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Abstract

Large-scale web-scraped datasets have con-
tributed significantly to progress in deep learning,
yet the extensive presence of biometrics data, such
as faces, poses a legitimate legal, ethics, and pri-
vacy issue. Existing approaches address this by re-
moving sensitive images entirely, often sacrificing
downstream performance, or purchasing use of
licensed images. To address this gap, we present a
novel privacy preserving transformation pipeline
that uses a diffusion-based inpainting model to
systematically replace detected faces in images
with multiple, synthetic variants conditioned on
different demographic attributes, resulting in a
novel, privacy-preserving dataset of distinct face
images. Our method, evaluated on 12, 000 images
transformed from LAION-400M and CelebA-HQ,
eliminates privacy risks without significant loss
of image quality or diversity. This transformation
pipeline will serve as a scalable guideline for the
creation of datasets that follow legal and ethical
privacy constraints.

1. Introduction

The creation of nonconsensually collected image datasets
in recent years [1, 2, 3, 4, 5, 6] has undoubtedly spurred
progress in computer vision and generative modeling [7].
Furthermore, datasets specifically created through web-
scraping can sometimes provide up to billions of image-to-
text pairs for training state-of-the-art models [6]. However,
the inclusion of biometric identifiers, such as human faces,
poses significant ethical, privacy, and legal challenges, es-
pecially given recent legislative trends in the United States
towards stricter biometric data regulation [8]. Recent pri-
vacy laws introduced and enacted in several U.S. states im-
pose strict requirements on the collection, processing, and
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retention of biometric data, and mandate explicit consent
for collection, processing, and retention of these images
[9]. Specifically, recent privacy laws such as the Illinois
Biometric Information Privacy Act (BIPA)' and the Texas
Biometric Identifier Act’ are some of the most restrictive,
completely barring any usage of biometrics data compiled
nonconsensually, and fining up to $5, 000 at minimum per
infraction. These laws render most of the aforementioned
datasets unusable on a legally compliant basis, unless all sub-
jects are explicitly determined to not be residents of Illinois,
Texas, or other states with similar laws, and thus provide a
legal motivation for the development of methods that can
transform an existing dataset to be legally compliant.

Existing approaches in privacy efforts primarily remove,
filter, or label certain images, and can be automated either
algorithmically or through the use of Al agents [10, 11, 7].
Other types of dataset curation, such as annotating images,
can be similarly done algorithmically [12], or done through
manual, crowd-sourced labor [13, 14, 15]. While effective
in certain use cases such as the ethical concern of including
children in datasets, these approaches generally risk exces-
sive data loss, may fail to address more nuanced privacy
concerns, and in the case of manual human curation, may be
too expensive for large datasets [7]. Therefore, this calls for
a more robust method that can properly confront legal pri-
vacy concerns and dataset functionality while maintaining
relatively low-costs at a large-scale.

To address this challenge, we propose a novel compliance-
by-transformation pipeline tailored to any dataset containing
nonconsensually imaged faces. We demonstrate our pipeline
on subsets of the LAION-400M and CelebA-HQ datasets
[6, 16], and provide further analyses and case studies on our
produced images.

From a high-level overview, our pipeline first uses a
pre-trained Multi-task Cascaded Convolutional Network
(MTCNN) [17] to detect the probability of a face in a pic-
ture and filter out images where the resolution of the face
is too small. Then, a blank elliptical mask is overlayed on
top of the detected face region, and a stable diffusion model
[18] finetuned on the FairFace dataset [19] is used to in-
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paint the region. Each face is then inpainted with 8 distinct
replacements via conditioned prompts that combine the esti-
mated age group, gender, and ethnicity. These prompts were
empirically determined to be the most effective as they had
a high Fréchet Inception Distance (FID) [20] score against
each other. If multiple faces are in an image, then additional
permutations are generated, and the best 8 overall images
are selected. This style of combinatorial inpainting encour-
ages the final dataset to be more diverse, and ultimately each
original face image is replaced by multiple legally compliant
augmented variants, solving the issue of legal compliance.

Finally, to assess the quality of our inpainted outputs, we
conduct a multi-metric evaluation focused on both identity
anonymization and semantic preservation. We use Arc-
Face [21] to quantify identity similarity between original
and inpainted images, PSNR [22], an image quality metric
that identifies reconstruction error, CLIP similarity, [23],
which evaluates how edited images retain their prompting
attributes, LPIPS [24], to assess image realism and quality,
FID [20], to benchmark the overall quality of our inpainted
samples against real images, and SSIM/MS-SSIM [25, 26,
241, to evaluate structural similarity at multiple scales. We
also assess demographic consistency before and after in-
painting to ensure minimal changes in race, gender, and age
distribution.

Through this pipeline, we demonstrate that a large non-
compliant image dataset can be successfully and practically
transformed to be legally compliant. Our work provides
both a practical methodology and a reusable benchmark for
those striving to utilize privacy compliant data.

2. Related Work
2.1. Diffusion Models

Diffusion models are a powerful class of generative models
that have significantly advance the state-of-the-art across
diverse domains, particularly in image synthesis, super-
resolution, inpainting, and semantic editing [27, 28]. There
are several approaches for creating diffusion models [29,
30, 31, 27], however, most notably, our inpainting pipeline
primarily utilizes Denoising Diffusion Probabilistic Models
(DDPMs), which define a fixed forward noising schedule
over T' steps and learn a reverse Markovian denoising pro-
cess.

Inpainting with diffusion models leverages the same genera-
tive principles but also introduces spatial awareness when
reconstructing masked regions. Initial attempts focused
on texture propagation [32], while more recent methods
like Region-Aware Diffusion (RAD) [33] introduce mask-
sensitive noise scheduling for better spatial control.

Additionally, to improve efficiency and controllability, De-

noising Diffusion Implicit Models (DDIM) [34] reinterprets
the reverse process as a non-Markovian trajectory, enabling
10x-50x fewer sampling steps with minimal fidelity loss, and
uses stochastic differential equation (SDE) solvers to further
reduce inference latency [31]. In addition, by shifting diffu-
sion into a learned latent space, models incur 5x—10x lower
compute and memory costs for high-resolution synthesis, as
demonstrated by Latent Diffusion Models [18].

Finally, large-scale implementations such as Flux [35] and
Stable Diffusion XL (SDXL) [36] demonstrate the scal-
ability and generalizability of latent diffusion, producing
high-resolution imagery with strong semantic fidelity.

2.2. Inpainting

Image inpainting refers to the task of reconstructing missing
or occluded regions within an image by leveraging contex-
tual information from the surrounding areas. Inpainting has
evolved from classical patch-based algorithms to modern
learning-based systems [37, 32].

Traditional inpainting techniques—such as diffusion-often
fail to capture high-level semantics, particularly in struc-
tured regions like faces. However, advances in deep learn-
ing have overcome this by modeling global context and
learning structural priors from large-scale datasets. Early
diffusion-based models [38] introduced denoising diffusion
probabilistic models (DDPMs) as a generative framework
that iteratively refines noisy inputs into realistic images. Fur-
ther improvements such as contextual attention mechanisms
[39]demonstrated the benefits of guiding inpainting with
semantically aligned context.

RAD [33] (Region-Aware Diffusion) extends DDPMs by
incorporating spatially variant noise schedules aligned with
the structure of the inpainting mask, allowing pixel-wise
control during denoising. To maintain realism and semantic
consistency in face inpainting, Generative Facial Prior for
Blind Face Restoration [40] (GPEN) leverages generative
facial priors—such as identity embeddings, landmarks, or
attribute-aware constraints—to guide facial reconstruction.
While effective for enhancing visual fidelity, such methods
often seek to preserve or restore identifiable facial features,
making them less suitable for privacy-critical applications.

2.3. Existing Privacy Methods

A growing body of work explores generative techniques
for preserving privacy, particularly in the context of facial
data [10, 41, 42, 43]. One line of work uses crowd-sourced
annotations to apply obfuscation masks to faces, demon-
strating that model utility can be preserved even with sig-
nificant visual distortion. However, contrary to our focus,
this study utilized manual labor, which scales impractically
[10]. These masks also typically obscure rather than replace
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identity-bearing features, maximally limiting downstream
utility for certain tasks, such as training generative mod-
els. More recent efforts such as Diff-Privacy [41] utilize
pixel-level operations and multi-scale inversion modules
that iteratively distort facial features. These transformations
achieve high visual fidelity while intentionally rendering
the identity unrecognizable to both human observers and
machine learning models. Another method, DIFP [43], ad-
ditionally builds on this idea by introducing a conditionally
guided face generator that produces encrypted facial images.
Its two-stage pipeline can realistically regenerate facial fea-
tures while maintaining the ability to decrypt the original
identity using a reverse diffusion process. This reversible
nature, however, limits its applicability under strict privacy
regulations that mandate irreversibility. ID? [42] takes a
different approach, focusing on generating synthetic but
identity-consistent faces to augment recognition datasets,
primarily focusing on diversity and realism over anonymiza-
tion.

3. Inpainting Methodology: FaceSafe

(b) LAION

Figure 1: Snapshots of original images on the left and their
corresponding anonymized transformations on the right for
CelebA-HQ and LAION-400M.

To enable the construction of large-scale, privacy-compliant
datasets, we introduce FaceSafe, an inpainting pipeline de-
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Figure 2: A simplified flow diagram of our inpainting trans-
formation pipeline.

signed for scalable face anonymization. This section out-
lines the design and implementation of FaceSafe, shown
in Fig. 2. Notable components include training of a
demographically-conditioned LoRA-injected Stable Diffu-
sion model, the preprocessing steps for face detection and
mask creation, and the inference-time re-ranking strategy
that ensures both visual realism and semantic fidelity. In
addition, we provide information on the scalability of the
system and analyze the demographic fidelity and obfusca-
tion of the identity of the resulting dataset.

To build a demographically diverse inpainting model, we
begin by curating 44k portraits from the FairFace dataset
[19] spanning four coarse race labels (Asian, Caucasian,
African, Middle Eastern) and two binary genders. Each
combination is mapped to an eight-way one-hot vector used
to condition a LoRA-injected Stable Diffusion UNet [44].

We then initialize from the 512 x 512 Stable Diffusion In-
painting model [18], freezing the VAE and text encoder.
LoRA adapters (rank=32, @ = 32) are inserted into all
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nn. Linear and 1x1 nn. Conv2D layers in the UNet, re-
sulting in around 7M trainable parameters. The model is
fine-tuned for two epochs on a single A100 (40GB, FP16),
using AdamW [45] (8 = 0.9/0.999, learning rate = le-4)
with cosine decay and linear warm-up over the first 5% of
2080 optimizer steps. A total batch size of 64 is achieved
via gradient accumulation (32 physical x 2).

At inference time, we apply MTCNN [17] (confidence >
0.9, area > 0.1%) to detect faces, expanding each region
with a 1.3x elliptical mask. For the largest detected face in
each image, we generate eight demographic prompts (race
x gender), sampling each four times with DPM-Solver [46]
(40 Karras steps, guidance scale = 7.5, FP16, fixed seed),
yielding 32 candidates. For all remaining faces, two demo-
graphic prompts (randomized race x gender) are sampled
two times each with the same parameters. DeepFace [47]
provides an age description token (baby, child, teenager,
middle-aged adult, senior adult), and a Mediapipe [48] yaw
suffix (“facing left/right”) is appended when |yaw| > 15°.
Each candidate face crop is scored by four metrics:

CLIP similarity (ViT-L/14) [23] determines the semantic
difference between two pieces of content by jointly
embedding images and texts into the same vector space.
Vectors are then compared using cosine similarity.

LPIPS-VGG (flipped to similarity) [24], a learned met-
ric designed to measure the perceptual difference be-
tween images by comparing them in the deep feature
space of pretrained convolutional neural networks.

SSIM [25, 24], a perceptual metric that measures the simi-
larity between two images by comparing structural in-
formation, luminance, and contrast across local patches.
The equation is not described for the sake of brevity,
but can be found in [25].

Landmark overlap (Mediapipe) [48], which measures
the degree of overlap between facial landmarks
predicted by Mediapipe on both the original and
inpainted face crop. We used weights of 0.4/0.2/0.2
/0.2 for specific landmark groups, where high overlap
implies spatial configuration is maintained, even if
identity has been changed.

Scores are min-max normalized per face, missing values
are skipped, and remaining weights are re-normalized. The
top candidate for each demographic prompt is then pasted
onto the image. If the masked crop contains > 2% high-
brightness pixels (value ;, 240), the next three best seeds
are sampled to avoid “shininess” artifacts. For images with
multiple faces, all permutations of top candidates are com-
posed, and the 16 highest-scoring full-image composites are
retained.

3.1. Scaling Study

To assess the feasibility of deploying our inpainting pipeline
on large-scale datasets, we conducted a performance analy-
sis using an NVIDIA A100 GPU (40GB). On average, our
diffusion-based face inpainting system processes approxi-
mately 1 face every 3 seconds without candidate reranking.
This timing assumes default parameters (40 inference steps,
guidance scale of 7.5) and a batch size of 40.

At this throughput, the system is capable of inpainting ap-
proximately 28,800 faces per day per GPU, or roughly 1
million faces per 35 GPU-days. For context, scaling this to a
web-scale dataset such as LAION-400M, assuming approxi-
mately 5% of images contain detectable human faces, would
result in around 20 million candidate images. Inpainting this
volume would require roughly 2,100 GPU-days, or under 3
weeks on a 100-GPU cluster, assuming full parallelization
and minimal I/O bottlenecks.

We also evaluated how architectural and algorithmic choices
affect scalability. One key tradeoff arises from candidate
reranking, which compares multiple generated outputs per
face using perceptual and semantic similarity metrics (e.g.,
LPIPS, SSIM, CLIP). While reranking improves visual qual-
ity and prompt alignment, it increases per-face runtime by a
factor of 2-3x depending on the number of candidates and
scoring metrics enabled. Therefore, running the model with
reranking disabled and a single deterministic generation
path is more viable for ultra-scale anonymization tasks.

Overall, the modular design of our pipeline—supporting
batched inference, optional reranking, and prompt-
conditioned synthesis—makes it adaptable to a wide range
of scales and privacy requirements. These findings suggest
that ethically-aligned, privacy-preserving data transforma-
tions on modern web-scale datasets are computationally
feasible using existing diffusion-based infrastructure.

3.2. Dataset Analysis

To assess the quality of our inpainted outputs for our subsets
of both LAION-400M and CelebA-HQ, we evaluate using
ArcFace, PSNR, CLIP, LPIPS, FID, SSIM, and MS-SSIM.
ArcFace and FID assess privacy; PSNR, SSIM, and LPIPS
measure visual and pixel similarity.

We analyzed 1,000 LAION images containing 1,686 faces to
evaluate the effectiveness of our face inpainting pipeline for
privacy preservation. Across similarity metrics, the results
indicate strong identity anonymization while maintaining
reasonable perceptual and semantic similarity.

For LAION, ArcFace similarity averaged 0.16, confirming
that inpainted faces were largely unidentifiable compared to
their originals. CLIP similarity remained moderately high
at 0.74, suggesting that semantic features such as expres-
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sion, pose, or clothing were preserved. LPIPS (0.34) and
PSNR (14.74 dB) confirmed perceptual divergence with-
out severe degradation. Structural similarity metrics further
supported this: SSIM averaged 0.40 and MS-SSIM 0.42, re-
flecting moderate but visible changes in face structure after
inpainting. The FID score for LAION was 25.99, indicat-
ing moderate distributional divergence between inpainted
and original images—consistent with real-world variation
in lighting, orientation, and background.

Table 1: LAION: Demographic Distribution and Metrics

Demographic Original  Inpainted
Race
White 1251 1187
Latino/Hispanic 146 239
Black 169 154
East Asian 120 106
Gender
Male 971 985
Female 715 701
Similarity Metric Mean Q1-Q3
ArcFace 0.161 0.056-0.221
PSNR (dB) 14.74 12.64-16.82
CLIP 0.739 0.677-0.813
LPIPS 0.340 0.255-0.404
SSIM 0.405 0.132-0.672
MS-SSIM 0.421 0.204-0.628
Match Rate (%)
Age (Exact) 6.11
Age (£5 yrs) 46.03
Gender 67.38
Race 68.98
FID: 25.99

Demographic match rates on LAION showed moderate
preservation: race matched in 69%, gender in 67%, and age
within £5 years in 46% of cases. However, we observed
demographic drift: a notable increase in Latino/Hispanic
representation (+93) and a small increase in male represen-
tation suggest the inpainting model may inject subtle bias
under unconstrained conditions.

To contextualize these findings, we also evaluated CelebA,
a dataset with well-lit, front-facing portraits and centered,
large faces, which presents a simpler inpainting scenario.
On 1,000 CelebA images, ArcFace similarity remained simi-
lar (0.16), indicating comparable identity removal. However,
all other metrics improved: PSNR increased to 21.59 dB,
LPIPS dropped to 0.07, and SSIM/MS-SSIM rose to 0.82,
indicating that inpainted faces in CelebA were far more vi-
sually and structurally similar to the originals. The FID for

Table 2: CelebA-HQ: Demographic Distribution and Met-
rics

Demographic Original  Inpainted
Race
White 688 414
Latino/Hispanic 142 386
Black 97 140
East Asian 73 60
Gender
Male 435 455
Female 565 545
Similarity Metric Mean Q1-Q3
ArcFace 0.160 0.095-0.216
PSNR (dB) 21.59 20.12-23.06
CLIP 0.702 0.633-0.778
LPIPS 0.066 0.049-0.078
SSIM 0.824 0.800-0.853
MS-SSIM 0.821 0.786-0.872
Match Rate (%)
Age (Exact) 5.50
Age (£5 yrs) 53.40
Gender 76.20
Race 55.80
FID: 17.55

CelebA was slightly lower at 17.55, reflecting a close align-
ment in feature space between the inpainted and original
distributions due to the dataset’s visual consistency.

Demographic match rates were higher on CelebA: gender
accuracy rose to 76%, loose age match to 53%, and race
match to 56%. Notably, there was no major demographic
drift — the balance of race and gender remained stable be-
tween the original and inpainted sets.

These results highlight an important distinction: inpainting
performance and demographic stability are highly dataset-
dependent. While LAION’s diverse, uncontrolled imagery
tests robustness, CelebA offers a more forgiving bench-
mark with simpler geometry. Our approach achieves strong
anonymization in both cases, but further tuning—especially
on real-world data like LAION—is needed to reduce identity
leakage and demographic bias under challenging conditions.

3.2.1. CASE STUDIES

We further perform two case studies on our dataset, explor-
ing the strengths (shown in Table 3 and limitations (shown
in Fig. 3) of our inpainting pipeline.
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Variation 1  Variation 2

Original
]

Style Pres.

Occlusion

Lighting

Side-Facing

Table 3: Comparison across four facial variations: style
preservation, occlusion handling, lighting variation, and
side-facing pose. These results suggest that our model is
effective at handling diverse real-world scenarios.

Slite Sitertainment
WeddingsByElite.com
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Figure 3: An example of a failed case. In close proximity,
as seen here, facial overlap led to identity blending.

4. Discussion and Future Work

Despite our work’s potential in practical utility, as well
as demonstrated performance, our approach has several
limitations that we address in this section.

Our inpainting prompts are limited to broad demographic
attributes, which do not entirely capture the features of each
individual. As a result, it may reinforce stereotypes (Tables
1-2), particularly with low-quality images where the model
struggles to infer nuances (Fig. 1b). We plan to mitigate
this by generating more detailed captions and anticipate that
future diffusion models will offer improved inpainting.

Additionally, while our method seeks to anonymize faces
by replacing them entirely, we do not formally verify the
absence of remaining biometric features that may overlap
with the original subject. In the current stage of this work,
we cannot guarantee provable non-reidentifiability in all
cases.

There are also additional computation and throughput con-
straints. Our full pipeline, while manageable for inpaint-
ing several thousand images, will currently require sub-
stantial GPU resources to process massive datasets like
LAION-400M. However, our current inpainting pipeline
is not fully optimized, inpainting images sequentially in-
stead of in batches. We plan on implementing this to further
streamline the process.

The pipeline also relies on several external tools for face
detection, age estimation, and pose detection. These tools
can introduce inaccuracies that may propagate downstream,
affecting prompt quality or causing dropped samples due to
failed detections.

Furthermore, although reranking reduces artifacts such as
overexposure, misalignment, or complete failure, these un-
successful image still exist, particularly in complex lighting
conditions or occluded faces. These artifacts may reduce
image realism or inject noise into downstream tasks unless
filtered carefully. To address this, we plan on adding an
additional FID filter and systematically removing images
that are deemed to be unrealistic.

5. Conclusion

This paper introduces a scalable, practical data transforma-
tion pipeline, using diffusion and inpainting models, for
converting non-consensually collected images into a privacy
compliant dataset, and evaluates the quality of 12,000 gen-
erated images. Our work provides a blueprint for a practical
dataset transformation pipeline aligned with emerging pri-
vacy legislation, offering a plan of action for ethically and
legally training Al models at scale.
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