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Abstract

Commonsense knowledge is critical to achiev-
ing artificial general intelligence. Large lan-
guage models have demonstrated impressive
performance on commonsense tasks, however
these tasks are often posed as multiple-choice
questions, allowing models to exploit system-
atic biases (Li et al., 2021). Commonsense is
also inherently probabilistic; a plumber could
repair a sink in a kitchen or a bathroom, or even
a basement, although the former answers are
more probable. Existing tasks do not capture
the probabilistic nature of common sense. To
this end we present commonsense frame com-
pletion (CFC), a new generative task which
evaluates common sense via multiple open-
ended generations. We also propose a method
of probabilistic evaluation which strongly cor-
relates with human judgements. Humans dras-
tically outperform strong language model base-
lines on our dataset, indicating this approach
is both a challenging and useful evaluation of
machine common sense.

1 Introduction

Commonsense reasoning has become increasingly
important for AI models in recent years. In NLP,
the recent progress of large language models has
demonstrated impressive performance on multiple
evaluation benchmarks (Brown et al., 2020; Wang
and Komatsuzaki, 2021), including many bench-
marks that specifically measure the models’ com-
monsense reasoning ability (Lin et al., 2020c; Sak-
aguchi et al., 2020; Sap* et al., 2019; Boratko*
et al., 2020), with some achieving close to hu-
man level performance, leading some to question
whether commonsense is solved. A deeper analy-
sis of these models indicates they still make naive
commonsense errors (Lin et al., 2020a), thus the
first question which must be addressed is how we
can best evaluate commonsense knowledge.

Most existing commonsense evaluations are
framed as multiple-choice question answering
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Figure 1: Example from the CFC dataset. Given a
short sentence and a slot of interest (in this case, the
purpose of boiling water). Human annotators provide
ground-truth answer sets G, and model prediction is
denoted as answer sets H. Each example in the dataset
contains multiple current answers. To evaluate these
answers as a probability distribution, we construct a
categorical distribution for each answer set, and we
calculate KL Divergence between these distributions
(details in Section 4)

tasks (Talmor et al., 2019; Sap* et al., 2019; Huang
et al., 2019; Bhagavatula et al., 2020). This eval-
uation requires the model to choose the right an-
swer from a list of candidates, including the cor-
rect choice ("positive") and a few incorrect ones
("negatives"). High accuracy in this evaluation is
misleading as the candidate answer sets are unre-
alistically small, and generating hard negatives is
challenging (Zellers et al., 2018, 2019). Recent
benchmarks attempt to overcome this limitation
via generative commonsense evaluation (Lin et al.,
2020b), which is more challenging as it can be
viewed as multiple-choice question answering with
practically unlimited choices.

While generative evaluation avoids the difficulty
of generating hard negatives, it does not reflect
the fact that there are often multiple correct an-
swers, nor does it incorporate the probabilistic
nature of language semantics and commonsense
knowledge (Erk, 2022). For example, given a sen-
tence "The plumber is fixing the sink", we can infer
using our common sense that the most probable lo-



cations include the kitchen and the bathroom, and
with some lower probability perhaps a basement or
utility closet. Inspired by the American TV show
FAMILY-FEUD, Boratko* et al. (2020) addressed
the issue of multiple correct answers by sampling
100 answers from human annotators to prototyp-
ical questions, eg. "Name something that people
usually do before they leave the house for work,"
and proposed a rank-based evaluation.

In this work, we take the perspective that com-
monsense knowledge is an implicit probability dis-
tribution over missing information in a context.
Emphasizing the implicit nature of common sense
in a given context enhances the utility of our pro-
posed task for downstream applications, such as
home assistants, where the need for common sense
is very rarely explicit. For example, a home as-
sistant providing cooking directions should only
implicitly be aware that "boil the water and add the
spaghetti” requires the water to be in a container.
Explicitly instructing a human with every minute
detail would render the assistant useless, and thus
it is paramount that the assistant understand what
information can be implicitly inferred from context.
Leveraging a probabilistic evaluation also empha-
sizes the uncertain nature of common sense - for
example, the water may be heated on a stove, but it
also may be heated using a kettle. This distribution
also changes with respect to context - for exam-
ple, consider how the implicit distribution would
change if the instruction was "boil the water and
add 4-methoxy-3-buten-2-one".

In this work, we propose the task of common-
sense frame completion (CFC), in which models
are provided with a context sentence and asked to
generate potential values for a missing informa-
tion or "slot-fillers" for the semantic frame in the
sentence, where potential slots include "time", "lo-
cation”, "cause", etc. - see Table 1. We wish to eval-
uate the proposed slot-fillers probabilistically by
comparing them to a large number of ground-truth
crowdsourced answers. Having an automatic eval-
uation is crucial to accelerating the development of
strong models, however our setting (probabilistic
evaluation of generative text) is novel, and thus we
performed a rigorous study of potential contenders.
We ultimately define a novel approach which aligns
answers and measures the KL divergence between
probabilities directly, which we justify on both the-
oretical and empirical grounds, where we observe
a reasonable correlation with human judgements.
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Figure 2: Representing context sentence using semantic
representation (AMR) identifies the missing slots.

2 CFC Task Description

Given a direction such as “put the water on the
burner to boil,” it is physical common sense which
allows us to know if we need to move other ob-
jects out of the way, and conceptual common sense
which allows us to understand that the water is
likely in a kettle and not simply dumped on the
burner. In this paper we aim to create a task which
evaluates both these aspects of common sense. If
we had a way of identifying that the object con-
taining the water is unspecified, we could pose this
as a question answering task (i.e. "What is the
water contained in?"). Unlike most question an-
swering tasks, however, there is no single correct
answer. In this example, the water could be placed
in a “kettle”, “pot”, “cup”, or “glass”, although the
former answers are more probable. This distribu-
tion is also contextual - consider how the relative
probability shifts if we append the phrase “and add
the spaghetti”, or changes drastically if we append
“and add 4-methoxy-3-buten-2-one,” in which case
the vessel is likely a beaker or test-tube.

It is clearly necessary for any machine learning
model which claims to capture common sense to
have some sense of the distribution over the implicit
information, and moreover it may be absolutely in-
tegral to the safety of any model which provides
directions to share the same distribution as humans.
To assess a model’s ability in this regard, we con-
sider the context sentence as a structured semantic
frame, identify a missing slot, and ask the model
to provide a distribution of potential slot fillers as
shown in Figure 2.

3 Dataset Creation and Analysis

In this section we describe the method of creat-
ing a dataset amenable to evaluating the task of
CFC. The first item to be addressed is where to
collect reasonable context sentences which contain
some natural element of common sense. Com-
monGen (Lin et al., 2020c) is a recently released



Missing Slot | Definition

Examples

Sentence: putting cheese on the pizza. Arg0?
Arg0 Who/what does the event? A . P £ p £
nswers: person, cook
. . Sentence: putting cheese on the pizza. Purpose?
Purpose What is the goal for doing the event? A ; p £¢ > P P
nswers: get nutrition, stop being hungry
. . Sentence: putting cheese on the pizza. Instrument?
Instrument What kind of tools are used to accomplish the event? . P £ P
Answers: hands, spoon
. What is a particular time (time of day, season, etc.) Sentence: putting cheese on the pizza. Time?
Time . g . .
for doing the event? Answers: lunch time, dinner time
. entence: putting cheese on the pizza. Location?
Location Where would the event usually happen? S ; puthing P
Answers: kitchen, restaurant

Table 1: Examples for different missing slot types

commonsense dataset which contains many short
sentences describing basic information about daily
life, and so we use this dataset as the source for
potential context sentences.

Given a short sentence, we next need a way of
identifying potential missing information. To this
end, we perform semantic parsing on the sentence,
aligning it with a structured semantic frame, and
identify potential missing slots. We use AMR (Ba-
narescu et al., 2013) for semantic parsing based
on its ability to provide a rich representation of
the sentence with a pre-defined fixed schema for
the predicate roles. If a predicate is found, AMR
parsing will match it to a schema and fill in the val-
ues for any identified slots. Any slots marked with
amr-unkown indicate potential items of missing in-
formation, enabling us to obtain human annotations
for the missing slot values.

We uniformly randomly sampled 63,788 sen-
tences from the CommonGen dev dataset, and
parsed them using the AMR parser from Cai and
Lam (2020), generating 228,170 pairs of context
questions with missing slots. From this, we ran-
domly sampled 101 (sentence, missing slot) pairs
for crowd workers to annotate, such that we had
a balanced distribution of missing slot types, as
detailed in Section 3.2. We present the context sen-
tence and missing slot to crowdworkers, who were
also provided with training examples and descrip-
tions of the meaning of each slot type (see Table 1).
The number of answers is chosen such that the re-
sulting answer distribution is stable (see Section
3.2). Each element of the raw dataset therefore
includes a context sentence, missing slot value, and
a collection of slot fillers.

3.1 Probability Distribution

In an open-ended task where multiple humans are
asked to provide answers as raw strings of text there

are a multitude of answers which may essentially
capture the same underlying idea. Ultimately we
are not interested in the minute variations of the sur-
face form, but rather in capturing the essence of the
underlying concept. In the case of the boiling water
example, for instance, we may want to treat "kettle"
and "teapot” as though they were representative of
the same general concept. As originally proposed
in Boratko* et al. (2020), we consider clustering
the responses, converting a set of answer strings
into a categorical distribution over answer clusters,
where the probability of obtaining an answer from
a given cluster is proportional to the number of
answer strings contained within it. We explore
both manual clustering and automated clustering
methods (see Section 4.2).

3.2 Analysis

Number of Answers The number of potential
slot fillers might be very large, and we want to en-
sure we sample enough to approximate the true dis-
tribution over answer concepts. An essential ques-
tion, therefore, is how many samples are enough to
approximate the true distribution with reasonable
error rate? This is a classic problem in statistics,
for which the Neyman-Pearson lemma proves that
the uniformly most powerful test is to consider

the KL divergence Dki.(g]|f) = >, g(x) log %
where g is the empirical distribution and f is the
true distribution (Harremoés and Tusnady, 2012).
The recent work from Mardia et al. (2020) showed

that this can be bounded by the following equation

3c1 \— evn
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where c¢; and co are constant values, n is the
number of samples, and k is the number of cate-
gories in the categorical distribution.



—— Error Rate from Mardia et al.

Figure 3: The relationship between the number of exam-
ples (x-axis), and the approximation error rate (y-axis).
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Figure 4: Question type distribution for CFC.

For our setting, we manually clustered 50 ques-
tions, and found that the number of categories is
not more than 8. To get a bound on the number
of answers we should collect, we set ¢ = 0.2,

k = 8, and solve e "¢ [% Sk Ki_l(eﬁf)i

for n. Figure 3 shows the value of this bound on
the y-axis for increasing numbers of samples n on
the z-axis. As we can see from the graph, for sam-
ples greater than 90 the error rate is less than 0.5,
allowing us to approximate the true answer distri-
bution with 95% confidence if there are fewer than

8 categories in the categorical distribution.

Question Types We collected 101 (context, miss-
ing slot) pairs, and obtained 100 slot fillers for each
from crowdworkers, resulting in 10,100 annota-
tions overall. The annotators are paid 0.15 per
answer, and they are all English speakers who are
based in the US. We split the data, creating a dev set
with 55 examples and a test set with 46 examples.
The distribution of missing slot types are shown in
Figure 4. Each question type is associated with a
different type of commonsense reasoning, e.g time
represents temporal commonsense reasoning. The
dataset will be released.

4 Probabilistic Evaluation

In this section, we detail the method of evaluating
the CFC task on the provided dataset. As com-

monsense is inherently probabilistic, a rigorous
probabilistic evaluation is required; however the
task is presented (both to humans and models) as
a generative question answering task. Therefore,
we need a way to compare two large sets of answer
strings. We will proceed by how human evaluators
may go about comparing these sets of answers to
determine if they were drawn from similar distribu-
tions and then describe the various ways by which
this process can be automated.

4.1 Human Evaluation

Our proposed framework for evaluating model pre-
diction is depicted in Figure 5: Given a question,
the ground truth answer set G and the model gen-
erated answers H, the goal is to evaluate the simi-
larity between these two answer sets.

For each question:
G < ground-truth answers (crowd-sourced)
H « evaluation answers (model)

For each human scorer:
Cluster G
Match A to clusters of G
Calculate score

Score(G, H) « average of scores

Figure 5: Human Evaluation Process

This is a difficult task even for a humans, par-
ticularly if the answer sets are large and diverse,
however bearing in mind that we are more inter-
ested in concepts being captured rather than unique
surface forms, a human might choose to cluster
the answer strings in G.! The expert annotator
could then match the answers in H to the proposed
ground-truth clusters in G. At this point we can
define categorical probability distributions over the
clusters, P, and P, where the probability assigned
to a given cluster is equal to the number of answer
strings assigned to it.> The similarity between G
and H can be inferred by comparing the KL diver-
gence of the two distributions, DKL(Pg]|J5h). To
ensure evaluation robustness, we propose to repeat
the same process with multiple human annotators
and average the KL score to remove noise. In the
end, the average KL value is the manual assessment

"When clustering, a new category "wrong" could be added
to the answer set to account for the wrong answers for a ques-
tion. These will then be discarded prior to model evaluation.

2To eliminate zero probabilities, we use Laplace smoothing
on all categories before calculating the probabilities, — adding
one dummy answer to all categories.



of the quality of the model’s answers.

Although this approach yields reliable results, it
poses the following challenges: 1. Human experts
must cluster the answers in G, which is an expen-
sive, labor-intensive task. 2. Manually matching
answers to clusters at evaluation time is infeasible.

4.2 Automatic Evaluation

Due to the disadvantages mentioned above of hu-
man evaluation, we aim to design an automatic
method that could ease the human evaluation pro-
cess while achieving a high correlation with human
evaluation results.

The high-level approach is: 1. Embed ground-
truth answers from G into a dense vector space.
2. Automatically cluster the embeddings to obtain
ground-truth clusters of G. 3. Match elements of
H to clusters of G by assignment function score.

Each step presents a number of options, which
we detail in the following sections. We evaluate
the quality of a particular approach by calculating
the Spearman correlation of KL divergence using
the automatic evaluation compared with that of
the manual evaluation across a variety of answer
distributions (see Section 4.3 and 4.4).

Embedding We first embed the discrete word
tokens in G and H as word vectors. We experi-
mented with various word embedding models, both
without context (Word2Vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014) and FastText (Bo-
janowski et al., 2017)) and with context (BERT (De-
vlin et al., 2019), and RoBERTa (Liu et al., 2019))
We found FastText to perform best, and use it for
all future embedding components.

Clustering Given the vector representation of
the word answers, we experimented with various
clustering algorithms including X-means (Pelleg
et al., 2000), G-means (Zhao et al., 2008) and hier-
archical agglomerative clustering (HAC) (Murtagh
and Legendre, 2014) We used the implementation
from pyclustering (Novikov, 2019). The parame-
ters used by these clustering algorithms are treated
as hyper-parameters and are tuned based on the
correlation score as we discuss in section 4.3 and
4.4. We found HAC to perform best.

Matching Given the predicted answers, we want
to match the answers to one or multiple ground
truth answer clusters. This was also a require-
ment for ProtoQA (Boratko* et al., 2020), and we
leverage the WordNet matching function which

performed best in that setting. As we also have em-
beddings for our answers, we consider approaches
based on embedding-based similarity functions.?
We train a Gaussian regression model for each
cluster in the ground-truth answers. The regres-
sion takes one answer representation as input, and
output is the label of whether the answer belongs
to one particular cluster. If an answer matches
with multiple clusters we divide the weight evenly
among all matching clusters.

4.3 Evaluator on ProtoQA

In order to validate the automatic evaluator’s per-
formance, we compared the automatic evaluator
results with the human evaluation results on two
generative datasets. We first evaluated the proposed
evaluator using ProtoQA.

Sampling A robust automatic evaluation method
should align well with human judgment on the
best and worst predicted answers, and any in be-
tween. To achieve this, we propose three different
sampling strategies to generate different answer
distributions for each question.

* Vanilla Sample. We take random samples
from model predictions directly.

* Diverse Sample. We take a linear combi-
nation of the ground-truth distribution and a
uniform distribution to create a new distribu-
tion that interpolates between the ideal ground
truth answers to random noise:

p = aP, + (1 — a)uniform

* Centered Sample. Arguably, the most im-
portant area to assess the quality of the eval-
uator is around answers which are likely to
be returned from a model. We achieve this
by taking a linear combination of the answer
distributions of a given baseline model, the
ground-truth distribution, and a uniform dis-
tribution, with most of the weight assigned to
the answers from a baseline model:
p==zP, + wllpg + w;uniform
w, = (=2

w1 + wa
w) = wo * (1 — z)
w1 + w2
z~U(0.5,1), wy ~U(0,1),we ~U(0,1)



Clustering ‘ Human ‘ Human Human ‘ Hierarchical Hierarchical
Matching ‘ Human ‘ WordNet Embedding ‘ WordNet Embedding
Vanila Sample 1 0.351 0.333 0.199 0.148
Diverse Sample | 1 0.800 0.890 0.748 0.754
Centered Sample | 1 0.752 0.714 0.700 0.593

Table 2: Average Spearman correlation between human evaluation and automatic evaluation under different sampling
strategies for ProtoQA dev questions. The top two rows indicate the supervision source: cluster results can be
annotated by human or clustering algorithms, and matching could be done via human annotation or automatic
similarity functions (wordnet or embedding-based function)
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Figure 6: Correlation for sampled questions in ProtoQA with ground-truth clusters. The X-axis is the KL value
with human assignment, and the y-axis is the KL value with WordNet assignment. This corresponds to the Human /
WordNet column in Table 2. Different questions are annotated with different colors.

The ProtoQA dev set has 100 ground-truth an-
swers and 30 additional human responses that were
collected to measure human performance. For each
question, in addition to the 130 human responses,
we also use the 300 generated answers from the
fine-tuned GPT-2 model. All of these answers are
annotated by expert annotators with cluster match-
ing to the ground-truth clusters. We use the union
of the 30 human responses* and the GPT-2 answers
as the prediction set, H. We sample 50 answer sets
for each question from H and G according to the
sampling procedure mentioned above.

We use automatic clustering and matching to get
the automatic Dy (P,]|Py,). We can also evaluate
the KL for manual clustering and matching, as all
answers in ProtoQA have been annotated by hu-
man experts with clusters and assignments. After
getting the human and automatic KL values for
various sampled answer sets, we use the Spearman
correlation coefficients across questions to mea-

3We tried cosine similarity with FastText embeddings, but
it is hard to decide the threshold for answers that belong to
the "wrong" cluster. We tuned a few values and found that the
results are unstable, so we don’t report these results here.

“we scale up the 30 additional human answers to 300, in
order to balance the model predictions and human answers.

sure the alignment between automatic and human
evaluation.

Results As we can see from Table 2, the cor-
relation value from the Vanilla sample is fairly
low; however, the correlation number for both Di-
verse sample and Centered Sample strategy are
both much higher. Inspecting Figure 6 shows that
the Vanilla sample strategy does not provide di-
verse answer sets. This suggests that our automatic
evaluation may struggle to provide fine-grained dis-
tinctions, however in reality we predominately care
about scoring results from different models, which
is better represented by the Centered Sample and
Diverse Sample approaches.

We also note that automating the matching func-
tion only yields higher correlation with scores
based on human annotations, which is promising
as this would only require manual annotation at
dataset creation time, not for each evaluation. As
we can see from Figure 7, the automatic predicted
score is positively correlated with the score based
on human-annotations under most conditions.

4.4 Evaluation on CFC

After preliminary experiments on ProtoQA, we ver-
ified our proposed evaluator on 55 dev questions
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Figure 7: Centered sample correlation plots under dif-
ferent cluster and assignment methods: (a) human and
WordNet (b) human and embedding (c) HAC and Word-
Net (d) HAC and embedding

in CFC. As in ProtoQA, expert annotators clus-
tered the human responses into less than 8 clus-
ters. Based on the results from the ProtoQA, we
avoid the need to manually annotate model answers
and instead focus on calculating the correlation be-
tween automated matching vs. automated matching
and clustering. For this reason, we also solely eval-
uated using Diverse Sample. As shown in Table 3,
the average correlation is fairly high (> 0.85).

We fixed the clustering parameters that gave us
the best performance on these 55 questions to eval-
uate model performance on the test set. We also
used these parameters to obtain the ground-truth
evaluation number using both the WordNet similar-
ity function and FastText similarity function. For
WordNet we get a KL value of 0.237, while for
FastText we get a KL value of 0.091. The human
KL value should be 0 since it is the ground-truth
answer set. So we use embedding-based similarity
methods to report model performance in Section 5.
From Figure 8, we see that the WordNet score func-
tion tends to produce a higher KL value compared
to Human judgment, which explains the higher KL
even for ground-truth answer sets.

Cluster \ Human \ Hierarchical — Hierarchical
s . Matching | Human | WordNet Embedding
Diverse Sample | 1 | 0.865 0.857

Table 3: Average spearman correlation between human
and automatic evaluation under Diverse Sample for dev
questions in CFC.

(a) Auto cluster, WordNet (b) Auto cluster, Embedding

Figure 8: Diverse sample correlation plots under hierar-
chical clustering, and different matching methods: (a)
human cluster with WordNet matching (b) human clus-
ter with embedding matching

5 Model Performance

51 GPT2

Our baseline is a generative language model, as
modern language models have improved represen-
tational power, and recent evidence has demon-
strated their effectiveness in modeling common-
sense reasoning tasks (Weir et al., 2020; Tambor-
rino et al., 2020). We use the Hugging Face Py-
Torch implementation (Wolf et al., 2019)) of GPT-2
Large and XL (Radford et al., 2019). Our evalua-
tion includes zero-shot and one-shot evaluations,
as well as an evaluation after fine-tuning with the
ProtoQA training data.

We convert CFC questions to a format "[Q]: con-
text sentence, question, [A]". For the one-shot
experiment, we sample one question and one an-
swer from the CFC dev data, then we do the same
conversion but pre-pend the converted question-
answer pair to the actual question. The assumption
is that as part of the prompt provided to the model,
the model could get familiar with the task format.

For fine-tuning experiments, we took the Pro-
toQA pre-trained model’. We also trained the GPT-
2 Large model with a task format that is similar to
our task with the same "[Q]: question. [A]" format
using the ProtoQA training data denoted as GPT2-
L FT in Table 4. The models are fine-tuned for 3
epochs on an nVidia M40 GPU.

In order to generate different answers for the
same prompt, we use Nucleus Sampling (Holtzman

5https: //github.com/iesl/ProtoQA_GPT2


https://github.com/iesl/ProtoQA_GPT2

| GPT2-L  GPT2-XL ProtoQAFT GPT2-LFT Human | GT

zs | 1301 1069 0.631 0.613

PVl Esy | 0848 0.740 0.562 0585 170 |09
| | GPT2-L  GPT2-XL ProtoQAFT GPT2-LFT Human | GT |
zs | 1197 0962 0.576 0.612

TSt psay | 1020 0.748 0.623 065y 0040 | 0076

Table 4: Model performance on CFC Data (lower is better). ZS means zero-shot, and FS(1) means one-shot
prediction. GPT2-L and GPT2-XL is the GPT2 large and XL model respectively, ProtoQA FT is the ProtoQA
fine-tuned, while GPT2-L FT is our own fined-tuned model. The GT column represents the KL values with the

ground-truth answers.

et al., 2019). We generate 200 sampled answers
from the GPT-2 Large model and 100 answers for
the GPT-2 XL model for each question and treat
them as the model prediction set. We experimented
with temperatures from 0.1 to 1.0, and chose the
model parameters with the best dev performance,
then reported the test performance here.

5.2 Human Performance

In order to get a human performance on this task,
we collected 30 additional human responses and
evaluated them the same was as a model prediction.

5.3 Discussion

As we can see from Table 4, the model performance
and human performance still have a large gap in
terms of KL value, while the human performance is
very close to ground truth answers. This indicates
that the dataset is a challenging dataset for models,
while humans could perform very well on this.

Moreover, GPT2-XL performs better despite the
fact that the number of sampled answers is much
less than the GPT2-large model (100 samples vs.
200 samples). Both of these non-fine-tuned models
benefit a lot from zero-shot to one-shot. When the
model gets fined-tuned with the ProtoQA training
data, the performance improvement is more signifi-
cant. Nevertheless, all model performances are still
far from human-level performance, which leaves
us ample space to improve the model.

6 Related Work

Creating commonsense benchmarks to evaluate
model performance is a long-standing research
topic (Sakaguchi et al., 2020; Lin et al., 2020c;
Sap* et al., 2019). However, most benchmarks are
created using a multiple-choice selection paradigm,
which is simpler to evaluate but misaligned with
the real-world use-case of commonsense knowl-

edge, and most egregiously ignores the existence
of multiple correct answers. We are not the first
ones to gather multiple human answers to facilitate
robust evaluations, however. Aydin et al. (2014)
and Boratko* et al. (2020) also collected multiple
human responses for each question to get aggre-
gated human ground-truth answer sets.

Our work differs from these due to our empha-
sis on commonsense as implicit and probabilis-
tic. We don’t treat each answer equally; rather,
we aim to match the answer distribution given by
human responses. For this purpose, we propose a
novel probabilistic evaluation for open-ended gen-
eration tasks with multiple correct answers. A sim-
ilar probabilistic evaluation was studied from a
language model generation point of view (Pillutla
etal., 2021). They proposed a KL-based evaluation
to measure language model generations, while our
focus is on the implicit answer distribution.

7 Conclusion

In this paper, we assert that commonsense is an
implicit probability distribution over missing infor-
mation, and propose a dataset that aims to evaluate
commonsense in this setting via a generative ques-
tion answering task; moreover, we embrace the
probabilistic nature of commonsense knowledge
in both the dataset creation and the metric design.
We propose a probabilistic automatic evaluation for
evaluating answer distributions that is highly cor-
related to human judgment. Using this metric, we
observe that model performance on our new dataset
is significantly worse than human performance, in-
dicating that the task is sufficiently challenging.
In the future, we aim to further extend the size of
the dataset, both in number of instances as well as
answer length, which will involve challenging prob-
lems on both the dataset creation and probabilistic
evaluation front.



Ethics Statement

The dataset aims to capture human commonsense,
which is highly related to human bias. And due
to the data collection nature of such a dataset, we
acknowledge that our collected dataset might be
biased toward certain populations, e.g., since all
the data annotators are from the US, we may not
cover commonsense knowledge for people from
different cultural background, which we will try to
mitigate in future work.
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Overview

Instructions

2liyo ynu answer
3.1f you answered:

blot types & examples
Missing Slot Definition
Arg0 Who/what does the event?
Instrument What kind of tools are used to accomplish the event?
Purpose What is the goal for doing the event?
Location Where would the event usually happen?
Time What is a particular time (time of day, season, etc.) for doing the event?.
Click to for definition of valid slot and valid answer.

ISentence: an aircraft receives fuel from cargo aircraft . Purpose?
I this a valid slot to ask for the given sentence?

O Yes

O No

If Yes, enter a word or short phrase as an answer. If No, enter a valid slot:

[The goalis to collect missing commonsense knowledge in a given sentence or phrase. For example, “the plumber is fixing the sink." A piece of missing knowledge can be “the location of the plumber? (possible answer: bathroom, kitchen, basement)*, “the tool the plumber used to fix the sink? (possible
fanswers: hammer, wrenches)" etc. The missing knowledge is not in the given sentence. However, a human can provide reasonable answers to these questions easily.

ou il e given a short sentenco or phrase and  sot indicatng the missing nformation. You oan answier with a word or & short phrase, The detalld siot defiiton and examples aro shown below. A fow reminders:
1. Remember to answer the first question: Is this a valid siot o ask for the given sentence? Otherwise, your answer willbe rejecte

yes" o thefrst qusstion, your answer sing should not be prtofthe cortext sentance, Otherwise, your answer wil e reected.

: "no" to the first question, the alternative slots have to be part of the slot values. ['location’, 'time', ‘instrument', 'cause’,

4. The sentences may be short phrases or even incomplete because they are taken from image captions. You can answer the question with your ‘own interpretation in this case. Thanks for your time! Contact me you have any questions about the task.

, ‘parent-event'). Otherwise, your answer will be rejecte

Example

Sentence: puiting cheese on the pizza. Arg0?
Acceptable Answers (any one of them): person, cook

Sentence: putting cheese on the pizza. Instrument?
Acceptable Answers (any one of them): hands, spoon

Sentence: putting cheese on the pizza. Purpose?
Acceptable Answers (any one of them): get nutrition, stop being hungry

Sentence: putting cheese on the pizza. Location?
Acceptable Answers (any one of them): kitchen, restaurant

Sentence: putting cheese on the pizza. Time?
Acceptable Answers (any one of them): lunch time, dinner time

=x
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