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ABSTRACT

Conservatism, the act of underestimating an agent’s expected value estimates, has
demonstrated profound success in model-free, model-based, multi-task, safe and
other realms of offline Reinforcement Learning (RL). Recent work, on the other
hand, has noted that conservatism often hinders learning of behaviors. To that end,
the paper asks the question how does conservatism affect offline learning? The
proposed answer studies Conservative Q Learning in light of value function opti-
mization, approximate objectives that upper bound underestimations and behavior
cloning as auxilary regularization objective. Conservative agents implicitly steer
estimates away from the true value function, resulting in optimization objectives
with high condition numbers. Mitigating these issues requires an upper bounding
objective. These approximate upper bounds, however, impose a strong assumption
on a scaling matrix, a result which is only sparsely fulfilled. Driven by theoretical
observations, provision of an auxilary behavior cloning objective as variational
regularization to estimates results in accurate value estimation, well-conditioned
search spaces and expressive parameterizations. In an empirical study of discrete
and continuous control tasks, we validate our theoretical insights and demonstrate
the practical effects of learning underestimated value functions.

1 INTRODUCTION
Consider the scenario wherein an agent learns to drive a car. The agent observes a human driving the
car. This involves paying attention to crucial insights of controlling the vehicle such as steering while
making a turn, accelerating during a green light and monitoring mirrors during brakes. Increasing
amount of observations made available to the agent result in learning finer details of the task which
are not available apriori. For instance, the agent may never learn to make a U-turn if the human
never encountered a U-turn crossing.

Offline Reinforcement Learning (RL) (Kalashnikov et al., 2018; Levine et al., 2020) addresses this
intuitive gap in learning by equipping the driver (the agent in above example) with the ability to
stitch together portions of observations by making use of a dataset of transitions. For instance, the
driver may learn to make a U-turn on its own if it observes the teacher (human) making sharp turns
and slowing down the vehicle at intersections. Adoption of transitions in the offline setting allows
the agent to tackle distributional shift (Kumar et al., 2019) between current and behavior policies.

Recent interests in offline RL (Kumar et al., 2020b; Ajay et al., 2021) textcolorrespare motivated by
conservatively learning value estimates. Conservative Q values, in expectation, yield a lower bound
on the true Q values which facilitates in constraining an agent’s policy to be close to the dataset’s
behavior policy. Additionally, a conservative lower bound generalizes towards a family of objec-
tives which regularize the agent away from the path of Out-Of Distribution (OOD) actions. This
combination of data-driven learning with behavioral constraints demonstrates efficacious learning
with extensions to safe policy improvement. However, a concrete theory of lower bounded Q values
remains unexplored.

Conservative agents often face increased gaps between optimal values and lower-bounded estimates
(Kumar et al., 2021b). This leads the policy to overfit the behavior policy, hence hindering provision
of diverse behaviors. The nature of problem arises twofold. On one hand, conservatism bakes
in a policy distribution which is challenging to optimize in practical settings (Ajay et al., 2021).
On the other hand, conservatism imposes prior conditions on dataset design, a scenario effectively
addressed by alternate paradigms (Sinha et al., 2021).
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Before asking the question how can conservatism be improved?, one must begin by asking how does
conservatism affect offline learning? The proposed answers realize conservatism in light of value
function optimization, upper bounding approximations and behavior cloning as regularization within
the Conservative Q Learning (CQL) (Kumar et al., 2020b) framework. Our novel contributions are
threefold; (1) We show that optimizing offline policies conservatively steers estimates away from
true Q functions. This gives rise to ill-conditioned objectives driven by high condition numbers.
The challenge is further pronounced with underparameterized function approximators. (2) Upper
bounding approximations, on the other hand, mitigate the above issues but hurt convergence. These
upper bounds impose a challenging assumption on a scaling matrix during policy optimization. (3)
We further show that provision of a behavior cloning objective as variational regularization empiri-
cally results in accurate value estimates, well-conditioned search spaces and expressive parameter-
izations. We validate our theoretical insights and their practical effects in discrete and continuous
control simulations.

2 RELATED WORK

Offline Reinforcement Learning: A myriad of offline RL methods (Levine et al., 2020) provi-
sion learning of policies from a predefined set of behaviors (Wang et al., 2021; Agarwal et al.,
2020). Data-driven learning has demonstrated strides resulting from safe exploration (Bharadhwaj
et al., 2021; Eysenbach et al., 2018) to connection of prior skills with new experience (Singh et al.,
2020) in robotics. Additionally, provision of prior data collection facilitates scalability (Kalash-
nikov et al., 2018) to high-dimensional manipulation scenarios. Recent theoretical advances aim at
tackling the covariance shift (Gelada & Bellemare, 2019) arising from erroneous bootstrapping of
values. Towards this direction, prior efforts highlight the construction of robust off-policy optimiza-
tion techniques (Huang & Jiang, 2020). While off-policy methods (Liu et al., 2020a) highlight their
effectiveness for behavior primitives (Nair et al., 2020; Lange et al., 2012), regularization techniques
(Liu et al., 2020b) depict promise in the model-based (Kidambi et al., 2020) setting.

Pessimistic Learning: Various works develop penalty-based optimization methods for offline RL
(Ghasemipour et al., 2021; Fujimoto et al., 2019; Kumar et al., 2021b; Yu et al., 2021a). Although
centered towards the regularization of policy iteration scheme (massoud Farahmand et al., 2016),
penalties utilized to address distributional shift are instances of pessimistic updates (Jin et al., 2021;
Buckman et al., 2021). Distributional shift may be addressed using policy constraints in the policy
space (Lee et al., 2021) or action sequences in the action space (Zhou et al., 2020). Between these
two extremes is value function regularization (Kumar et al., 2020b; Yu et al., 2021b) which learns
in the policy space and regularizes in the value space. Penalization of Q values is closely related to
uncertainty estimation which does away with erroneous bootstrapping of estimates (Osband et al.,
2016; O’Donoghue et al., 2018). Our work explains conservatism based on the above techniques.

Optimization and Approximation Theory: Prior works in offline RL borrow from statistical opti-
mization (Wang et al., 2021). Analysis of value function regularization is often extended to primal-
dual spaces (Bharadhwaj et al., 2021). This provisions surrogate objective designs which provide
the construction of safe policy guarantees bounding sub-optimality and policy convergence. Alter-
natively, tractable probabilistic approximations (Wu et al., 2021) are employed to explicitly account
for epistemic uncertainty in OOD detection of state-action pairs. Additionally, convergence evalua-
tion (Yin et al., 2021b) and optimality (Xiao et al., 2021) analysis of off-policy optimization relies
on uncertainty in metric spaces. Our theoretical analysis is parallel to these prior efforts.

3 PROBLEM FORMULATION

The problem utilizes the offline RL setup wherein an agent adheres to an environment in order to
transition to new states and observe rewards by following a sequence of actions. The problem is
modeled as a finite-horizon Markov Decision Process (MDP) (Sutton & Barto, 2018) defined by the
tuple (S,A, r, P, γ) where the state space is denoted by S and action space by A, r presents the
reward observed by agent such that r : S × A → [0, rmax], P : S × S × A → [0,∞) presents the
unknown transition model consisting of the transition probability to the next state st+1 (or simply
s′) ∈ S given the current state st (or simply s) ∈ S and action at (or simply a) ∈ A at time
step t and γ is the discount factor. The agent’s policy πθ(at|st) is a function of its parameters θ
and a behavior policy π̂β(at|st) with the discounted marginal state distribution dπ̂β (st). A dataset
D ∼ dπ̂β (st)π̂β(at|st) describes (s, a) pairs. Offline RL defines the agent’s objective to maximize
the expected discounted reward Est,at∼D[

∑T
t=1 γ

t−1r(st, at)].

2



Under review as a conference paper at ICLR 2022

CQL (Kumar et al., 2020b) is an offline RL algorithm which addresses distributional shift by ob-
taining an expected lower bound on the Q-values. CQL regularizes the Bellman objective uti-
lizing expected Q values Es∼D,a∼π̂β [Q(s, a)] under the behavior policy π̂β . To explicitly high-
light the per-sample dependence of Q values on states and actions, we use Q(s, a) and otherwise
denote the value function as simply Q (clear from context). The empirical Q-values of agent’s
policy, Q̂k, are underestimated at each policy iteration k utilizing the empirical Bellman operator
B̂πQ = r(s, a) + γEs′∼P (s′|s,a)[Q(s′, a′)] and a tradeoff constant α. The CQL objective, for a
regularization R(µ) = −DKL(µ, ρ) as the KL-divergence with a prior ρ(a|s) and µ(s, a) as the
state-action distribution, reduces to CQL(H) expressed in Eq. 1.

CQL(H) = min
Q

αEs∼D [lse(Q)︸ ︷︷ ︸
soft-maximum

− Ea∼π̂β [Q(s, a)]
]

︸ ︷︷ ︸
expected value

+
1

2
Es,a,s′∼D

[(
Q(s, a)− B̂πQ̂k

)2]
︸ ︷︷ ︸

empirical Bellman error
(1)

Eq. 1 uses lse(Q) to denote log
∑
a expQ(s, a) with Q as shorthand for Q(s, a). The second term

indicates a pessimistic expected value corresponding to in-disrtibution actions arising from π̂β and
the third term constitutes the empirical Bellman error. We overload notation by denoting H as the
Hessian of CQL(H) and other (explicitly stated) quantities in general.

4 CONSERVATISM IN OFFLINE LEARNING
The proposed answer studies two facets of CQL(H) objective (see Appendix D and Appendix G
for conjugate and dual space analyses respectively). (1) Conservatism results in ill-conditioned
objectives. (2) Tractable approximations to improve the search process impose a strong assumption
during policy optmization. While the analysis is centered to the model-free setting, our results
readily transfer to model-based setting (see Appendix E). To further simplify intuition, suitable

theoretical results are denoted in blue, potential hindrances in red and key insights in boxes .

4.1 CONSERVATIVE VALUE FUNCTION OPTIMIZATION

Estimation errors arising from value estimates may hurt training. Prior works study this phenomenon
in light of value and policy-based methods (Van Hasselt et al., 2016; Fujimoto et al., 2018). However,
the effect is often omitted during evaluation of agent’s optimization process. For instance, a natural
question to ask is how do estimation errors affect the space of value functions? The answer to the
above lies in the assessment of value function space curvature. Consider the Hessian H of CQL(H)
in Eq. 2. Here, softmax(Q) = exp(Q(st,at))∑

a∈A exp(Q(st,a))
denotes the |A| dimensional softmax over Q and

π̂β the |A| dimensional action probabilities from dataset. The first term, being a symmetric matrix
obtained from the outer product of softmax(Q), highlights the dependence of curvature on value
function. The second term denotes action likelihoods from dataset.

H = ∇2
QCQL(H) = α softmax(Q)T(111− softmax(Q))︸ ︷︷ ︸

curvature depends on
estimations

+ π̂β︸︷︷︸
curvature depends

on dataset

(2)

To assess the curvature of H, one considers the condition number κ = λmax

λmin
which is the ratio of

largest to smallest eigenvalues of H. κ signifies the smoothness of H curvature by informing how
close to singular H may be or how efficiently search methods will perform in the value space. High
κ values denote ill-conditioned curvatures with the lowest value of κ = 1 being desirable (Nocedal
& Wright, 2006). Upon evaluating the convergence of H as a convex quadratic (see Appendix A),
we obtain a lower bound of Eq. 3 on κ with estimation errors exponentiated around true Q function.

Explanation 1 (Ill-Conditioned Value Space) The conservative framework, for all Q val-
ues, traverses an ill-conditioned value space governed by high condition numbers κ,∣∣∣∣‖softmax(Q̂k)− softmax(Q)‖2 + ‖softmax(Q̂k+1)− softmax(Q)‖2

‖softmax(Q̂k)− softmax(Q)‖2 − ‖softmax(Q̂k+1)− softmax(Q)‖2

∣∣∣∣ ≤ κ (3)

Eq. 3 describes geometry of value function space. As per the design of conservative policy
evaluation (Kumar et al., 2020b), Q values Q̂k+1 at each subsequent iteration k + 1 are un-
derestimated. This results in the following case of Eq. 3 ‖softmax(Q̂k) − softmax(Q)‖2 <
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‖softmax(Q̂k+1)− softmax(Q)‖2. The expression indicates increasing values of the lower bound
which shift κ towards higher values (see Appendix A). Intuitively, an increase in the estimation error
lead to ill-conditioned value function space which is found challenging to traverse.

4.2 VALUE FUNCTIONS & UNDERPARAMETERIZATION

We further study the optimization process using parameterization. Recent work notes the phe-
nomenon of underparameterization, wherein value-based methods face a rapid decrease in the rank
of parameters (Kumar et al., 2021a). This decrease is studied in the function approximation setting.
A degradation in parameter rank corresponds to reduced expressivity of the value network. This is
because the effective number of bits required to express the Q function reduce with each iteration.
Other works connect this drop in expressivity to successive iterations of collapsing self-distillation
(Mobahi et al., 2020). While underparameterization is a well-known phenomenon in the deep RL
setting, its link to value optimization process remains unexplored.

We bridge this gap by connecting underparameterization with optimization. Denote t as the number
of rounds for which the rank of value function does not drop, prior work (Mobahi et al., 2020) notes
the relation of Eq. 4 (where ‖π̂β‖ >

√
|D|ε for constant ε).

t =
K − 1

κ
, where K =

‖π̂β‖√
|D|ε

is a constant (4)

Since |D| is fixed and ‖π̂β‖ does not change during training, Eq. 4 emphasizes on the inverse
relationship t ∝ 1

κ . Intuitively, an increased value of t, i.e.- the number of steps for which the rank
does not drop, lead to smoothened curvatures of the parameter space. On the other hand, lower
values, i.e.- more frequent underparameterization, result in ill-conditioned search spaces. This leads
us to Explanation 2.

Explanation 2 (Ill-Conditioned Search Space) Underparamterization in value-based func-
tion approximators inhibits expressivity and induces an ill-conditioned search space char-
acterized by increasing condition numbers κ.

Rank degradation arises as a direct consequence of value prediction in Temporal Difference (TD)
learning (Kumar et al., 2021a). The degradation reduces values of t which leads to inaccurate value
estimates. This reduction in t relates to ill-conditioned search spaces with increasing κ values over
the course of training. Our empirical evaluation verifies this trend in Section 5.

4.3 VALUE FUNCTIONS & BÖHNING APPROXIMATION

We further address high condition numbers by seeking higher-order alternatives using tractable ap-
proximations. This would provide the policy with increased curvature information. As a suitable
example, we study the well-known Böhning’s quadratic approximation (Böhning, 1992; Murphy,
2012) to lse(Q). Approximating lse allows use to address high variance and inaccurate estimates
during training (Khan, 2012). We seek an approximation which is an upper bound on CQL(H)
and simultaneously a tight lower bound on the true Q values. Towards this goal, consider an upper
bound on the hessian of CQL(H) using the second order Taylor’s series expansion of lse(Q) around
ψ ∈ R|A|,

lse(Q) = lse(ψ) + (Q− ψ)Tg(ψ) + 1

2
(Q− ψ)TH(ψ)(Q− ψ) (5)

where g(ψ) = exp(ψ−lse(ψ)) denotes the gradient of lse(ψ) and H(ψ) = diag(g(ψ))−g(ψ)g(ψ)T
its hessian. Forming an upper bound on the hessian H(ψ) ≤ Ĥ such that xTHx ≤ xTĤx for all x,

Ĥ =
1

2

[
I|A| −

1

|A|+ 1
1|A|1

T
|A|

]
(6)

Here Ĥ is the Böhning Approximation. Utilizing Ĥ in place of the true Hessian H(ψ) and simplify-
ing Eq. 5 leads to the following formulation,

lse(Q) ≤ 1

2
QTĤQ− bQ+ c (7)
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The above quadratic expression is denoted with Bohn(Q) where b = −(Ĥψ − g(ψ)) and c =
1
2ψ

TĤψ − g(ψ)Tψ + lse(ψ). Upon assessing the convergence of Bohn(Q) (see Appendix B) one
obtains Eq. 8. On comparing this to Explanation 1, we observe that estimation errors are not on the
exponential scale anymore. This leads to an alternate lower bound on κ which empirically presents
improvement in search space. ∣∣∣∣‖Q̂k −Q‖2 + ‖Q̂k+1 −Q‖2

‖Q̂k −Q‖2 − ‖Q̂k+1 −Q‖2

∣∣∣∣ ≤ κ (8)

Since Bohn(Q) is an upper bound on lse(Q), lse(Q) ≤ Bohn(Q), plugging it into CQL(H) in Eq.
1 objective yields a suitable result CQLBohn(H).

CQLBohn(H) = min
Q

αEs∼D [Bohn(Q)︸ ︷︷ ︸
approximation

− Ea∼π̂β [Q]
]

︸ ︷︷ ︸
expected value

+
1

2
Es,a,s′∼D

[(
Q− B̂πQ̂k

)2]
︸ ︷︷ ︸

empirical Bellman error

(9)

Figure 1: (left) Relationship between CQL(H) and
CQLBohn(H) objectives, (right) Diagonal entries of H̃ as ba-
sis points with unit circle in red. Values in violet lie in over-
estimation regime. Values in golden lie in overconservatism
regime. Values (seldomly encountered) in blue are accurate.

Similar to the original CQL(H) ob-
jective, CQLBohn(H) consists of an
expected value (second term in Eq.
9) and the empirical Bellman er-
ror (third term in Eq. 9). In
contrast to the high-variance soft-
maximum lse(Q), the objective en-
joys a tractable Bohn(Q) approxi-
mation. Fig. 1 (left) presents the
relationship between the two objec-
tives.

With that said, it is only left to
show that CQLBohn(H) establishes
a tight lower bound on true Q val-
ues. However, CQLBohn(H) does
not satisfy this result. The Böhning
approximation trades off a smoother objective for (1) a lower bound on true Q values and (2) the
key property of lse(Q) to be a contraction (Asadi & Littman, 2017). While we address the latter in
Appendix B showing that Bohn(Q) obeys contraction, the former imposes a strong and challenging
assumption which we discuss next.

We follow the process of CQL (Kumar et al., 2020b) and analyze Eq. 9 by optimizing over Q values
and setting the derivative to 0,

Q = H̃︸︷︷︸
scaling matrix

B̂πQ̂k︸ ︷︷ ︸
estimate

−α(αĤ+ π̂β(a|s))−1︸ ︷︷ ︸
effective tradeoff

(Ĥψ − softmax(ψ)− π̂β(a|s))︸ ︷︷ ︸
underestimation

(10)

Eq. 10 provides a general result for Q values at each iteration. The expression consists of a scaling
rate which is determined by the entries of the matrix H̃ = (

π̂β(a|s)
αĤ+π̂β(a|s)

)−1. Note the dependence

of iterates on behavior policy distribution π̂β(a|s) which suggests that a dataset with good coverage
may lead to improved convergence.

Assumption on H̃: We now consider the role of H̃ in optimization process. In order for the policy
evaluation scheme to provide an accurate estimate, the first two terms when combined should yield
the Bellman estimate B̂πQ̂k. Mathematically, H̃B̂πQ̂k = B̂πQ̂k. Note that this result can only be
achieved if the matrix H̃ is exactly equal to the identity H̃ = III. The expression indicates that all
diagonal terms of H̃ must equal to 1. This leads us to Explanation 3.

Explanation 3 (Strong Assumption on H̃) Smoother conservative objectives require the
scaling matrix H̃ to be identity, H̃ = III.

Fig. 1 (right) presents an intuition of the above result. If the diagonal entries of the matrix lie
inside the unit circle of the basis space (H̃ii < 1), then the Q values result in collapsing estimates.
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At each subsequent policy iteration, estimates B̂πQ̂k decay to minimum values and collapse at
the center of unit circle. In case the values lie outside the unit circle (H̃ii > 1), Q values will
result in overestimations and hence, diverge upon subsequent policy iterations. Thus, in order for
CQLBohn(H) to underestimate Q values, all diagonal entries of the matrix H̃ should lie on the unit
circle (H̃ii = 1) with off-diagonal entries as 0.

4.4 CONSERVATISM THROUGH THE LENS OF BEHAVIOR CLONING

Provision of ill-conditioned search spaces and a strong assumption on H̃ hurt convergence to the
true Q function. On one hand, ill-conditioned curvature hinders the optimization process of value
function. While on the other hand, CQLBohn(H) requires H̃ = III.

Our analysis of the optimization process implicitly hints at a potential solution. To improve the
optimization process, one must seek low κ values which would address underparameterization. Ad-
ditionally, these search spaces must facilitate approximations which address distributional shift.

We address the former by following prior works in regularization. Iterative rank degredation may
be evaded utilizing regularization as an auxilary learning signal in the optimization process (Mobahi
et al., 2020). Explicit penalization of Q values fulfills two objectives; (1) the scheme presents an
auxilary objective which motivates the agent to maximize expected returns while matching behaviors
to the dataset. (2) The objective provides a richer learning signal in cases where rewards may
not be informative (Matusch et al., 2020). Based on this insight, we incorporate value function
regularization as a suitable tool for retaining expressive parameterization.

While a variety of regularizers emerge as suitable candidates, we seek the one which best approxi-
mates the dataset. An ideal objective should effectively capture prior transitions with minimum un-
realizable requirements. This would make policy’s optimization convenient. Towards this goal, we
explore the information theoretic alternative of Mutual InformationMI{π; π̂β} (Poole et al., 2019)
between agent and behavior policies π and π̂β respectively. WhileMI{π; π̂β} presents increased
expressivity of π̂β prior, the quantity is itself difficult to estimate. We alleviate this by deriving a
variational lower bound objective (Bishop, 2006) (see Appendix C) consisting of the tractable pos-
terior approximation q(π|π̂β) and entropy regularization H(π). Such a scheme resembles behavior
cloning with noisy dataset demonstrations (Rajeswaran et al., 2018). We theoretically show that the
scheme is ε-stable and converges to true Q faster than CQL(H) (see Appendix C).

MI{π; π̂β} ≥ Ep(π,π̂β)[log q(π|π̂β)]︸ ︷︷ ︸
approximation

+ H(π)︸ ︷︷ ︸
entropy regularization

(11)

Explanation 4 (Convergence with Smooth Objectives) Conservative offline learning objec-
tives, for all Q values, yield improved empirical convergence with behavior cloning regular-
ization serving as tighter approximations to Q values.

It is worth noting that naively incorporating the lower bound with returns as Intrinsic Motivation
(IM) may lead to instabilities (Xie et al., 2021). In addition, expected returns being estimated by the
agent are based on off-policy dataset transitions and must be utilized in a similar fashion. Thus, we
propose to use an off-policy variational regularization of Eq. 12 wherein Q values are regularized
following sampled trajectories. We direct the curious reader to Appendix C for the full derivation.

Q̂k := Q̂k + Ep(π,π̂β)

[
log

(
T∏
t=1

qt(π|π̂β)γ
t−1

)]
(12)

Eq. 12 comprises of the per-timestep posterior qt(π|π̂β) ranging up to the horizon length T . Note
the additional reduction in bootstrapping errors due to the exponentiated γt−1 in likelihood. The
posterior is implicitly downweighed over longer temporal spans which prevent compounding of
errors in estimates. The formulation, when combined with CQL(H), leads to the CQL-IM objective.
We validate the soundness of variational optimization and approximations in the next section.

5 EXPERIMENTS
Motivated by theoretical evidence, our evaluation aims to study the practical effects of underestima-
tions when agents demonstrate significant conservatism. More specifically, our experiments aim at
addressing the following questions in discrete and control action settings;
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(1) How does the conservative framework of offline learning compare to the online setting?

(2) How does underestimation in Q values affect the search space?

(3) Does underparameterization of the value function hamper learning?

(4) How much conservatism does CQL(H) demonstrate?

(5) How does the condition on H̃ imposed by Bohn(Q) explain CQL(H)?

(6) How much efficacy does the variational approximation yield in practice?

(7) Are the behaviors learned offline significant from a representational perspective?

5.1 THE LINEWORLD DOMAIN

Figure 2: (top) The Lineworld do-
main, (bottom-left) Average Re-
turns, (bottom-right) Average Re-
gret (results averaged over 100 runs)

We briefly visit the toy example of a linefollower agent in
the Lineworld domain from Kumar et al. (2019) presented in
Fig. 2 (top). The agent starts at the location S and is tasked
to reach the goal location G by consistently moving right as
its optimal policy π∗(·|s). For each step in the right direc-
tion, the agent observes a reward of +1. For each step of
left action the agent observes a −1 reward resulting in the
termination of the episode. The total number of states cor-
respond to the number of steps between the start and goal
states. The setup consists of two settings, namely online and
offline agents. The online agent utilizes Q-learning and en-
joys its own data collected from the domain. The offline
agent utilizes CQL(H) and is initialized with a dataset of sub-
optimal transitions wherein the behavioral policy π̂β always
opposes the optimal policy π∗(·|s) by going left. The offline agent is allowed to collect data at
selective intervals after the first 100 steps of simulation (see Appendix I for details).

The evaluation yields insights towards posed questions; (1) Fig. 2 (bottom-left) presents the com-
parison of average returns achieved by online and offline agents for 200 states domain. The online
agent, by virtue of data collection, learns from rich transitions observed in the environment. This
leads to faster and consistent learning. On the other hand, the offline agent learns slowly due to
the sub-optimal preferences of behavioral policy arising from the dataset. Once the agent starts
collecting data, it updates its estimates based on observed transitions and retrieves optimal behavior.

One can further study the scalability of problem by varying number of states in the environment.
Fig. 2 (bottom-right) presents the variation of average regret (calculated with respect to optimal
returns after 100 steps) with the number of states. The offline agent observes a faster accumulation
in regret in comparison to the online agent. Additionally, the difference between regrets of offline
and online agents widens with the former aggregating more regret over larger state spaces. Thus, the
offline learning problem additionally restricts the scalability of agents towards larger state spaces.

5.2 AERIAL CONTROL

Figure 3: Aerial tasks takeoff ,
hover, zigzag and flythrugate il-
lustrated in their respective colors
moving away from the drone

The setting evaluates agents on a suite of aerial control tasks
simulating Drones (Panerati et al., 2021; Coumans, 2015)
wherein our agent is a CF2X quadcopter controlling the
torques applied to the 4 motor fins at 240 Hz (see Appendix
F for D4RL experiments). At each step, agent’s policy ob-
serves the drone’s position, velocity and orientation as a state.
Policies are evaluated on 4 diverse tasks; (1) takeoff requires
the policy to gradually ascend upward for flight, (2) hover re-
quires the policy to stay mid-air above a given location, (3)
zigzag requires the policy to manoeuvre in a zig-zag flight
pattern and (4) flythrugate, being a significantly challenging
scenario, requires the policy to escape through a narrow gate
opening. Fig. 3 provides an illustration of the tasks with de-
tails deferred to Appendix I.
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Figure 4: Comparison of average log κ

Figure 5: Comparison of the gap Q̂k −Q Figure 6: (top) Variation of rank, (bottom) Vari-
ation of log(κ) during training.

We address the theoretical claims of our evaluation by comparing CQL(H) to Behavior Cloning
(BC) and Soft Actor-Critic (SAC) (Haarnoja et al., 2018). Additionally, CQLBohn(H) denotes CQL
with Bohn(Q). All offline policies were trained subject to a pretrained SAC as the behavior policy.

Fig. 4 compares average of condition numbers during training. The plot answers the second ques-
tion, (2) Underestimated Q values pose a challenging search space which is confirmed by high
κ values in log scale. Compared to CQL(H), CQLBohn(H) has a moderately suitable objective.
CQL-IM, on the other hand, proclaims a well-behaved objective reflective of low log(κ) values.

(3) We now verify our claim on underparameterization by studying its effect on the search space.
Following the setting of Kumar et al. (2021a), Fig. 6 (top) presents the evolution in rank of weight
matrix corresponding to last layer of the critic (see Appendix F for additional results). One readily
notices a steady drop for CQL(H) arising from conventional TD updates. CQL-IM, by virtue of
variational regularization, is found robust to the rank degradation phenomenon. Fig. 6 (bottom)
further connects expressivity to search space by observing the evolution of log(κ). Proggressive
degradation of rank drives increasing values of κ for CQL(H). CQL-IM remains robust to this
trend, hence presenting a well-conditioned search space.

Method takeoff hover zigzag flythrugate

BC 0.86±0.17 0.97±0.02 0.96±0.17 0.98±0.13
SAC (π̂β) 0.88±0.21 0.97±0.11 0.94±0.33 0.96±0.08
CQL(H) 0.89±0.07 0.95±0.03 0.89±0.06 0.86±0.15

CQLBohn(H) 0.51±0.23 0.92±0.05 0.67±0.19 0.77±0.27
CQL-IM 0.86±0.06 0.95±0.01 0.94±0.09 0.97±0.08

Table 1: Normalized average returns on Drone Con-
trol tasks over 10 runs. Values in bold denote highest
returns. Values in green indicate best returns between
offline RL policies.

Method Low κ Low rank collapse Less Conservative Less assumptions

CQL(H) 7 7 7 3
CQLBohn(H) 3 3 3 7

CQL-IM 3 3 3 3

Table 2: Summary of comparisons.

Fig. 5 compares conservatism by virtue
of the gap Q̂k − Q (Kumar et al., 2020b)
wherein Q̂k are the values predicted by of-
fline methods at iteration k and Q is the
true Q value as per average discounted re-
turns. The comparison is representative of
desired approximations by suggesting that
a low Q̂k −Q gap is indicative of the value
estimates closely resembling the trueQ val-
ues. Observed results answer the remaining
questions; (4) CQL(H) learns significantly
conservative Q values in expectation which
steer the agent away from optimality. Es-
timates learned by virtue of excessive un-
derestimations drift away from the true Q
values, hence highlighting their theoretical
concerns. (5) CQLBohn(H) represents an
empirical upper bound on CQL(H). How-
ever, requirements raised by the Bohn(Q) approximation for scaling matrix H̃ hinder convergence of
CQLBohn(H) towards true Q values. (6) Lastly, values learned by CQL-IM closely match the true
values. This is a direct consequence of learning smoother information-theoretic objectives which
sufficiently represent the true expected returns by virtue of an expressive posterior.
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Figure 7: 2D t-SNE embeddings of representations learned by the critic parameters.
To further study the impact of erroneous approximations, one can assess the task performance of
methods in Table 1. CQL-IM, by virtue of intrinsic motivation, effectively captures the behavior
policy distribution and is competitive to BC and online SAC. CQLBohn(H) presents consistent re-
turns but falls short of optimal performance.

Random runs in RL may hinder fair comparison between algorithms. For instance, a good run of
a method when combined with its other moderate runs can push its otherwise on-par performance
higher. Following the recommendation of Lones (2021), we validate the statistical significance of
results by carrying out the Mann-Whitney U test (Mann & Whitney, 1947). All 40 seeds (10 seeds
per task) of each algorithm are compared to those of π̂β (online SAC) to yield the U statistic. U here
denotes the statistical significance of performance with higher values being desirable. We obtain
UBC = 123, UCQL = 88, UBohn = 13 and UIM = 97 with subscripts denoting respective algorithms.
Results in Table 1 are validated as BC and CQL-IM have higher statistical significance over CQL(H)
and CQLBohn(H) when compared to π̂β .

(7) Qualitatively, representations learned by the critic parameters link estimation errors with actor’s
behaviors. Fig. 7 presents 2D t-SNE (van der Maaten & Hinton, 2008) embeddings of these rep-
resentations. The critic parameters appropriately capture conservative, optimistic and near-accurate
estimations which are well-seperated in the low-dimensional representation space. We further vi-
sualize behaviors of actors corresponding to critic’s value estimates. In flythrugate, CQL(H) agent
underestimates its Q values while moving towards the gate. This results in the drone’s trajectories
falling short of optimal behavior. CQLBohn(H) overestimates Q values which results in the drone’s
trajectories overshooting optimal behavior. Contrary to above, CQL-IM presents accurate Q values
resulting in near-optimal behaviors.

6 DISCUSSION

Summary: The paper studied conservatism through the lens of value function optimization, upper
bounding approximations and behavior cloning as regularization in the CQL framework (Table 2).
Optimizing underestimated value functions steers the agent away from true value distributions. The
problem is further reflected as a link from underparameterization to ill-conditioned curvatures. A
tractable upper bound approximation to lse(Q) mitigates these challenges but imposes a strong con-
dition on scaling matrix H̃ to be III. Driven by its theoretical concerns, the framework incorporates
behavior cloning as off-policy variational regularization. The presented scheme results in accurate
value estimation, well-conditioned search spaces and expressive parameterizations.

Limitations: Data-driven mechanisms and RL reside at the pinnacle of machine learning. A theoret-
ical study of the two opens several new avenues for future work. We briefly highlight two promising
directions for further perusal; (1) A practical realization of the information-theoretic alternative and
its scalability to higher dimensions remain unbolted. An optimistic perspective towards this problem
is obtained using variational theory. Future directions could utilize alternate objectives with infor-
mation rich training signals for offline policies. (2) Orthogonally, one can seek alternative offline
mechanisms which would utilize tractable approximations to guarantee convergence. A meticulous
inspection of the policy structure sheds promise towards this aspect. We hope that an explanation
of the conservative learning framework serves as a motivating direction towards practical offline
learning problems.
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A CONSERVATIVE VALUE FUNCTION OPTIMIZATION

A.1 HESSIAN OF CQL(H)

The computation of CQL(H) hessian follows the computaion of its gradient,

∇QCQL(H) = α (softmax(Q)− π̂β) + π̂β

(
Q− B̂πQ̂k

)
(13)

∇2
QCQL(H) = α softmax(Q)T(111− softmax(Q))︸ ︷︷ ︸

curvature depends on
estimations

+ π̂β︸︷︷︸
curvature depends

on dataset

(14)

It is readily noticeable that CQL(H) is convex in the space of real Q values. More formally,
softmax(Q) ∈ (0, 1] and 111 are |A| dimensional arrays which yields softmax(Q)T(1−softmax(Q))
as a |A| × |A| positive definite matrix. This leaves π̂β which is an |A| dimensional array of action
probabilities and is always nonnegative. Thus, the complete sum results in a positive definite matrix
with dimensions |A| × |A|.
The first term emphasizes the dependence of estimations on a smooth curvature. Presence of π̂β , on
the other hand, highlights the dependence of curvature on dataset with action likelihoods reflecting
a fixed contribution.

A.2 OPTIMIZATION OF CQL(H) LANDSCAPE

This section studies the space of CQL(H) by analyzing its Hessian in the presence of steepest
descent method. Restating the Hessian of CQL(H),

∇2
QCQL(H) = −α softmax(Q)Tsoftmax(Q) + α softmax(Q) + π̂β (15)

As before, softmax(Q) here denotes an |A| dimensional array which makes the first term an |A| ×
|A| matrix. The second term remains an |A| dimensional array with α being a scalar. Finally, the
third term π̂β denotes an |A| dimensional array of action probabilities. The sum of second and third
term when broadcasted to each column of the first term results in an |A| × |A| positive definite
matrix.

Since π̂β is held fixed during training, Eq. 15 may be realized as a quadratic expression with the
variable v̂ = softmax(Q), A as a matrix with diagonal entries−2α, d as a vector with entries α and
e as the fixed π̂β ,

Quad(v̂) =
1

2
v̂TAv̂ − dv̂ + e (16)

Consider the gradient of Quad(v̂),

∇v̂ Quad(v̂) = Av̂ − d (17)

The minimizer v̂ = v is the unique solution to the linear system Av̂ = d. One can compute the
optimal step length ηk that minimizes Quad(v̂ − η∇v̂ Quad(v̂)).

Quad(v̂ − η∇v̂ Quad(v̂)) =
1

2
(v̂ − η∇v̂ Quad(v̂))

T
A(v̂ − η∇v̂ Quad(v̂))

− dT (v̂ − η∇v̂ Quad(v̂))
T
+ e (18)

Setting the derivative w.r.t η to 0, we get,

ηk =
∇v̂ Quad(v̂)T∇v̂ Quad(v̂)

∇v̂ Quad(v̂)TA∇v̂ Quad(v̂)
(19)

Utilizing this in the steepest descent update rule yields the following,

v̂k+1 = v̂k −
(
∇v̂ Quad(v̂)T∇v̂ Quad(v̂)

∇v̂ Quad(v̂)TA∇v̂ Quad(v̂)

)
∇v̂ Quad(v̂) (20)

We now study the rate of convergence. Using Av = d, we have,

1

2
‖v̂ − v‖22 = Quad(v̂)−Quad(v) (21)
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Utilizing Eq. 20 and noting that∇v̂ Quad(v̂) = A(v̂ − v), we have the following,

‖v̂k+1 − v‖22 = χ‖v̂k − v‖22 (22)

where χ =

(
1− (∇v̂ Quad(v̂)T∇v̂ Quad(v̂))

2

(∇v̂ Quad(v̂)TA∇v̂ Quad(v̂))(∇v̂ Quad(v̂)TA−1∇v̂ Quad(v̂))

)
.

The above results in the following bound,

‖v̂k+1 − v‖22 ≤
(
λn − λ1
λn + λ1

)2

‖v̂k − v‖22 (23)

‖v̂k+1 − v‖22 ≤
(
κ− 1

κ+ 1

)2

‖v̂k − v‖22 (24)

where 0 ≤ λ1 ≤ λ2 . . ≤ λn are the eigenvalues of A and κ = λn
λ1

.

Dependence of Quad(v̂) convergence on κ highlights its necessity for a well-conditioned objective.

If κ is large, Quad(v̂) optimization will be ill-conditioned. On the other hand, if κ→ 1,
(
κ−1
κ+1

)2
→

0, resulting in sound convergence.

We thus establish a lower bound on κ which captures estimation errors in v̂ values. Simply rear-
ranging Eq. 24 yields the following,

‖v̂k+1 − v‖22
‖v̂k − v‖22

≤
(
κ− 1

κ+ 1

)2

(25)

‖v̂k+1 − v‖2
‖v̂k − v‖2

+ 1 ≤ κ− κ
(
‖v̂k+1 − v‖2
‖v̂k − v‖2

)
(26)∣∣∣∣∣∣

1 + ‖v̂
k+1−v‖2
‖v̂k−v‖2

1− ‖v̂
k+1−v‖2
‖v̂k−v‖2

∣∣∣∣∣∣ ≤ κ (27)

∣∣∣∣‖v̂k − v‖2 + ‖v̂k+1 − v‖2
‖v̂k − v‖2 − ‖v̂k+1 − v‖2

∣∣∣∣ ≤ κ (28)

Finally, plugging in v̂ = softmax(Q̂) and v = softmax(Q) provides the lower bound on κ.∣∣∣∣‖softmax(Q̂k)− softmax(Q)‖2 + ‖softmax(Q̂k+1)− softmax(Q)‖2
‖softmax(Q̂k)− softmax(Q)‖2 − ‖softmax(Q̂k+1)− softmax(Q)‖2

∣∣∣∣ ≤ κ (29)

We further prove by example that increasing underestimations drive the condition number to higher
values. Begin by considering the case wherein the error at iteration k+1 is twice of error at iteration
k, |softmax(Q̂k+1)−softmax(Q)| = 2|softmax(Q̂k)−softmax(Q)|. Plugging this in Eq. 3 yields
a lower bound of 3. Following one step of policy update the bound becomes,∣∣∣∣‖softmax(Q̂k+1)− softmax(Q)‖2 + ‖softmax(Q̂k+2)− softmax(Q)‖2

‖softmax(Q̂k+1)− softmax(Q)‖2 − ‖softmax(Q̂k+2)− softmax(Q)‖2

∣∣∣∣ ≤ κ (30)

Considering the case of increasing estimation errors such that the error at iteration k+2 is thrice the
error at iteration k, |softmax(Q̂k+2) − softmax(Q)| = 3|softmax(Q̂k) − softmax(Q)|. Utilizing
this in Eq. 30 results in a lower bound of 5 which is greater than the previous bound of 3. The above
indicates that κ increases with increasing values of estimation errors.

A.3 RANK COLLAPSE & κ

We derive Eq. 4 adapted from Mobahi et al. (2020). Starting with the assumption ‖π∗‖ >
√
Kε

which translates into rt > 1 for the iterate rt in the search space. Using the lower bound of Mobahi
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et al. (2020) (Eq. 141), we arrive at the following results with a(κ) = (r0−1)2+s(2r0−1)
(r0−1+s)2 , b(κ) =

r20s
(r0−1+s)2 and r0 = 1√

Kε
‖π‖.

rt = at(κ)r0 − b(κ)
at(κ)− 1

a(κ)− 1
(31)

Setting the above expression to 1 yields the following,

t =
log
(

1−a(κ)+b(κ)
b(κ)+r0(1−a(κ))

)
log (a(κ))

(32)

Simplifying the log terms by plugging the expressions for a(κ) and b(κ) results in the following
inequality,

log

(
1+κ−1

r20

1+κ−1
r0

)
log

(
1−

(κ−1
r0

+ 1
r0

)(κ−1
r0

)

(1+κ−1
r0

)2

) ≥ r0 − 1

κ
(33)

Thus,

t ≥ r0 − 1

κ
=

‖π∗‖√
Kε

κ
≥

π̂β√
Kε
− 1

κ
(34)

A.4 ADDITIONAL RELATED WORK

Value Function Regularization: Various recent methods in literature utilize value function penal-
ties (Wu et al., 2019; Kumar et al., 2019; Jin et al., 2021; Buckman et al., 2021). Provision of
penalties to the value function results in constraining agents towards data transitions (Kumar et al.,
2021b). An additional benefit of using behavior penalties is the improvement in policy performance
and overall runtime (Fujimoto & Gu, 2021). Regularization methods may constrain the policy using
predefined sets of divergence metrics such as MMD kernels (Kumar et al., 2019) or KL regulariza-
tion (Wu et al., 2019) in the case of actor-critic algorithms. An alternate way to regularize values is
using explicit parameterizations of agent’s policy (Fujimoto et al., 2019). Beyond policy constraints,
alternate schemes such as Bellman uncertainty functions (Buckman et al., 2021) and uncertainty
quantifiers are also found effective in practice (Jin et al., 2021). Lastly, the more recent class of con-
strained RL methods (Anonymous, 2022) use Bernstein inequalities to obtain generic regularization
terms. These utilize estimates of dynamics and state action pair counts. Our regularization scheme
is motivated by these prior efforts.

Imitation Learning combined with Offline RL: Offline RL methods adapt BC as regularizations
(Fujimoto & Gu, 2021) and auxilary objectives (Rajeswaran et al., 2018; Rajaraman et al., 2020) to
tackle distributional shift. Various works in this domain have witnessed improvements in learning
of behaviors off-policy (Hester et al., 2018). A concrete use-case of this scenario is of learning
from demonstrations (Zolna et al., 2020). BC allows learning of policies from complex multi-
modal human data transitions where naive TD estimates fail to capture behaviors (Wu et al., 2021).
Additionally, provision of demonstrations motivates exploration in real world applications (Nair
et al., 2018) as well as guided search of policies (Li et al., 2018). We combine BC with Offline RL
based on the above directions.

B CONSERVATISM & APPROXIMATIONS

B.1 CONTRACTIVE NATURE OF Bohn(Q)

This section theoretically shows that the contractive nature of softmax lse(Q) is preserved upon
replacing it with Bohn(Q) in CQL(H). More specifically, we show that the quadratic approximation
Bohn(Q) is a contraction for specific values of ψ. Consider two Q-value functions, Q and Q

′
and

define a norm || · ||. Consider the following expression,∥∥∥∥Bohn(Q)− Bohn(Q
′
)

∥∥∥∥ (35)

16



Under review as a conference paper at ICLR 2022

=

∥∥∥∥12QTĤQ− bQ+ c− 1

2
Q
′ TĤQ

′
+ bQ

′
− c
∥∥∥∥ (36)

=

∥∥∥∥12(QTĤQ−Q
′ TĤQ

′
) + b(Q

′
−Q)

∥∥∥∥ (37)

≤ 1

2

∥∥∥∥QTĤQ−Q
′ TĤQ

′
∥∥∥∥+ b

∥∥∥∥Q′ −Q∥∥∥∥ (38)

Wherein the first inequality results from the triangle inequality. Considering the first term in Eq. 38,

≤ 1

4

∥∥∥∥QT(I|A| −
1

|A|+ 1
1|A|1

T
|A|)Q−Q

′ T(I|A| −
1

|A|+ 1
1|A|1

T
|A|)Q

′
∥∥∥∥ (39)

=
1

4

∥∥∥∥QTQ− 1

|A|+ 1
QT1|A|1

T
|A|Q−Q

′ TQ
′
+

1

|A|+ 1
Q
′ T1|A|1

T
|A|Q

′
∥∥∥∥ (40)

=
1

4

∥∥∥∥QTQ−Q
′ TQ

′
+

1

|A|+ 1
((1T|A|Q

′
)T(Q

′ T1|A|)
T − (1T|A|Q)T(QT1|A|)

T)

∥∥∥∥ (41)

=
1

4

∥∥∥∥QTQ−Q
′ TQ

′
+

1

|A|+ 1
(Q
′ TQ

′
−QTQ)

∥∥∥∥ (42)

≤ 1

4(|A|+ 1)

∥∥∥∥|A|QTQ− |A|Q
′ TQ

′
∥∥∥∥ (43)

=
|A|

4(|A|+ 1)

∥∥∥∥QTQ−Q
′ TQ

′
∥∥∥∥ (44)

Using this in Eq. 38, one obtains the following,

=
|A|

4(|A|+ 1)

∥∥∥∥QTQ−Q
′ TQ

′
∥∥∥∥+ b

∥∥∥∥− (Q−Q
′
)

∥∥∥∥ (45)

=
|A|

4(|A|+ 1)

∥∥∥∥(Q−Q′)T(Q+Q
′
)

∥∥∥∥+ b

∥∥∥∥(Q−Q′)∥∥∥∥ (46)

≤ |A|
4(|A|+ 1)

∥∥∥∥(Q−Q′)∥∥∥∥∥∥∥∥(Q+Q
′
)

∥∥∥∥+ b

∥∥∥∥(Q−Q′)∥∥∥∥ (47)

=

[
|A|
∥∥Q+Q

′∥∥
4(|A|+ 1)

+ b

]∥∥∥∥Q−Q′∥∥∥∥ (48)

Wherein the first inequality results from Cauchy-Schwarz inequality. The above result would be a

contraction if ( |A|||Q+Q
′
||

4(|A|+1) + b) < 1. More concretely,

|A|
∥∥∥∥Q+Q

′
∥∥∥∥

4(|A|+ 1)
+ b < 1 (49)

=

∥∥∥∥Q+Q
′
∥∥∥∥ < 4(1− b)(|A|+ 1)

|A|
(50)

=

∥∥∥∥Q+Q
′
∥∥∥∥ < 4(1− Ĥψ − g(ψ))(|A|+ 1)

|A|
(51)

Thus, a suitable choice of ψ would allow the upper bound to hold, making the Bohning approxima-
tion a contraction.
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B.2 LOCAL CONVERGENCE OF Bohn(Q)

The study of Bohn(Q) convergence involves isolating its optimization from the CQL(H) objective.
Our approach closely follows the convergence analysis of convex quadratics in Nocedal & Wright
(2006). Consider the gradient of Bohn(Q) for an estimate Q̂,

∇Q̂ Bohn(Q̂) = ĤQ̂− b (52)

The minimizer Q̂ = Q is the unique solution to the linear system ĤQ̂ = b. One can compute the
optimal step length ηk that minimizes Bohn(Q̂− η∇Q̂ Bohn(Q̂)).

Bohn(Q̂− η∇Q̂ Bohn(Q̂)) =
1

2

(
Q̂− η∇Q̂ Bohn(Q̂)

)T
Ĥ
(
Q̂− η∇Q̂ Bohn(Q̂)

)
− bT

(
Q̂− η∇Q̂ Bohn(Q̂)

)T
+ c (53)

Setting the derivative w.r.t η to 0, we get,

ηk =
∇Q̂ Bohn(Q̂)T∇Q̂ Bohn(Q̂)

∇Q̂ Bohn(Q̂)TĤ∇Q̂ Bohn(Q̂)
(54)

Utilizing this in the steepest descent update rule yields the following,

Q̂k+1 = Q̂k −

(
∇Q̂ Bohn(Q̂)T∇Q̂ Bohn(Q̂)

∇Q̂ Bohn(Q̂)TĤ∇Q̂ Bohn(Q̂)

)
∇Q̂ Bohn(Q̂) (55)

We now study the rate of convergence. Using ĤQ = b, we have,
1

2
‖Q̂−Q‖22 = Bohn(Q̂)− Bohn(Q) (56)

Utilizing Eq. 55 and noting that∇Q̂ Bohn(Q̂) = Ĥ(Q̂−Q), we have the following,

‖Q̂k+1 −Q‖22 = χ‖Q̂k −Q‖22 (57)

where χ =

(
1− (∇Q̂ Bohn(Q̂)T∇Q̂ Bohn(Q̂))

2

(∇Q̂ Bohn(Q̂)TĤ∇Q̂ Bohn(Q̂))(∇Q̂ Bohn(Q̂)TĤ−1∇Q̂ Bohn(Q̂))

)
.

The above results in the following bound,

‖Q̂k+1 −Q‖22 ≤
(
λn − λ1
λn + λ1

)2

‖Q̂k −Q‖22 (58)

‖Q̂k+1 −Q‖22 ≤
(
κ− 1

κ+ 1

)2

‖Q̂k −Q‖22 (59)

where 0 ≤ λ1 ≤ λ2 . . ≤ λn are the eigenvalues of Ĥ and κ = λn
λ1

.

Dependence of Bohn(Q) convergence on κ highlights its necessity for a well-conditioned objective.

If κ is large, Bohn(Q) optimization will be ill-conditioned. On the other hand, if κ→ 1,
(
κ−1
κ+1

)2
→

0, resulting in sound convergence.

We thus establish a lower bound on κ which captures estimation errors in Q values. Simply rear-
ranging Eq. 59 yields the desired result,

‖Q̂k+1 −Q‖22
‖Q̂k −Q‖22

≤
(
κ− 1

κ+ 1

)2

(60)

‖Q̂k+1 −Q‖2
‖Q̂k −Q‖2

+ 1 ≤ κ− κ

(
‖Q̂k+1 −Q‖2
‖Q̂k −Q‖2

)
(61)∣∣∣∣∣∣

1 + ‖Q̂
k+1−Q‖2
‖Q̂k−Q‖2

1− ‖Q̂
k+1−Q‖2
‖Q̂k−Q‖2

∣∣∣∣∣∣ ≤ κ (62)

∣∣∣∣‖Q̂k −Q‖2 + ‖Q̂k+1 −Q‖2
‖Q̂k −Q‖2 − ‖Q̂k+1 −Q‖2

∣∣∣∣ ≤ κ (63)
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C CONSERVATISM WITH BEHAVIOR CLONING

C.1 LOWER BOUND ON MUTUAL INFORMATION

Here we will derive the lower bound on Mutual Information between the agent’s and behavior policy
MI{π; π̂β}. Denote p(π, π̂β) as the joint probability distribution of actions sampled from π and
π̂β , expandingMI{π; π̂β} as per definition,

MI{π; π̂β} =
∫
p(π, π̂β) log

(
p(π, π̂β)

p(π)p(π̂β)

)
dπdπ̂β (64)

=

∫
p(π, π̂β) log

(
p(π|π̂β)p(π̂β)
p(π)p(π̂β)

)
dπdπ̂β (65)

=

∫
p(π, π̂β) log

(
p(π|π̂β)
p(π)

)
dπdπ̂β (66)

Upon seeking a tractable approximation q(π|π̂β) to the posterior p(π|π̂β),

=

∫
p(π, π̂β)

(
log

q(π|π̂β)
p(π)

+ log
p(π|π̂β)
q(π|π̂β)

)
dπdπ̂β (67)

=

∫
p(π, π̂β) log

(
q(π|π̂β)
p(π)

)
dπdπ̂β +

∫
p(π, π̂β) log

(
p(π|π̂β)
q(π|π̂β)

)
dπdπ̂β (68)

=

∫
p(π, π̂β) log

(
q(π|π̂β)
p(π)

)
dπdπ̂β +

∫
p(π|π̂β)p(π̂β) log

(
p(π|π̂β)
q(π|π̂β)

)
dπdπ̂β (69)

The second term simplifies to Eπ̂β [KL(p(π|π̂β)||q(π|π̂β))] which must be non-negative,

≥
∫
p(π, π̂β) log q(π|π̂β)dπdπ̂β −

∫
p(π|π̂β)p(π̂β) log p(π)dπdπ̂β (70)

Marginalizing the second term over π̂β yields the lower bound,
= Ep(π,π̂β)[log q(π|π̂β)] +H(p(π)) (71)

C.2 PRACTICAL IMPLEMENTATION

This section derives the off-policy variant of IM formulation incorporating theMI{π; π̂β} lower
bound. Begin by explicitly writing the augmented Q value function with rt as the reward at step t,

Q = Est∼D,at∼π

[
T∑
t=1

γt−1rt

]
(72)

Expanding the Q value recursion till the termination step T ,
r1+Ep(π,π̂β)[log q1(π|π̂β)]+γr2+γEp(π,π̂β)[log q2(π|π̂β)]+. . .+γ

T−1rT+γ
T−1Ep(π,π̂β)[log qT (π|π̂β)]

(73)
Grouping the reward and log terms separately,

Q =
(
r1 + γr2 + . . .+ γT−1rT

)
+
(
Ep(π,π̂β)[log q1(π|π̂β)]

+ γEp(π,π̂β)[log q2(π|π̂β)] + . . .+ γT−1Ep(π,π̂β)[log qT (π|π̂β)]
)

(74)

where the discounted return in the first term simplifies to Q̂k and the second term to an expected
sum of logs,

Q = Q̂k + Ep(π,π̂β)

[
T∑
t=1

γt−1 log qt(π|π̂β)

]
(75)

Moving γt−1 inside the log,

Q = Q̂k + Ep(π,π̂β)

[
T∑
t=1

log qt(π|π̂β)γ
t−1

]
(76)

Finally, moving the sum inside log yields the result.

Q = Q̂k + Ep(π,π̂β)

[
log

T∏
t=1

qt(π|π̂β)γ
t−1

]
(77)
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C.3 CONVERGENCE BOUND

We theoretically show that CQL-IM converges faster to true Q when compared to CQL(H). Begin
by considering the gap between underestimated values B̂πQ̂k−α

(
softmax(Q̂)

π̂β
− 1
)

and true values
Q, ∥∥∥∥B̂πQ̂k − α

(
softmax(Q̂)

π̂β
− 1

)
−Q

∥∥∥∥
2

(78)

Using the fixed point property of Bellman operator,∥∥∥∥Q̂k −Qα
(
softmax(Q̂)

π̂β
− 1

)∥∥∥∥
2

(79)

Using the triangle inequality,

≤ ‖Q̂k −Q‖2 + α

∥∥∥∥ softmax(Q̂)

π̂β
− 1

∥∥∥∥
2

(80)

We now consider the two terms separately. For the first term we have, following the results of
approximation value iteration convergence (Bertsekas & Tsitsiklis, 1995),

≤ ‖(B̂π)kQ̂0 −Q‖2 (81)

γk‖Q̂0 − Q̂+ Q̂−Q‖2 (82)

Here, Q̂ denotes an approximation to the true Q function.

≤ γk‖Q̂0 − Q̂‖2 + γk‖Q̂−Q‖2 (83)

which results in the following bound (Bertsekas, 2018),

≤ γk
√
rmax + γk

√
rmax|S|
1− γ

(84)

The bound denotes the geometric convergence of policy optimization process. With O(γk), policy
updates approach local convergence asymptotically in increasing number of iterations k.

Considering the second term, we have,

α

∥∥∥∥ exp(Q̂)

π̂β
∑
a∈A exp(Q̂(s, a))

− 1

∥∥∥∥
2

(85)

which is bounded as follows,

α

∥∥∥∥ exp(Q̂)∑
a∈A exp(Q̂(s, a))

− 1

∥∥∥∥
2

≤ α
∥∥∥∥ exp(Q̂)

π̂β
∑
a∈A exp(Q̂(s, a))

− 1

∥∥∥∥
2

≤ ∞ (86)

Irrespective of the value of π̂β , exponential values of Q̂ do not decay. This leaves the error to persist
at an O(exp(Q̂)) rate.

We now repeat the same computation for CQL-IM. Explicitly stating the CQL-IM underestimations,

Q̂ = B̂πQ̂k − α

(
softmax(Q̂+ log q)

π̂β
− 1

)
− log q (87)

Utilizing this to compute the difference from true Q values,∥∥∥∥B̂πQ̂k − α
(
softmax(Q̂+ log q)

π̂β
− 1

)
− log q −Q

∥∥∥∥
2

(88)

As before, using the fixed point of Bellman operator and separating the terms using triangle inequal-
ity,

‖Q̂k −Q‖2 +
∥∥∥∥α
(
softmax(Q̂+ log q)

π̂β
− 1

)
+ log q

∥∥∥∥
2

(89)
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Solving for the first term results in O(γk) convergence for policy updates,

‖Q̂k −Q‖2 ≤ γk
√
rmax + γk

√
rmax|S|
1− γ

(90)

And for the second term, we have,∥∥∥∥α
(

exp(Q̂+ log q)

π̂β
∑
a∈A exp(Q̂(s, a) + log q(s, a))

− 1

)
+ log q

∥∥∥∥
2

(91)

which yields the following after manipulation,∥∥∥∥α
(

π̂BC exp(Q̂)q

π̂β
∑
a∈A exp( ˆQ(s, a))q(s, a)

− 1

)
+ log q

∥∥∥∥
2

(92)

Denoting π̂BC = q∑
a∈A q(s,a)

gives us the following result.∥∥∥∥α
(
softmax(Q̂)

π̂β
− 1

)
+ log q

∥∥∥∥
2

(93)

Compared to Eq. 86, Eq. 93 presents the additional π̂BC and log q terms. Here, log q presents
bounded values and hence, bounded convergence following prior results (Cai et al., 2019; Yin et al.,
2021a). On the other hand, π̂BC improves the rate of convergence. Note that π̂BC ∈ (0, 1] depends
on each state-action pair as softmax(Q̂) and acts as a scaling term for these exponential values.
This way, the effective rate reduces from O(exp(Q̂)) of Eq. 86 to O(π̂BC exp(Q̂)). Thus, CQL-IM
converges faster than CQL(H) to true Q values.

C.4 STABILITY GUARANTEE

Next, we show that CQL-IM is ε-stable when compared to CQL(H). To derive this result, we
assume that the gradient of Q values for both objectives is bounded by a constant ε and Q values
can locally approximate the Bellman update, i.e.- at convergence Q ≈ B̂πQ̂k.

We need to show that the gradient of CQL-IM is strictly negative definite and lies in the open left-
half plane. Note that this is one of the conditions for Lyapunov stability (Bhatia & Szegö, 2002), a
stronger condition for nonlinear systems.

First, differentiating CQL(H) w.r.t parameters of Q, we get,(
α

[
exp(Q)∑
a exp(Q)

− π̂β
]
+ (Q− B̂πQ̂k)π̂β

)
∇Q (94)

Since ∇Q ≤ ε and Q ≈ B̂πQ̂k at convergence, the equation reduces to αsoftmax(Q) − π̂β . This
results in 0 for extreme values of softmax(Q) and π̂β (softmax(Q) = 1 and π̂β = 1) indicating that
the gradient is not strictly negative. Intuitively, the result denotes that the critic update of CQL(H)
may not alaways be a descent direction.

Considering CQL-IM and differentiating the objective w.r.t parameters of Q,(
α

[
exp(Q+ log q)∑
a exp(Q+ log q)

− π̂β
]
+ (Q+ log q − B̂πQ̂k)π̂β

)
∇Q (95)

Under the same conditions of bounded gradient ∇Q ≤ ε and approximate TD convergence Q ≈
B̂πQ̂k, Eq. 95 simplifies to − log q. This indicates that CQL-IM is ε-stable. Upto a constant ε, the
gradient always corresponds to a descent direction when Q ≈ B̂πQ̂k.

D CONSERVATISM IN THE CONJUGATE SPACE

D.1 CQL(H) AS ENTROPY MINIMIZATION

Optimizing Q values in the value function space does not necessarily highlight its consequences
in alternative basis spaces. For instance, policy gradient methods optimize policies directly in the
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policy space which implicitly explains asymptotic growth of the value function (Sutton & Barto,
2018). However, a converse for the same is hard to accomplish. A similar argument can be made
for CQL(H) upon realizing its implications in the conjugate space.

As a starting point, consider the Legendre transform (convex conjugate of a differentiable func-
tion) (Boyd & Vandenberghe, 2004) of lse(Q). The lse(Q) function is convex in R|A| and has
softmax(Q) as its gradient map (Gao & Pavel, 2017). Denote f∗(Qconj) as the Legendre transform
of f(Q) expressed in Eq 96.

f∗(Qconj) = sup
Q∈dom f

(QT
conjQ− f(Q)) ; Qconj = ∇Qf(Q) (96)

The quantity Qconj = ∇Qf(Q) represents the Q function in conjugate space with dom f represent-
ing the feasible set of Q values. Substituting f(Q) = lse(Q) to obtain the conjugate f∗(Qconj),

f(Q) = lse(Q) =⇒ f∗(Qconj) =
∑
a

Qconj(s, a) log(Qconj(s, a)) (97)

Figure 8: Intuition behind
min
Qconj

H(Qconj)

Eq. 97 establishes a direct link between f∗(Qconj) and the entropy
of conjugate value distribution. f∗(Qconj) exactly represents the
negative entropy of Qconj function restricted to |A| dimensional
simplex4|A|, i.e.- −H(Qconj) ∈ 4|A|. One can construct an aux-
ilary objective consisting of−H(Qconj) which is easier to optimize
in comparison to lse(Q). A simple inspection of the Fenchel-Young
Inequality (Boyd & Vandenberghe, 2004; Kumar et al., 2020a)
f(Q) + f∗(Qconj) ≥ QT

conjQ reveals that f∗(Qconj) ≥ −f(Q).
Utilizing this for lse(Q) presents a tractable entropy minimization
objective in the conjugate space, lse(Q) ≥ min

Qconj

H(Qconj),

f∗(y) + f(x) ≥ xTy , ∀ x ∈ dom f, ∀ y ∈ dom f∗ (98)

= −H(Qconj) ≥ − lse(Q) +QT
conjQ , ∀Q, ∀Qconj (99)

= −H(Qconj) ≥ − lse(Q) , ∀Q, ∀Qconj (100)

= H(Qconj) ≤ lse(Q) , ∀Q, ∀Qconj (101)

= min
Qconj

H(Qconj) ≤ lse(Q) , ∀Q (102)

That is, minimizing the entropy in conjugate space is a tractable lower bound objective on the lse(Q)
function. Utilizing this insight in CQL(H) yields the auxilary entropy minimization objective.

min
Q

αEs∼D
[
min
Qconj

H(Qconj)︸ ︷︷ ︸
approximation

− Ea∼π̂β [Q(s, a)]
]

︸ ︷︷ ︸
expected value

+
1

2
Es,a,s′∼D

[(
Q− B̂πQ̂k

)2]
︸ ︷︷ ︸

empirical Bellman error

(103)

This is illustrated in Fig. 8. In addition to the prior expected value and empirical Bellman error
terms, Eq. 103 now additionally represents an entropy minimization objective min

Qconj

H(Qconj) in

the conjugate space. Intuitively, the objective enforces an agent to minimize uncertainty within the
learning signal arising from batched data transitions. Note that this is in addition to predefined maxi-
mum entropy regularization objectives which are a common precept in learning behaviors (Haarnoja
et al., 2018; Singh et al., 2020; Kumar et al., 2019; Levine et al., 2020). But how does minimization
of entropy link to underestimations in the conservative learning framework?

The insight can be further studied by optimizing over Eq. 103 and setting its derivatives w.r.t. Q and
Qconj to 0 while adhering to the KKT conditions. We first optimize over min

Qconj

H(Qconj) to obtain

the optimal Qconj = 1
e . Utilizing this to solve the global optimization problem, one obtains the

following expression,

− απ̂β + π̂β

(
Q− B̂πQ̂k

)
= 0 =⇒ Q = B̂πQ̂k + α (104)
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Eq. 104 paints a direct significance between the entropy minimization scheme and Q value esti-
mates. The second term in Eq. 104 represents overestimations at each subsequent policy iteration
which regularize the Bellman estimate B̂πQ̂k. This leads to an accumulation of positive biases over
policy updates which directly depend on α. Since α is a free parameter, its value may be tuned for
reducing overestimation errors. Additionally, Kumar et al. (2020b) note that in the limit of infinite
data, small values of α suffice to yield a lower bound. Thus, elimination of overoptimistic estimates
require either a hand-engineered value or infinite data samples.

D.2 EXPLAINING HIGH VARIANCE

An alternate process to understand conservatism in conjugate space is by considering the Legendre
transform of the complete CQL(H) objective. Similar to initial steps, consider f(Qconj) as the
CQL(H) objective in Eq. 1. Upon computing Qconj = ∇Qf(Q), one arrives at a value for Qconj

which depends on Q and π̂β ,

Qconj = ∇Qf(Q) = α [softmax(Q(s, a))− π̂β(a|s)] + (Q(s, a)− B̂πQ̂k)π̂β(a|s) (105)

= (α softmax(Q(s, a)) +Q(s, a)π̂β(a|s))− π̂β(a|s)
[
α+ B̂πQ̂k

]
(106)

Following the precept from CQL (Kumar et al., 2020b) and only considering the setting wherein
values of α are small,

Qconj = π̂β(a|s)
(
Q(s, a)− B̂πQ̂k

)
(107)

Intuitively, Qconj denotes the gap between current Q and empirical Bellman estimate B̂πQ̂k which
is scaled by the likelihood of actions under behavior policy π̂β . The expression quantifies how far is
the current estimate from previous Bellman estimate under the behavior policy distribution.

Rearranging Eq. 107 yields Q =
Qconj

π̂β
+ B̂πQ̂k. Substituting this in CQL(H) and optimizing over

Qconj by setting the derivative w.r.t. Qconj to 0 yields the following,

min
Qconj

Qconj

(
Qconj

π̂β
+ B̂πQ̂k

)
− α Es∼D

[
lse

(
Qconj

π̂β
+ B̂πQ̂k

)
−Ea∼π̂β

[
Qconj

π̂β
+ B̂πQ̂k

]]
− 1

2
Es,a,s′∼D

[(
Qconj

π̂β

)2
]

(108)

(
Qconj

π̂β
+ B̂πQ̂k

)
+
Qconj

π̂β
− α

(
1

π̂β
softmax

(
Qconj

π̂β
+ B̂πQ̂k

)
− 1

)
− Qconj

π̂β
= 0 (109)

Qconj

π̂β
+ B̂πQ̂k = α

(
1

π̂β
softmax

(
Qconj

π̂β
+ B̂πQ̂k

)
− 1

)
(110)

Qconj = π̂β︸︷︷︸
scaling

|B̂πQ̂k|︸ ︷︷ ︸
estimate

+ α︸︷︷︸
tradeoff

[
softmax

(
Qconj

π̂β
+ B̂πQ̂k

)
− π̂β(a|s)

]
︸ ︷︷ ︸

underestimation

(111)

Eq. 111 consists of 4 terms. The first term indicates the rate of decay at which subsequent estimates
in the second term diminish towards finitely small values. The third term forms the tradeoff factor
denoting the scale at which CQL underestimates values. Note the dependence of the third term on
constant α which, as in the previous analysis, intuitively suggests that uncertainty may be traded off
for estimation errors (Kumar et al., 2020b). Lastly, the fourth term indicates potential underestima-
tion of Q values arising from the squashed softmax(Q) distribution. Since µ ∝ exp(Q), the gap
softmax(Q) − π̂β intuitively represents a change in µ − π̂β . This highlights a set of fluctuating Q
values which lead to increasing/decreasing softmax(Q) resulting in high-variance updates.

E EXTENSIONS TO MODEL-BASED SETTING

This section highlights the extension of our analysis to the setting of Conservative Model-based
Policy Optimization (COMBO) (Yu et al., 2021b). In order to strictly adhere to the notation of
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COMBO, we slightly abuse our notation and denote the state marginal distribution as dπM(s) cor-
responding to the distribution of states obtained by rolling out policy π in the MDP M. Further,
define the MDPM as the empirical MDP induced by the dataset D corresponding to the behavior
policy π̂β . The model-based setting trains a dynamics model T̂ such that the objective corresponds

to maximum likelihood estimation min
T̂

Es,a,s′∼D
[
log T̂ (s′|s, a)

]
. Corresponding to the model,

one can construct the learned MDP M̂ = (S,A, r, T̂ , γ). COMBO makes use of a data aggregation
framework wherein at each iteration, the agent performs k-step rollouts using T̂ starting from state
s ∈ D and adds the data generated by the model to a separate datasetDmodel. The policy is optimized
corresponding to a batch of data sampled from D ∪ Dmodel wherein each datapoint is drawn from
D with probability f ∈ [0, 1] and Dmodel with probability 1 − f ∈ [0, 1]. The empirical objective
utilized by COMBO (Yu et al., 2021b) (Eq. 23) is based on CQL(H) and is expressed as per Eq.
112.

Q̂k ← argmin
Q

α
(
Es∼dπ

M̂
[lse(Q)]− Es,a∼D[Q(s, a)]

)
+

1

2
Es,a,s′∼df

[(
Q(s, a)− B̂πQ̂k

)2]
(112)

Eq. 112 consists of dπ
M̂

as the discounted state marginal distribution obtained when policy π is

executed in the MDP M̂ and df as an f -interpolation between the offline dataset and model rollouts
df = fd+ (1− f)dπ

M̂
wherein the notation uses d as a shorthand for the discounted state marginal

distribution corresponding to the dataset dπ̂β (st).

E.1 UNDERESTIMATION IN COMBO

Prior to our analysis, we summarize the conservative nature of COMBO. Upon optimizing over Eq.
112 by setting the derivative w.r.t. Q to 0, one obtains,

α [softmax(Q)− d] + df (Q− B̂πQ̂k) = 0 (113)

Q = B̂πQ̂k − α
(
softmax(Q)− d

df

)
(114)

Eq. 114 denotes that with high probability, COMBO underestimates its subsequent Q values when
softmax(Q) > d.

E.2 COMBO IN CONJUGATE SPACE

We analyze COMBO in the conjugate space by substituting the Legendre transform of lse(Q) in Eq.
112,

Q̂k+1 ← argmin
Q

α

(
Es∼dπ

M̂

[
min
Qconj

H(Qconj)

]
− Es,a∼D[Q(s, a)]

)
+
1

2
Es,a,s′∼df

[(
Q− B̂πQ̂k

)2]
(115)

Similar to CQL(H), Eq. 115 presents an entropy minimization objective. We first optimize
min
Qconj

H(Qconj) by setting its derivative to 0 and obtain the optimal Qconj value as 1
e . Optimizing

Eq. 115 by using the KKT conditions for min
Qconj

H(Qconj) and setting derivative w.r.t Q to 0,

−dα+ df

(
Q− B̂πQ̂k

)
= 0 (116)

Q = B̂πQ̂k + α
d

df
(117)

Eq. 117 highlights the direct dependence of Q values on overestimations.

E.3 COMBO WITH APPROXIMATIONS

We evaluate COMBO by fitting a standard tractable approximation to lse(Q) as in the case of
CQL(H),

lse(Q) ≤ 1

2
QTĤQ− bQ+ c (118)
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The above results in Eq. 119.

Q̂k+1 ← argmin
Q

α
(
Es∼dπ

M̂
[Bohn(Q)]− Es,a∼D[Q(s, a)]

)
+
1

2
Es,a,s′∼df

[(
Q(s, a)− B̂πQ̂k

)2]
(119)

Optimizing Eq. 119 w.r.t. Q and setting the derivative to 0,

α
(
Ĥ(Q+ ψ)− softmax(ψ)− d

)
+ df

(
Q− B̂πQ̂k

)
= 0 (120)

Q
(
αĤ+ df

)
= df B̂πQ̂k − α

[
Ĥψ − softmax(ψ)− d

]
(121)

Q =

(
df

αĤ+ df

)
B̂πQ̂k −

(
α

αĤ+ df

)[
Ĥψ − softmax(ψ)− d

]
(122)

Eq. 122 presents the same scaling problem as found in CQL(H) analysis.

F ADDITIONAL BOUNDS

This section further highlights underestimations in CQL while obtaining tighter bounds on CQL(H).
Prior to the complete derivation, we will show that the CQL(H) variant may not always underesti-
mate the true Q values.

F.1 UNDERESTIMATION IN CQL

Here we present the proof of underestimation in CQL Q values as derived in (Kumar et al., 2020b).
Note that the original CQL objective, in the absence of regularization, is given by Eq. 123.

argmin
Q

α Eµ [Q(s, a)] +
1

2
Es,a,s′∼D

[(
Q(s, a)− B̂πQ̂k

)2]
(123)

Optimizing over Eq. 123 by taking the derivative w.r.t Q and setting it to 0, one obtains,

αµ+ (Q− B̂πQ̂k)π̂β = 0 (124)

Q = B̂πQ̂k − α µ

π̂β
(125)

Since B̂πQ̂k ≥ Q, CQL underestimates Q values at each subsequent iteration.

F.2 UNDERESTIMATION IN CQL(H)

We now follow the same process as described above and show that CQL(H) does not always under-
estimate Q values. Recall that the CQL(H) objective is expressed as per Eq. 126.

min
Q

α Es∼D

[
log
∑
a

exp (Q)− Ea∼π̂β [Q(s, a)]

]
+

1

2
Es,a,s′∼D

[(
Q(s, a)− B̂πQ̂k

)2]
(126)

Optimizing over Eq. 126 by setting the derivative w.r.t Q to 0,

α

[
exp(Q)∑
a exp(Q)

− π̂β
]
+ (Q− B̂πQ̂k)π̂β = 0 (127)

= α

[
softmax(Q)

π̂β
− 1

]
+Q = B̂πQ̂k

= Q = B̂πQ̂k − α
[
softmax(Q)

π̂β
− 1

]
(128)

Since B̂πQ̂k ≥ Q only if softmax(Q) ≥ π̂β , the CQL(H) does not underestimate Q values at each
iteration. However, the relation holds with high probability for small values of α.

The derivation for a tighter bound consists of two stages, (1) first we will show that bound is an
upper bound on the CQL Q values. (2) The second step consists of obtaining Q values as a lower
bound on the true Q values.
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F.3 UPPER BOUND ON CQL(H)

We begin by writing the first expectation exclusively on both its terms,

α

(
Es∼D

[
log
∑
a

exp(Q)

]
− Es∼D,a∼π̂β [Q]

)
+

1

2
Es,a,s′∼D

[(
Q− B̂πQ̂k

)2]
(129)

By applying Jensen’s inequality twice to the first expectation, one obtains,

≤ α

(
log
∑
a

Es∼D [exp(Q)]− Es∼D,a∼π̂β [Q]

)
+

1

2
Es,a,s′∼D

[(
Q− B̂πQ̂k

)2]
(130)

Utilizing Hoeffding’s Lemma for exponent in the first inner expectation with the difference (Q̂k −
Qmin)

2 wherein Qmin denotes the minimum Q value up till iteration k, we obtain the following
upper bound,

≤ α

(
log
∑
a

exp

(
1

8

(
Q̂k −Qmin

)2)
− Es∼D,a∼π̂β [Q]

)
+

1

2
Es,a,s′∼D[(Q− B̂πQ̂k)2] (131)

F.4 LOWER BOUND ON Q

Following the same process of optimizing over the upper bound by taking the derivative w.r.t Q and
setting it to 0,

α

[
1

4
(Q̂k −Qmin)softmax

(
1

8

(
Q̂k −Qmin

))
− π̂β

]
+ (Q− B̂πQ̂k)π̂β = 0 (132)

= (Q− B̂πQ̂k)π̂β = −α
[
1

4

(
Q̂k −Qmin

)
softmax

(
1

8

(
Q̂k −Qmin

))
− π̂β

]
(133)

Q = B̂πQ̂k − α

π̂β

[
1

4
(Q̂k −Qmin)softmax

(
1

8

(
Q̂k −Qmin

))
− π̂β

]
(134)

Since Q̂k−Qmin ≥ 0, softmax(Q̂k−Qmin) ≥ 0 and 1
4 (Q̂

k−Qmin)softmax
(

1
8 (Q̂

k −Qmin)
)
≥

π̂β with high probability, Q values at each iteration k are underestimated resulting in Q ≤ B̂πQ̂k.

F.5 AN ALTERNATE PERSPECTIVE ON APPROXIMATIONS

This section provides a statistical perspective towards approximations. Starting with the CQL(H)
objective and applying Jensen’s inequality twice to the first expectation as in the previous section,

≤ α

(
log
∑
a

Es∼D [exp(Q)]− Es∼D,a∼π̂β [Q]

)
+

1

2
Es,a,s′∼D

[(
Q− B̂πQ̂k

)2]
(135)

One can formulate Eq. 135 as a statistical relation which incorporates the probability of overestima-
tion Pr(exp(Q) ≥ exp(B̂πQ̂k)). Upon utilizing the Chernoff bound Pr(exp(Q) ≥ exp(B̂πQ̂k)) ≤

E[eQ]

exp(B̂πQ̂k)) one obtain the following,

≤ α

(
log
∑
a

exp(B̂πQ̂k) Pr(exp(Q) ≥ exp(B̂πQ̂k))

− Es∼D,a∼π̂β [Q]

)
+

1

2
Es,a,s′∼D

[(
Q− B̂πQ̂k

)2]
(136)

We now make the sub-Gaussianity assumption which bounds the probability of underestimation
with regards to the previous Bellman iterates Pr(exp(Q) ≥ exp(B̂πQ̂k)) ≤ 2 exp(−c(B̂πQ̂k)2)
with c > 0 as a constant. The assumption, although a strong one in various respects, allows one
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to reformulate the objective with external tunable parameters such as c. Utilizing the assumption in
Eq. 136 provides an alternate upper bound on CQL(H).

≤ α

(
log
∑
a

2 exp(B̂πQ̂k(1− cB̂πQ̂k)) Pr(exp(Q) ≥ exp(B̂πQ̂k))

− Es∼D,a∼π̂β [Q]

)
+

1

2
Es,a,s′∼D

[(
Q− B̂πQ̂k

)2]
(137)

Taking the derivative of Eq. 137 w.r.t. Q values and setting it to 0,

α
[
∇Q log

(
Pr(exp(Q) ≥ exp(B̂πQ̂k))

)
− π̂β

]
+ π̂β(Q− B̂πQ̂k) = 0 (138)

Q = B̂πQ̂k − α

[
∇Q Pr(exp(Q) ≥ exp(B̂πQ̂k))
π̂β Pr(exp(Q) ≥ exp(B̂πQ̂k))

− 1

]
(139)

Eq. 139 depicts the probabilistic nature of underestimations dependent on the probability of overes-
timations, a result that may be understood for future work.

G CONSERVATISM AS DUAL PROBLEMS

The CQL framework, by virtue of explicit underestimations, gives rise to a theoretically rich set
of objectives in the dual space. One can interpret CQL as a constrained optimization problem and
gain intuition towards its individual components. More concretely, we investigate dual problems of
CQL(H) in detail and study the variation of its individual components by establishing a link between
the conjugate formulations.

G.1 PRIMER ON DUALITY

For completeness, we revisit the Lagrange dual function. Consider a constrained optimization prob-
lem as in Eq. 140.

min f(x) subject to hi(x) ≤ 0 , i = 1, ..m. (140)

The Lagrangian L({x, λ}) of the above problem can be expressed as per Eq. 141 with
domL({x, λ}) = dom f × Rm.

L({x, λ}) = f(x) +

m∑
i=1

λihi(x) (141)

Here, λ is denoted as the Lagrange multiplier. One can define the Lagrange dual function (Boyd &
Vandenberghe, 2004) g : Rm → R as the minimum value of the Lagrangian over x∀λ ∈ Rm.

g({λ}) = min
x∈dom f

L({x, λ}) = min
x∈dom f

(
f(x) +

m∑
i=1

λihi(x)

)
(142)

The dual function, being a pointwise minimum of a family of affine functions of λ, is concave. We
define the dual problem as finding the best lower bound from the Lagrange dual function. This is
mathematically expressed in Eq. 143.

max
λ

g({λ}) subject toλ ≥ 0 (143)

G.2 RELATIONSHIP BETWEEN CONJUGATE AND DUAL PROBLEMS

Following the precept from Boyd & Vandenberghe (2004), we establish a direct relationship between
the conjugate and dual of the optimization problem,

L({x, λ}) = min
x∈dom f

(
f(x) +

m∑
i=1

λihi(x)

)
(144)
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Considering hi(x) of the form Aixi ≤ bi, we have the following dual in compact notation,

g({λ}) = min
x∈dom f

(
f(x) + λ(ATx− b)

)
(145)

= −bλ+min
x

(
f(x) +ATλx

)
(146)

resulting in the following relationship between conjugate and dual expressions,

g({λ}) = −bλ− f∗(−ATλ) (147)

G.3 DUAL OF SOFT-MAXIMUM TRANSFORM

Minimization of the soft-maximum lse(Q) can be realized as a sub-problem to the CQL(H) with
the constraint enforcing Q values to be underestimated at each subsequent iteration, Q ≤ B̂πQ̂k.
Mathematically,

min
Q

log
∑
a

exp(Q(s, a)) subject to Q ≤ B̂πQ̂k (148)

L({Q,λ}) = log
∑
a

exp(Q(s, a)) + λ
(
Q− B̂πQ̂k

)
(149)

which yields the following dual,

g({λ}) = min
Q

(
log
∑
a

exp(Q(s, a)) + λ
(
Q− B̂πQ̂k

))
(150)

g({λ}) = −λB̂πQ̂k +H(−λ) (151)

Thus, we have,
max
λ
− λB̂πQ̂k +H(−λ) subject toλ ≥ 0 (152)

A meticulous inspection of Eq. 152 reveals that the dual problem is an enropy maximization problem
in the inverse variable space of −λ logits.

G.4 DUAL OF CQL(H)

Analogous to previous section, one can consider the dual of complete CQL(H) objective with ex-
plicit underestimation constraints.

Formulating the primal problem, we get,

min
Q

αEs∼D
[
lse(Q)− Ea∼π̂β [Q(s, a)]

]
+

1

2
Es,a,s′∼D

[(
Q(s, a)− B̂πQ̂k

)2]
s.t.Q ≤ B̂πQ̂k

(153)

g({λ}) = min
Q

αEs∼D
[
lse(Q)− Ea∼π̂β [Q(s, a)]

]
+

1

2
Es,a,s′∼D

[(
Q(s, a)− B̂πQ̂k

)2]
+ λ

(
Q− B̂πQ̂k

)
(154)

= −λB̂πQ̂k +min
Q

(CQL(H) + λQ) (155)

yielding the following dual problem,

max
λ
− λB̂πQ̂k − CQLconj(−λ) subject toλ ≥ 0 (156)

Observing Eq. 156, one notices that the dual problem maximizes the conjugate CQL objective with
inverse dual variable −λ.
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H ADDITIONAL RESULTS

H.1 VALUE FUNCTION OPTIMIZATION

Figure 9: (left-center left) Variation of rank, (center right-right) Variation of log(κ) during training

Figure 10: Average targets of CQL variants.

The setting further reasons about approximations
by comparing the various sources of estimation er-
rors. Fig. 10 links the variation in average target
values to their respective objectives. CQL(H) ex-
hibits conservatism by virtue of minimizing lse(Q)
values. Underestimations accumulating over the
course of learning steer estimates away from the
true Q function. Bohn(Q), being an upper bound
on lse(Q), provably overestimates Q values. This
in turn, enforces CQLBohn(H) to yield over-optimistic estimates which hurt convergence. Lastly,
lse(Q) with the additional IM objective (lse(Q)+IM) approximates analogously to lse(Q) but high-
lights potential towards convergence.

H.2 ACTOR VISUALIZATIONS

We further establish a link between conservative approximations and their effects on learning of
offline policies. Fig. 11, 12 and 13 present the 2D t-SNE (van der Maaten & Hinton, 2008) embed-
dings of representations learned by the last, second and first layers of policies respectively. While
overestimations incurred by the upper bounding CQLBohn(H) are vividly reflected in the offline
policy distribution, it is only seldomly clear to distinguish between conservative and near-accurate
approximations learned by CQL(H) and CQL-IM respectively. The above indicates that although
the value function of CQL-IM is less conservative than that of CQL(H), it is still able to learn
conservative parameters with significant accuracy.

Figure 11: 2D t-SNE embeddings of representations learned by the last layer of policies on hover,
zigzag and flythrugate tasks.

Figure 12: 2D t-SNE embeddings of representations learned by the second layer of policies on
hover, zigzag and flythrugate tasks.
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Figure 13: 2D t-SNE embeddings of representations learned by the first layer of policies on hover,
zigzag and flythrugate tasks.

H.3 EXPERIMENTS IN D4RL BENCHMARK

Figure 14: Variation of rank on 9 challenging D4RL datasets

Figure 15: Variation of log(κ) on 9 challenging D4RL datasets
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This section extends our analysis to the D4RL benchmark. We consider a set of challenging datasets
and domains from the benchmark in order to highlight the improvement in optimization objective
when using CQL-IM. We consider a set of diverse datasets (expert,medium,cloned) including tran-
sitions from the significantly challenging human demonstrations. In addition to these, we consider
domains with high-dimensional complex control (Franka and adroit) and sparse reward settings
(antmaze navigation).

Fig. 14 presents the variation in rank on 9 of the most challenging tasks for CQL(H) and its variants.
CQL(H) presents a faster collapse in rank of value function while CQLBohn(H) and CQL-IM are
found robust to these changes. We also note that while CQLBohn(H) is found more robust than CQL-
IM, it is due to its inability to learn in the presence of the assumption imposed on H̃. Value function
estimates of CQLBohn(H) either explode or collapse, hindering learning. In certain scenarios (such
as the hamnmer domain), CQLBohn(H) collapses midway due to the H̃ assumption.

Fig. 15 presents the variation in κ (on log scale) for the considered 9 tasks. As before, CQL(H)
is found to maximize condition number values greater than CQLBohn(H) and CQL-IM. It is worth
noting the high errors in CQLBohn(H) for different runs. These indicate that although CQLBohn(H)
optimizes a well-conditioned objective, it still presents instabilities arising from the assumption on
H̃. CQL-IM, on the other hand, presents consistent values of log(κ) with fewer errors across random
runs.

Dataset CQL(H) CQLBohn(H) CQL-IM

hopper-expert-v0 -242.81 407.26 -377.36
hopper-medium-v0 -274.01 134.81 -267.06
antmaze-umaze-v0 -23.48 40.61 -23.48

antmaze-umaze-diverse-v0 -37.63 88.97 -27.61
kitchen-complete-v0 4.6× 1011 10.53× 104 2.03× 1011

kitchen-partial-v0 4.27× 1011 8.65× 106 3.71× 1011

kitchen-mixed-v0 5.31× 1011 3.33× 104 3.47× 1011

Table 3: Comparison of the gap Q̂k−Q between value estimates Q̂k and actual Monte-Carlo returns
Q. Note that negative values denote conservatism and positive values overestimations.

Next, we compare conservatism between CQL(H) and its variants. We utilize the metric Q̂k − Q
following Kumar et al. (2020b) which presents the gap between estimated Q values Q̂k and true Q
values Q. Estimated Q values are obtained by the critic function in the actor-critic framework of
CQL. True Q values Q, on the other hand, are obtained as Monte-Carlo returns by explicitly rolling
out the average discounted return. A negative value of Q̂k−Q denotes that the critic underestimates
true Q function while a positive value denotes overestimations. Optimal estimates are obtained in
the case of Q̂k = Q.

Table 3 presents the comparison of Q̂k −Q on hopper, antmaze and kitchen tasks. When compared
to CQL(H), CQLBohn(H) presents positive gaps demonstrating overestimations in the Q function.
CQL-IM, on the other hand, presents low negative values closer to 0 on hopper and antmaze tasks.
The result verifies our theoretical insight of CQL-IM being a better approximation to the true Q
function. We further note the large gaps on kitchen tasks which arise as a consequence of high-
dimensional control and significantly challenging datasets. To note the severity of these gaps, we
emphasize that CQL(H) itself finds it challenging to lower bound Q̂k. This results in large values
which are further observed in CQL-IM. However, it is also worth noting that these values for CQL-
IM are lower when compared to CQL(H). This indicates that the variational regularization aids
CQL-IM to bring values closer to the true Q function.

Lastly, we provide comprehensive comparison of average returns on the D4RL benchmark by ex-
panding our analysis to more recent baselines. We include policy constrained as well as value
constrained methods. Additionally, we include state-of-the-art algorithms which have demonstrated
success on learning locomotion, navigation and dexterous control from offline transistions. Namely,
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we consider Bootstrapping Error Accumulation Reduction (BEAR) (Kumar et al., 2019), Behavior
Regularized Actor-Critic (BRAC) (both versions) (Wu et al., 2019), Advantage Weighted Regres-
sion (AWR) (Peng et al., 2019), AlgaeDICE (aDICE) (Nachum et al., 2019), Batch Constrained
Q-learning (BCQ) (Fujimoto et al., 2019) and Random Ensemble Mixture (REM) (Agarwal et al.,
2020). Additionally, we include the recent TD3+BC (Fujimoto & Gu, 2021) baseline which, similar
to our method, regularizes the value function with naive BC for improved runtime and simplicity. We
also add Uncertainty Weighted Actor-Critic (UWAC) (Wu et al., 2021) which demonstrates signifi-
cant improvements in learning from human demonstrations. Lastly, we include Implicit Q-Learning
(IQL) (Kostrikov et al., 2021) which highlights a new state-of-the-art in offline RL.

Table 4 presents the comparison between all methods on 13 tasks from the D4RL benchmark.
TD3+BC presents improvements on locomotion tasks. This arises as a result of the simplicity
of the algorithm where TD learning is combined with BC. UWAC presents improved returns on
complex human demonstration datasets with multi-modalities in data transitions. IQL, being the
recent state-of-the-art, improves over prior baselines on locomotion, navigation and dexterous con-
trol tasks. CQL(H) is found competitive to or improves over baseline methods. CQL-IM presents
similar or improved performance when compared to CQL(H). In the antmaze diverse and kitchen
partial settings, CQL-IM presents best returns by outperforming CQL(H) with a slight margin.
This improvement in performance is a direct consequence of variational regularization introduced
by the combination of BC objective. In settings where data transitions are optimal (such as expert),
CQL-IM learns quickly by leveraging good coverage of the dataset. In settings where dataset is sub-
optimal, the variational regularization in CQL-IM only improves the optimization process. This way,
CQL-IM enjoys the best of both worlds by interpolating between offline RL and Imitation Learning.

Before concluding, we also note the decrease in CQLBohn(H) returns which arises as a direct con-
sequence of the assumption on H̃ interfering with optimization of value estimates.

I IMPLEMENTATION DETAILS

I.1 LINEWORLD DETAILS

The setup consists of two settings, namely online and offline agents. Policies corresponding to both
agents are approximated using neural networks with 1 hidden layer of 32 units with relu nonlinearity.
Both policies were trained with a learning rate of 0.001, batch size as 32 and γ = 0.95 as these were
the optimal parameters determined after a conventional grid search selection. Agent policies collect
data transitions every 20 steps in a rolling replay buffer with a capacity of 1000 transitions. In case of
the second experiment, the above parameters are kept same corresponding to both agents. The state
space of the environment is changed to the number of states in the set {10, 15, 100, 200, 500, 1000}.

I.2 ENVIRONMENT DETAILS

At each timestep, the agent observes a 20 dimensional vector as its state consisting of the drone’s
position, translational and angular velocities, orientation and quaternion representations in 3D carte-
sian system. Following are the task setup corresponding to each environment for our experiments-

Takeoff: The agent is tasked to lift the drone along Z-axis of world frame. Reward awarded to the
agent is inversely proportional to the distance of drone’s center from goal position (0, 0, 1).

Hover: The agent is tasked to lift the drone along Z-axis of world frame and maintain its position
above the origin. Reward awarded to the agent is proportional to the norm distance of drone’s center
of mass from the goal position.

Flythrugate: The agent is tasked to fly through a gate opening placed at a wide angle on the drone’s
X-axis. Note that this is a significantly challenging scenario in comparison to other tasks as it
requires the agent to solve two problems. Firstly, the policy must learn to identify the location of the
gate. And secondly, the policy must learn to control the drone (by taking off and moving forward).
Reward awarded to the agent is proportional to the norm distance of drone’s center of mass from the
gate opening and inversely proportional to the time spent during simulation.

ZigZag: The agent is tasked to move in a zig-zag flight pattern during simulation. The agent must
first travel leftwards and then move rightwards towards its final goal location. Reward awarded to the
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agent is proportional to the norm distance of drone’s center of mass from the intermediate location
for first half of simulation, and the distance from goal location for second half of simulation.

I.3 HYPERPARAMETERS

All policies are trained for 1 × 105 timesteps and evaluated over 5 episodes every 1000 timesteps.
Experiments are carried out over 10 random seeds. All policies consists of two hidden layers of
1024 units each with ReLU activations and an output layer of 1024 units with tanh nonlinearity.
Following are training details corresponding to each algorithm-

BC: The expert, being a trained SAC policy, optimally executes actions in the environment for 5
episodes, resulting in state transitions. These transitions are stored in the dataset every 10000 steps.
BC learners were trained with a fixed batch size of 1024 and learning rate of 0.001 as these present
the best results for all tasks.

SAC: We utilize the diagonal Gaussian policy with standard deviation bounds rescaled in the range
[2,-10] and entropy temperature tuned manually to 0.001. We additionally tried lower values of
temperature but it led to deteriorating performance during training. Learning rate for all tasks was
tuned to 0.00003 with higher values presenting significant variance across random seeds.

CQL & Variants: Our CQL implementation is based on the original implementation of CQL(H)
(Kumar et al., 2020b) and makes use of the same architecture setup. The policy is trained with an
increased batch size of 1024 and reduced learning rate of 0.0001 for our experiments as this presents
marginal improvement. Our experiments additionally tried tuning the temperature parameters but
policies were found robust to these components. In the interest of a fair comparison with CQL, we
keep the parameter values of CQL-IM and CQLBohn(H) unchanged. Temperature parameter for
intrinsic motivation in CQL-IM was tuned with the optimal value being equivalent as the entropy
temperature for CQL.

I.4 D4RL DETAILS

Experiments in D4RL were conducted using the author-provided implementation of CQL(H). We
implemented CQL-IM similar to our Aerial Control tasks. BC, in its log form, was found to equally
work well. Following are the taskwise details of the implementation-

Franka: The only change we make is of temperature parameter for the BC term. We considered
values of 0.1, 0.01 & 0.001. The value of 0.01 was found to work best with lower values resembling
behaviors similar to CQL.

Adroit: Temperature parameter was tuned for 0.1 & 0.01 with 0.01 found to work well. Addition-
ally, we tuned the learning rate and found smaller values 1e−4 to work well across random runs.

Locomotion & Antmaze Navigation: We use author-provided default parameters with a tempera-
ture value of 0.001 tuned across 3 random seeds.

I.5 ADDITIONAL DESIGN DETAILS

This section further elucidates the implementational aspects of our algorithms. Specifically, we
enlist the algorithms utilized in the study along with their advantages and limitations.

Computation of IM: We utilize the variational regularization as intrinsic motivation to the Q value
function. This is implemented using an off-policy variant in our Aerial control experiments and as
likelihood maximization in the D4RL setting. Algorithms 1 and 2 present their implementation with
the term temp as the temperature parameter to balance Q and IM terms. We omit the maximum
entropy regularization step as this is a fairly standard procedure implemented in the CQL framework.

Computation of Bohn(Q): We utilize efficient Jacobian Vector Product (JVP) and Hessian Vector
Product (HVP) to compute the Taylors formulation of Bohn(Q). We restate the quadratic formula-
tion with b = −(Ĥψ − g(ψ)) and c = 1

2ψ
TĤψ − g(ψ)Tψ + lse(ψ),

Bohn(Q) =
1

2
QTĤQ− bQ+ c (157)

Here, we initialize ψ as a random parameter vector (alternatively a vector of 1s). At each step,
we exactly compute the above expression using efficient JVP (jvp) and HVP (hvp) functions.
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Algorithm 3 presents the computation of Bohn(Q). The resulting expression is used as is in place
of lse(Q) in CQL.

In addition to Bohn(Q) and MI approximations, we considered other second order methods such
as conventional root finding and quasi-Newton methods. Although suitable for large-scale opti-
mization (Boyd & Vandenberghe, 2004; Nocedal & Wright, 2006), these methods did not provide
sufficient improvements in the RL setting. Most algorithms present large computational and memory
requirements which are difficult to fulfill in the offline RL setting. We provide a summary of these
limitations along with their time and memory complexities (with n as dimension of approximation
matrix) in Table 5.

Algorithm 1 CQL-IM (Off-Policy Variant PyTorch-like)

1: Initialize temp=0.01, pi, critic, q, buffer, reg=1, T, gamma, CQL;
2: while not converged do
3: batch = buffer.sample()
4: value = critic.forward(batch)
5: for t in range(1,T) do
6: regt = q.forward(batch)
7: regt **= (gamma**t-1)
8: reg *= regt
9: end for

10: reg = torch.log(reg)
11: value += temp*reg.mean()
12: CQL.train(batch, value)
13: end while
14: return pi

Algorithm 2 CQL-IM (PyTorch-like)

1: Initialize temp=0.01, pi, critic, q, buffer, reg=1, T, gamma, CQL;
2: while not converged do
3: batch = buffer.sample()
4: value = critic.forward(batch)
5: reg = q.forward(batch)
6: reg = torch.log(reg)
7: value += temp*reg.mean()
8: CQL.train(batch, value)
9: end while

10: return pi

Algorithm 3 Computation of Bohn(Q)

1: Initialize jvp, hvp, Ĥ, ψ;
2: procedure BOHN(ψ,Q)
3: lse = torch.logsumexp(ψ)
4: g = lse.grad()
5: b = -(hvp(Ĥ, ψ) - g)
6: first = 0.5*hvp(hvp(Ĥ, ψ),ψ)
7: c = first - jvp(g,ψ) + lse
8: bohn = 0.5*hvp(hvp(Ĥ, Q),Q) - jvp(b,Q) + c
9: return bohn

10: end procedure
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Approximation Method Limitation Computational Cost Memory Cost

Newton’s Method Requires exact computation of the inverse of full Hessian O(n3) O(n2)
Gauss-Newton Hessian Requires solving the full high-dimensional Newton system with line search O(n2) O(n2)

Proximal Dogleg Method Requires defining two hand-engineered thresholds O(n2) O(n2)
BFGS Method Requires an inverse of the Hessian approximation with line search O(n3) O(n2)
Broyden Class Requires an SVD with line search O(n2) O(n2)

Limited Memory Quasi-Newton Requires two-loop recursions to track last iterates O(n2) O(n)

Table 5: Additional approximation methods considered with their practical limitations.

The advantages of Bohning approximation when compared to methods in Table 5 are as follows-

• Bohn(Q) does not require inverse of the approximation
• Bohn(Q) does not require line search
• Bohn(Q) does not require hand-engineered thresholds
• Bohn(Q) does not require recursions or SVD
• The method is simple to implement (5 lines of code)
• Approximation is easier to optimize (in libraries such as JAX)
• The method is easier to scale to higher dimensions by using a limited memory variant

The computational complexity of Bohn(Q) is same as O(n2) and its memory complexity matches
the O(n) rate of Limited Memory Quasi-Newton method.
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