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Abstract

Existing multi-label frameworks only exploit the information deduced from the
bipartition of the labels into a positive and negative set. Therefore, they do not
benefit from the ranking order between positive labels, which is the concept we
introduce in this paper. We propose a novel multi-label ranking method: Gaus-
sianMLR, which aims to learn implicit class significance values that determine the
positive label ranks instead of treating them as of equal importance, by following
an approach that unifies ranking and classification tasks associated with multi-label
ranking. Due to the scarcity of public datasets, we introduce eight synthetic datasets
generated under varying importance factors to provide an enriched and controllable
experimental environment for this study. On both real-world and synthetic datasets,
we carry out extensive comparisons with relevant baselines and evaluate the perfor-
mance on both of the two sub-tasks. We show that our method is able to accurately
learn a representation of the incorporated positive rank order, which is not only
consistent with the ground truth but also proportional to the underlying information.
We strengthen our claims empirically by conducting comprehensive experimental
studies. Code is available at https://github.com/MrGranddy/GaussianMLR|

1 Introduction

Multi-label ranking (MLR) [} 2 3]] is a supervised learning problem where the objective is to not
only classify the labels by their relevancy to the instance, but also to predict a ranking that represents
the instance’s preferences over chosen relevant labels. This can be considered as a generalization of
the two sub-problems: multi-label classification and label ranking. To briefly define, given a set of
labels Y, multi-label classification bipartites the set into two and associates the instances with the
relevant label set )V C Y. On the other hand, label ranking aims to map instances to a total order over
Y. With the objectives of these sub-problems combined, multi-label ranking can be applied to any
scenario where the expected output is a ranked subset of all possible labels.

Although the use cases of multi-label ranking have been defined in the literature, most of the public
multi-label datasets has ranking information of labels as being a positive or a negative label only.
Ranked datasets specific to MLR, where the label order represents the preference of relevant labels
to the instance according to the chosen criteria, are very rare. Therefore, not many studies deal
with evaluating the performance of a proposed approach in terms of the ranking order between
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the predicted positive classes. Rather, multi-label ranking has been used as an approach to solve
multi-label classification problems, applied to object recognition [4]], image classification [J5], or
used in online algorithms [6], where the ranking of predictions are not taken into consideration as a
measure. Furthermore, existing algorithms agree with the restraint that, only the partial information
that is deduced from the bipartition of the labels is available.

Given the limitations in the field, the motivation for our work is to study multi-label ranking with a
novel approach that exploits the order between positive labels, instead of assuming the positive and
negative labels of equal importance in their own set. In the following subsection, we highlight our
contributions and state the focus of our study in detail.

1.1 Our Contributions

* Inthe field of MLR, we establish the paradigm of exploiting the ranking information between
positive labels of an instance, where the main objective is to extract significance values of
labels that determine their rank, which may not be feasible to obtain numerically during the
labeling process.

* We model the MLR problem as a distribution learning problem based on a probabilistic
approach that unifies the bi-partition and ranking of the labels in the same space. This way,
we incorporate pairs consisting of positive labels into the optimization in addition to positive
and negative label pairs, to reveal a preference relation over a varying number of positive
labels.

* We introduce ranked image datasets generated under different setups with varying impor-
tance factors that determine the ranks, which create a controllable environment to test new
approaches while facilitating unambiguous interpretations of their performances.

* We compare our novel framework with different methods related to our approach, and
empirically explore and interpret the outcomes, thus setting up a clear set of baselines for
the MLR problem.

2 Related Work

In the literature, multi-label ranking has been applied to solve classification problems [4, 15,7, i8], to
learn from incompletely or inconsistently labeled data [3} (9], and has been studied from perspectives
of consistency and generalization by [[10]. In this section, we review the related works on learning
problems associated with multi-label ranking. Due to the misuse of terminology in previous works,
we clearly state the differences between concepts and examine the ones in the scope of this paper.

2.1 Label Ranking

Preference learning has been long studied in various contexts, and this paper is concerned with
learning label preferences where an instance is associated with a finite set of ordered labels, namely
label ranking problem [11}112]. Label ranking should not be confused with object ranking [[13]], where
the aim is to predict the ranking over a predefined class of objects related to the given user query,
such as sorting the responses of search engines according to their relevance to the query [14].

Proposed methods for label ranking include pointwise [L5}[16L17], pairwise [11} 1,15} 18] and listwise
[19, 20] methods. In this paper, we are concerned with pairwise methods. A pairwise method
that transforms the problem into a binary classification problem was first introduced in [21], as the
Constraint Classification framework (CC). The idea behind CC is to build constraints according to
the preference relation between labels, where the relation \; > A;, denoting that label \; precedes
A;j in relevance to the instance, constructs the two constraints f;(x) — f;j(x) > 0 being the positive
constraint and f;(z) — fi(z) < 0 being the negative constraint. Then, both constraints are used as
training samples of the single classifier to find the suitable weight vector satisfying the constraints.
More efficiently, Ranking by Pairwise Comparison (RPC) [[L1, 22]] transforms the problem into
training a binary classifier for each label pair, producing a number of K (K — 1)/2 models which
is half of the number of constraints of CC, where K is the number of classes. The final ranking
is determined after obtaining each model’s decision for the given pair and calculating the sum of
weighted votes. More recently, the Log-Sum-Exp-Pairwise (LSEP) loss function introduced in [5]]
improves the previous approaches using hinge loss [23| [24] by learning the pairwise comparisons in



a smooth and easier way to optimize. The proposed loss function follows the method of pairing one
positive and one negative label from the sets constructed according to the ground truth and wraps
BP-MLL (Backpropogation for Multi-Label Learning) [25] in a logarithmic function with a bias
term. The objective of LSEP is to enforce the positive labels to be in higher ranks and negative labels
to be in lower ranks by optimizing the loss function while training convolutional neural networks
[26]. However, LSEP involves an obligatory ordering of the whole set of labels to be followed by a
thresholding that determines which labels are to be discarded, while our GaussianMLR introduces a
natural label selection and ranking process.

2.2 Label Classification

Classification algorithms can be roughly divided into two categories based on the predicted label
count, as multi-class and multi-label classification. Determining the label count of the prediction
set is one challenge of multi-label classification, which is not a concern in multi-class classification
where instances are associated with a single label only. Although some approaches include setting
fixed label counts such as choosing top-k labels or fixed thresholds as a confidence score boundary,
forcing a label count by a fixed value is impractical as it ignores the context of the problem at hand.
Varying label counts can be realized by setting learnable thresholds or label counts as in [3]], or they
can be jointly learned in the label ranking step as proposed in the Calibrated Label Ranking method
[27], by using virtual labels as split points which are inserted in the label set before the ranking
process. Then, labels in higher ranks compared to the virtual label are included in the relevant set.
Compared against all previous related work, our GaussianMLR implicitly introduces a zero-point, i.e.
an inherent threshold, to perform binary classification of labels into positives and negatives in the
same space that we perform ranking, thus combining both tasks in a unified model.

3 Problem and Notation

3.1 Dataset Definiton

We start with a dataset of N examples, {(x("), R®)}N | where x(*) € R? is a real-valued sample

(O K

from the input distribution, and R = {(y;, 7;)}jL1 is the label, where y; € Y is a symbolic class

representation for an entity that can be semantically present in x(), Y = {y1, s, ..., yx } is the set
()
J

prior work mostly uses standard multi-label classification datasets defined as {(x(*), Y(¥)} N | where
Y@ C Y is the set of classes semantically present in x( and called the positive classes, while the
rest of the classes are called negative classes. This kind of dataset only provides a ranking information
between negative and positive classes where positives have a higher rank than negatives, and can be
seen as a special case of the former definition where R = {(y,,, 1)|y. € YD} {(y,0)|y, & Y}.
In our definition, a negative class will always have rank 0. Throughout our work, our findings are
under the fair assumptions: (i) x are identically and independently distributed (i.i.d.) in all datasets.

(i) All label/rank pairs (y;, r](-i)) are conditionally independent given an input (¥,

of K possible classes, and r.” € N is the rank of the associated class y; for x Tt is the case that

3.2 Problem Definition

We construct the multi-label ranking problem, assuming that the two sub-problems, the multi-label
classification and label ranking, are independent, i.e., Y@ and B are independent given AR

Py sV, BV 1x;0) = Py(VOx0) P (BY xV; ). (1)

Thus, we formally define the following likelihood optimization problem, given an instance (*):
max Py (Y x0;0) P (B x s 0). ©)
Here Y is the set of positive classes for an instance x(%), Py is the parameterized family of
probability mass functions of possible positive class sets, parameterized by #, and conditioned by x(.

While B®) is a bucket order[28], which is a class of partial orders allowing ties. A partial order is a
reflexive, antisymmetric, and transitive binary relation on a set of items, in our case Y. B(*) intuitively



partitions labels y € Y into mutually exclusive bucket of ranks <M§i), . Miiz)) where b(?) is the

number of buckets. If two items y,,, y, € ./\/l,(f) are the member of the same bucket then we say they
are in tie, meaning they can not be distinguished ordinally and they virtually have the same rank.
Formally, for a bucket M, Yus Yo € ./\/l,(j) = (Yu,y) & BY A (4, y.) ¢ BD. Here it should
be noted that MS) C Y is aset and is only introduced to better visualize the bucket orders, B (@) jg just
a relation and is enough to define a bucket order. On the other hand, different buckets for an instance
%) have total ordinal relationship between them, such that: for any two distinct buckets .M,(:), ./\/ll(i),
Yu € MS), Yo € ./\/ll(i), (WY, o) € BY = k> I, ie. rff) > nﬁ“ <= k > [, where rl(f)
and n(,i) are corresponding ranks of y,, and y,,. P is the parameterized family of probability mass
functions of such bucket orders parameterized by ¢, conditioned by x(*).

The optimization problem in hand can be seen as the joint optimization of two distinct problems,
namely: multi-label classification and label ranking. Both of the terms can be divided into practicable
sub-problems.

We can simplify the first likelihood Py (y|x("); §) by defining the random variable y € {0, 1} via
the random vector:

1 y.€)y
c = 5 17...,K .
y % ey cefl, . K)

Here ) is any random variable distributed by Py ()|x(¥); #), then we can model the sub-problem with
K binary classification models using Bernoulli distribution:
K
max Py (VO 1x:60) = max [ P(ye = 1x;0) 01 p(y, = 00087, 3)
c=1

where I[.] is the indicator function.

Likelihood of a Bucket Order. We can use a random vector r ~ P,(r|¢) where r € RX and
|Y| = K to model the likelihood of a bucket order, where each element of r; corresponds to the
significance value of class y;. Let r define a weighted directed complete graph G = (V, E, w) such
that, V=Y, E =Y XY andw : E — R. We define the edge weights as w(yy, y») = P(ry, > 1y).
Let P be a total partial order defined by >~ such that Yy, v, € Y, (Yu,yv) € P or (yy,yu) € P,
which describes a unique permutation of the elements. Then we can model the likelihood of P with
independent Bernoulli distributions on the edges, such that for any two nodes y,,,y, € Y either
(YusYu) € P or (yy,ys) € P, let S be the set of unique pairs on Y, such that, if (u,v) € S then
(v,u) ¢ S P(P) = 1y, yyes P(ru > 1) 10ev )P P(r, < p, )02 EP) P s defined
by - relations so we can simplify: P(P) =[], ,.)ep P(ru = ry). A bucket order B agrees
with a unique set of total partial orders Sp, formally VP € Sp,V(yu,y») € B, (Yu,¥s) € P.
Then we can express P(B) = > pcg, 1., 4y,)ep P(Tu = ry). For any pair of tied elements
Yus Yo €Y, (Yus Yv) & B A (Yo, yu) ¢ B, there will be (yy,y,) € P1 and (yy, yu) € P2 and the
rest of the elements are the same, where Py, Py € Sp. P(r, > r,) + P(r, < r,) = 1, grouping
and simplifying the summed terms in P(B) formula, we have: P(B) =[], , yep P(tu = T0). A
visual explanation of the likelihood of a bucket order can be seen in Figurem

We parameterize Py (r|x(); $) by ¢, and re-write P(B) in a likelihood maximization:
max Pz(B |x®; ¢) = max H P(r, > 1,x%; ¢). 4)
¢ ¢ (yu7y,u)68<i)

As a result, the multi-label ranking problem as defined in Equation (2)) can be re-written as:

K

%laXH P(y. = 1x®;9)wec¥ V1 p(y, = 0x®); g)lve#>™] H P(ry > 1,xP; ). (5)
el (Y yv ) EBO

The refined optimization problem in Equation (5)) sets up the basis for our proposed unified multi-label

ranking method. It establishes a probabilistic foundation for the multi-label ranking problem, which
we further develop with a Gaussian probability model next.
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Figure 1: Visual explailz)ltion of how a real valueé r)andom variable, a total p(a%tial order and a bucket
order is related. Random vector r defines a complete graph as depicted in (a), a total partial order
contains magnitude relations for all pairs of the set that it is defined on. (b) shows how a total
partial order can be applied on the random vector r to calculate its likelihood: P(ry > r1)P(r; >
ro)P(ra > r3). Lastly a bucket agrees with a set of total partial orders, since the bucket order
depicted in (c) does not specify an ordering between ry and rs, both (ro,r1,r3) and (rs,r3,ry)
is valid for (c). Then it is trivial how the elimination process will follow, yielding the likelihood:
P(ry > r1)P(ry > r3) for the bucket order shown in (c).

4 GaussianMLR

4.1 Core Idea

Multi-label ranking problem can be viewed as both classifying and ranking the classes in a given
instance, meaning that we are not only interested in assigning correct classes to an instance, but we
also want to measure how relevant these classes are for the given instance.

Significance Values. We start by assuming all y; € Y¥) for a given input z(*) has an underlying

(@)

51gn1ﬁcance Value s;’ € R, we model these significance values using Gaussian distributions, such

that: s ~N ( )) where \/(-, ) is a Gaussian distribution, .\’

j is the mean and af-(i) is the

Vanance, for a glven IB( )

4.2 Methodology

Our goal is to obtain a function f such that it produces significance values matching with the ranking
information in the ground truth. Let f : R? — R2X be a trainable function parameterized by ,
where the output of the function is the predicted Gaussian distribution parameters /i(") € R¥ and
52 ¢ RX for the input x() € R? such that f(x(¥); ¢) = [ 2()] and the predicted significance

A(4) RO
values 3, ~ N'(f1;",02;").
We adapt the optimization problem in Equation (3)) as follows: instead of using a separate binary
variable for the classification task, we model the significance values such that for a class y., §£” >0

indicates a predicted positive, and s( 2

optimization problem reads:

< 0 indicates a predicted negative. The reformulated

max H P(s ]I[ycey< >}P(§£z‘) < O)]I[ycgy(i)] H P(gui) . gvi)). "
(Yu,yv)EBWD
Letting dEZ) 9 = ,§Sf) §5, ), and using the above-mentioned definition: CZE’U) o~ Nl NG u(z) Ag(l) N

&5 @ )), we can re-write Equation EI as follows:

maXHP ) > )l eV p(s0) < )lloetY T P > 0). (7)
(Y 90)EBD
) = (1/2)[1 - erf(~p1/(o/2))] where

For a Gaussian random variable z ~ N (i,02), P(z > 0
(1/2)[1 — erf (—p/(0/2))], then we can

erf(-) is the Gaussian error function. Let Q(u,0) =



re-write Equation [7]as:

K
~ (i) ~(i (1) ~ (i) ~(i _g@) ~ (1
max [T @G, 60)%" (1= @0,6@N 2D T Qi) 60 ®
c=1 (yu yv)eB“)
Here Bcl) =1y, € yu ] fuw) = g‘ D _ uv ) and a&)v) = 6Z(i) — &12,(i). Applying negative log
likelihood, we define our loss function in two parts as follows:

L, 60, 30) = £ 30108 (Q(l" 517)) — (1 - 5 1og (1 - Q. 6.
Lo(i®,60,B0) =% _1og(Q(Mgu>v)7 &) ))).

Summing up, the objective function of the GaussianMLR is given by:
mln—ZL (nD, 60 YDy 4 L, (D, 60 BD), 9)

Training and inference. GaussianMLR provides a differentiable loss function (9), thus in the context
of our work we choose to use our objective to train neural networks using stochastic gradient descent.
After training a network with any dataset D, at inference we use /i) as the predicted ranking score
for a given 2(*). Further details on the implementation can be found in Appendix

Learning Implicit Class Significance. For a large enough dataset, we claim that our predictions
will be proportional to the real underlying significance values. This claim is theoretically supported
in Appendix [D]and we further support our claim with empirical studies in Section [5]

5 Experiments

5.1 Datasets

We conduct our experiments on three distinct datasets: natural scene images database[3l], architectural
VDP dataset[29]] and Ranked MNIST datasets, which we introduce Section[5.2] These datasets have
the common trait that they not only bipartite the labels into negatives and positives, but also provide
how relevant each of these positive classes are to the instances. All datasets we use follow the notation
provided in Section [3.1] further details can be found in Appendix [A] In the paper, we only provide
Ranked MNIST Gray experiments, for the Ranked MNIST Color, the experiments can be found in

Appendix [F
5.2 Ranked MNIST

Ranked MNIST is a family of datasets with two main branches named as Ranked MNIST Gray
and Ranked MNIST Color, where the first is in grayscale and the latter has varying random hue
and saturation values for each digit. These datasets are generated by placing unique digits from the
MNIST dataset [30] on a 224x224 canvas, where the number of digits in a single image vary from 1
up to 10. For each branch, we have two different importance factors that change: scale and brightness.
According to these factors, we rank each positive digit such that for scale: the larger digits have
greater ranks and for brightness: the brighter digits have greater ranks. For both the Ranked MNIST
Gray-S/B (scale/brightness) and Color-S/B datasets we have four different setups: changing scale,
changing brightness, changing both and training on scales, changing both and training on brightness.
Further explanation and examples can be seen in Appendix [E]

5.3 Baselines

To evaluate our GaussianMLR (GMLR) method, we selected two pairwise baseline methods, namely:
CRPCJ3]], which is the calibrated[3 1] version of RPC, and LSEP[S]. To our knowledge, GMLR is the
first multi-label ranking method which utilizes the positive class ranks, thus we aim to provide fairness
in competition of the baseline algorithms with our method. To that end, we introduce CRPC-Strong



and LSEP-Strong, where we develop the existing baselines into Strong versions that can process the
positive class ranks by adding all (y.,, ¥, ) pairs, where y,, and y, are positive classes and y,, > ¥ .
Similarly, we call the methods which do not use the positive class relations as Weak versions.

Table 1: Quantitative results on Ranked MNIST Gray datasets. Ranked MNIST S and B stands for
changing the scale or brightness of the digits, while (Mix) means both of the features are changing,
but the ground truth indicates only one of the features. Bold-marked results show the best scores in
Strong(S) baselines, and underlined scores show the best scores in Weak(W) baselines.

Ranked MNIST Gray-S Ranked MNIST Gray-B Ranked MNIST Gray-S (Mix) Ranked MNIST Gray-B (Mix)
w1 Sp1 91 HLL MI] FIf | 51 Spl__~1 HL] M| FIT | nf Spf 1 HL]L M-I} FI{ | 5,1 Spl 1 HL] MI] FIf
CRPC(W) | 4926 59.92 59.80 17.13 020 8645 | 51.36 6145 5927 1285 044 8944 | 5173 6171 5883 1329 043 89.12 | 5235 6250 5929 1289 047 89.42

Method

LSEP(W) | 61.38 70.67 6149 049 0.10  99.56 | 59.45 68.67 59.77 0.96 0.14  99.12 | 60.45 6947 60.68 0.97 0.14  99.11 | 60.04 6920 60.31 0.99 0.11 99.10
GMLR (W) | 6252 71.86 6262 0.1 0.10  99.54 | 60.18 69.36 60.54 0.97 0.10  99.12 | 60.56 69.74 60.80 0.92 015  99.16 | 60.00 69.23 60.24 0.93 013  99.15
CRPC(S) 64.09 7556 7520 18.69 0.18 8537 | 61.71 73.62 7470 24.15 037 8173 | 6258 74.03 7380 18.89 032 8517 | 63.32 7485 7444 1858 034 8537

LSEP (S) 93.99 97.35 9450 1.38 023 9875 | 93.62 97.01 9446 1.95 0.24 9821 | 91.71 9589 92.54 2.15 0.27  98.04 | 93.03 96.81 93.64 1.80 023 9836
GMLR (S) | 94.23 9741 9443 0.58 0.20 9947 | 9338 96.65 9449 2.04 033 98.15 | 9099 9505 9175 145 0.79  98.67 | 9294 9646 93.73 1.52 0.44  98.62

5.4 Quantitative Results

We provide quantitative results on  Typle 2: Quantitative results on Natural Scene Images
both the Ranked MNIST and real pgapahase (NSID) and Architectural VDP Dataset (AVDP).

datasets using two set of metrics: rank- The annotations of scores are the same with Table it
ing and classification. For ranking we
’ _ ’ N NSID AVDP
use Kendall’s Tau-b (73), Spearman’s Method (N A T
Rho (Sp) and Goodman and Kruskal’s CRPC(W) | 5789 6462 7065 2036 9.60 6825 | 3757 4024 4170 2428 3381 5075
. . LSEP (W) | 71.85 75.80 79.13 1074 6.03 79.92 | 39.79 4193 44.54 1923 3029 54.66
Gamma ('7)» for classification we use GMLR (W) | 7341 7777 8081 1116 558 7994 | 4029 4260 4112 2010 3175 5431
1 - - CRPC(S) 59.54 66.02 72.15 1922 9.82 69.61 | 39.69 4195 4474 22.17 3443 5257
Hammlng LOSS (HL)’ Max 1 (M 1) LSEP (S) 7257 7657 80.58 10.54 4.69 80.12 | 40.54 4260 4255 18.89 3141 5586
loss and F1 score. Max-1 loss yields GMLR (S) | 7544 78.66 8287 1106 603 8008 | 4127 4334 4527 2008 2922 5254
the percentage of instances such that
the label with the maximum predicted score is not in the ground truth positive set. The details for
the metrics are described in Appendix [C} Table [T shows the results for each method trained on each
Ranked MNIST Gray dataset. Here, GMLR slightly outperforms LSEP, and CRPC performs the
worst amongst the three on all metrics. Quantitative results of our experiments on real datasets are
given in Table[2] GMLR visibly outperforms the baselines for the ranking metrics, and produces
comparable results to LSEP for the classification. It should be noted that both of the real datasets

comprise inherent noise due to the labeling process being subjective.

5.5 Adjusting Significance Effects Experiment

To analyze the learned rank scores of GMLR and baseline methods, we first conduct an experiment
where we gradually adjusted the selected effects. We have two setups in the experiment: changing
scale and changing brightness. For each setup, we generate a set of sequences D, = {S1, ..., S50},

where each sequence consists of gradually changing images, i.e. S; = <w§1)7 ...,wz(»50)>. Each
sequence S; consists of three random MNIST digits, let us name them y/°%, y™iddle and yﬁ”g " the
(

starting image of the sequence @'" has the corresponding significance values s'ow, smiddle and ghigh,
Iterating over the images of any sequence S;, the significance value for 3/ linearly changes from
stow (o ghigh for th igh changes from shigh (o glow and y;mddle remains constant. In the top row of
Figure 2| you can see how the images change for each setup. For each method and setup, we obtain
the rank scores of the images in D, using the network trained with the corresponding method on

the corresponding dataset Ranked MNIST Gray-S/B. The average value of each position over all
sequences S; are calculated for ylow, ymiddle and 9" and we show how the predicted rank scores

[ %

change in Figure 2] for both strong and weak baselines, and GMLR.

low

5.6 Calibration Experiment

The calibration experiments are conducted to see how the scores for each baseline are distributed
for different instances of the same significance values. We start by generating an image set Do =
{x®, ..., x69}, where each (") consists of MNIST digits and is associated with a label set () C
Y where |V()| = 4. Each positive class y; € Y® in an image (") has a one-to-one mapping
to {1.0,1.5,2.0,2.5} which defines their significance value, in this case the scale value. For each
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Figure 2: Gradually changing significance effects in the sequences are shown at the top row, where
the importance factor is the size of digits in top-left and brightness of digits in top-right. Lines
demonstrate changes in scores of (1st, 2nd, ) digits, which are in the order of (5, 4, 8) in top-left
and (3, 8, 9) in top-right. As GaussianMLR (GMLR) produces concurrently adjusting significance
scores, it compares favorably over the baseline methods: CRPC and LSEP.
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Figure 3: Annotated samples of 4-digit Ranked MNIST Gray-S dataset are shown in the first two
columns from the left, where the scale factors of each digit is demonstrated by the bounding boxes
for Scale=1.0, Scale=1.5, Scale=2.0, . Resulting plots for each method when the set of
scores for each significance value (scale) is fit to a Gaussian distribution are given in the other three
columns. GMLR captures proportional scores to significance values of each digit.

method in our experimental setup, we train a network on Ranked MNIST Gray-S, then we feed each
image (%) to the network to produce score vectors §(*). From each score vector §*) we select the
scores associated with each value in {1.0,1.5,2.0, 2.5} then create a set of scores for each underlying
significance value Sy o, S1.5, S2.0, So.5. For each set we fit a Gaussian distribution to the values, the
resulting plots for each method are given in Figure [3| with a visual expressing the experiment. Both
LSEP and GMLR extract an inherent calibration of significance scores, whereas in terms of their
magnitude and variance, the order of distributions for each digit is best reflected by GMLR. Another
observation from our experiments is that, which is also exemplified in Figure |3} GMLR produces



significance scores with larger variance for larger objects. This is due to naturally increased data
variations owing to larger object extent. This positively distinct impact is not observed with other
methods that entail intrinsic noise surpassing this effect, which is further explained in Appendix[I|

5.7 Extracted Significance Value Experiment

In this experiment, instead of creating gradually changing images to test if an MLR method produces
consistent predictions with the underlying process, we do the opposite. Assuming the underlying
process exists, we visualize which images in our test set would generate consistent scores with the
process. We order the images according to the predicted significance value by our trained model for
each class. Then, we select 10 images as checkpoints among the set of 400 test images, by choosing
equidistant images in the interval. These image sequences sorted as in Figure [ demonstrate that
as the predicted significance value for a class increases, the dominance of that class also increases.
These results suggest that GaussianMLR extracts a proportional score to the underlying significance
value for a class.

Predicted Significance Value

mountain

plant

Figure 4: Three sequences of images sampled from the test set of Natural Scene Images database,
sorted in the order of predicted significance values for each class by GMLR-Strong. The ordering of
images demonstrates that GaussianMLR extracts class significance values that determine their rank
proportionally to the dominant class in the image.

6 Conclusion

While previously studied weak multi-label ranking methods learn almost no useful information about
the underlying significance values of the positive classes, the strong multi-label ranking paradigm of
GMLR yields remarkably calibrated significance values. GMLR compares favorably to the competing
baselines as demonstrated by the experiments, where the concurrent gradual changes in the scores for
the changing effects in images as well as the constant scores for the static effects indicate that the
underlying appearance and geometric characteristics pertinent to ranking are learned by GMLR.

Broad Impact. GaussianMLR encourages new ideas by providing a fresh perspective into the field
of MLR. It introduces a set of datasets (Ranked MNISTs), which construct a controllable experimental
environment for the new MLR paradigm. Not only GMLR shows the potential on learning more
than a ranking between labels but also its output converges to a distribution that is proportional to the
underlying significance value process of data characteristics. For a dataset where the labels of any
instance are weighted by an unknown factor which controls their relevancy to the instance, GMLR
provides a way to extract these unknown factors by only using the ordering between the labels. These
findings we believe have potential in numerous applications where ordering of factors are of value for
instance in generation, design, or in decision making where alternative choices are typically pairwise
ranked.

Limitations and Ethical Concerns.  In the absence of strong MLR paradigm, it is an open
question whether the MLR can reach or surpass the results provided by GMLR. The true potential
of Strong MLR paradigm can be further appreciated with availability of more public synthetic and
real-life datasets. GMLR does not impact the explainability and fairness of the decisions made by the
underlying design choices, such as the architecture of the used neural nets in the pipeline. GMLR
calls for further experimental and theoretical studies in learning calibrated significance values.



A Datasets

Natural Scene Images Database. Natural scene images database[3]] consists of 2000 images of
natural scenes, for example: cloud, desert, mountain etc. The dataset has multiple labels per
image, to convert them into single label, we applied mean rank ordering[32] as a ranking aggrega-
tion method described in their paper. We took a random split of images into sets with size 1600
and 400 to create our train and test sets accordingly. The dataset is public and can be found in
http://Idl.herokuapp.com/download.

Architectural VDP Dataset. Architectural Visual Design Principles (VDP)[29] dataset consists of
3654 train and 407 test images where the labels are: asymmetric, color, crystallographic, flowing,
isolation, progressive, regular, shape, symmetric. Images are associated with a maximum of 3 positive
classes, and each positive class is ranked by their dominance over the other classes in representing the
image. The authors of the paper can not provide the dataset publicly, and we obtained the dataset by
asking from the authors. Some of the publishable images and their scores are provided in Figure

The datasets have no harmful or offensive content in them. In our work we only provide publishable
material, further details of the datasets are held by the respective authors.

B Implementation Details

For all experiments we use a neural network with ResNet18[33]] feature extractor with feature size
512 and an additional 512 X 512 fully connected layer.

For CRPC we add a fully connected layer with output size of K (K — 1)/2, where K is the number
of classes including the virtual label. The virtual label is used to determine positive and negative
predictions such that if predicted score is higher than virtual label’s score it is positive and vice versa.
Here each output value corresponds to the logits for the relation between a unique pair of items.
Then for each logit sigmoid function is applied and used for a binary classification, where for a pair
(Yu, Yv) if Yy, > vy, then the ground truth is positive, else it is negative.

N
LCRPC’(weak) = Z Z - log a(f(u,v) (w(Z)))ﬁu - IOg(l - o-(f(utv) (:B(l))))ﬁva

=1 (yu,yv)ES

where 8, = I[y, € YDA (y, & YO Vy, = v0)], Bo = I[(yu & YD Vy, =v0) Ay € YD), vg is
the virtual label, (¥ is the set of positive classes for the instance @), o (+) is the sigmoid function,
S is the set of unique pairs on the class set Y, where each unique pair corresponds to one output
value f, .. Further details can be found in [27].

For the strong version of CRPC we change the loss function into:

N
LCRPC(strong) = Z Z —log J(f(u,'u) (w(l)))a
i=1 (yu,yU)GB(i)
where B(*) is the ground truth bucket order for instance (*).

For LSEP we add two parallel fully connected layers with output size K on top of the feature
extractor for scores and thresholds. LSEP consists of two stages, first the score layer is trained with a
ranking loss:

N
Lusermiwny = 3008 (14 3 en(Ale) - 1) ).
i=1 (yuayv)eBl(i)

where B'() only consists of positive and negative pairs, such that (y,,5,) € B® < 1y, €

YO Ay, ¢y (1), The strong version can be modeled similarly by replacing B with the real bucket
order for ¥, B();
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N

L1.sEpP/R(strong) = ZIOg 1+ Z exp(fv(m(i)) _ fu(w(i)))

i=1 (Yu,yv ) EBD

After training the score head, to be able the determine if a class is positive or negative all layers of the
network except the threshold layer is frozen, then the network is optimized for classification:

N K
Lisprc == 3 1y € Y log(8;(2D) ) + Ty ¢ 9] 10g (1 - 85(29) ),

i=1 j=1

where 6 () = o(fr.(z®) — gp(x®)), f(-) is the score head and g(-) is the threshold head.
Further details for LSEP can be found in [3]].

For GaussianMLR we add a fully connected layer with output size 2K for mean and log variance.
The first K values of the output vector are used as predicted mean /i and the second K values of the
output vector are used as predicted logarithm variance log(&g) as commonly practiced in variational
autoencoder frameworks. Our proposed loss function consists of two parts, to balance the magnitude
of the two terms we use additional weights:

N
1 G) 7 a(i) ~li ; @) 7 rn(d) (i ;
min — > AP Lo(a, 60, YD) + A L, (D, 60, BY),
c Ni:1 1 (2 ) 2 (i )

where )\gi) =1/K and )\gi) =1/|B%|, K is the number of classes and B*) is the bucket order for

the instance (9.

All networks are trained until convergence with Adam optimizer of learning rate 1.e — 4 and
weight decay 1.e — 5. For real datasets we use the frozen ResNet18 feature extractor pretrained on
ImageNet[34] and train for the rest of the layers. For Ranked MNIST the learning rate is decayed by
0.9 each epoch and for real datasets every 5 epochs. For real datasets we also use RandAugment[35]]
and for RankedMNIST we apply no augmentation.

C DMetrics

To evaluate our method quantitatively, we use both ranking and classification metrics. For ranking:
Kendall’s Tau-b (73), Spearman’s rank correlation coefficient (Sp), Goodman and Kruskal’s gamma
(7), and for classification: Hamming Loss (HL), Max-1 error (M-1), and F1 Score are used. For a
predicted and a ground truth ranking, the following are the notations used in formulations:

N, : the number of concordant pairs,

Ny : the number of discordant pairs,

No = K(K — 1)/2: the total number of pairs,

N : total number of tied pairs in the prediction,

N : total number of tied pairs in the labels,

Ty, ¢ the rank of y,, in the ground truth,

7, ¢ the predicted rank of y,,,

y : the binary classification vector of the ground truth, where 1 indicates a positive class,
y : the binary classification vector of the prediction,

TP, FP, FN : True Positive, False Positive and False Negative terms.

Formulations for each measure can be found in Table [3] All metrics provided in the tables of
quantitative results are the average of the individual metrics for the test sets.
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Table 3: Metrics used for quantitative evaluation.

Algorithm Measure Formulation
> _ (chNd)
1 Kendall’s Tau-b (73) TN (o=
Ranki 1 Spearman’s p (Sp) 1-— M
anking P pop K(K? 1)
(where d; = 7; — 1)
N, — N,
1 Goodman and Kruskal’s gamma (v) WJ\Z
| Hamming Loss (HL) Zfil Iy; # yi]/K
Classification J Max-1 Error (M-1) Iy arg max; r; 7 1]
1 F1 Score TP /(TP + 0.5(FP + FN))
D Learning Implicit Class Significance
L XN
in — A 5@ @) A 50 BGH)
mclnN;Lc(u L6 V) + (a6, BD) (10)

Our dataset can be seen as a sample of a continuous data distribution (2, Y, B) ~ D, with our
objective function given in Equation[I0} we optimize the Monte Carlo estimation for the following
intractable objective:

chlnE(:c7y,B)N’D [LC(ﬂ?a—7y) + LT(/)76—7B)] (11)

where f,(x;¢) = i and f,(x;() = 6. For any input 2@ and for any two classes v, and v, let sgf)

and sg) be the underlying significance values of the classes, such that sff) > sff) = Yu - Yo

given (V). Function f(; ¢) is limited by ¢ in terms of capacity, assuming ¢ has finite dimensionality.
Let us define p = P(5%” > (") where 3% ~ N'(3{, 627 and 87 ~ N (3, 62).

For the optimal parameter (*, the difference between significance values € = sq(f) — s,(f), and the
maximal difference A, we expect as lim._,o p = 1, and lim._,qp = 0.5. This is the case since

higher e indicates higher perceivable difference in the instance (*), thus the relation between sfj ) and
sq(,i) for the instance (9 will be fairly obvious if € is higher. Since p ﬂq(f) — ;15“, fore = sgf) — 55}'),
€ X [u(f ) _ ﬂgi) for optimal ¢*. Thus we can say the difference between our predicted means
€= ,&Ef) — ﬂg,i) is proportional to the real difference of underlying significance values € = sgf) — s,f,i)
for an instance z*). Given the same soft constraint is applied to all pairs on our predicted vector,
for a large enough dataset we claim that our predictions will be proportional to the real significance

values, which we further supported with empirical studies in the paper Section[5.5][5.6]and [5.7]

E Ranked MNIST

Ranked MNIST is a family of datasets with two main branches named as Ranked MNIST Gray
and Ranked MNIST Color, where the first is in grayscale and the latter has varying random hue
and saturation values for each digit. These datasets are generated by placing unique digits from the
MNIST dataset [30] on a 224x224 canvas, where the number of digits in a single image vary from 1
up to 10. Here we would like the further explain how we generate the datasets and how each of the 8
different datasets are defined.
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For all the datasets we randomly pick the number of digits in the image from a discrete uniform
distribution of numbers from 1 to 10, then we randomly place the digits on a 224x224 RGB canvas.
For colored datasets we assign a random hue and saturation to color each digit.

Besides the coloring of the digits we have 3 different dataset setups to create the images: 1. Changing
Scale, 2. Changing Brightness, 3. Changing Both. Yet we have 4 different datasets since for the
scenario where we change both of the importance factors, the labels can be either for the changing
scale or for the changing brightness, thus for each coloring we have 4 different in total 8 datasets,
namely: Ranked MNIST Gray-S, Ranked MNIST Gray-B, Ranked MNIST Gray-S (Mix), Ranked
MNIST Gray-B (Mix), Ranked MNIST Color-S, Ranked MNIST Color-B, Ranked MNIST Color-S
(Mix), Ranked MNIST Color-B (Mix), where the letter in the end S and B stands for Scale and
Brightness respectively.

For brightness change we use HSV color space and sample brightness values from uniform distribution
U(0, 1) and for the scale change we sample coefficients from {(1, 3) then resize the digits such that
the height and width of the digits are multiplied with the scale coefficients.

Each dataset consists of 60000 train, 10000 validation and 10000 test images. The test digits are
sampled from the original MNIST test digits and the rest are sampled from the train digits.

The code to create the datasets will be provided in the supplementary material, and sample images
can be seen in Figure[T4]

F Ranked MNIST Color Experiments

The Adjusting Significance Effects Experiment explained in Section 5.5 of the main paper is per-
formed on the Ranked MNIST Color dataset, for all four different setups. Corresponding results on
Ranked MNIST Color-S and Color-B are given in Figure[Sland for the Mix datasets Color-S (Mix)
and Color-B (Mix), results are given in Figure[6] Quantitative results are provided in Table[d] It can
be observed that developing the baselines into “stronger” versions that enhance the models’ ability to
adjust to the changing importance factors when compared to the “weaker” versions which are the
original versions that do not benefit from positive class relations, in terms of the predicted scores.
When compared with the Strong versions, our method GMLR performs better in predicting consistent
scores both for the increasing or decreasing gradual changes and for the digits with unchanged
importance factors, while LSEP produces inconstant scores for the latter. Another interpretation
is that the predictions of GMLR are rather independent of the correlation between the digits and
it evaluates each digit separately, while LSEP bases the predictions on the relation between digits,
causing the convex score line for the 2nd digit in the experiments. These results are in compliance
with the experiments of the same setup on Ranked MNIST Gray on the main paper.

The additional Adjusting Significance Effects Experiment on Ranked MNIST Gray (Mix) that we
could not provide in the main paper due to space limitations can also be seen in Figure
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Figure 5: Gradually changing significance effects in the sequences are shown at the top row, where
the importance factor is the brightness of digits in top-left, Ranked MNIST Color-B, and size of digits
in top-right, Ranked MNIST Color-S. Lines demonstrate changes in scores of (1st, 2nd, ) digits,
which are in the order of (4, 0, 3) in top-left and (7, 1, 8) in top-right.
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Figure 7: Gradually changing significance effects in the sequences are shown at the top row, where
the importance factor is the brightness of digits in top-left, Ranked MNIST Gray-B (Mix), and size
of digits in top-right, Ranked MNIST Gray-S (Mix). Size of the digits for Ranked MNIST Gray-B
(Mix) and brightness of the digits for Ranked MNIST Gray-S (Mix) change randomly as explained in
Section Lines demonstrate changes in scores of (1st, 2nd, ) digits, which are in the order of (2,
1, 7) in top-left and (3, 7, 2) in top-right.
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Figure 6: Gradually changing significance effects in the sequences are shown at the top row, where
the importance factor is the brightness of digits in top-left, Ranked MNIST Color-B (Mix), and size
of digits in top-right, Ranked MNIST Color-S (Mix). Size of the digits for Ranked MNIST Color-B
(Mix) and brightness of the digits for Ranked MNIST Color-S (Mix) change randomly as explained
in Section Lines demonstrate changes in scores of (1st, 2nd, ) digits, which are in the order of
(5,7, 6) in top-left and (9, 2, 6) in top-right.

Table 4: Quantitative results on Ranked MNIST Color datasets. Ranked MNIST S and B stands for
changing the scale or brightness of the digits, while (Mix) means both of the features are changing,
but the ground truth indicates only one of the features. Bold-marked results show the best scores in
Strong(S) baselines, and underlined scores show the best scores in Weak(W) baselines.

Ranked MNIST Color-S Ranked MNIST Color-B Ranked MNIST Color-S (Mix) Ranked MNIST Color-B (Mix)
w1 _ Spt__ 1 HL] MI] Fif | nf SpT 7 HL] M-1] FI{ | nt Spf 1 HLL M| FIT | o1 Spl 51 HLL MI] FIT
CRPC (W) | 4980 6040 60.11 1707 032 8645 | 3606 6267 5929 1169 041 9028 | 5207 6240 60.15 1477 035 8793 | 50.76 6136 6023 1599 038 87.05
LSEP(W) | 61.85 7106 6198 051 010 99.53 [ 5970 69.03 60.03 107 017 99.02 | 61.58 70.75 61.85 101 (.12 9907 | 6112 7044 6139 100 0.6 99.08
GMLR (W) | 63.60 7305 6377 049 008 9955 | 600 6925 6033 1.04 0.9 99.04 | 6243 7160 6273 094 0.l 9913 | 6168 7110 6198 106 011  99.03
CRPC(S) | 6391 7542 7488 1906 023 8508 | 6262 7441 7478 2102 042 8369 | 6156 73.41 74.13 2263 032 8253 | 6477 7607 750 1633 029 86.78
LSEP(S) | 9376 97.32 9434 142 009 9870 | 9291 9658 9372 202 031 9814 | 9174 9593 9261 229 020 97.90 | 9248 9651 9324 207 021 98.09
GMLR(S) | 94.18 97.52 9444 0.66  0.07 9940 | 89.43 9344 92690 3.5 088 97.15 | 92.18 9627 92.67 127 015 9883 | 8880 9277 9041 240  3.03 97.74

Method

G Bar Graphs

Bar graphs of the predictions of strong versions of CRPC, LSEP and GMLR are given for the four
datasets: AVDP Dataset on Figure[§] NSID on Figure[9] Ranked MNIST Gray-S on Figure[T0Jand
Ranked MNIST Color-S on Figure The graphs visualize the working principles of each baseline,
where there is an additional virtual label for CRPC, learnable thresholds for each class for LSEP
and the zero-point as the inherent threshold for GMLR, to perform binary classification where the
positive predicted classes are denoted by green bars and negatives are in red, and the thresholding
method is given in purple. The ranks of positive predicted classes are determined by the sorted scores
and written below each graph with the > operator denoting precedence.
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Figure 8: Samples from the test set of the AVDP dataset are given in the first column from left, with
the corresponding ground truth labels denoted as GT. Each bar plot represents the predicted scores of
baselines CRPC, LSEP and our method GMLR, in their respective columns.

16




NSID

CRPC

Scores
o

oot sehoudpoltadeet e‘mn- Rate st W

MRO = { mountain >
desert > plant > sky}

{sky > mountain}

Scores
o

et hosdpottan ‘;%sg{.}‘«: et st W

MRO = {mountain >

water > snow} water > cloud > sun}

—

Scores
°

oot Shordytanestiofors s

MRO = { mountain >
water > building}
cloud > snow }

Scores
°
s

o skhoud, g“!{a\-x{;g““u Garet sut W

{plant}

MRO = {plant}

{snow > mountain > sky >

{sky >~ water > mountain >
plant > desert > building >

Scores

Scores

{mountain > snow >

Scores

{water > mountain > sky}

Scores

LSEP

S g
oo Shordoofianhestinofatet oo

{mountain > sky}

-a

et sk‘g\on ¢“‘?.s‘\‘:;‘¢ Qrate’ o

water > sky}

ort shyou iﬁ\\&wﬂ e st

-6

ot ool o SRt 0

{plant}

Scores

Scores

GMLR

0.00 ——I— S R SR VPEE
-0.25 I I I I I
-0.50

-0.75

e ehosdgollanesties ferst s

{mountain > sky}

IJIJL N .
SN

¥ o hosdaotia N
ot ot gallafstid G o

{mountain > water >

Scores

{

Scores

snow > sky}

et shoudeol ‘\a\‘ﬁ:x“,‘.\w ot sut

water > mountain }

0.0
-05 I I I
-10

o ot gellachesonare o

{plant}

Figure 9: Samples from the test set of the NSID are given in the first column from left, with the
corresponding aggregated rankings from ten rankers by the mean rank ordering method denoted
as MRO. Each bar plot represents the predicted scores of baselines CRPC, LSEP and our method

GMLR, in their respective columns.
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predicted scores of baselines CRPC, LSEP and our method GMLR, in their respective columns.
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Figure 11: Samples from the test set of the Ranked MNIST Color dataset are given in the first column
from left, with the corresponding ground truth labels denoted as GT. Each bar plot represents the
predicted scores of baselines CRPC, LSEP and our method GMLR, in their respective columns.

H Compute Resources

All the trainings, evaluations and experiments are done with an Intel 19-9900K CPU, 64 GB of RAM
and two GPUs, NVIDIA TITAN RTX and NVIDIA RTX 2080-ti on an Ubuntu 18.04 machine.

I Error Bars

The error bar table for real datasets is given in Table [5] It can be seen that Strong methods are
consistently better compared to the weak methods. It should be noted that both of the real datasets
consists of noisy and subjective labels which can affect the classification scores, while pairwise
ranking explains the performance more accurately. Here GMLR manages to outperform the rest of
the methods on most of the ranking metrics and yields comparable scores for classification, due to the
noisy nature of the datasets we can say the difference between GMLR and LSEP for the classification
does not strongly indicate that one is better while the other is not.

We ran each of the training setup given in Table[5|for 5 times with random seeds, the scores on the
table are the mean and standard deviation of the metrics for each random run. We are not providing
error bars for Ranked MNIST datasets, due to resource limitations, since they are considerably larger
compared to the real datasets.
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Table 5: Error bar for real datasets NSID and AVDP. Mean scores and standard deviations of each

baseline after 5 runs are reported. The annotations of scores are the same with Table 4]
NSID AVDP

Method

7 T Spt ~ 1 HL | M-1] F1 1 75 T Spt ~ 1 HL | M-1 | F1 1
CRPC(W) | 57.68+1.0 6439+10 7043+0.6 2073+09 1067+0.6 6797+10 | 3871 1.0 4129+1.0 4283+19 2386+04 3343+£08 51.8+08
LSEP (W) 728+06 77.0+06 803+05 1051+02 531+06 8035+03|3921+28 413+30 4193+£27 1921+£02 3066+14 5494+12
GMLR (W) | 7349 £0.9 7784£1.0 8096+1.0 10.64+03 567+05 80.63+0.6 |41.13+04 4341+04 4348+18 20.03+02 3021+10 5431+05
CRPC(S) 5934 £05 6587+£04 7247+£05 1936+03 951+£04 6944+04 | 399106 4243+0.6 447112 231104 3359+0.7 52.66+0.3
LSEP(S) | 71.95+1.8 7594£19 7925+18 105102 54911 80.17+04 |4095+17 43.02+1.8 4498+ 15 1894+0.2 2876+14 5542107
GMLR (S) | 75.54 0.4 78.86+0.4 82.89+0.6 10.87+03 62105 80.21+0.6 | 41.68+1.6 4384+17 4456+28 1988+04 2948+12 5412+£15

J Variance Experiment

The variance experiments are conducted to observe whether our method distinguishes the small
changes in importance factors and is able to assign ranks accordingly. The results of this experiment
ran on a similar dataset to Ranked MNIST Gray-S which is provided in Table[6]but instead of sampling
the scale from U(1,3) we sampled it from ¢/(1,1.5). Superior to other baselines, GMLR-Strong
captures the small differences in importance factors for both classification and ranking task. Sample
images created for the small variance experiment can be seen in Figure [12]

Table 6: Quantitative results of Variance Experiment on a variation of Ranked MNIST Gray-S where
there are small changes in importance factors. The annotations of scores are the same with Table@
Ranked MNIST Small Change
wnt Spt 4yt HL| MI1] FIT
CRPC (W) | 50.57 60.94 59.81 14.74 0.19 88.05
LSEP (W) | 61.50 70.67 61.61 0.39 0.10 99.64
GMLR (W) | 62.18 71.31 6232 047 0.12  99.57
CRPC (S) | 62.46 7430 7477 2127 0.6 83.59
LSEP(S) | 92.10 96.50 92.61 1.32 0.25 98.79
GMLR (S) | 92.65 96.77 92.86 0.52 0.15  99.52

Method

Figure 12: Sample images used in the small variance experiment.

We also conducted a similar experiment to the experiment given in Figure [5] Figure [6and Figure[7]
but instead of providing scores we provide variance as predicted by GaussianMLR. We provide the
results in Figure [I3] for Ranked MNIST Gray-S, Ranked MNIST Color-S, Ranked MNIST Gray-B,
Ranked MNIST Color-B, and Ranked MNIST Small Change. As can be seen from the Figure[I3]
even for the small change experiment the variance is learned in such a way that the digit with higher
significance value always has higher variance. From this finding we hypothesize that this is due to
a digit of high importance having a higher [ and a digit of lower importance having a lower /i, the
same percentage of error will make a higher impact on the loss for the more important digit and this
error is being compensated by increasing the variance.
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Figure 13: The change of variance for some of the experiments, conducted in Figure [5| Figure @
Figure E] and also the Small Change experiment.
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Figure 14: Sample images from the Ranked MNIST family.

K Extracted Significance Value Benchmark

In order to benchmark against other baselines, we provide the results of the Extracted Significance
Value experiment in Section 5.7 of the main paper for all baselines on NSID. For the three classes we
provided for GMLR on the main paper, Figure [15|compares the results for the mountain class, Figure
[16] compares for the plant class and Figure[I7]compares for the sun class.
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(c) GaussianMLR- Weak () GaussianMLR- Strong

Figure 15: Mountain class benchmark for the extracted significance values.

Predicted Significance Value Predicted Significance Value

(c) GaussianMLR- Weak () GaussianMLR- Strong

Figure 16: Plant class benchmark for the extracted significance values.
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(c) GaussianMLR- Weak (f) GaussianMLR- Strong

Figure 17: Sun class benchmark for the extracted significance values.
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