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Abstract: 3D scene graphs (3DSGs) are an emerging description; unifying sym-
bolic, topological, and metric scene representations. However, typical 3DSGs
contain hundreds of objects and symbols even for small environments; render-
ing task planning on the full graph impractical. We construct TASKOGRAPHY,
the first large-scale robotic task planning benchmark over 3DSGs. While most
benchmarking efforts in this area focus on vision-based planning, we systemati-
cally study symbolic planning, to decouple planning performance from visual rep-
resentation learning. We observe that, among existing methods, neither classical
nor learning-based planners are capable of real-time planning over full 3DSGs.
Enabling real-time planning demands progress on both (a) sparsifying 3DSGs
for tractable planning and (b) designing planners that better exploit 3DSG hier-
archies. Towards the former goal, we propose SCRUB, a task-conditioned 3DSG
sparsification method; enabling classical planners to match and in some cases sur-
pass state-of-the-art learning-based planners. Towards the latter goal, we propose
SEEK, a procedure enabling learning-based planners to exploit 3DSG structure,
reducing the number of replanning queries required by current best approaches by
an order of magnitude. We will open-source all code and baselines to spur further
research along the intersections of robot task planning, learning and 3DSGs.
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1 Introduction
Real-world robotic task planning problems in large environments require reasoning over tens of
thousands of object-action pairs. Faced with long-horizon tasks and an abundance of choices, state-
of-the-art task planners struggle with an efficiency-reliability trade-off in grounding actions towards
the goal. Hence, designing actionable scene abstractions suitable for a range of robotic tasks has
drawn long-standing attention from the robotics and computer vision communities [1, 2, 3, 4, 5, 6].

A promising approach for building symbolic abstractions from raw perception data are 3D scene
graphs (3DSGs, see Fig. 1) [7, 8, 9] – hierarchical representations of a scene that capture metric,
semantic, and relational information, such as affordances, properties, and relationships among scene
entities. While 3DSGs have to date been applied to simpler planning problems like goal-directed
navigation [6, 10], active object search [11], and node classification [12], their amenability to more
complex robotic task planning problems has yet to be thoroughly evaluated.

To investigate the joint application of 3DSGs and modern task planners to complex robotics tasks
we propose TASKOGRAPHY: the first large-scale benchmark comprising a number of challenging
task planning domains designed for 3DSGs. Analyzing planning times and costs on a diversity of
domains in TASKOGRAPHY reveals that neither classical nor learning-based planners are capable of
real-time planning over full 3DSGs, however, that they become so only when 3DSGs are sparsified.

Many real-world problems only require reasoning over a small subset of scene objects. E.g., the task
“fetch a mug from the kitchen” primarily involves reasoning about scene elements associated with
mugs or kitchens, rendering a vast majority of the remaining environment contextually irrelevant.
Most planners aren’t able to exploit such implicitly defined task contexts, instead spending most of
their computation time reasoning about extraneous scene attributes and actions [13] (see Fig. 5).
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We argue that performant task planning over 3DSGs demands progress on two fronts: (a) sparsi-
fying 3DSGs to make planning problems tractable, and (b) designing task planners that exploit the
spatial hierarchies encapsulated in 3DSGs. To address (a), we present SCRUB–a planner-agnostic
strategy guaranteed to produce a minimal sufficient object set for grounded planning problems. That
is, planning on this reduced subset of scene entities suffices to solve the planning problem defined
over the full 3DSG. Classical planning over state spaces (3DSGs) augmented by SCRUB outper-
forms state-of-the-art learning-based planners on the majority of tasks on our benchmark, without
requiring any prior learning, establishing a strong baseline for future work in robotic task planning.
To address (b), we present SEEK: a procedure tailored to 3DSGs, which supplements learning-
based incremental planners by imposing 3DSG structure, ensuring all objects in the sufficient set
are reachable from the start state. In our experiments, augmenting state-of-the-art planners with
SEEK results in computational savings and an order of magnitude fewer replanning iterations.

In summary, we make the following contributions:

• TASKOGRAPHY: a large-scale benchmark to evaluate robotic task planning over 3DSGs,
• SCRUB: a planner-agnostic strategy to adapt 3DSGs for performant planning,
• SEEK: a procedure that enables learning-based planners to better exploit 3DSGs

We will open-source all code and baselines in TASKOGRAPHY-API, enabling the construction of
new task planning domains, and benchmarking the performance of newer learning-based planners.

2 Related work

Early research in symbolic planning was centered around optimal planning [14, 15, 16, 17, 18];
planners producing solutions that preserve cost or plan length optimality. These methods are com-
putationally expensive and thereby untenable to even moderately sized problems. This spurred work
on satisficing planners that forgo optimal solutions for cheaper, feasible plans. Notable paradigms
include regression planning [19], tree search [20], and heuristic search [21, 22, 23, 24, 25]. Whilst
the many successes of heuristic planners [26, 27], computing low-cost informative heuristics is de-
terred by many extraneous objects [28, 13]; an inauspicious characteristic of large 3DSGs.

Robot task planning techniques have focused on constructing more effective representations to plan
upon [29, 30, 31]. There are also approaches that integrate task and motion planning [32, 33, 34]–
further demonstrated in hierarchical task space [35]–but which fall outside the scope of our work.
Several approaches exploit task hierarchies for robot task planning [36] and control [37, 38, 39].
Different from these, our work focuses on exploiting abstractions in spatial structure encapsulated
in 3DSGs, not to be conflated with hierarchical planners that exploit task structure [40].

State-of-the-art learning-based planners have demonstrated promising performance in small-to-
moderate problem sizes. However, techniques such as relational policy learning [41], relational
heuristic learning [42], action grounding [43], program guided symbolic planning [44, 45, 46, 47,
48], and regression planning networks [49] fail in large problem instances with branching factors
and operators of the order considered (see Fig. 2) in the TASKOGRAPHY benchmark. Moreover,
several planners that learn to search [50, 51, 52, 53] depend on hard-to-obtain dense rewards or do
not scale with domain complexity [54, 55, 56].

The simplification of planning problems via pruning strategies to enable efficient search has been
explored in both propositional [57, 58, 43] and numeric [59] planning contexts. Among these,
PLOI [13] is a particularly performant learning-based approach that leverages object-centric rela-
tional reasoning [60, 61, 62, 63] to score and prune extraneous objects to the task. While PLOI
outperforms existing classical planners on the TASKOGRAPHY benchmark, it incurs a large number
of replanning steps owing to inaccurate neural network predictions; and inability to exploit 3DSG
hierarchies. Our proposed SEEK procedure decreases replanning steps by two orders of magnitude.

Planning benchmarks in the symbolic planning communities have featured a variety of tasks with
time complexities ranging from polynomial (e.g., shortest-path) to NP-hard problems (e.g., traveling
salesman). There also exists a handful of environments [64, 65, 66, 67, 68] for benchmarking learned
action policies from language directives and ego-centric visual observations, task and motion plan-
ning [69], or the modelling of physical interactions [70, 71]. Another recent benchmark [72] only
supports navigation and block-stacking tasks. However, there isn’t currently a large-scale bench-
mark tailored to robotic task planning in 3DSGs with several hundreds of objects.
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3 Background

Task planning. A task planning problem Π is a tuple 〈O,P,A, T , C, I,G〉. As a running example,
consider the task find an apple, slice it, and place it on the counter. O is the set of all ground
objects (instances) in the problem. P is a set of properties, each defined over one or more objects;
weight(apple) = 70 grams. Predicates are subclasses of properties in that they are boolean-valued;
canPlace(apple, refrigerator) = True. A is a finite set of lifted actions operating over object tuples;
slice(apple), place(apple, counter). T is a transition model and C denotes state transition costs. I and
G are initial and goal states. A state is an assignment of values to all possible properties grounded
over objects. For the running example, a goal state may be specified as on(apple, counter)=True and
sliced(apple)=True. Planning problems may be grounded–slice this apple, or lifted–slice an apple.

Figure 1: A state in a planning problem specified over
a 3DSG. Nodes are scene entities and store unary pred-
icates. Edges indicate binary predicates (relations). A
goal is a conjunction of unary and binary literals. We
only show a subset of relations for brevity. E.g., if the
robot executes an action that moves it to another room,
the robotInRoom relation shown in this figure will be
set to False for the room on the lower left.

3D scene graphs (3DSGs). A 3DSG [7, 8]
is a hierarchical multigraph G = (V,E) with
k ∈ {1 · · ·K} levels, where V k ∈ V denotes
the set of vertices at level k. Edges originating
from a vertex v ∈ V k may only terminate in
V k−1 ∪ V k ∪ V k+1 (i.e., edges connect nodes
within one level of each other). Each 3DSG
in our work comprises at least 5 levels with in-
creasing spatial precision as we move down the
hierarchy: the topmost level in the hierarchy is
a root node representing a scene. This node
branches out to indicate the various floors in
the building, which in turn branches out to de-
note various rooms in a floor, and subsequently
places within a room. A place is a collec-
tion of objects, which may themselves contain
other objects (to allow for container types such
as cabinets and refrigerators).2 At each level,
edges indicate various types of relations among
nodes (e.g., at the room level, an edge indicates the existence of a traversible path between two
rooms; at the object level, edges indicate multiple affordance relations). Each node also stores se-
mantic attributes such as node type, functionality, affordances, etc., following [7].

4 TASKOGRAPHY

We propose TASKOGRAPHY: the first large scale benchmark to evaluate symbolic planning over
3DSGs. Currently, TASKOGRAPHY comprises 20 challenging robotic task planning domains total-
ing 3734 tasks. Different from current benchmarks for embodied AI that focus primarily on ego-
centric visual reasoning [65, 73, 74, 64, 71, 67]; TASKOGRAPHY is designed to evaluate symbolic
reasoning over 3DSGs. To emulate the complexity of real-world task planning problems, TASKOG-
RAPHY builds atop the Gibson [75] dataset comprising real-world scans of large building interiors
(averaging 2-3 floors per building; 7 rooms per floor), and their corresponding 3DSGs [7].

Augmenting 3DSGs with plannable attributes. A prerequisite for planning over 3DSGs—absent
in existing work [9, 7, 8]—is a database of plannable attributes: predicates, actions, and transition
models. To support task planning, we augment each 3DSG in Gibson [75] (tiny and medium splits)
with several layers of additional unary and binary predicates. For each 3DSG node, we obtain
class labels, object dimensions and pose from [7]. We annotate object affordances by building a
knowledge base of lifted object-action pairs and recursively applying it to every 3DSG node, while
accounting for exceptions (objects that are concealed or contained within others). We also detect
door objects in the 3DSG and use this to add additional edges describing room connectivity. We
annotate objects with all possible properties in our planning domains (e.g., “is this object typically
a receptacle?”). Our rich property set (plannable attributes) is chosen to support a wide range of
realistic-robotic tasks geared towards large (building-scale) 3DSGs.

2The lowest level in [8] is a metric-semantic mesh. However since our focus is on symbolic planning, we
only require scene graph levels that contain objects.
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Figure 2: The TASKOGRAPHY benchmark comprises large-scale planning problems defined over buildings
from the Gibson dataset [75]. (Left) Representative buildings from Gibson [75]. (Middle/Right) We feature a
variety of problem classes ranging in scale and complexity as illustrated by the domain statistics.

Benchmark statistics. Each of the 20 TASKOGRAPHY domains specifies a class of planning prob-
lems that resemble real-world use cases (and theoretically complex extensions) that a robot would
encounter in office, house, or building scale environments. These domains range from grounded
planning domains to lifted planning domains, domains with no extraneous objects to domains where
most objects are extraneous, and domains for which polynomial time solutions exist to NP-hard
problems. The simplest domains in the benchmark have 1000 state variables and an average branch-
ing factor of 5; for hard domains, these are 4000 and 60 respectively (see Fig. 2).

TASKOGRAPHY-API. Our project page (https://taskography.github.io) will host code and data used
in this work. In TASKOGRAPHY-API, an open-source python package, we provide access to 18
classical and learning-based symbolic planners, templates to implement novel domains, and methods
to generate problem instances of varying complexities and train/evaluate learning-based planners.

Planners considered. TASKOGRAPHY supports a comprehensive set of planners to facilitate stan-
dardized evaluation on novel domains. The following planners are available at the time of writing.

• Optimal planners: Fast Downward (FD) with the opt-lmcut heuristic [23], Sat-
Plan [16], Delfi [17], DecStar-optimal [25], and Monte Carlo tree search.

• Satisficing planners: Fast Forward (FF), FF with axioms (FF-X) [22], Fast Downward
(FD) with the lama-cut heuristic [23], DecStar-satisficing [25], Cerberus [24], Best First
Width Search (BFWS) [76], and regression planning.

• Learning-based planners: Relational policy learning [41], Planning with learned object
importance (PLOI) [13] (and variants – see Sec. 6).

General assumptions. To facilitate evaluation of all of these classes of planners, the first edition of
our benchmark only considers fully observable tasks and discrete state and action spaces. All goal
states are specified as conjunctions of literals. While we make no distinction between determinis-
tic or stochastic transitions, all current experiments assume a closed world, i.e., all possible lifted
actions and effects are known apriori.

4.1 Robot planning domains: Case studies

The full TASKOGRAPHY benchmark comprises 20 domains. We discuss the four task categories
from which all domains are constructed that we believe to be interesting to a broad robotics audience.
Domain 1. Rearrangement(k): Based on the recently proposed rearrangement challenge [77], this
task requires a robot randomly spawned to rearrange a set of k objects of interest into k corre-
sponding receptacles. The robot often needs to execute multiple other actions along the way, such
as opening/closing doors, navigating to goals, planning the sequence of objects to visit, etc.
Domain 2. Courier (n, k): A robot that couriers objects is equipped with a knapsack of maximum
payload capacity of n units. The robot needs to locate and courier k objects (of varying weights
w ∈ {1, 2, 3} units) to k distinct delivery points. The knapsack can be used to stow and retrieve
items in random-access fashion; effectively embedding a combinatorial optimization problem into
the task. Stow and retrieve actions increase branching, necessitating far deeper searches.
We also provide lifted variants of these tasks. Here, goals are specified over desired object-receptacle
class relations (e.g., “put a cup on a table”) as opposed to over object instances (e.g., “put this cup
on the table”). These tasks introduce ambiguity in both the search of classical task-planners and
learning-based techniques, which must now distinguish object instances of relevant classes.
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Table 1: TASKOGRAPHY benchmark results on select grounded and lifted Rearrangement (Rearr) and Courier
(Cour) 3DSG domains. Planning times are reported in seconds and do not incorporate planner-specific domain
translation times (factored into planning timeouts). A ‘-’ indicates planning timeouts or failures (10 minutes
for optimal planners, 30 seconds for all others). Results are aggregated over 10 random seeds. Optimal task
planning is infeasible in larger problem instances or for more complex domains, while most satisficing planners
are unable to achieve real-time performance. PLOI [13], a recent learning-based planner consistently performs
the best across all domains.

Rearr(1) Tiny Rearr(2) Tiny Rearr(10) Medium Cour(7, 10) Medium Lifted Rearr(5) Tiny Lifted Cour(5, 5) Tiny

Planner Len. Time Fail Len. Time Fail Len. Time Fail Len. Time Fail Len. Time Fail Len. Time Fail

op
tim

al

FD-seq-opt-lmcut 15.77 24.81 0.04 25.80 104.47 0.55 - - 1.00 - - 1.00 - - 1.00 - - 1.00
SatPlan 14.77 10.35 0.45 26.67 3.27 0.67 - - 1.00 - - 1.00 - - 1.00 - - 1.00
Delfi 15.13 0.36 0.16 29.10 27.77 0.29 - - 1.00 - - 1.00 - - 1.00 - - 1.00
DecStar-opt-fb - - 1.00 - - 1.00 - - 1.00 - - 1.00 - - 1.00 - - 1.00
MCTS - - 1.00 - - 1.00 - - 1.00 - - 1.00 - - 1.00 - - 1.00

sa
tis

fic
in

g

FF 16.71 0.19 0.00 34.44 0.55 0.00 159.04 5.30 0.09 128.41 6.62 0.24 62.86 3.40 0.47 57.74 4.03 0.44
FF-X 16.71 0.25 0.00 34.44 0.58 0.00 159.80 5.02 0.08 128.19 6.72 0.24 67.88 3.48 0.89 61.19 7.56 0.77
FD-lama-first 15.19 2.96 0.33 38.47 3.25 0.18 208.28 6.35 0.49 156.34 4.92 0.29 66.81 3.20 0.49 61.13 3.34 0.56
Cerberus-sat 11.50 12.00 0.85 - - 1.00 - - 1.00 - - 1.00 - - 1.00 - - 1.00
Cerberus-agl 14.77 5.13 0.45 33.00 7.30 0.49 176.60 8.91 0.72 125.73 12.99 0.83 60.50 7.62 0.60 59.19 7.05 0.77
DecStar-agl-fb 14.72 2.62 0.55 34.96 2.58 0.58 211.16 7.20 0.82 132.60 4.50 0.58 66.30 3.02 0.71 58.75 4.46 0.71
BFWS 15.56 0.90 0.22 32.16 0.37 0.18 151.17 0.41 0.23 152.71 1.13 0.21 56.90 0.94 0.41 61.92 2.30 0.43
Regression-plan - - 1.00 - - 1.00 - - 1.00 - - 1.00 - - 1.00 - - 1.00

le
ar

n Relational policy [41] - - 1.00 - - 1.00 - - 1.00 - - 1.00 - - 1.00 - - 1.00
PLOI [13] 16.45 0.00∗ 0.00 37.04 0.00∗ 0.00 213.43 0.17 0.00 161.90 0.34 0.00 78.68 0.22 0.24 71.71 0.26 0.26

Domain 3. Lifted Rearrangement (k): A lifted version of the rearrangement domain where the goals
are specified at an object category level, as opposed to an instance level.

Domain 4. Lifted Courier (n, k): A lifted version of the courier domain where the goals are specified
at an object category level, as opposed to an instance level.

To promote compatability with a range of planning systems [27, 78], we represent all tasks in PDDL
format [79, 80]. We also include mechanisms for translating tasks into alternative problem definition
languages that are essential for some of our supported planners [16].

4.2 Benchmarking classical and learned planners on TASKOGRAPHY

We present the empirical results on the TASKOGRAPHY benchmark across several classes of task-
planners in Table. 1. (Please consult supplementary material for a number of additional results).

Evaluation protocol. We treat the evaluation of optimal planners separately to the remaining meth-
ods. Optimal planners are not intended to be fast unlike satisficing and learning-based variants.
Rather, they compute a solution of minimum length (not necessarily unique) to a given problem. Op-
timal planners are hence allotted 10 minutes to solve each problem, while satisficing and learning-
based planners are allotted 30 seconds. For learning-based methods, we evaluate results over 10
random seeds for statistical significance. We report standard deviations in the supplementary mate-
rial. All domains comprise 40 training problems. The domains tagged Tiny and Medium comprise
55 and 182 test problems respectively, unless otherwise specified.

Optimal planners work only on the simplest of domains. Despite the reasonable performance of
optimal planners on the Rearrangment(1) domain, they are unable to efficiently scale with increasing
task complexity and fail to solve a single task on the Rearrangment (k) and Courier (n, k) domains
for k > 2. In particular, the Rearrangement(1) domain is a superset of the grounded hierarchical
path planning (HPP) task as described by Rosinol et al. [6]. Because the HPP task does not consider
state changes to the scene graph (i.e., directly equating the 3DSG to the planning graph for search),
efficient shortest path planning is tractable. However, increasingly complex robot tasks requires
more than the mere ability to path plan in 3DSGs.

Table 2: Interestingly, task complexity does
not correlate strongly with scene complex-
ity. It is instead determined by the number
of operators, and avg. branch factor.

Rearr(10) Tiny Rearr(10) Medium

Planner Len. Time Fail Len. Time Fail
FF 162.61 7.04 0.07 159.04 5.30 0.09
FD (satisficing) 205.89 7.68 0.51 208.28 6.35 0.49
DecStar-agl-fb 193.00 6.78 0.85 211.16 7.20 0.82
BFWS 160.93 0.57 0.18 151.17 0.41 0.23

Planning performance degrades with domain com-
plexity, not scene complexity. We observe an increase
in the number of planning failures and timeouts as sat-
isficing planners are applied to larger Rearrangement(k)
domains (Table 2). Interestingly, larger scenes do not ap-
pear to directly correlate with task complexity, as the per-
formance metrics remain largely consistent between the
tiny and medium splits of the same domain (Table. 2).
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Satisficing planners fail in domains requiring long-horizon reasoning. In the Courier(n, k) do-
mains, satisficing planners tend to produce shorter length solutions by leveraging the knapsack’s
capacity to stow objects on the way to various delivery points. However, the planners often dis-
play shortsighted behaviours by stowing objects early in the search, depleting knapsack slots that
could potentially help further along the task. This yields dead-end configurations and excessive
backtracking, and thus, an increase in timeouts is observed.

Planners that do not exploit forward heuristics fail due to large branching factors. Due to the
large branching factor of our domains, common strategies such as Monte-Carlo Tree Search (MCTS)
and MC Regression Planning are unable to solve any task within a reasonable time constraint. For
instance, a Rearrangement(10) task has an average branching factor of 6.5 for MCTS. Since a reward
is only obtained at the end (typical planners take 200 steps to get there), MCTS degenerates to a slow
breadth-first search.

Figure 3: Learning-based planners like
PLOI outperform all other planners on the
benchmark, but still incur significant over-
head (number of replanning steps).

Learning based planners that prune the state space
excel on all domains. We also evaluate two preva-
lent learning-to-plan methods based on generalized rela-
tional planning [41] and planning with learned abstrac-
tions [13]. While the relational policy stuggles to gen-
eralize in our domains (long-horizon, sparse rewards),
PLOI demonstrates an impressive ability to detect and
prune contextually irrelvant parts of the 3DSGs. How-
ever, it also requires a significant number of replanning
steps (see figure to the right) as it often retains objects
within a graph without ensuring that all properties and
ancestors required to access the object are also preserved.

Discussion. Our evaluation of existing performant planners on the TASKOGRAPHY benchmark
consistently reveals two important trends across all domains.

• Pruning a 3DSG is essential for real-time performance, more so on challenging domains.
• While learning-based planners excel across all domains, they require a large number of

replanning steps.

These imply that efficient utilization of 3DSGs in real-time robotic task planning requires both
adapting 3DSGs to better suit existing planners, and enabling performant (learning-based) planners
to better exploit 3DSG hierarchies. The remainder of our work addresses these issues.

5 SCRUB: Principled sparsification of 3DSGs for efficient planning

Algorithm 1: SCRUB
Input: 3DSG G, Planning problem

Π = 〈O,P,A,T , C, I,G〉
Result: Sparsified 3DSG Ĝ
Ô = {} ; /* Init. sufficient object set

*/
g = OBJECTS(G.literals) ∪ {robot} ; /* Init.
set of objects in the goal literal set

*/
while not empty g do

Ô ← Ô ∪ g
p← all binary predicates relating a newly added

object (i.e. o ∈ g − Ô) to its ancestors in G
g ← OBJECTS(p)
if all objectsO visited then

break
end

end
Ĝ← G ; /* Initialize sparsified
scenegraph */

CONNECTROOMS ; /* All-pairs shortest
paths */

Remove all nodes from Ĝ that are not in Ô
Prune literals that are no longer valid in the sparsified graph

As discussed above, learning-based planners leverage a
wealth of prior knowledge acquired during a training
phase to significantly prune extraneous scene graph en-
tities. We argue that, if equipped with the right sparsifi-
cation machinery, classical planners can compete with, or
outperform learning methods. We develop SCRUB, a prin-
cipled 3DSG sparsification scheme that prunes a 3DSG
G (w.r.t. planning problem ΠG = 〈O,P,A, T , C, I,G〉)
by removing vertices and edges extraneous to the task,
resulting in a sparsified 3DSG Ĝ (and planning problem
Π̂Ĝ = 〈Ô, P̂, Â, T̂ , Ĉ, Î,G〉)

Definition 1. A valid 3DSG sparsification of G for a
planning problem ΠG to Ĝ (and corresponding planning
problem Π̂Ĝ) is a computable function SCRUB(ΠG) =

Π̂Ĝ such that, a plan p solves Πg iff it solves Π̂Ĝ.

A satisficing plan for ΠG may thus be obtained by simply
solving the (much easier to solve) sparsified problem Π̂Ĝ. Savings in planning time depend on the
complexity of the sparsified subgraph Ĝ. SCRUB presents a simple strategy which is guaranteed to
be minimal for grounded planning problems and satisficing for lifted planning problems.
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For exposition, we consider grounded planning problems; see appendix for how SCRUB is adapted
to lifted planning problems or stochastic transitions. SCRUB begins with an initially empty sufficient
object set Ô. Satisfying the goal minimally requires all ground objects in the goal to be included in
the sufficient object set Ô (else goal objects are unreachable). In addition, the robot itself must be
part of the sufficient set. Let p be the set of all binary predicates which include any of these objects.
And let g be the set of all objects contained in p. In general, this will be a superset of the objects
we started with. We iteratively repeat this process, each time adding the new objects in g to our
sufficient set Ô.

The process terminates either when either the set g has no new objects (indicating convergence), or
until all the objects in the scene graph are visited at least once (indicating the input graph already
defines a minimal object set). We initialize the nodes of Ĝ with objects in Ô, and copy over all
edges (u, v) ∈ G for which both u, v ∈ Ô. SCRUB terminates in time linear in the number of the
predicates or nodes (whichever is larger).

Proposition 1. SCRUB is complete and results in a minimal scene subgraph for all grounded plan-
ning problems over the scenegraph domain. (Please refer to supp. material for proof)

Figure 4: Best performing planners with and without SCRUB.
Figure 5: SCRUB greatly prunes operators
and states of planning problems.

5.1 Impact of SCRUB on modern task planners

In this section, we investigate the effect that a 3DSG reduction scheme like SCRUB may have on the
performance of modern task planners. We experiment with the four domains shown in Fig. 4 and
evaluate the impact of scrub on planning performance and on domain structure.

SCRUB enables classical planners to obtain performance at least as good as state-of-the-
art planners. In Fig. 4, we see that SCRUB drastically reduces planning time for FF,
FD-lama-first, and BFWS to a few milliseconds on Rearrangement(10), and upper-bounds
times at 5 seconds on Courier(10, 10). We see this enables BFWS, FD, and FF to outperform PLOI
(lower plan lengths for similar plan times). The grounded domains each have 182 test problems, and
the lifted domains each have 70 test problems.

SCRUB greatly reduces the number of operators and states. To asses the impact of SCRUB, we
compute statistics (number of operators, number of state variables) in Fig. 5. We see that SCRUB
prunes more than two-thirds of the operators and state variables for grounded planning problems,
and about a third in the case of lifted planning problems.

Table 3: Planner statistics evaluated
over 70 test problems on Lifted Rear-
rangement(5).

Planner % Success Length Time
FD (satisficing) 51.43 66.81 3.20

FD (satisficing) + SCRUB 72.86 73.09 1.61
FD (optimal) - - -

FD (optimal) + SCRUB 72.86 68.33 2.26

SCRUB enables optimal planners to run on lifted domains.
Table 3 reports results of running the satisficing and optimal
variants of FD with and without SCRUB, on the Lifted Rear-
rangement(5) domain. While FD (optimal) did not converge
even with a timeout of 24 hours, FD (optimal) + scrub solved
about 72% of the tasks under a 30-second timeout, taking 2
seconds per task on average.

6 SEEK: A procedure for efficient learning-based planning

While SCRUB results in a 3DSG reduction that is guaranteed to find a satisficing plan—if one
exists—its conservative approach hurts performance in challenging lifted planning problems as
shown in Fig. 4. For such problems, learning-based graph-pruning strategies like PLOI [13] out-
perform classical planners over SCRUBBED 3DSGs. However, as can be seen in Sec. 4.2, even
PLOI [13] incurs a significant number of replanning iterations.

7



Table 4: SEEK significantly reduces the number of replanning steps required by state-of-the-art learning-based
planners. For each planner, we report average wall time (including translation time).

Planner Rearrangement (2) - Medium Courier (10, 3) - Medium Lifted Rearrangement (5) - Medium Lifted Courier (5, 5) - Medium
%Succ. Len. %Used Time #Replan %Succ. Len. %Used Time #Replan %Succ. Len. %Used Time #Replan %Succ. Len. %Used Time #Replan

Random 0.87 39.81 0.99 9.51 836 0.62 180 0.10 12.11 204 0.63 68.98 0.99 10.93 235 0.67 67.89 0.98 10.81 233
Random + SEEK 0.86 39.82 0.98 8.55 543 0.60 183.49 0.99 12.33 162 0.59 69.22 0.97 9.52 155 0.63 65.48 0.97 10.97 167
Hierarchical 1 35.76 0.28 0.45 150 1 191.75 0.48 1.16 40 0.80 76.75 0.59 2.60 269 0.73 69.69 0.61 2.73 173
Hierarchical + SEEK 1 35.76 0.28 0.30 12 1 191.75 0.48 0.97 7 0.80 76.70 0.56 2.20 208 0.77 76.04 0.55 1.59 76
PLOI [13] 1 35.76 0.28 0.44 141 1 191.75 0.48 1.13 41 0.79 78.16 0.59 2.49 258 0.73 69.88 0.62 2.75 169
PLOI + SEEK 1 35.76 0.28 0.31 14 1 191.75 0.48 0.97 7 0.80 76.61 0.56 2.18 197 0.77 79.19 0.55 1.53 53

We posit that several replanning iterations may be avoided by exploiting the 3DSG hierarchy. Prun-
ing strategies like PLOI first score all objects, and retain a minimal set by thresholding. A simple
threshold does little to ensure that all retained objects are reachable from the root of the scene graph.
To alleviate this issue, we propose SEEK: a procedure that ensures we obtain a connected graph,
with the objective of reducing the number of replanning steps needed.

SEEK requires as input the 3DSG, the planning problem Π, and an object scoring mechanism fθ.
This scoring mechanism is typically a graph neural network (akin to [13]) that, given the current
state, scores each object with an importance value in [0, 1]. We first run the scorer and only retain
objects above a threshold score t. We follow an identical approach to PLOI [13] and at each step
geometrically decay the threshold by γ, such that at iteration i, the threshold is ti = γti−1, with
t0, γ ∈ [0, 1). For each retained object o, we recursively traverse up the 3DSG, adding all ancestors
of o to the sufficient object set. This procedure ensures that all objects are reachable from their
respective room nodes. While SEEK, unlike SCRUB, is not guaranteed to be satisficing, it results in
far fewer replanning steps without affecting computation time.

Figure 6: SEEK reduces replanning steps by
an order of magnitude.

Figure 7: SCRUB on grounded domains,
SEEK on lifted domains.

SEEK reduces replanning steps by an order of mag-
nitude. To assess the impact of the SEEK procedure on
planning performance, we evaluate performance with re-
spect to other learning-based planners on TASKOGRAPHY
in Table 4. As a baseline, we evaluate a random prun-
ing strategy that uniformly randomly retains or prunes
every object. Even for this naive strategy, SEEK offers
significant performance improvement. We also evaluate
PLOI [13] and our adaptation dubbed hierarchical, which
trains multiple graph neural networks, one for each level
of the 3DSG hierarchy. For each variant, SEEK offers a
consistent performance improvement by decreasing the
number of replanning steps required as seen in Fig. 6.
SEEK is thus a conceptually simple strategy for use with
learning-based planners.

SCRUB on grounded domains, SEEK on lifted do-
mains: In general, we note that SCRUB is more perfor-
mant on grounded domains (due to minimality properties)
and SEEK is more performant on lifted domains (where
SCRUB typically retains all instances of important object categories, but SEEK is more effective due
to its opportunistic retention of instances (Fig. 7)).

7 Concluding remarks
Limitations. TASKOGRAPHY currently supports only a fraction of the diverse types of planning
problems possible on 3DSGs. Geared towards identifying the most promising avenues in learning-
based planning, the first release of this benchmark focuses exclusively on offline task planning in
fully observable and deterministic domains. Furthermore, low-level motion planning is excluded
from our benchmark. Robots operating in the real world will need to reason under partial observ-
ability, sensor noise, and resource constraints.

Outlook. TASKOGRAPHY, in conjunction with SCRUB and SEEK aid the robot learning community
by (a) providing guidelines and implementations for practitioners choosing a task planner, (b) serv-
ing as a benchmark for upcoming learning-based planners, and (c) guiding the design of futuristic
spatial representations for robotic task planning. We believe TASKOGRAPHY is a first step towards
addressing several of the grand challenges along the road to developing general planning capabilities
for autonomous intelligent robots.
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