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Abstract

Commonsense knowledge is critical to achiev-001
ing artificial general intelligence. Large lan-002
guage models have demonstrated impressive003
performance on commonsense tasks, however004
these tasks are often posed as multiple-choice005
questions, allowing models to exploit system-006
atic biases (Li et al., 2021). Commonsense is007
also inherently probabilistic; a plumber could008
repair a sink in a kitchen or a bathroom, or even009
a basement, although the former answers are010
more probable. Existing tasks do not capture011
the probabilistic nature of common sense. To012
this end we present commonsense frame com-013
pletion (CFC), a new generative task which014
evaluates common sense via multiple open-015
ended generations. We also propose a method016
of probabilistic evaluation which strongly cor-017
relates with human judgements. Humans dras-018
tically outperform strong language model base-019
lines on our dataset, indicating this approach020
is both a challenging and useful evaluation of021
machine common sense.022

1 Introduction023

Commonsense reasoning has become increasingly024

important for AI models in recent years. In NLP,025

the recent progress of large language models has026

demonstrated impressive performance on multiple027

evaluation benchmarks (Brown et al., 2020; Wang028

and Komatsuzaki, 2021), including many bench-029

marks that specifically measure the models’ com-030

monsense reasoning ability (Lin et al., 2020c; Sak-031

aguchi et al., 2020; Sap* et al., 2019; Boratko*032

et al., 2020), with some achieving close to hu-033

man level performance, leading some to question034

whether commonsense is solved. A deeper analy-035

sis of these models indicates they still make naïve036

commonsense errors (Lin et al., 2020a), thus the037

first question which must be addressed is how we038

can best evaluate commonsense knowledge.039

Most existing commonsense evaluations are040

framed as multiple-choice question answering041

Figure 1: Example from the CFC dataset. Given a
short sentence and a slot of interest (in this case, the
purpose of boiling water). Human annotators provide
ground-truth answer sets G, and model prediction is
denoted as answer sets H . Each example in the dataset
contains multiple current answers. To evaluate these
answers as a probability distribution, we construct a
categorical distribution for each answer set, and we
calculate KL Divergence between these distributions
(details in Section 4)

tasks (Talmor et al., 2019; Sap* et al., 2019; Huang 042

et al., 2019; Bhagavatula et al., 2020). This eval- 043

uation requires the model to choose the right an- 044

swer from a list of candidates, including the cor- 045

rect choice ("positive") and a few incorrect ones 046

("negatives"). High accuracy in this evaluation is 047

misleading as the candidate answer sets are unre- 048

alistically small, and generating hard negatives is 049

challenging (Zellers et al., 2018, 2019). Recent 050

benchmarks attempt to overcome this limitation 051

via generative commonsense evaluation (Lin et al., 052

2020b), which is more challenging as it can be 053

viewed as multiple-choice question answering with 054

practically unlimited choices. 055

While generative evaluation avoids the difficulty 056

of generating hard negatives, it does not reflect 057

the fact that there are often multiple correct an- 058

swers, nor does it incorporate the probabilistic 059

nature of language semantics and commonsense 060

knowledge (Erk, 2022). For example, given a sen- 061

tence "The plumber is fixing the sink", we can infer 062

using our common sense that the most probable lo- 063
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cations include the kitchen and the bathroom, and064

with some lower probability perhaps a basement or065

utility closet. Inspired by the American TV show066

FAMILY-FEUD, Boratko* et al. (2020) addressed067

the issue of multiple correct answers by sampling068

100 answers from human annotators to prototyp-069

ical questions, eg. "Name something that people070

usually do before they leave the house for work,"071

and proposed a rank-based evaluation.072

In this work, we take the perspective that com-073

monsense knowledge is an implicit probability dis-074

tribution over missing information in a context.075

Emphasizing the implicit nature of common sense076

in a given context enhances the utility of our pro-077

posed task for downstream applications, such as078

home assistants, where the need for common sense079

is very rarely explicit. For example, a home as-080

sistant providing cooking directions should only081

implicitly be aware that "boil the water and add the082

spaghetti" requires the water to be in a container.083

Explicitly instructing a human with every minute084

detail would render the assistant useless, and thus085

it is paramount that the assistant understand what086

information can be implicitly inferred from context.087

Leveraging a probabilistic evaluation also empha-088

sizes the uncertain nature of common sense - for089

example, the water may be heated on a stove, but it090

also may be heated using a kettle. This distribution091

also changes with respect to context - for exam-092

ple, consider how the implicit distribution would093

change if the instruction was "boil the water and094

add 4-methoxy-3-buten-2-one".095

In this work, we propose the task of common-096

sense frame completion (CFC), in which models097

are provided with a context sentence and asked to098

generate potential values for a missing informa-099

tion or "slot-fillers" for the semantic frame in the100

sentence, where potential slots include "time", "lo-101

cation", "cause", etc. - see Table 1. We wish to eval-102

uate the proposed slot-fillers probabilistically by103

comparing them to a large number of ground-truth104

crowdsourced answers. Having an automatic eval-105

uation is crucial to accelerating the development of106

strong models, however our setting (probabilistic107

evaluation of generative text) is novel, and thus we108

performed a rigorous study of potential contenders.109

We ultimately define a novel approach which aligns110

answers and measures the KL divergence between111

probabilities directly, which we justify on both the-112

oretical and empirical grounds, where we observe113

a reasonable correlation with human judgements.114

Figure 2: Representing context sentence using semantic
representation (AMR) identifies the missing slots.

2 CFC Task Description 115

Given a direction such as “put the water on the 116

burner to boil,” it is physical common sense which 117

allows us to know if we need to move other ob- 118

jects out of the way, and conceptual common sense 119

which allows us to understand that the water is 120

likely in a kettle and not simply dumped on the 121

burner. In this paper we aim to create a task which 122

evaluates both these aspects of common sense. If 123

we had a way of identifying that the object con- 124

taining the water is unspecified, we could pose this 125

as a question answering task (i.e. "What is the 126

water contained in?"). Unlike most question an- 127

swering tasks, however, there is no single correct 128

answer. In this example, the water could be placed 129

in a “kettle”, “pot”, “cup”, or “glass”, although the 130

former answers are more probable. This distribu- 131

tion is also contextual - consider how the relative 132

probability shifts if we append the phrase “and add 133

the spaghetti”, or changes drastically if we append 134

“and add 4-methoxy-3-buten-2-one,” in which case 135

the vessel is likely a beaker or test-tube. 136

It is clearly necessary for any machine learning 137

model which claims to capture common sense to 138

have some sense of the distribution over the implicit 139

information, and moreover it may be absolutely in- 140

tegral to the safety of any model which provides 141

directions to share the same distribution as humans. 142

To assess a model’s ability in this regard, we con- 143

sider the context sentence as a structured semantic 144

frame, identify a missing slot, and ask the model 145

to provide a distribution of potential slot fillers as 146

shown in Figure 2. 147

3 Dataset Creation and Analysis 148

In this section we describe the method of creat- 149

ing a dataset amenable to evaluating the task of 150

CFC. The first item to be addressed is where to 151

collect reasonable context sentences which contain 152

some natural element of common sense. Com- 153

monGen (Lin et al., 2020c) is a recently released 154
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Missing Slot Definition Examples

Arg0 Who/what does the event? Sentence: putting cheese on the pizza. Arg0?
Answers: person, cook

Purpose What is the goal for doing the event? Sentence: putting cheese on the pizza. Purpose?
Answers: get nutrition, stop being hungry

Instrument What kind of tools are used to accomplish the event? Sentence: putting cheese on the pizza. Instrument?
Answers: hands, spoon

Time What is a particular time (time of day, season, etc.)
for doing the event?

Sentence: putting cheese on the pizza. Time?
Answers: lunch time, dinner time

Location Where would the event usually happen? Sentence: putting cheese on the pizza. Location?
Answers: kitchen, restaurant

Table 1: Examples for different missing slot types

commonsense dataset which contains many short155

sentences describing basic information about daily156

life, and so we use this dataset as the source for157

potential context sentences.158

Given a short sentence, we next need a way of159

identifying potential missing information. To this160

end, we perform semantic parsing on the sentence,161

aligning it with a structured semantic frame, and162

identify potential missing slots. We use AMR (Ba-163

narescu et al., 2013) for semantic parsing based164

on its ability to provide a rich representation of165

the sentence with a pre-defined fixed schema for166

the predicate roles. If a predicate is found, AMR167

parsing will match it to a schema and fill in the val-168

ues for any identified slots. Any slots marked with169

amr-unkown indicate potential items of missing in-170

formation, enabling us to obtain human annotations171

for the missing slot values.172

We uniformly randomly sampled 63,788 sen-173

tences from the CommonGen dev dataset, and174

parsed them using the AMR parser from Cai and175

Lam (2020), generating 228,170 pairs of context176

questions with missing slots. From this, we ran-177

domly sampled 101 (sentence, missing slot) pairs178

for crowd workers to annotate, such that we had179

a balanced distribution of missing slot types, as180

detailed in Section 3.2. We present the context sen-181

tence and missing slot to crowdworkers, who were182

also provided with training examples and descrip-183

tions of the meaning of each slot type (see Table 1).184

The number of answers is chosen such that the re-185

sulting answer distribution is stable (see Section186

3.2). Each element of the raw dataset therefore187

includes a context sentence, missing slot value, and188

a collection of slot fillers.189

3.1 Probability Distribution190

In an open-ended task where multiple humans are191

asked to provide answers as raw strings of text there192

are a multitude of answers which may essentially 193

capture the same underlying idea. Ultimately we 194

are not interested in the minute variations of the sur- 195

face form, but rather in capturing the essence of the 196

underlying concept. In the case of the boiling water 197

example, for instance, we may want to treat "kettle" 198

and "teapot" as though they were representative of 199

the same general concept. As originally proposed 200

in Boratko* et al. (2020), we consider clustering 201

the responses, converting a set of answer strings 202

into a categorical distribution over answer clusters, 203

where the probability of obtaining an answer from 204

a given cluster is proportional to the number of 205

answer strings contained within it. We explore 206

both manual clustering and automated clustering 207

methods (see Section 4.2). 208

3.2 Analysis 209

Number of Answers The number of potential 210

slot fillers might be very large, and we want to en- 211

sure we sample enough to approximate the true dis- 212

tribution over answer concepts. An essential ques- 213

tion, therefore, is how many samples are enough to 214

approximate the true distribution with reasonable 215

error rate? This is a classic problem in statistics, 216

for which the Neyman-Pearson lemma proves that 217

the uniformly most powerful test is to consider 218

the KL divergence DKL(g∥f) =
∑

x g(x) log
g(x)
f(x) 219

where g is the empirical distribution and f is the 220

true distribution (Harremoës and Tusnády, 2012). 221

The recent work from Mardia et al. (2020) showed 222

that this can be bounded by the following equation 223

P(DKL(gn,k∥f) ≥ ϵ) ≤ e−nϵ

[
3c1
c2

k−2∑
i=0

Ki−1(
e
√
n

2π
)i
]

224

where c1 and c2 are constant values, n is the 225

number of samples, and k is the number of cate- 226

gories in the categorical distribution. 227
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Figure 3: The relationship between the number of exam-
ples (x-axis), and the approximation error rate (y-axis).

Figure 4: Question type distribution for CFC.

For our setting, we manually clustered 50 ques-228

tions, and found that the number of categories is229

not more than 8. To get a bound on the number230

of answers we should collect, we set ϵ = 0.2,231

k = 8, and solve e−nϵ
[
3c1
c2

∑k−2
i=0 Ki−1(

e
√
n

2π )i
]

232

for n. Figure 3 shows the value of this bound on233

the y-axis for increasing numbers of samples n on234

the x-axis. As we can see from the graph, for sam-235

ples greater than 90 the error rate is less than 0.5,236

allowing us to approximate the true answer distri-237

bution with 95% confidence if there are fewer than238

8 categories in the categorical distribution.239

Question Types We collected 101 (context, miss-240

ing slot) pairs, and obtained 100 slot fillers for each241

from crowdworkers, resulting in 10,100 annota-242

tions overall. The annotators are paid 0.15 per243

answer, and they are all English speakers who are244

based in the US. We split the data, creating a dev set245

with 55 examples and a test set with 46 examples.246

The distribution of missing slot types are shown in247

Figure 4. Each question type is associated with a248

different type of commonsense reasoning, e.g time249

represents temporal commonsense reasoning. The250

dataset will be released.251

4 Probabilistic Evaluation252

In this section, we detail the method of evaluating253

the CFC task on the provided dataset. As com-254

monsense is inherently probabilistic, a rigorous 255

probabilistic evaluation is required; however the 256

task is presented (both to humans and models) as 257

a generative question answering task. Therefore, 258

we need a way to compare two large sets of answer 259

strings. We will proceed by how human evaluators 260

may go about comparing these sets of answers to 261

determine if they were drawn from similar distribu- 262

tions and then describe the various ways by which 263

this process can be automated. 264

4.1 Human Evaluation 265

Our proposed framework for evaluating model pre- 266

diction is depicted in Figure 5: Given a question, 267

the ground truth answer set G and the model gen- 268

erated answers H, the goal is to evaluate the simi- 269

larity between these two answer sets. 270

Figure 5: Human Evaluation Process

This is a difficult task even for a humans, par- 271

ticularly if the answer sets are large and diverse, 272

however bearing in mind that we are more inter- 273

ested in concepts being captured rather than unique 274

surface forms, a human might choose to cluster 275

the answer strings in G.1 The expert annotator 276

could then match the answers in H to the proposed 277

ground-truth clusters in G. At this point we can 278

define categorical probability distributions over the 279

clusters, Pg and Ph, where the probability assigned 280

to a given cluster is equal to the number of answer 281

strings assigned to it.2 The similarity between G 282

and H can be inferred by comparing the KL diver- 283

gence of the two distributions, DKL(P̂g||P̂h). To 284

ensure evaluation robustness, we propose to repeat 285

the same process with multiple human annotators 286

and average the KL score to remove noise. In the 287

end, the average KL value is the manual assessment 288

1When clustering, a new category "wrong" could be added
to the answer set to account for the wrong answers for a ques-
tion. These will then be discarded prior to model evaluation.

2To eliminate zero probabilities, we use Laplace smoothing
on all categories before calculating the probabilities, — adding
one dummy answer to all categories.
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of the quality of the model’s answers.289

Although this approach yields reliable results, it290

poses the following challenges: 1. Human experts291

must cluster the answers in G, which is an expen-292

sive, labor-intensive task. 2. Manually matching293

answers to clusters at evaluation time is infeasible.294

4.2 Automatic Evaluation295

Due to the disadvantages mentioned above of hu-296

man evaluation, we aim to design an automatic297

method that could ease the human evaluation pro-298

cess while achieving a high correlation with human299

evaluation results.300

The high-level approach is: 1. Embed ground-301

truth answers from G into a dense vector space.302

2. Automatically cluster the embeddings to obtain303

ground-truth clusters of G. 3. Match elements of304

H to clusters of G by assignment function score.305

Each step presents a number of options, which306

we detail in the following sections. We evaluate307

the quality of a particular approach by calculating308

the Spearman correlation of KL divergence using309

the automatic evaluation compared with that of310

the manual evaluation across a variety of answer311

distributions (see Section 4.3 and 4.4).312

Embedding We first embed the discrete word313

tokens in G and H as word vectors. We experi-314

mented with various word embedding models, both315

without context (Word2Vec (Mikolov et al., 2013),316

GloVe (Pennington et al., 2014) and FastText (Bo-317

janowski et al., 2017)) and with context (BERT (De-318

vlin et al., 2019), and RoBERTa (Liu et al., 2019))319

We found FastText to perform best, and use it for320

all future embedding components.321

Clustering Given the vector representation of322

the word answers, we experimented with various323

clustering algorithms including X-means (Pelleg324

et al., 2000), G-means (Zhao et al., 2008) and hier-325

archical agglomerative clustering (HAC) (Murtagh326

and Legendre, 2014) We used the implementation327

from pyclustering (Novikov, 2019). The parame-328

ters used by these clustering algorithms are treated329

as hyper-parameters and are tuned based on the330

correlation score as we discuss in section 4.3 and331

4.4. We found HAC to perform best.332

Matching Given the predicted answers, we want333

to match the answers to one or multiple ground334

truth answer clusters. This was also a require-335

ment for ProtoQA (Boratko* et al., 2020), and we336

leverage the WordNet matching function which337

performed best in that setting. As we also have em- 338

beddings for our answers, we consider approaches 339

based on embedding-based similarity functions.3 340

We train a Gaussian regression model for each 341

cluster in the ground-truth answers. The regres- 342

sion takes one answer representation as input, and 343

output is the label of whether the answer belongs 344

to one particular cluster. If an answer matches 345

with multiple clusters we divide the weight evenly 346

among all matching clusters. 347

4.3 Evaluator on ProtoQA 348

In order to validate the automatic evaluator’s per- 349

formance, we compared the automatic evaluator 350

results with the human evaluation results on two 351

generative datasets. We first evaluated the proposed 352

evaluator using ProtoQA. 353

Sampling A robust automatic evaluation method 354

should align well with human judgment on the 355

best and worst predicted answers, and any in be- 356

tween. To achieve this, we propose three different 357

sampling strategies to generate different answer 358

distributions for each question. 359

• Vanilla Sample. We take random samples 360

from model predictions directly. 361

• Diverse Sample. We take a linear combi- 362

nation of the ground-truth distribution and a 363

uniform distribution to create a new distribu- 364

tion that interpolates between the ideal ground 365

truth answers to random noise: 366

p = αP̂g + (1− α)uniform 367

368• Centered Sample. Arguably, the most im- 369

portant area to assess the quality of the eval- 370

uator is around answers which are likely to 371

be returned from a model. We achieve this 372

by taking a linear combination of the answer 373

distributions of a given baseline model, the 374

ground-truth distribution, and a uniform dis- 375

tribution, with most of the weight assigned to 376

the answers from a baseline model: 377

p = zP̂h + w
′
1P̂g + w

′
2uniform

w
′
1 =

w1 ∗ (1− z)

w1 + w2

w
′
2 =

w2 ∗ (1− z)

w1 + w2

z ∼ U(0.5, 1), w1 ∼ U(0, 1), w2 ∼ U(0, 1)

378

379
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Clustering Human Human Human Hierarchical Hierarchical

Matching Human WordNet Embedding WordNet Embedding

Vanila Sample 1 0.351 0.333 0.199 0.148
Diverse Sample 1 0.800 0.890 0.748 0.754
Centered Sample 1 0.752 0.714 0.700 0.593

Table 2: Average Spearman correlation between human evaluation and automatic evaluation under different sampling
strategies for ProtoQA dev questions. The top two rows indicate the supervision source: cluster results can be
annotated by human or clustering algorithms, and matching could be done via human annotation or automatic
similarity functions (wordnet or embedding-based function)

Figure 6: Correlation for sampled questions in ProtoQA with ground-truth clusters. The X-axis is the KL value
with human assignment, and the y-axis is the KL value with WordNet assignment. This corresponds to the Human /
WordNet column in Table 2. Different questions are annotated with different colors.

The ProtoQA dev set has 100 ground-truth an-380

swers and 30 additional human responses that were381

collected to measure human performance. For each382

question, in addition to the 130 human responses,383

we also use the 300 generated answers from the384

fine-tuned GPT-2 model. All of these answers are385

annotated by expert annotators with cluster match-386

ing to the ground-truth clusters. We use the union387

of the 30 human responses4 and the GPT-2 answers388

as the prediction set, H. We sample 50 answer sets389

for each question from H and G according to the390

sampling procedure mentioned above.391

We use automatic clustering and matching to get392

the automatic DKL(P̂g||P̂h). We can also evaluate393

the KL for manual clustering and matching, as all394

answers in ProtoQA have been annotated by hu-395

man experts with clusters and assignments. After396

getting the human and automatic KL values for397

various sampled answer sets, we use the Spearman398

correlation coefficients across questions to mea-399

3We tried cosine similarity with FastText embeddings, but
it is hard to decide the threshold for answers that belong to
the "wrong" cluster. We tuned a few values and found that the
results are unstable, so we don’t report these results here.

4we scale up the 30 additional human answers to 300, in
order to balance the model predictions and human answers.

sure the alignment between automatic and human 400

evaluation. 401

Results As we can see from Table 2, the cor- 402

relation value from the Vanilla sample is fairly 403

low; however, the correlation number for both Di- 404

verse sample and Centered Sample strategy are 405

both much higher. Inspecting Figure 6 shows that 406

the Vanilla sample strategy does not provide di- 407

verse answer sets. This suggests that our automatic 408

evaluation may struggle to provide fine-grained dis- 409

tinctions, however in reality we predominately care 410

about scoring results from different models, which 411

is better represented by the Centered Sample and 412

Diverse Sample approaches. 413

We also note that automating the matching func- 414

tion only yields higher correlation with scores 415

based on human annotations, which is promising 416

as this would only require manual annotation at 417

dataset creation time, not for each evaluation. As 418

we can see from Figure 7, the automatic predicted 419

score is positively correlated with the score based 420

on human-annotations under most conditions. 421

4.4 Evaluation on CFC 422

After preliminary experiments on ProtoQA, we ver- 423

ified our proposed evaluator on 55 dev questions 424
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(a) Human cluster, WordNet (b) Human cluster, Embedding

(c) Auto cluster, WordNet (d) Auto cluster, Embedding

Figure 7: Centered sample correlation plots under dif-
ferent cluster and assignment methods: (a) human and
WordNet (b) human and embedding (c) HAC and Word-
Net (d) HAC and embedding

in CFC. As in ProtoQA, expert annotators clus-425

tered the human responses into less than 8 clus-426

ters. Based on the results from the ProtoQA, we427

avoid the need to manually annotate model answers428

and instead focus on calculating the correlation be-429

tween automated matching vs. automated matching430

and clustering. For this reason, we also solely eval-431

uated using Diverse Sample. As shown in Table 3,432

the average correlation is fairly high (> 0.85).433

We fixed the clustering parameters that gave us434

the best performance on these 55 questions to eval-435

uate model performance on the test set. We also436

used these parameters to obtain the ground-truth437

evaluation number using both the WordNet similar-438

ity function and FastText similarity function. For439

WordNet we get a KL value of 0.237, while for440

FastText we get a KL value of 0.091. The human441

KL value should be 0 since it is the ground-truth442

answer set. So we use embedding-based similarity443

methods to report model performance in Section 5.444

From Figure 8, we see that the WordNet score func-445

tion tends to produce a higher KL value compared446

to Human judgment, which explains the higher KL447

even for ground-truth answer sets.448

Cluster Human Hierarchical Hierarchical

Matching Human WordNet Embedding

Diverse Sample 1 0.865 0.857

Table 3: Average spearman correlation between human
and automatic evaluation under Diverse Sample for dev
questions in CFC.

(a) Auto cluster, WordNet (b) Auto cluster, Embedding

Figure 8: Diverse sample correlation plots under hierar-
chical clustering, and different matching methods: (a)
human cluster with WordNet matching (b) human clus-
ter with embedding matching

5 Model Performance 449

5.1 GPT2 450

Our baseline is a generative language model, as 451

modern language models have improved represen- 452

tational power, and recent evidence has demon- 453

strated their effectiveness in modeling common- 454

sense reasoning tasks (Weir et al., 2020; Tambor- 455

rino et al., 2020). We use the Hugging Face Py- 456

Torch implementation (Wolf et al., 2019)) of GPT-2 457

Large and XL (Radford et al., 2019). Our evalua- 458

tion includes zero-shot and one-shot evaluations, 459

as well as an evaluation after fine-tuning with the 460

ProtoQA training data. 461

We convert CFC questions to a format "[Q]: con- 462

text sentence, question, [A]". For the one-shot 463

experiment, we sample one question and one an- 464

swer from the CFC dev data, then we do the same 465

conversion but pre-pend the converted question- 466

answer pair to the actual question. The assumption 467

is that as part of the prompt provided to the model, 468

the model could get familiar with the task format. 469

For fine-tuning experiments, we took the Pro- 470

toQA pre-trained model5. We also trained the GPT- 471

2 Large model with a task format that is similar to 472

our task with the same "[Q]: question. [A]" format 473

using the ProtoQA training data denoted as GPT2- 474

L FT in Table 4. The models are fine-tuned for 3 475

epochs on an nVidia M40 GPU. 476

In order to generate different answers for the 477

same prompt, we use Nucleus Sampling (Holtzman 478

5https://github.com/iesl/ProtoQA_GPT2
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GPT2-L GPT2-XL ProtoQA FT GPT2-L FT Human GT

Dev
ZS 1.301 1.069 0.631 0.613

0.170 0.091
FS(1) 0.848 0.740 0.562 0.585

GPT2-L GPT2-XL ProtoQA FT GPT2-L FT Human GT

Test
ZS 1.197 0.962 0.576 0.612

0.040 0.076
FS(1) 1.020 0.748 0.623 0.658

Table 4: Model performance on CFC Data (lower is better). ZS means zero-shot, and FS(1) means one-shot
prediction. GPT2-L and GPT2-XL is the GPT2 large and XL model respectively, ProtoQA FT is the ProtoQA
fine-tuned, while GPT2-L FT is our own fined-tuned model. The GT column represents the KL values with the
ground-truth answers.

et al., 2019). We generate 200 sampled answers479

from the GPT-2 Large model and 100 answers for480

the GPT-2 XL model for each question and treat481

them as the model prediction set. We experimented482

with temperatures from 0.1 to 1.0, and chose the483

model parameters with the best dev performance,484

then reported the test performance here.485

5.2 Human Performance486

In order to get a human performance on this task,487

we collected 30 additional human responses and488

evaluated them the same was as a model prediction.489

5.3 Discussion490

As we can see from Table 4, the model performance491

and human performance still have a large gap in492

terms of KL value, while the human performance is493

very close to ground truth answers. This indicates494

that the dataset is a challenging dataset for models,495

while humans could perform very well on this.496

Moreover, GPT2-XL performs better despite the497

fact that the number of sampled answers is much498

less than the GPT2-large model (100 samples vs.499

200 samples). Both of these non-fine-tuned models500

benefit a lot from zero-shot to one-shot. When the501

model gets fined-tuned with the ProtoQA training502

data, the performance improvement is more signifi-503

cant. Nevertheless, all model performances are still504

far from human-level performance, which leaves505

us ample space to improve the model.506

6 Related Work507

Creating commonsense benchmarks to evaluate508

model performance is a long-standing research509

topic (Sakaguchi et al., 2020; Lin et al., 2020c;510

Sap* et al., 2019). However, most benchmarks are511

created using a multiple-choice selection paradigm,512

which is simpler to evaluate but misaligned with513

the real-world use-case of commonsense knowl-514

edge, and most egregiously ignores the existence 515

of multiple correct answers. We are not the first 516

ones to gather multiple human answers to facilitate 517

robust evaluations, however. Aydin et al. (2014) 518

and Boratko* et al. (2020) also collected multiple 519

human responses for each question to get aggre- 520

gated human ground-truth answer sets. 521

Our work differs from these due to our empha- 522

sis on commonsense as implicit and probabilis- 523

tic. We don’t treat each answer equally; rather, 524

we aim to match the answer distribution given by 525

human responses. For this purpose, we propose a 526

novel probabilistic evaluation for open-ended gen- 527

eration tasks with multiple correct answers. A sim- 528

ilar probabilistic evaluation was studied from a 529

language model generation point of view (Pillutla 530

et al., 2021). They proposed a KL-based evaluation 531

to measure language model generations, while our 532

focus is on the implicit answer distribution. 533

7 Conclusion 534

In this paper, we assert that commonsense is an 535

implicit probability distribution over missing infor- 536

mation, and propose a dataset that aims to evaluate 537

commonsense in this setting via a generative ques- 538

tion answering task; moreover, we embrace the 539

probabilistic nature of commonsense knowledge 540

in both the dataset creation and the metric design. 541

We propose a probabilistic automatic evaluation for 542

evaluating answer distributions that is highly cor- 543

related to human judgment. Using this metric, we 544

observe that model performance on our new dataset 545

is significantly worse than human performance, in- 546

dicating that the task is sufficiently challenging. 547

In the future, we aim to further extend the size of 548

the dataset, both in number of instances as well as 549

answer length, which will involve challenging prob- 550

lems on both the dataset creation and probabilistic 551

evaluation front. 552
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Ethics Statement553

The dataset aims to capture human commonsense,554

which is highly related to human bias. And due555

to the data collection nature of such a dataset, we556

acknowledge that our collected dataset might be557

biased toward certain populations, e.g., since all558

the data annotators are from the US, we may not559

cover commonsense knowledge for people from560

different cultural background, which we will try to561

mitigate in future work.562
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