b(Zt) = (Yt,−∇f(Xt)) is the Hamiltonian vector field.
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Proof. The time derivative can be expressed as taking the limit:

d

dt
E[ϕt(Zt)] = lim

h→0

E[ϕt+h(Zt+h)− ϕt(Zt)]

h
.

Thus we first study the short time behavior of RHF. Using the interpretation at the beginning of
Section 4, the probability of a refreshment occurring in a small interval with width h is close to γ(t)h.
Thus the RHF from t to t+ h can be approximated by the following procedure for small h:

• Run (HF) with deterministic integration time h: Z̃t+h = (Xt+h, Ỹt+h) = HFh(Zt).

• Accept-refresh: Zt+h =

{
Z̃t+h with probability 1− γ(t)h,
(Xt+h, 0) with probability γ(t)h.

We can decompose E[ϕt+h(Zt+h)− ϕt(Zt)] as

E[ϕt+h(Zt+h)− ϕt(Zt)] = E[ϕt+h(Zt+h)− ϕt(Zt+h)] + E[ϕt(Z̃t+h)− ϕt(Zt)]

+ E[ϕt(Zt+h)− ϕt(Z̃t+h)].

For the first two terms on the right hand side, we perform Taylor expansion and obtain

E[ϕt+h(Zt+h)− ϕt(Zt+h)] = E
[
h
∂ϕt
∂t

(Zt+h) +O(h2)

]
,

E[ϕt(Z̃t+h)− ϕt(Zt)] = E[h⟨∇ϕt(Zt), b(Zt)⟩+O(h2)].

For the last term, we obtain by the probabilistic accept-refresh step

E[ϕt(Zt+h)− ϕt(Z̃t+h)] = E
[
(1− γ(t)h) · ϕt(Z̃t+h) + γ(t)h · (ΠY ϕt)(Z̃t+h)− ϕt(Z̃t+h)

]
= γ(t)h · E

[
(ΠY ϕt)(Z̃t+h)− ϕt(Z̃t+h)

]
.

Thus we obtain

d

dt
EρZ

t
[ϕt(Zt)] = lim

h→0

EρZ
t
[ϕt+h(Zt+h)− ϕt(Zt)]

h

= lim
h→0

EρZ
t

[
h∂ϕt

∂t (Zt+h) + h⟨∇ϕt(Zt), b(Zt)⟩+ γ(t)h
(
(ΠY ϕt)(Z̃t+h)− ϕt(Z̃t+h)

)
+O(h2)

]
h

= EρZ
t

[
∂ϕt
∂t

(Zt) + ⟨∇ϕt(Zt), b(Zt)⟩+ γ(t)((ΠY ϕt)(Zt)− ϕt(Zt))

]
.

F.1 Proof of Theorem 2 (convergence of RHF under strong convexity)

Theorem 2. Assume f is α-strongly convex. Let (Xt, Yt) evolve following (RHF) with the choice

γ(t) =
√

16α
5 , from any X0 ∈ Rd with Y0 = 0. Then for any t ≥ 0, we have

E [f(Xt)− f(x∗)] ≤ exp

(
−
√
α

5
t

)
E
[
f(X0)− f(x∗) +

α

10
∥X0 − x∗∥2

]
.

Proof. We construct the following Lyapunov function:

Et = exp

(√
α

5

)
E

f(Xt)− f(x∗) +
α

10

∥∥∥∥∥Xt − x∗ +
√

5

α
Yt

∥∥∥∥∥
2
 . (15)

Let Ẽt = E
[
f(Xt)− f(x∗) + α

10

∥∥∥Xt − x∗ +
√

5
αYt

∥∥∥2]. Apply the chain rule, and we have

Ėt =
√
α

5
exp

(√
α

5
t

)
Ẽt + exp

(√
α

5
t

)
˙̃Et.
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In order to show Ėt ≤ 0, it suffices to show ˙̃Et ≤ −
√

α
5 Ẽt. Apply Lemma 13 by taking ϕt = Et, and

we obtain

˙̃Et = E

⟨∇f(Xt), Yt⟩+

〈 α
5

(
Xt − x∗ +

√
5
αYt

)
√

α
5

(
Xt − x∗ +

√
5
αYt

)
 ,

(
Yt

−∇f(Xt)

)〉
+
γ(t)α

10
E

∥Xt − x∗∥2 −

∥∥∥∥∥Xt − x∗ +
√

5

α
Yt

∥∥∥∥∥
2


= E
[√

α

5
⟨x∗ −Xt,∇f(Xt)⟩+

(
α

5
− γ(t)

√
α

5

)
⟨Xt − x∗, Yt⟩+

(√
α

5
− γ(t)

2

)
∥Yt∥2

]
≤ E

[
−
√
α

5
(f(Xt)− f(x∗))−

α3/2

2
√
5
∥Xt − x∗∥2 −

3α

5
⟨Xt − x∗, Yt⟩ −

√
α

5
∥Yt∥2

]
= −

√
α

5
Ẽt − E

[
2α3/2

5
√
5
∥Xt − x∗∥2 +

2α

5
⟨Xt − x∗, Yt⟩+

1

2

√
α

5
∥Yt∥2

]
= −

√
α

5
Ẽt − 2

√
α

5
E
[
α

5
∥Xt − x∗∥2 +

√
α

5
⟨Xt − x∗, Yt⟩+

1

4
∥Yt∥2

]
= −

√
α

5
Ẽt − 2

√
α

5
E

[∥∥∥∥√α

5
(Xt − x∗) +

1

2
Yt

∥∥∥∥2
]

≤ −
√
α

5
Ẽt,

where the first inequality follows from α-strong convexity:

⟨x∗ −Xt,∇f(Xt)⟩ ≤ f(x∗)− f(Xt)−
α

2
∥Xt − x∗∥2.

Thus we have Et ≤ E0, which implies

E [f(Xt)− f(x∗)] ≤ exp

(
−
√
α

5
t

)
E
[
f(X0)− f(x∗) +

α

10
∥X0 − x∗∥2

]
.

F.2 Proof of Theorem 3 (convergence of RHF under weak convexity)

Theorem 3. Assume f is weakly convex. Let (Xt, Yt) evolve following (RHF) with the choice
γ(t) = 6

t+1 , from any X0 ∈ Rd with Y0 = 0. Then for any t ≥ 0, we have

E [f(Xt)− f(x∗)] ≤
5 · E

[
f(X0)− f(x∗) + ∥X0 − x∗∥2

]
(t+ 1)2

.

Proof. We construct the following Lyapunov function:

Et = E

[
(t+ 1)2

4
(f(Xt)− f(x∗)) +

1

2

∥∥∥∥Xt − x∗ +
t+ 1

2
Yt

∥∥∥∥2 + 3

4
∥Xt − x∗∥2

]
. (16)

Apply Lemma 13 by taking ϕt = Et, and we obtain

Ėt = E
[
(t+ 1)2

4
⟨∇f(Xt), Yt⟩+

t+ 1

2
(f(Xt)− f(x∗))

]
+ E

[〈(
Xt − x∗ + t+1

2 Yt
t+1
2 (Xt − x∗ + t+1

2 Yt)

)
,

(
Yt

−∇f(Xt)

)〉
+
γ(t)

2

(
∥Xt − x∗∥2 −

∥∥∥∥Xt − x∗ +
t+ 1

2
Yt

∥∥∥∥2
)]

+ E
[〈
Xt − x∗ +

t+ 1

2
Yt,

1

2
Yt

〉]
+ E

[
3

2
⟨Xt − x∗, Yt⟩

]
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= E
[
(t+ 1)2

4
⟨∇f(Xt), Yt⟩+

t+ 1

2
(f(Xt)− f(x∗))

]
+ E

[〈
Xt − x∗ +

t+ 1

2
Yt,

3

2
Yt −

t+ 1

2
∇f(Xt)

〉]
− E

[
γ(t) · (t+ 1)

2
⟨Xt − x∗, Yt⟩ −

γ(t) · (t+ 1)2

8
∥Yt∥2

]
+ E

[
3

2
⟨Xt − x∗, Yt⟩

]
= E

[(
3− γ(t) · (t+ 1)

2

)
⟨Xt − x∗, Yt⟩+

(
3(t+ 1)

4
− γ(t) · (t+ 1)2

8

)
∥Yt∥2

]
+
t+ 1

2
E [f(Xt)− f(x∗) + ⟨x∗ −Xt,∇f(Xt)⟩] ≤ 0,

where the inequality above follows from the choice of γ(t) and weak convexity:

⟨x∗ −Xt,∇f(Xt)⟩ ≤ f(x∗)− f(Xt).

Thus we have Et ≤ E0, which implies

E [f(Xt)− f(x∗)] ≤
5E
[
f(X0)− f(x∗) + ∥X0 − x∗∥2

]
(t+ 1)2

.

G Discretization analysis

G.1 Randomized proximal Hamiltonian descent

Based on the implicit integrator formulation (3), we propose the randomized proximal Hamiltonian
descent (RPHD) algorithm:

Algorithm 5 Randomized Hamiltonian Proximal Descent (RPHD)
1: Initialize x0 ∈ Rd and y0 = 0. Choose refreshment parameter γk > 0, step size h > 0.
2: for k = 0, 1, . . . ,K − 1 do
3: xk+ 1

2
= xk + hyk

4: xk+1 = Proxh2f (xk+ 1
2
)

5: ỹk+1 = yk − h∇f(xk+1)

6: yk+1 =

{
ỹk+1 with probability 1−min(γkh, 1)

0 with probability min(γkh, 1)
7: end for
8: return xK

G.1.1 For strongly convex functions

We now state the convergence rate of RPHD for minimizing strongly convex functions.
Theorem 14. Assume f is α-strongly convex. Then for all k ≥ 0, RPHD (Algorithm 5) with
0 < h ≤ 1, γk =

√
α and any x0 ∈ Rd satisfies

E[f(xk)− f(x∗)] ≤
(
1 +

√
αh

6

)−k

E
[
f(x0)− f(x∗) +

α

72
∥x0 − x∗∥2

]
.

Proof. We construct the Lyapunov function:

Ek =

(
1 +

√
αh

6

)k

E

[
f(xk)− f(x∗) +

α

72

∥∥∥∥xk − x∗ + 6√
α
yk

∥∥∥∥2
]
.

We also define

Lk = E

[
f(xk)− f(x∗) +

α

72

∥∥∥∥xk − x∗ + 6√
α
yk

∥∥∥∥2
]
.
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In order to showEk+1−Ek ≤ 0, it suffices to show Lk+1−Lk ≤ −
√
αh
6 Lk+1. By the accept-refresh

step, we have

Lk+1 = (1− γkh) · E

[
f(xk+1)− f(x∗) +

α

72

∥∥∥∥xk+1 − x∗ +
6√
α
ỹk+1

∥∥∥∥2
]

+ γkh · E
[
f(xk+1)− f(x∗) +

α

72
∥xk+1 − x∗∥2

]
= E

[
f(xk+1)− f(x∗) +

α

72

∥∥∥∥xk+1 − x∗ +
6√
α
ỹk+1

∥∥∥∥2
]

+
α3/2h

72
E

[
∥xk+1 − x∗∥2 −

∥∥∥∥xk+1 − x∗ +
6√
α
ỹk+1

∥∥∥∥2
]
.

Note that we hide E in the calculation below for simplicity. Taking difference between Lk+1 and
Lk and applying Lemma 15, we obtain

Lk+1 − Lk = f(xk+1)− f(xk) +
α

72

(∥∥∥∥xk+1 − x∗ +
6√
α
ỹk+1

∥∥∥∥2 − ∥∥∥∥xk − x∗ + 6√
α
yk

∥∥∥∥2
)

+
α3/2h

72

(
∥xk+1 − x∗∥2 −

∥∥∥∥xk+1 − x∗ +
6√
α
ỹk+1

∥∥∥∥2
)

= f(xk+1)− f(xk)︸ ︷︷ ︸
I

+
α

36

〈
xk+1 − xk +

6√
α
(ỹk+1 − yk), xk+1 − x∗ +

6√
α
ỹk+1

〉
︸ ︷︷ ︸

II

− α

72

∥∥∥∥xk+1 − xk +
6√
α
(ỹk+1 − yk)

∥∥∥∥2︸ ︷︷ ︸
III

−αh
6
⟨xk+1 − x∗, ỹk+1⟩−

√
αh

2
∥ỹk+1∥2.

For I, we apply α-strong convexity and update (2a) to obtain

I ≤ ⟨∇f(xk+1), xk+1 − xk⟩ −
α

2
∥xk+1 − xk∥2 = h⟨∇f(xk+1), ỹk+1⟩ −

αh2

2
∥ỹk+1∥2.

For II, we apply updates (2a) and (2b) to obtain

II =
αh

36

〈
ỹk+1 −

6√
α
∇f(xk+1), xk+1 − x∗ +

6√
α
ỹk+1

〉
=
αh

36
⟨ỹk+1, xk+1 − x∗⟩+

√
αh

6
∥ỹk+1∥2 +

√
αh

6
⟨∇f(xk+1), x

∗ − xk+1⟩ − h⟨∇f(xk+1), ỹk+1⟩.

For III, we apply updates (2a) and (2b) and expand to obtain

III = −αh
2

72
∥ỹk+1 −

6√
α
∇f(xk+1)∥2

= −αh
2

72
∥ỹk+1∥2 +

√
αh2

6
⟨∇f(xk+1), ỹk+1⟩ −

h2

2
∥∇f(xk+1)∥2.

Combining the calculation above, we obtain

Lk+1 − Lk ≤
√
αh2

6
⟨∇f(xk+1), ỹk+1⟩ −

(√
αh

3
+

37αh2

72

)
∥ỹk+1∥2 −

5αh

36
⟨xk+1 − x∗, ỹk+1⟩

+

√
αh

6
⟨∇f(xk+1), x

∗ − xk+1⟩ −
h2

2
∥∇f(xk+1)∥2

≤
√
αh2

6
⟨∇f(xk+1), ỹk+1⟩ −

(√
αh

3
+

37αh2

72

)
∥ỹk+1∥2 −

5αh

36
⟨xk+1 − x∗, ỹk+1⟩

+

√
αh

6
(f(x∗)− f(xk+1))−

α3/2h

12
∥x∗ − xk+1∥2 −

h2

2
∥∇f(xk+1)∥2. (17)
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Since Lk+1 consists of f(x∗)− f(xk+1), we can write f(x∗)− f(xk+1) in terms of Lk+1:

f(x∗)− f(xk+1) = −Lk+1 +
α

72

∥∥∥∥xk+1 − x∗ +
6√
α
ỹk+1

∥∥∥∥2
+
α3/2h

72

(
∥xk+1 − x∗∥2 −

∥∥∥∥xk+1 − x∗ +
6√
α
ỹk+1

∥∥∥∥2
)

= −Lk+1 +
α

72
∥x∗ − xk+1∥2 +

(√
α

6
− αh

6

)
⟨xk+1 − x∗, ỹk+1⟩

+

(
1

2
−
√
αh

2

)
∥ỹk+1∥2

Substituting f(x∗)− f(xk+1) in (17) with the relation above, we obtain

Lk+1 − Lk ≤ −
√
αh

6
Lk+1 −

35α3/2h

432
∥x∗ − xk+1∥2 −

αh

9
⟨xk+1 − x∗, ỹk+1⟩

−
(√

αh

4
+

43αh2

72

)
∥ỹk+1∥2 −

h2

2
∥∇f(xk+1)∥2

+

√
αh2

6
⟨∇f(xk+1), ỹk+1⟩ −

α3/2h2

36
⟨xk+1 − x∗, ỹk+1⟩. (18)

Now we control (18). Applying Lemma 16 and assuming α ≤ 1 and h ≤ 1, we have
√
αh2

6
⟨∇f(xk+1), ỹk+1⟩ −

α3/2h2

36
⟨xk+1 − x∗, ỹk+1⟩

≤ h2

12
∥∇f(xk+1)∥2 +

αh2

12
∥ỹk+1∥2 +

α3/2h2

72
∥x∗ − xk+1∥2 +

α3/2h2

72
∥ỹk+1∥2

≤ h2

12
∥∇f(xk+1)∥2 +

7αh2

72
∥ỹk+1∥2 +

α3/2h

72
∥x∗ − xk+1∥2.

Plugging this into (18), we obtain

Lk+1 − Lk ≤ −
√
αh

6
Lk+1 −

29α3/2h

432
∥x∗ − xk+1∥2 −

αh

9
⟨xk+1 − x∗, ỹk+1⟩

−
(√

αh

4
+
αh2

2

)
∥ỹk+1∥2 −

5h2

12
∥∇f(xk+1)∥2

≤ −
√
αh

6
Lk+1 −

α3/2h

27
∥x∗ − xk+1∥2 −

αh

9
⟨xk+1 − x∗, ỹk+1⟩ −

√
αh

12
∥ỹk+1∥2

= −
√
αh

6
Lk+1 −

α3/2h

27

∥∥∥∥xk+1 − x∗ +
3

2
√
α
ỹk+1

∥∥∥∥2
≤ −
√
αh

6
Lk+1.

Thus we have Ek ≤ E0, which implies

E[f(xk)− f(x∗)] ≤
(
1 +

√
αh

6

)−k

E
[
f(x0)− f(x∗) +

α

72
∥x0 − x∗∥2

]
.

G.1.2 For weakly convex functions

We now state the convergence rate of RPHD for minimizing weakly convex functions.
Theorem 15. Assume f is weakly convex. Then for all k ≥ 0, RPHD (Algorithm 5) with h > 0,
γk = 17

2(k+9)h and any x0 ∈ Rd satisfies

E[f(xk)− f(x∗)] ≤
45E

[
∥x0 − x∗∥2

]
4h2(k + 8)2

.
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Proof. We construct the following Lyapunov function:

Ek = E

[
h2(k + 8)2

9
(f(xk)− f(x∗)) +

1

2

∥∥∥∥xk − x∗ + (k + 8)h

3
yk

∥∥∥∥2 + 3

4
∥xk − x∗∥2

]
,

we derive Ek+1 by accept-refresh step:

Ek+1 = (1− γkh) · E

[
h2(k + 9)2

9
(f(xk+1)− f(x∗)) +

1

2

∥∥∥∥xk+1 − x∗ +
(k + 9)h

3
ỹk+1

∥∥∥∥2 + 3

4
∥xk+1 − x∗∥2

]

+ γkh · E
[
h2(k + 9)2

9
(f(xk+1)− f(x∗)) +

1

2
∥xk+1 − x∗∥2 +

3

4
∥xk+1 − x∗∥2

]
= E

[
h2(k + 9)2

9
(f(xk+1)− f(x∗)) +

1

2

∥∥∥∥xk+1 − x∗ +
(k + 9)h

3
ỹk+1

∥∥∥∥2 + 3

4
∥xk+1 − x∗∥2

]

+
17

4(k + 9)
E

[
∥xk+1 − x∗∥2 −

∥∥∥∥xk+1 − x∗ +
(k + 9)h

3
ỹk+1

∥∥∥∥2
]
.

Note that we hide E in the calculation below for simplicity. Taking difference between Ek+1 and
Ek and applying Lemma 15, we obtain

Ek+1 − Ek =
h2(k + 9)2

9
(f(xk+1)− f(x∗))−

h2(k + 8)2

9
(f(xk)− f(x∗))

+
1

2

∥∥∥∥xk+1 − x∗ +
(k + 9)h

3
ỹk+1

∥∥∥∥2 − 1

2

∥∥∥∥xk − x∗ + (k + 8)h

3
ỹk

∥∥∥∥2
+

3

4
∥xk+1 − x∗∥2 −

3

4
∥xk − x∗∥2 +

17

4(k + 9)

(
∥xk+1 − x∗∥2 −

∥∥∥∥xk+1 − x∗ +
(k + 9)h

3
ỹk+1

∥∥∥∥2
)

=

(
(k + 9)2h2

9
− (k + 8)2h2

9

)
(f(xk+1)− f(x∗))︸ ︷︷ ︸

I

+
(k + 8)2h2

9
(f(xk+1)− f(xk))︸ ︷︷ ︸

II

+

〈
xk+1 − xk +

(k + 9)h

3
ỹk+1 −

(k + 8)h

3
yk, xk+1 − x∗ +

(k + 9)h

3
ỹk+1

〉
︸ ︷︷ ︸

III

−1

2

∥∥∥∥xk+1 − xk +
(k + 9)h

3
ỹk+1 −

(k + 8)h

3
yk

∥∥∥∥2︸ ︷︷ ︸
IV

+
3

2
⟨xk+1 − xk, xk+1 − x∗⟩ −

3

4
∥xk+1 − xk∥2︸ ︷︷ ︸

V

−17h

6
⟨xk+1 − x∗, ỹk+1⟩ −

17(k + 9)h2

36
∥ỹk+1∥2

For II, we apply weak convexity and update (2a) to obtain

II ≤ (k + 8)2h2

9
⟨∇f(xk+1), xk+1 − xk⟩ =

(k + 8)2h3

9
⟨∇f(xk+1), ỹk+1⟩.

For III, we apply updates (2a) and (2b) to obtain

III =

〈
hỹk+1 +

h

3
ỹk+1 −

(k + 8)h2

3
∇f(xk+1), xk+1 − x∗ +

(k + 9)h

3
ỹk+1

〉
=

4h

3
⟨ỹk+1, xk+1 − x∗⟩+

4(k + 9)h2

9
∥ỹk+1∥2 +

(k + 8)h2

3
⟨∇f(xk+1), x

∗ − xk+1⟩

− (k + 8)(k + 9)h3

9
⟨∇f(xk+1), ỹk+1⟩.

For IV, we apply updates (2a) and (2b) and expand to obtain

IV = −8h2

9
∥ỹk+1∥2 +

4(k + 8)h3

9
⟨∇f(xk+1), ỹk+1⟩ −

(k + 8)2h4

18
∥∇f(xk+1)∥2.
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For V, we apply update (2a) to obtain

V =
3h

2
⟨ỹk+1, xk+1 − x∗⟩ −

3h2

4
∥ỹk+1∥2

Combining the calculation above, we obtain

Ek+1 − Ek ≤
(2k + 17)h2

9
(f(xk+1)− f(x∗)) +

(k + 8)h2

3
⟨∇f(xk+1), x

∗ − xk+1⟩

+
(k + 8)h3

3
⟨∇f(xk+1), ỹk+1⟩ −

(
(k + 9)h2

36
+

59h2

36

)
∥ỹk+1∥2 −

(k + 8)2h4

18
∥∇f(xk+1)∥2

≤ (k + 8)h2

3
(f(xk+1)− f(x∗)) +

(k + 8)h2

3
⟨∇f(xk+1), x

∗ − xk+1⟩

+
(k + 8)h3

3
⟨∇f(xk+1), ỹk+1⟩ −

59h2

36
∥ỹk+1∥2 −

(k + 8)2h4

18
∥∇f(xk+1)∥2

≤ (k + 8)h3

3
⟨∇f(xk+1), ỹk+1⟩ −

59h2

36
∥ỹk+1∥2 −

(k + 8)2h4

18
∥∇f(xk+1)∥2

=
h2

3
⟨(k + 8)h∇f(xk+1), ỹk+1⟩ −

59h2

36
∥ỹk+1∥2 −

(k + 8)2h4

18
∥∇f(xk+1)∥2

≤ (k + 8)2h4

36
∥∇f(xk+1)∥2 −

(k + 8)2h4

18
∥∇f(xk+1)∥2 + h2∥ỹk+1∥2 −

59h2

36
∥ỹk+1∥2

= − (k + 8)2h4

36
∥∇f(xk+1)∥2 −

23h2

36
∥ỹk+1∥2 ≤ 0.

where the second inequality follows from Lemma 17; the third inequality follows from weak convexity,
and the last inequality follows from Lemma 16. Thus we have Ek ≤ E0, which implies

E[f(xk)− f(x∗)] ≤
45E

[
∥x0 − x∗∥2

]
4h2(k + 8)2

.

G.2 Approximation error

Starting from xk+ 1
2

, we run proximal point update with stepsize h2 to obtain x̂k+1 and run gradient
descent with stepsize h2 to obtain xk+1. The following proposition bound the error under smoothness.
Proposition 1. Let x̂k+1 = Proxh2f (xk+ 1

2
) and xk+1 = xk+ 1

2
− h2∇f(xk+ 1

2
). If f is L-smooth

and h < 1
21/8·

√
L

, then

∥xk+1 − x̂k+1∥2 ≤
2L2h8

1− 2L4h8
∥∇f(xk+1)∥2.

Proof. We use the following updates to prove this proposition.

x̂k+1 = xk+ 1
2
− h2∇f(x̂k+1), (19)

xk+1 = xk+ 1
2
− h2∇f(xk+ 1

2
), (20)

∥∇f(x)−∇f(y)∥2 ≤ L2∥x− y∥, , (21)

where (20) follows from RHGD (Algorithm 3) and the last relation follows from L-smoothness of f
for any x, y ∈ Rd. Subtracting (19) from (20), we obtain

∥xk+1 − x̂k+1∥2 = h4∥∇f(x̂k+1)−∇f(xk+ 1
2
)∥2

(21)
≤ L2h4∥x̂k+1 − xk+ 1

2
∥2 (19)

= L2h8∥∇f(x̂k+1)∥2.

Using (40) in Lemma 18, we have

∥∇f(x̂k+1)∥2 ≤ 2∥∇f(x̂k+1)−∇f(xk+1)∥2 + 2∥∇f(xk+1)∥2

(21)
≤ 2L2∥x̂k+1 − xk+1∥2 + 2∥∇f(xk+1)∥2.
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Thus we have

∥xk+1 − x̂k+1∥2 ≤ 2L4h8∥x̂k+1 − xk+1∥2 + 2L2h8∥∇f(xk+1)∥2.

If h ≤ 1
41/8

√
L

, then rearranging the relation above yields

∥xk+1 − x̂k+1∥2 ≤
2L2h8

1− 2L4h8
∥∇f(xk+1)∥2.

G.3 Convergence analysis of RHGD

Since we lose update (2a) for RHGD we construct two dummy iterates x̂k+1 and ŷk+1 satisfying

x̂k+1 − xk = hŷk+1, (22)
ŷk+1 − yk = −h∇f(x̂k+1). (23)

Substituting ŷk+1 in (22) with ŷk+1 = yk − h∇f(x̂k+1) from (23) yields x̂k+1 = Proxh2f (xk+ 1
2
).

We define the error term Ghk+1 as

Ghk+1 := xk+1 − x̂k+1 + h(ŷk+1 − ỹk+1).

Then we can write

xk+1 − xk = x̂k+1 − xk + xk+1 − x̂k+1

(22)
= hŷk+1 + xk+1 − x̂k+1

= hỹk+1 + xk+1 − x̂k+1 + h(ŷk+1 − ỹk+1)

= hỹk+1 + Ghk+1. (24)

The next lemma controls the error term Ghk+1.

Proposition 2. If f is L-smooth, then we have ∥Ghk+1∥2 ≤ 2(1 + L2h4)∥xk+1 − x̂k+1∥2.

Proof. Using updates (2b), (23) and L-smoothness of f , we have

∥Ghk+1∥2 = ∥xk+1 − x̂k+1 + h(ŷk+1 − ỹk+1)∥2

≤ 2∥xk+1 − x̂k+1∥2 + 2h2∥ŷk+1 − ỹk+1∥2

= 2∥xk+1 − x̂k+1∥2 + 2h4∥∇f(x̂k+1)−∇f(xk+1)∥2

≤ 2∥xk+1 − x̂k+1∥2 + 2L2h4∥xk+1 − x̂k+1∥2

= 2(1 + L2h4)∥xk+1 − x̂k+1∥2.

G.3.1 Proof of Theorem 4 (convergence of RHGD under strong convexity)

Theorem 4. Assume f is α-strongly convex and L-smooth. Then for all k ≥ 0, RHGD (Algorithm 3)
with h ≤ 1

4
√
L

, γk =
√
α and any x0 ∈ Rd satisfies

E[f(xk)− f(x∗)] ≤
(
1 +

√
αh

6

)−k

E
[
f(x0)− f(x∗) +

α

72
∥x0 − x∗∥2

]
.

Proof. Consider the following function

Lk = E

[
f(xk)− f(x∗) +

α

72

∥∥∥∥xk − x∗ + 6√
α
yk

∥∥∥∥2
]
. (25)

We will bound Lk+1 − Lk in terms of Lk+1, similar to the proof of Theorem 14 in Section G.1.1.
We follow the calculation in Section G.1.1 and hide E below for simplicity:

Lk+1 − Lk = f(xk+1)− f(xk) +
α

72

(∥∥∥∥xk+1 − x∗ +
6√
α
ỹk+1

∥∥∥∥2 − ∥∥∥∥xk − x∗ + 6√
α
yk

∥∥∥∥2
)

46



+
α3/2h

72

(
∥xk+1 − x∗∥2 −

∥∥∥∥xk+1 − x∗ +
6√
α
ỹk+1

∥∥∥∥2
)

= f(xk+1)− f(xk)︸ ︷︷ ︸
I

+
α

36

〈
xk+1 − xk +

6√
α
(ỹk+1 − yk), xk+1 − x∗ +

6√
α
ỹk+1

〉
︸ ︷︷ ︸

II

− α

72

∥∥∥∥xk+1 − xk +
6√
α
(ỹk+1 − yk)

∥∥∥∥2︸ ︷︷ ︸
III

−αh
6
⟨xk+1 − x∗, ỹk+1⟩−

√
αh

2
∥ỹk+1∥2.

For I, we apply α-strong convexity and (24) to obtain

I ≤ ⟨∇f(xk+1), xk+1 − xk⟩ −
α

2
∥xk+1 − xk∥2

= ⟨∇f(xk+1), hỹk+1 + Ghk+1⟩ −
α

2
∥hỹk+1 + Ghk+1∥2

= h⟨∇f(xk+1), ỹk+1⟩ −
αh2

2
∥ỹk+1∥2 (26)

+ ⟨∇f(xk+1),Ghk+1⟩ − αh⟨ỹk+1,Ghk+1⟩ −
α

2
∥Ghk+1∥2. (27)

For II, we apply (24) and (2b) to obtain

II =
αh

36

〈
ỹk+1 +

1

h
Ghk+1 −

6√
α
∇f(xk+1), xk+1 − x∗ +

6√
α
ỹk+1

〉
=
αh

36
⟨ỹk+1, xk+1 − x∗⟩+

√
αh

6
∥ỹk+1∥2 +

√
αh

6
⟨∇f(xk+1), x

∗ − xk+1⟩ − h⟨∇f(xk+1), ỹk+1⟩
(28)

+
α

36
⟨Ghk+1, xk+1 − x∗⟩+

√
α

6
⟨Ghk+1, ỹk+1⟩. (29)

For III, we apply updates (24) and (2b) and expand to obtain

III = −αh
2

72
∥ỹk+1 +

1

h
Ghk+1 −

6√
α
∇f(xk+1)∥2

= −αh
2

72
∥ỹk+1∥2 +

√
αh2

6
⟨∇f(xk+1), ỹk+1⟩ −

h2

2
∥∇f(xk+1)∥2

− αh2

36

〈
ỹk+1 −

6√
α
∇f(xk+1),

1

h
Ghk+1

〉
− α

72
∥Ghk+1∥2

= −αh
2

72
∥ỹk+1∥2 +

√
αh2

6
⟨∇f(xk+1), ỹk+1⟩ −

h2

2
∥∇f(xk+1)∥2 (30)

− αh

36
⟨ỹk+1,Ghk+1⟩+

√
αh

6
⟨∇f(xk+1),Ghk+1⟩ −

α

72
∥Ghk+1∥2. (31)

Note that (26), (28) and (30) keep the same as upper bounds of I, II and III in the proof of Theorem 14
(see Section G.1.1), and thus we have

(26) + (28) + (30) ≤ −
√
αh

6
Lk+1 −

13α3/2h2

432
∥x∗ − xk+1∥2 −

(√
αh

6
+
αh2

2

)
∥ỹk+1∥2

− 5h2

12
∥∇f(xk+1)∥2.

(27), (29) and (31) can be viewed as the error terms. Collecting the error terms, we obtain

(27) + (29) + (31) = ⟨∇f(xk+1),Ghk+1⟩+
√
αh

6
⟨∇f(xk+1),Ghk+1⟩ (32)

+

√
α

6
⟨ỹk+1,Ghk+1⟩ − αh⟨ỹk+1,Ghk+1⟩ −

αh

36
⟨ỹk+1,Ghk+1⟩ (33)
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+
α

36
⟨Ghk+1, xk+1 − x∗⟩ −

37α

72
∥Ghk+1∥2. (34)

Applying Lemma 16, we can upper bound (32), (33) and (34) respectively:

(32) = ⟨∇f(xk+1),Ghk+1⟩+
1

6
⟨h∇f(xk+1),

√
αGhk+1⟩

≤ h2

8
∥∇f(xk+1)∥2 +

2

h2
∥Ghk+1∥2 +

h2

12
∥∇f(xk+1)∥2 +

α

12
∥Ghk+1∥2

=
5h2

24
∥∇f(xk+1)∥2 +

(
2

h2
+
α

12

)
∥Ghk+1∥2.

(33) =
√
α

6
⟨ỹk+1,Ghk+1⟩+ α

〈
(−h)ỹk+1,Ghk+1

〉
+
α

36
⟨(−h)ỹk+1,Ghk+1⟩

≤
√
αh

6
∥ỹk+1∥2 +

√
α

24h
∥Ghk+1∥2 +

αh2

4
∥ỹk+1∥2 + α∥Ghk+1∥2 +

αh2

72
∥ỹk+1∥2 +

α

72
∥Ghk+1∥2

=

(√
αh

6
+

19αh2

72

)
∥ỹk+1∥2 +

(√
α

24h
+ α+

α

72

)
∥Ghk+1∥2.

(34) =
1

36

〈
α

1/4h−1Ghk+1, α
3/4h(xk+1 − x∗)

〉
− 37α

72
∥Ghk+1∥2

≤
√
α

72h2
∥Ghk+1∥2 +

α3/2h2

72
∥x∗ − xk+1∥2 −

37α

72
∥Ghk+1∥2.

Since γk · h =
√
αh ≤ 1 and α ≤ 1, we have

(27) + (29) + (31) ≤ 5h2

24
∥∇f(xk+1)∥2 +

(√
αh

6
+

19αh2

72

)
∥ỹk+1∥2 +

α3/2h2

72
∥x∗ − xk+1∥2

+

(
2

h2
+

7α

12
+

√
α

24h
+

√
α

72h2

)
∥Ghk+1∥2

=
5h2

24
∥∇f(xk+1)∥2 +

(√
αh

6
+

19αh2

72

)
∥ỹk+1∥2 +

α3/2h2

72
∥x∗ − xk+1∥2

+
144 + 42αh2 + 3

√
αh+

√
α

72h2
∥Ghk+1∥2

≤ 5h2

24
∥∇f(xk+1)∥2 +

(√
αh

6
+

19αh2

72

)
∥ỹk+1∥2 +

α3/2h2

72
∥x∗ − xk+1∥2

+
95

36h2
∥Ghk+1∥2.

Combining the upper bounds of (26) + (28) + (30) and (27) + (29) + (31), we obtain

Lk+1 − Lk ≤ −
√
αh

6
Lk+1 −

7α3/2h2

432
∥x∗ − xk+1∥2 −

17αh2

72
∥ỹk+1∥2 −

5h2

24
∥∇f(xk+1)∥2

+
95

36h2
∥Ghk+1∥2

≤ −
√
αh

6
Lk+1 +

95

36h2
∥Ghk+1∥2 −

5h2

24
∥∇f(xk+1)∥2. (35)

For RHGD, we first choose h ≤ 1
41/8

√
L

. Then applying Proposition 1 and Proposition 2 yields

∥Ghk+1∥2 ≤ 2 ·
(
1 +

1

2

)
∥xk+1 − x̂k+1∥2 ≤ 3∥xk+1 − x̂k+1∥2 ≤

6L2h8

1− 2L4h8
∥∇f(xk+1)∥2.

If we choose h ≤ 1
4
√
L

, we have 95L2h4

6(1−2L4h8) ≤
5
24 . Thus we obtain from (35):

Lk+1 − Lk ≤ −
√
αh

6
Lk+1 − h2

(
5

24
− 95L2h4

6(1− 2L4h8)

)
∥∇f(xk+1)∥2 ≤ −

√
αh

6
Lk+1,
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which implies

E[f(xk)− f(x∗)] ≤ Lk ≤
(
1 +

√
αh

6

)−k

L0.

G.3.2 Proof of Corollary 1

Proof. If we choose h = 1
4
√
L

, then we obtain from Theorem 4

E[f(xK)− f(x∗)] ≤
(
1 +

1

24

√
α

L

)−K

L0 =

(
1 +

1

24
√
κ

)−K

L0,

where L0 = E
[
f(x0)− f(x∗) + α

72∥x0 − x
∗∥2
]
. Let

E[f(xK)− f(x∗)] ≤
(
1 +

1

24
√
κ

)−K

L0 =

(
1− 1

24
√
κ+ 1

)K

L0 ≤ exp

(
− K

24
√
κ+ 1

)
L0 ≤ ε,

which solves

K ≥ (24
√
κ+ 1) log

L0

ε
.

G.3.3 Proof of Theorem 5 (convergence of RHGD under weak convexity)

Theorem 5. Assume f is weakly convex and L-smooth. Then for all k ≥ 0, RHGD (Algorithm 3)
with h ≤ 1

8
√
L

, γk = 17
2(k+9)h and any x0 ∈ Rd satisfies

E[f(xk)− f(x∗)] ≤
14 · E

[
∥x0 − x∗∥2

]
h2(k + 8)2

.

Proof. Consider the following Lyapunov function

Ẽk = E

[
h2(k + 8)2

9
(f(xk)− f(x∗)) +

1

2

∥∥∥∥xk − x∗ + (k + 8)h

3
yk

∥∥∥∥2 + 3

4
∥xk − x∗∥2

]
.

We will bound Ẽk+1 − Ẽk in terms of Ẽk+1, similar to the proof of Theorem 15 in Section G.1.2.
We follow the calculation in the proof of Theorem 15 and hide E below for simplicity:

Ẽk+1 − Ẽk =
h2(k + 9)2

9
(f(xk+1)− f(x∗))−

h2(k + 8)2

9
(f(xk)− f(x∗))

+
1

2

∥∥∥∥xk+1 − x∗ +
(k + 9)h

3
ỹk+1

∥∥∥∥2 − 1

2

∥∥∥∥xk − x∗ + (k + 8)h

3
ỹk

∥∥∥∥2
+

3

4
∥xk+1 − x∗∥2 −

3

4
∥xk − x∗∥2 +

17

4(k + 9)

(
∥xk+1 − x∗∥2 −

∥∥∥∥xk+1 − x∗ +
(k + 9)h

3
ỹk+1

∥∥∥∥2
)

=

(
(k + 9)2h2

9
− (k + 8)2h2

9

)
(f(xk+1)− f(x∗))︸ ︷︷ ︸

I

+
(k + 8)2h2

9
(f(xk+1)− f(xk))︸ ︷︷ ︸

II

+

〈
xk+1 − xk +

(k + 9)h

3
ỹk+1 −

(k + 8)h

3
yk, xk+1 − x∗ +

(k + 9)h

3
ỹk+1

〉
︸ ︷︷ ︸

III

−1

2

∥∥∥∥xk+1 − xk +
(k + 9)h

3
ỹk+1 −

(k + 8)h

3
yk

∥∥∥∥2︸ ︷︷ ︸
IV

+
3

2
⟨xk+1 − xk, xk+1 − x∗⟩ −

3

4
∥xk+1 − xk∥2︸ ︷︷ ︸

V
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−17h

6
⟨xk+1 − x∗, ỹk+1⟩ −

17(k + 9)h2

36
∥ỹk+1∥2.

For I, it simplifies to

I =
(2k + 17)h2

9
(f(xk+1)− f(x∗)).

For II, we apply weak convexity and (24) to obtain

II ≤ (k + 8)2h2

9
⟨∇f(xk+1), xk+1 − xk⟩ =

(k + 8)2h3

9
⟨∇f(xk+1), ỹk+1⟩+

(k + 8)2h2

9
⟨∇f(xk+1),Ghk+1⟩.

For III, we apply (24) and (2b) to obtain

III =

〈
hỹk+1 + Ghk+1 +

h

3
ỹk+1 −

(k + 8)h2

3
∇f(xk+1), xk+1 − x∗ +

(k + 9)h

3
ỹk+1

〉
=

4h

3
⟨ỹk+1, xk+1 − x∗⟩+

4(k + 9)h2

9
∥ỹk+1∥2 +

(k + 8)h2

3
⟨∇f(xk+1), x

∗ − xk+1⟩

− (k + 8)(k + 9)h3

9
⟨∇f(xk+1), ỹk+1⟩+ ⟨Ghk+1, xk+1 − x∗⟩+

(k + 9)h

3
⟨Ghk+1, ỹk+1⟩.

For IV, we apply updates (2a) and (2b) and expand to obtain

IV = −8h2

9
∥ỹk+1∥2 +

4(k + 8)h3

9
⟨∇f(xk+1), ỹk+1⟩ −

(k + 8)2h4

18
∥∇f(xk+1)∥2

− 4h

3
⟨Ghk+1, ỹk+1⟩+

(k + 8)h2

3
⟨Ghk+1,∇f(xk+1)⟩ −

1

2
∥Ghk+1∥2.

For V, we apply update (2a) to obtain

V =
3h

2
⟨ỹk+1, xk+1 − x∗⟩ −

3h2

4
∥ỹk+1∥2 +

3

2
⟨Ghk+1, xk+1 − x∗⟩ −

3h

2
⟨Ghk+1, ỹk+1⟩ −

3

4
∥Ghk+1∥2.

Note that we obtain the same terms as in the proof of Theorem 15 (see Appendix G.1) and the error
terms involving Ghk+1. For the error terms, we apply Lemma 16 to obtain

err =
(k + 8)2h2

9
⟨Ghk+1,∇f(xk+1)⟩+

(k + 8)h2

3
⟨Ghk+1,∇f(xk+1)⟩+

(k + 9)h

3
⟨Ghk+1, ỹk+1⟩

− 17h

6
⟨Ghk+1, ỹk+1⟩+

5

2
⟨Ghk+1, xk+1 − x∗⟩ −

5

4
∥Ghk+1∥2

=
(k + 8)2

9
⟨Ghk+1, h

2∇f(xk+1)⟩+
1

3
⟨(k + 8)Ghk+1, h

2∇f(xk+1)⟩+
1

3
⟨(k + 9)Ghk+1, hỹk+1⟩

+
17

6
⟨Ghk+1, (−h)ỹk+1⟩+

5

2

〈
(k + 9)Ghk+1,

1

k + 9
(xk+1 − x∗)

〉
− 5

4
∥Ghk+1∥2

≤ 4(k + 8)2

9
∥Ghk+1∥2 +

(k + 8)2h4

144
∥∇f(xk+1)∥2 + 4∥Ghk+1∥2 +

(k + 8)2h4

144
∥∇f(xk+1)∥2

+
(k + 9)2

6
∥Ghk+1∥2 +

h2

6
∥ỹk+1∥2 +

17

4
∥Ghk+1∥2 +

17h2

36
∥ỹk+1∥2 +

25(k + 9)2

12
∥Ghk+1∥2

+
3

4(k + 9)2
∥xk+1 − x∗∥2 −

5

4
∥Ghk+1∥2

≤ (k + 8)2h4

72
∥∇f(xk+1)∥2 +

23h2

36
∥ỹk+1∥2 +

1

(k + 9)2
Ẽk+1 +

(
4(k + 8)2

9
+

9(k + 9)2

4
+ 7

)
∥Ghk+1∥2

≤ (k + 8)2h4

72
∥∇f(xk+1)∥2 +

23h2

36
∥ỹk+1∥2 +

1

(k + 9)2
Ẽk+1 +

(
40(k + 8)2

9
+ 7

)
∥Ghk+1∥2

≤ (k + 8)2h4

72
∥∇f(xk+1)∥2 +

23h2

36
∥ỹk+1∥2 +

1

(k + 9)2
Ẽk+1 +

41(k + 8)2

9
∥Ghk+1∥2.
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where the third inequality follows from the relation: k+9 ≤ 4
3 (k+8) and the last inequality follows

from the relation: 7 ≤ (k+8)2

9 for k ≥ 0. Thus, combining the calculation in the proof of Theorem 15
and the calculation above, we obtain

Ẽk+1 − Ẽk ≤ −
(k + 8)2h4

36
∥∇f(xk+1)∥2 −

23h2

36
∥ỹk+1∥2 −

(k + 9)h2

36
∥ỹk+1∥2 + err

≤ − (k + 8)2h4

72
∥∇f(xk+1)∥2 +

41(k + 8)2

9
∥Ghk+1∥2 +

1

(k + 9)2
Ẽk+1. (36)

Applying Propositions 2 and 1 with the choice h ≤ 1
7
√
L
≤ 1

41/8
√
L

, we have

41(k + 8)2

9
∥Ghk+1∥2 ≤

164(k + 8)2

9
· (1 + L2h4) · L2h8

1− 2L4h8
· ∥∇f(xk+1)∥2

≤ 82(k + 8)2h4

3
· L2h4

1− 2L4h8
· ∥∇f(xk+1)∥2

≤ (k + 8)2h4

72
∥∇f(xk+1)∥2,

where the second inequality follows from h ≤ 1
41/8

√
L

and the third inequality follows from h ≤ 1
7
√
L

.
Combining with (36), we have

Ẽk+1 − Ẽk ≤
1

(k + 9)2
Ẽk+1 ⇒ Ẽk+1

Ẽk

≤ (k + 9)2

(k + 8)(k + 10)
.

Taking the product, we obtain

Ẽk =

(
Ẽk

Ẽk−1

· Ẽk−1

Ẽk−2

· ... · Ẽ1

Ẽ0

)
· Ẽ0 ≤

(
(k + 8)2

(k + 7)(k + 9)
· (k + 7)2

(k + 6)(k + 8)
· · · 92

8 · 10

)
· Ẽ0

=
9(k + 8)

8(k + 9)
Ẽ0 ≤

9

8
Ẽ0.

This implies

E[f(xk)− f(x∗)] ≤
9

h2(k + 8)2
· 9
8
· Ẽ0

=
9

h2(k + 8)2
· 9
8
· E
[
64h2

9
(f(x0)− f(x∗)) +

5

4
∥x0 − x∗∥2

]
≤

E
[
72h2(f(x0)− f(x∗) + 13∥x0 − x∗∥2

]
h2(k + 8)2

≤
E
[
36Lh2∥x0 − x∗∥2 + 13∥x0 − x∗∥2

]
h2(k + 8)2

≤
14 · E

[
∥x0 − x∗∥2

]
h2(k + 8)2

,

where the third inequality follows from L-smoothness of f and the last inequality follows from
h ≤ 1

7
√
L

.

G.3.4 Proof of Corollary 2

Proof. If we choose h = 1
7
√
L

, we obtain from Theorem 5

E[f(xK)− f(x∗)] ≤
686L · E

[
∥x0 − x∗∥2

]
(K + 8)2

.

Let

E[f(xK)− f(x∗)] ≤
686L · E

[
∥x0 − x∗∥2

]
(K + 8)2

≤
686L · E

[
∥x0 − x∗∥2

]
K2

≤ ε,
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and the last inequality is satisfied whenever

K ≥
√

686L · E [∥x0 − x∗∥2]
ε

.

H Additional experimental details

In this section, we provide some experimental details as a supplement of Section 5. All experiments
were implemented in Python 3.10.12 and executed with the default CPU runtime. No GPU or
specialized hardware was used. Most experiments complete within one minute, while some high-
condition-number or fine-resolution runs (e.g., quadratic minimization with κ = 107) take up to
5-6 minutes. The total compute required is modest and can be reproduced on standard CPU-based
environments.

H.1 Quadratic minimization

To generate a symmetric positive semi-definite (SPSD) matrix with a prescribed condition number,
we construct a matrix A = QΛQ⊤, where Q ∈ Rd×d is a random orthogonal matrix obtained via
QR decomposition of a standard Gaussian matrix, and Λ = diag(λ1, . . . , λd) is a diagonal matrix
with eigenvalues linearly spaced between α and L. This construction ensures that A is SPSD with
spectrum controlled by the given maximum and minimum eigenvalues.

H.1.1 Comparison with baseline algorithms

In the main paper, due to space constraints, we reported only a subset of the experiments for quadratic
minimization: (1) κ = 107 with exact α, (2) κ = 107 with overestimated α = 0.01, and (3) α = 0
with L = 500. Here, we include the complete set of experiments to provide a more comprehensive
evaluation. Specifically, we consider:

• (1) κ ∈ {103, 105, 107}, L = 500 with exact α = L/κ;
• (2) κ ∈ {103, 105, 107}, L = 500 with overestimated α̂ ∈ {0.01, 0.1, 1};
• (3) α = 0 with L ∈ {5× 102, 5× 103, 5× 104}.

These results allow us to evaluate how the performance of each algorithm scales with different
condition numbers and parameter estimation errors.

Figure 3 shows the convergence results for setting (1) with exact α under condition numbers κ ∈
{103, 105}. RHGD consistently outperforms GD while being comparable to AGD and CAGD.

Figure 4 presents the results for setting (2), where α̂ ∈ {0.1, 1} is overestimated. We observe
that while the performance of AGD and CAGD degrade significantly when α is poorly estimated,
RHGD maintains robustness across different values of α, demonstrating its practical advantage under
parameter uncertainty.

Figure 5 provides the results for setting (3), i.e., when α = 0 (weakly convex), with smoothness
constants L ∈ {5× 103, 5× 104}. RHGD outperform AGD and CAGD in late iterations while being
noticeably faster than GD.

H.1.2 Refreshment behavior

To better understand the structure and dynamics of our randomized algorithm, we visualize the
objective values as a function of Poisson time, reflecting the continuous-time intuition behind velocity
refreshment.

In the case of a homogeneous Poisson process, the refreshment probability is constant across iterations,
i.e., γk =

√
α. This corresponds to the strongly convex setting, where refreshment occurs at a uniform

rate. We simulate this process by drawing independent inter-arrival times ∆Tk ∼ Exp(γk) with
fixed rate γk =

√
α, and define the cumulative Poisson clock as Tk =

∑k
i=1 ∆Ti. We then plot the

objective value against Tk, rather than the iteration index. In contrast, the inhomogeneous Poisson
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Figure 3: Comparison between GD, AGD, CAGD, and RHGD (ours) on minimizing quadratic
functions with κ ∈ {103, 105} and optimal stepsizes via grid search. All algorithms use exact α.
Each plot shows results averaged over 5 runs.

Figure 4: Comparison between GD, AGD CAGD and RHGD (ours) on minimizing the quadratic
function with with κ = 107 and optimal stepsizes via grid search. All algorithms use misspecified
α̂ ∈ {0.1, 1}. Each plot shows results averaged over 5 runs.

process reflects the weakly convex setting, where the refreshment probability decays with iteration.
Specifically, we consider a time-varying refreshment rate γk = 17

2(k+9)h , and simulate the process

using non-stationary exponential samples with rate γk, i.e., ∆Tk ∼ Exp(γk) and Tk =
∑k

i=1 ∆Ti.
This mimics the decaying refreshment frequency used in the weakly convex regime.

In the strongly convex setting, we choose κ = 107 with L = 500, and h =
√
1/L. In the weakly

convex setting, we choose L = 500 and h =
√
1/L. Then we plot the objective value at each

iteration versus the accumulated Poisson time Tk, thereby aligning our discrete-time algorithms with
their continuous-time interpretations. We also overlay the actual refreshment events as markers on
the plot, which allows us to visually compare the algorithm’s progress with the stochastic timing of
velocity refreshment. These visualizations confirm that our refreshment mechanisms closely match
the intended Poisson-driven behavior and provide an intuitive connection between the discrete-time
algorithm and their continuous-time limit flow.

H.1.3 Choice of stepsize

When α > 0, we fix the smoothness constant (largest eigenvalue) to be 500, and choose the optimal
stepsizes via grid search summarized in Table 2. When α = 0, we evaluate different smoothness
constant L, and choose the optimal stepsizes via grid search summarized in Table 3.

H.2 Logistic loss minimization

The feature vectors ai ∈ Rd are generated with i.i.d. standard normal entries, and the ground-truth
parameter vector x∗ ∈ Rd is also sampled from standard Gaussian. Binary labels are assigned
according to bi = sign(a⊤i x

∗ + 0.1 · ξi), where ξi ∼ N (0, 1) adds Gaussian noise to simulate label
uncertainty.
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Figure 5: Comparison between GD, AGD CAGD and RHGD with their optimal stepsizes via grid
search for minimizing quadratic functions with α = 0 and L ∈ {5× 103, 5× 104}. Each plot shows
results averaged over 5 runs.

Figure 6: Comparison of actual refresh events in RHGD with theoretical Poisson jump times. Left:
γk =

√
α vs. homogeneous Poisson process with rate

√
α. Right: γk = 17

2(k+9)h vs. inhomogeneous

Poisson process with rate γ(t) = 17
2t+18h . The x-axis shows time t = kh with h =

√
0.002. Blue

dots: actual refreshes; gray dashed lines: Poisson jumps.

In the main paper, we only report the results of α ∈ {10−4, 0}. Here we provide the remaining
results corresponding to {10−3, 10−5}. The setting α = 10−3 corresponds to a commonly used
regularization level in practice, providing a well-conditioned objective. In contrast, α = 10−5 yields
a more ill-conditioned problem, which serves as a stress test for the algorithms but is less typical
in real-world applications. Figure 7 presents the convergence behavior of GD, AGD, CAGD, and
RHGD under both settings. We observe that RHGD consistently outperforms GD and remains
competitive with AGD and CAGD across both values of α. Notably, RHGD using γk = 2

√
α

consistently achieves faster convergence than γk =
√
α. These results further confirm the robustness

and practical efficiency of RHGD under varying degrees of strong convexity.

H.3 Details of baseline algorithms

For each method, we assume the objective function f is L-smooth and α-strongly convex, where
setting α = 0 corresponds to weakly convex functions.

κ GD AGD CAGD RHGD

103 η = 1
L η = 1

L η = 1
L h = 1√

L

105 η = 1
L η = 1

L η = 1
L h = 1√

L

107 η = 1
L η = 1

L η = 1
L h = 1√

L

Table 2: Stepsizes of GD, AGD, CAGD and RHGD in the strongly convex setting (α > 0) under
different condition numbers κ with fixed L = 500.
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L GD AGD CAGD RHGD

5× 102 η = 1
L η = 1

L η = 1
L h = 1√

L

5× 103 η = 1
8L η = 1

16L η = 1
8L h = 1

8
√
L

5× 104 η = 1
8L η = 1

16L η = 1
8L h = 1

8
√
L

Table 3: Stepsizes of GD, AGD, CAGD and RHGD in the weakly convex setting (α = 0) under
different smoothness constants L.

Figure 7: Comparison of GD, AGD, CAGD and RHGD on logistic regression with α ∈
{10−3, 10−5}. We run each algorithm using adaptive stepsizes. For RHGD, we evaluate γk =

√
α

and γk = 2
√
α.

Parameter formulas of Algorithm 7. The update rules in Algorithm 7 depend on parameters
βk, which differs depending on whether the objective is strongly convex (α > 0) or weakly convex

(α = 0). The specific formula is as follows: βk =

{
1−√

αη

1+
√
αη , if α > 0,

k−1
k+2 , if α = 0.

Parameter formulas of Algorithm 8. The update rules in Algorithm 8 depend on parameters θk,
θ′k and ηk which differ depending on whether the objective is strongly convex (α > 0) or weakly
convex (α = 0). The specific formulas are summarized in Table 4.

Adaptive variants. To improve robustness in practice, we also implement an adaptive stepsize
scheme for GD, where the stepsize ηk is adjusted multiplicatively based on the observed decrease in
objective value:

ηk+1 =

{
1.1ηk, if f(xk+1) < f(xk)− ηk

2 ∥∇f(xk)∥
2

0.6ηk, otherwise

The same mechanism can be applied to AGD, CAGD and RHGD variants. We present the adaptive
variants of GD, AGD, CAGD and RHGD below, which are called Ada-GD, Ada-AGD, Ada-CAGD
and Ada-RHGD. For all logistic regression experiments, we initialize η0 = 1 and h0 = 1. When
α > 0, the momentum parameter βk is computed using the updated stepsize ηk+1 as βk =

1−√
αηk+1

1+
√
αηk+1

,

which reflects the dependence of acceleration on the current stepsize. When α = 0, the momentum
parameter simplifies to βk = k−1

k+2 , which is independent of the stepsize and follows from Nesterov’s
acceleration for weakly convex functions.

Algorithm 6 Gradient Descent (GD)
1: Initialize x0. Choose stepsize 0 < η ≤ 1/L.
2: for k = 0, 1, . . . ,K − 1 do
3: xk+1 = xk − η∇f(xk)
4: end for
5: return xK
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Algorithm 7 Accelerated Gradient Descent (AGD)
1: Initialize x0 and y0. Choose stepsize 0 < η ≤ 1/L.
2: for k = 0, 1, . . . ,K − 1 do
3: xk+1 = yk − η∇f(yk)
4: yk+1 = xk+1 + βk(xk+1 − xk)
5: end for
6: return xK

Algorithm 8 Continuized Accelerated Gradient Descent (CAGD)
1: Initialize x0 and T0 = 0. Choose stepsize 0 < η ≤ 1/L.
2: for k = 0, 1, . . . ,K − 1 do
3: Sample τk ∼ Exp(1) and set Tk+1 = Tk + τk
4: yk = xk + θk(zk − xk)
5: xk+1 = yk − η∇f(yk)
6: zk+1 = zk + θ′k(yk − zk)− ηk∇f(yk)
7: end for
8: return xK

Parameter α > 0 α = 0

θk
1
2

(
1− exp(−2√αη τk)

)
1−

(
Tk

Tk+1

)2
θ′k tanh

(√
αη τk

)
0

ηk
√

η
α

Tkη
2

Table 4: Parameter choices in Algorithm 8 for different regimes of α.

Algorithm 9 Adaptive Gradient Descent (Ada-GD)
1: Initialize x0 and stepsize η0 > 0.
2: for k = 0, 1, . . . ,K − 1 do
3: x̃k+1 = xk − ηk∇f(xk)
4: if f(x̃k+1) < f(xk)− ηk

2 ∥∇f(xk)∥
2 then

5: ηk+1 = 1.1 · ηk ▷ Increase stepsize
6: xk+1 = x̃k+1 ▷ Accept trial step
7: else
8: ηk+1 = 0.6 · ηk ▷ Decrease stepsize
9: xk+1 = xk ▷ Reject trial step

10: end if
11: end for
12: return xK

Algorithm 10 Adaptive Accelerated Gradient Descent (Ada-AGD)
1: Initialize x0, y0, and stepsize η0 > 0.
2: for k = 0, 1, . . . ,K − 1 do
3: x̃k+1 = yk − ηk∇f(yk)
4: if f(x̃k+1) < f(yk)− ηk

2 ∥∇f(yk)∥
2 then

5: ηk+1 = 1.1 · ηk ▷ Increase stepsize
6: xk+1 = x̃k+1 ▷ Accept trial step
7: else
8: ηk+1 = 0.6 · ηk ▷ Decrease stepsize
9: xk+1 = xk ▷ Reject trial step

10: end if
11: yk+1 = xk+1 + βk(xk+1 − xk)
12: end for
13: return xK
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Algorithm 11 Adaptive Continuized Accelerated Gradient Descent (Ada-CAGD)
1: Initialize x0, z0 = x0, T0 = 0, and stepsize η0 > 0.
2: for k = 0, 1, . . . ,K − 1 do
3: Sample τk ∼ Exp(1) and set Tk+1 = Tk + τk
4: Compute θk using ηk, τk, Tk and Tk+1 as shown in Table 4
5: yk = xk + θk(zk − xk)
6: x̃k+1 = yk − ηk∇f(yk)
7: if f(x̃k+1) < f(yk)− ηk

2 ∥∇f(yk)∥
2 then

8: ηk+1 = 1.1 · ηk ▷ Increase stepsize
9: xk+1 = x̃k+1 ▷ Accept trial step

10: else
11: ηk+1 = 0.6 · ηk ▷ Decrease stepsize
12: xk+1 = xk ▷ Reject trial step
13: end if
14: Compute θ′k and ηk using updated ηk+1, τk and Tk as shown in Table 4
15: zk+1 = zk + θ′k(yk − zk)− ηk∇f(yk)
16: end for
17: return xK

Algorithm 12 Adaptive Randomized Hamiltonian Gradient Descent (Ada-RHGD)
1: Initialize x0, y0 = 0 and h0 > 0. Choose refreshment parameter γk > 0.
2: for k = 0, 1, . . . ,K − 1 do
3: xk+ 1

2
= xk + hkyk

4: x̃k+1 = xk+ 1
2
− h2k∇f(xk+ 1

2
)

5: if f(x̃k+1) < f(xk+ 1
2
)− h2

k

2 ∥∇f(xk+ 1
2
)∥2 then

6: hk+1 =
√
1.1 · hk ▷ Increase stepsize

7: xk+1 = x̃k+1 ▷ Accept trial step
8: else
9: hk+1 =

√
0.6 · hk ▷ Decrease stepsize

10: xk+1 = xk ▷ Reject trial step
11: end if
12: ỹk+1 = yk − hk+1∇f(xk+1)

13: yk+1 =

{
ỹk+1 with probability 1−min (γkhk+1, 1)

0 with probability min (γkhk+1, 1)
14: end for
15: return xK

I Helpful lemmas

Lemma 14. Let t 7→ vt ∈ Rd be a family of vector fields and suppose that the random variables
t 7→ Zt evolve according to

Żt = vt(Zt).

Then, the law ρt of Zt evolves according to the continuity equation

∂tρt +∇ · (ρtvt) = 0. (37)

Proof. Given a smooth test function ϕ : Rd → R, we obtain by the chain rule:

d

dt
E[ϕ(Zt)] = E

[
⟨∇ϕ(Zt), Żt⟩

]
= E [⟨∇ϕ(Zt), vt(Zt)⟩] .

For the left hand side, we can write

d

dt
E[ϕ(Zt)] =

d

dt

∫
ρt(z)ϕ(z) dz =

∫
∂tρt(z)ϕ(z) dz.
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For the right hand side, applying the integration by part, we have

E [⟨∇ϕ(Zt), vt(Zt)⟩] =
∫
⟨∇ϕ(z), vt(z)⟩ρt(z) dz = −

∫
∇ · (ρt(z)vt(z))ϕ(z) dz.

Thus we have ∫
∂tρt(z)ϕ(z) dz = −

∫
∇ · (ρt(z)vt(z))ϕ(z) dz.

Since this holds for every test function ϕ, we obtain ∂tρt +∇ · (ρtvt) = 0.

Lemma 15 (Three-point identity). For all x, y, z ∈ Rd, we have

∥x− y∥2 − ∥x− z∥2 = −2⟨y − z, x− y⟩ − ∥y − z∥2. (38)

Proof. Expanding the squared norm and rearranging yields the claimed identity.

Lemma 16 (Young’s inequality). For all x, y ∈ Rd and p > 0, we have

⟨x, y⟩ ≤ p∥x∥2 + 1

4p
∥y∥2. (39)

Proof. We have ∥∥∥∥√px− 1

2
√
p
y

∥∥∥∥2 = p∥x∥2 + 1

4p
∥y∥2 − ⟨x, y⟩ ≥ 0,

which implies the conclusion.

Lemma 17. For all k ≥ 0, we have 2k+17
9 ≤ k+8

3 .

Proof. It suffices to show 2k+17
k+8 ≤ 3. Since 1

k+8 ≤ 1, we have 2k+17
k+8 = 2 + 1

k+8 ≤ 3.

Lemma 18. For all x, y ∈ Rd, we have

∥x+ y∥2 ≤ 2∥x∥2 + 2∥y∥2. (40)

Proof. ∥x+ y∥2 − (2∥x∥2 + 2∥y∥2) = −
(
∥x∥2 − 2⟨x, y⟩+ ∥y∥2

)
= −∥x− y∥2 ≤ 0.

Lemma 19. For 0 ≤ x ≤ 1
2 , we have cos2(x) ≤ 1− x2

2 .

Proof. Let g(x) = cos2(x) + 1
2x

2 − 1. Then g′(x) = − sin(2x) + x and g′′(x) = −2 cos(2x) + 1.
Since 0 ≤ x ≤ 1

2 ≤
π
6 , we have cos(2x) ≥ 1

2 which implies g′′(x) ≤ 0 for x ∈ [0, 12 ]. Thus g′(x)
is monotonically decreasing for x ∈ [0, 12 ], which implies g′(x) ≤ g′(0) = 0. Thus g(x) is also
monotonically decreasing for x ∈ [0, 12 ]. Then we have g(x) = cos2(x) + 1

2x
2 − 1 ≤ g(0) = 0,

which implies cos2(x) ≤ 1− x2

2
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