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Abstract

While recent work on multilingual language001
models has demonstrated their capacity for002
cross-lingual zero-shot transfer on down-003
stream tasks, there is a lack of consensus in004
the community as to what shared properties005
between languages enable such transfer. Anal-006
yses involving pairs of natural languages are007
often inconclusive and contradictory since lan-008
guages simultaneously differ in many linguis-009
tic aspects. In this paper, we perform a large-010
scale empirical study to isolate the effects011
of various linguistic properties by measuring012
zero-shot transfer between four diverse natural013
languages and their counterparts constructed014
by modifying aspects such as the script, word015
order, and syntax. Among other things, our ex-016
periments show that the absence of sub-word017
overlap significantly affects zero-shot transfer018
when languages differ in their word order, and019
there is a strong correlation between transfer020
performance and word embedding alignment021
between languages (e.g., ρs = 0.94 on the task022
of NLI). Our results call for focus in multilin-023
gual models on explicitly improving word em-024
bedding alignment between languages rather025
than relying on its implicit emergence. 1026

1 Introduction027

Multilingual language models like XLM (Conneau028

et al., 2020a) and Multilingual-BERT2 are trained029

with masked-language modeling (MLM) objective030

on a combination of raw text from multiple lan-031

guages. Surprisingly, these models exhibit decent032

cross-lingual zero-shot transfer, where fine-tuning033

on a task in a source language translates to good034

performance for a different language (target).035

Requirements for zero-shot transfer Recent036

studies have provided inconsistent explanations for037

properties required for zero-shot transfer (hereon,038

1Code: Provided in the supplementary material.
2https://github.com/google-research/

bert/blob/master/multilingual.md

transfer). For example, while Wu and Dredze 039

(2019) conclude that sub-word overlap is vital for 040

transfer, K et al. (2020) demonstrate that it is not 041

crucial, although they consider only English as the 042

source language. While Pires et al. (2019) suggest 043

that typological similarity (e.g., similar SVO or- 044

der) is essential for transfer, other works (Kakwani 045

et al., 2020; Conneau et al., 2020a) successfully 046

build multilingual models for dissimilar languages. 047

Need for systematic analysis A major cause of 048

these discrepancies is a large number of varying 049

properties (e.g., syntax, script, and vocabulary size) 050

between languages, which make isolating crucial 051

ingredients for transfer difficult. Some studies al- 052

leviate this issue by creating synthetic languages 053

which differ from natural ones only in specific lin- 054

guistic properties like script (K et al., 2020; Dufter 055

and Schütze, 2020). However, their focus is only 056

on English as a source language, and the scale of 057

their experiments is small (in number of tasks or 058

pre-training corpora size), thus limiting the scope 059

of their findings to their settings alone. 060

Our approach We perform a systematic study of 061

cross-lingual transfer on bilingual language mod- 062

els trained on a natural language and a systemati- 063

cally derived counterpart. We choose four diverse 064

natural languages (English, French, Arabic, and 065

Hindi) and create derived variants using four differ- 066

ent transformations on structural properties such as 067

inverting or permuting word order, altering scripts, 068

or varying syntax (Section 3.2). We train mod- 069

els on each of the resulting sixteen language pairs, 070

and evaluate zero-shot transfer on four downstream 071

tasks – natural language inference (NLI), named- 072

entity recognition (NER), part-of-speech tagging 073

(POS), and question-answering (QA). 074

Our experiments show that: 075

1. Contrary to previous belief, the absence of sub- 076

word overlap degrades transfer when languages 077
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differ in their word order (e.g., by more than 40078

F1 points on POS tagging, (§ 4.1)).079

2. There is a strong correlation between token em-080

bedding alignment and zero-shot transfer across081

different tasks (e.g., ρs = 0.94, p < .005 for082

XNLI, Fig 4).083

3. Using pre-training corpora from similar sources084

for different languages (e.g., Wikipedia) boosts085

transfer when compared to corpora from differ-086

ent sources (e.g., 17 F1 points on NER, Fig 3).087

To our knowledge, we are the first study to quan-088

titatively show that zero-shot transfer between lan-089

guages is strongly correlated with token embedding090

alignment (ρs = 0.94 for NLI). We also show that091

the current multilingual pre-training methods (Con-092

neau et al., 2020a; Doddapaneni et al., 2021) fall093

short of aligning embeddings even between sim-094

ple natural and derived language pairs, leading to095

failure in zero-shot transfer. Our results call for096

training objectives that explicitly improve align-097

ment using either supervised (e.g., parallel corpora098

and bilingual dictionaries) or unsupervised data.099

2 Related work100

Multilingual pre-training for Transformers101

The success of monolingual Transformer lan-102

guage models (Devlin et al., 2019; Radford et al.,103

2018) has driven studies that learn a multilin-104

gual language-model (LM) on several languages.105

Multilingual-BERT3 (M-BERT) is a single neural106

network pre-trained using the masked language-107

modeling (MLM) objective on a corpus of text from108

104 languages. XLM (Conneau and Lample, 2019)109

introduced translation language-modeling, which110

performs MLM on pairs of parallel sentences, thus111

encouraging alignment between their representa-112

tions. These models exhibit surprising zero-shot113

cross-lingual transfer performance (Conneau and114

Lample, 2019; K et al., 2020), a setup where the115

model is fine-tuned on a source language and eval-116

uated on a different target language.117

Analysis of cross-lingual transfer While Pires118

et al. (2019), Conneau et al. (2020b), and K et al.119

(2020) showed that transfer works even without120

a shared vocabulary between languages, Wu and121

Dredze (2019) discovered a correlation between122

sub-word overlap and zero-shot performance. Con-123

neau et al. (2020b) and Artetxe et al. (2020a)124

3https://github.com/google-research/
bert/blob/master/multilingual.md

showed that shared parameters for languages with 125

different scripts were crucial for transfer. 126

Pires et al. (2019) and (Wu and Dredze, 2019) 127

observed that transfer for NER and POS tagging 128

works better between typologically similar lan- 129

guages. However, a study conducted by Lin et al. 130

(2019) showed that there is no simple rule of thumb 131

to gauge when transfer works between languages. 132

Transfer between real and synthetic Languages 133

K et al. (2020) create a synthetic language by 134

changing English’s script and find that transfer be- 135

tween it and Spanish works even without common 136

sub-words. However, they use only English as their 137

source language, test only on two tasks, and use a 138

single natural-synthetic language pair. Dufter and 139

Schütze (2020) study transfer between English and 140

synthetic English obtained by changing the script, 141

word order, or model delimiters. However, they use 142

a small corpus (228K words) compared to current 143

standards (we use 3 orders more) and measure only 144

embedding similarity and not zero-shot transfer. 145

3 Approach 146

We first provide some background on bilingual lan- 147

guage models (Section 3.1), followed by descrip- 148

tions of our transformations (Section 3.2), and our 149

training and evaluation setup (Section 3.3). 150

3.1 Background 151

Bilingual pre-training The standard setup (Con- 152

neau and Lample, 2019) trains a bilingual language 153

model (Bi-LM) on raw text corpora from two lan- 154

guages simultaneously. Bi-LM uses the masked 155

language-modeling loss (LMLM) on the corpora 156

from the two languages (C1, C2) separately with 157

no explicit cross-lingual signal: 158

LθBi-LM(C1 + C2) = LθMLM(C1) + LθMLM (C2) 159

A shared byte pair encoding tokenizer (Sennrich 160

et al., 2015) is trained on C1 + C2. A single batch 161

contains instances from both languages, but each 162

instance belongs to a single language. 163

Zero-shot transfer evaluation Consider a bilin- 164

gual model (Bi-LM) pre-trained on two languages, 165

source and target. Zero-shot transfer involves fine- 166

tuning Bi-LM on downstream task data from source 167

and evaluating on test data from target. This is con- 168

sidered zero-shot because Bi-LM is not fine-tuned 169

on any data belonging to target. 170
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Transformation Instance (s) Transformed instance (T (s))

Inversion (Tinv) Welcome to NAACL at Seattle Seattle at NAACL to Welcome
Permutation (Tperm) This is a conference a This conference is
Transliteration (Ttrans) I am Sam . I am ♣(I) ♥(am) ♦(Sam) ♠(.) ♣(I) ♥(am)

Syntax (Tsyn)
Sara (S) ate (V) apples (O) Sara (S) apples (O) ate (V)

Une table (N) ronde (A) Une ronde (A) table (N)

Table 1: Examples of our transformations applied to different sentences (without sub-word tokenization). Inversion
inverts the tokens, Permutation samples a random reordering, and Transliteration changes the script. We use
symbols (♣) to denote words in the new script and mention the corresponding original word in brackets. Syntax
stochastically modifies the syntactic structure. In the first example for Syntax, the sentence in Subject-Verb-Object
(SVO) order gets transformed to SOV order, and in the second, the sentence in Noun-Adjective (NA) order gets
transformed to the AN order. The examples are high probability re-orderings and other ones might be sampled too.

3.2 Generating language variants with171

systematic transformations172

Natural languages typically differ in several ways,173

like the script, word order, and syntax. To isolate174

the affect of these properties on zero-shot transfer,175

we obtain derived language corpora (hereon, de-176

rived corpora) from original (natural) language cor-177

pora by performing sentence level transformations178

(T ) which change particular properties. For exam-179

ple, an “inversion” transformation could be used180

to invert each sentence in the corpus (Welcome1181

to2 NAACL3⇒ NAACL3 to2 Welcome1). Since the182

transformation (T ) is applied on each sentence of183

the original corpus, the size of the original and184

the derived corpus is the same. In the following185

sections, we will use the following notation:186

Corig ≡ Original corpus

= {si | i = 1 : N, si = sentence}
T ≡ Sentence-level transformation

Cderiv ≡ Derived corpus

= {T (sent) | ∀ sent ∈ Corig}

187

188
Types of transformations We consider four189

transformations which modify different aspects of190

sentences (examples in Table 1):191

1. Inversion (Tinv): Invert the order of tokens192

in the sentence, like in Dufter and Schütze193

(2020). The first token becomes the last, and194

vice versa.195

2. Permutation (Tperm): Permute the order of196

tokens in a sentence uniformly at random. For197

a sentence of n tokens, we sample a random198

ordering with probability 1
n! .199

3. Transliteration (Ttrans): Change the script200

of all tokens other than the special tokens201

(like [CLS]). This creates a derived vocab- 202

ulary (Vderiv) with a one-to-one correspon- 203

dence with the original vocabulary (Vorig). 204

4. Syntax (Tsyn): Modify a sentence to match 205

the syntactic properties of a different natu- 206

ral language by re-ordering the dependents 207

of nouns and verbs in the dependency parse. 208

These transformations are stochastic because 209

of the errors in parsing and sampling over pos- 210

sible re-orderings (Wang and Eisner, 2016). 211

Transformations for downstream tasks We ob- 212

tain the downstream corpus in the derived language 213

(Dderiv) by applying the same transformation (T ) 214

used during pre-training on the original down- 215

stream corpus (Dorig). Unlike pre-training corpora 216

which contain raw sentences, instances in down- 217

stream tasks contain one or more sentences with 218

annotated labels. For text classification tasks like 219

NLI, we apply the transformation on each sentence 220

in every dataset instance. For token classification 221

tasks (e.g., NER, POS), any transformation which 222

changes the order of the tokens also changes the 223

order of the labels. We present the mathematical 224

specification in Appendix A. 225

3.3 Model Training and Evaluation 226

We now describe our pre-training and zero-shot 227

transfer evaluation setup. Figure 1 provides an 228

overview of pre-training and fine-tuning, and Ta- 229

ble 2 summarizes the evaluation metrics we use. 230

Pre-training Let Corig and Cderiv be the origi- 231

nal and derived language pre-training corpora. We 232

train two models for each original-derived pair: 233

1. Bilingual Model (Bi-LM): A bilingual model 234

pre-trained on the combined corpus (Corig+ 235

Cderiv) (Figure 1a). 236
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(a) Pre-training

(b) Fine-tuning

Figure 1: (a) During pre-training, we 1 obtain the derived language corpus (Cderiv) by transforming the original
language corpus (Corig). 2 The two corpora are combined and, 3 a bilingual model (Bi-LM) is learned using
the MLM objective. (b) During fine-tuning, we 1 obtain the derived dev dataset (Ddev

deriv) by transforming the
original dev dataset (Ddev

orig ). 2 Bi-LM is fine-tuned on the original train dataset (Dtrain
orig ), and 3 evaluated on

Ddev
deriv, which is the standard zero-shot cross lingual setup.

Evaluation Corpus source

Pre-train Fine-tune (train) Fine-tune (dev)

BZ Corig + Cderiv Dorig Dderiv

BS Corig + Cderiv Dderiv Dderiv

MZ Corig Dorig Dderiv

∆(BZ−BS) =
(

BZ − BS
)

∆(MZ−BS) =
(

MZ − BS
)

Table 2: Summary of evaluation metrics defined in
§ 3.3. C and D denote the pre-training and downstream
corpus respectively, and their subscript indicates their
source (original or derived). BZ and MZ represent
bilingual and monolingual zero-shot transfer scores,
and BS is the supervised learning baseline on derived.
The differences in the setting of BZ and other scores
are typeset in blue. We use ∆(BZ−BS) and ∆(MZ−BS)
(defined in the last two rows) throughout our paper.

2. Monolingual Model (Mono-LM): A mono-237

lingual model trained only on Corig for the238

same number of steps as Bi-LM’s. Mono-239

LM is used as a baseline to measure zero-shot240

transfer of a model not pre-trained on derived.241

Evaluation Let Dtrain
orig and Ddev

orig be the origi-242

nal language training and development sets for a243

downstream task, and Dtrain
deriv and Ddev

deriv be the244

corresponding derived language datasets. For eval-245

uation, we first fine-tune the pre-trained models on246

a downstream training set and evaluate the resulting247

model on a development set (Figure 1b). Since our248

goal is to investigate the extent of zero-shot transfer,249

we require appropriate lower and upper bounds to250

make informed conclusions. To this end, we com-251

pute three metrics, all on the same development set252

(summarized in Table 2):253

• Bilingual zero-shot transfer (BZ): This is 254

the standard zero-shot transfer score (Conneau 255

and Lample, 2019) which measures how well 256

a bilingual model fine-tuned on Dtrain
orig zero- 257

shot transfers to the other language (Ddev
deriv). 258

• Bilingual supervised synthetic (BS): This is 259

the supervised learning performance on the 260

derived language obtained by fine-tuning Bi- 261

LM on Dtrain
deriv and evaluating it on Ddev

deriv. 262

• Monolingual zero-shot transfer (MZ): This 263

measures the zero-shot performance of the 264

baseline Mono-LM, which is not pre-trained 265

on the derived language, by fine-tuning Mono- 266

LM on Dtrain
orig and evaluating it on Ddev

deriv. 267

BS uses fine-tuning train data from the derived lan- 268

guage and serves as an upper-bound on BZ and MZ 269

which don’t use it. MZ doesn’t pre-train on the de- 270

rived language and serves as a lower-bound on BZ 271

which does pre-train on it. For easier comparison 272

of BZ and MZ with BS (upper-bound), we report 273

the following score differences (Table 2), which 274

are both negative in our experiments. 275

∆(BZ−BS) = (BZ− BS) (1) 276

∆(MZ−BS) = (MZ− BS) (2) 277

BZ alone cannot capture the quality of the zero- 278

shot transfer. A large and negative ∆(BZ−BS) im- 279

plies that bilingual zero-shot transfer is much worse 280

than supervised fine-tuning on derived. Concur- 281

rently, ∆(BZ−BS) ≈ ∆(MZ−BS) implies that Bi-LM 282

transfers as poorly as Mono-LM. Thus, good zero- 283

shot transfer is characterized by ∆(BZ−BS) ≈ 0 284

and ∆(BZ−BS)�∆(MZ−BS). 285
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Task Inversion (Tinv) Permutation (Tperm) Syntax (Tsyn) Transliteration (Ttrans)

∆(BZ−BS) ∆(MZ−BS) BZ ∆(BZ−BS) ∆(MZ−BS) BZ ∆(BZ−BS) ∆(MZ−BS) BZ ∆(BZ−BS) ∆(MZ−BS) BZ

XNLI -10.2 -13.0 58.4 -3.6 -8.6 62.6 -0.9 ? -1.1 67.8 -1.0 ? -36.7 69.3

NER -49.1 -46.7 37.9 -26.3 -35.4 47.3 -14.6 -16.6 62.9 -1.9 ? -82.6 83.7

POS -30.2 -36.2 64.2 -11.2 -25.2 73.6 -4.4 -7.6 89.4 -0.4 ? -95.0 95.4

XQuAD4 -32.8 -31.0 22.8 —4 — — —4 — — 0.0 ? -55.9 61.2

Table 3: (1) Evaluation: We report ∆(BZ−BS) and ∆(MZ−BS) (§ 3.3 and Table 2) for transformations on dif-
ferent tasks, averaged over four languages (EN, FR, HI, AR). We report the breakdown for different languages in
Appendix B. BZ, the bilingual zero-shot performance, is reported for reference. (2) Interpreting scores: Smaller
(more negative) ∆(BZ−BS) implies worse bilingual zero-shot transfer, whereas ∆(BZ−BS)≈ 0 implies strong trans-
fer. ∆(BZ−BS)�∆(MZ−BS) implies that bilingual pre-training is extremely useful. Scores are highlighted based on
their value (lower scores have a higher intensity of red ). Cases with strong zero-shot transfer (∆(BZ−BS)≈ 0) are
marked with an asterisk. (3) Trends: Ttrans exhibits strong transfer on all tasks and languages (high ∆(BZ−BS)
scores), and bilingual pre-training is extremely useful (∆(BZ−BS) � ∆(MZ−BS)), implying that zero-shot transfer
is possible between languages with different scripts but the same word order. Tinv and Tperm suffer on all tasks
(small ∆(BZ−BS) scores) whereas Tsyn suffers significantly lesser, which provides evidence that local changes to
the word order made by Syntax (Tsyn) hurts zero-shot transfer significantly lesser than global changes made by
Inversion (Tinv) and Permutation (Tperm).

Dataset Task Metric

XNLI (Conneau et al., 2018) NLI Accuracy
Wikiann (Pan et al., 2017) NER F1

UD v2.5 (Nivre et al., 2018) POS F1
XQuAD (Artetxe et al., 2020b) QA F1

Table 4: XTREME benchmark datasets used for zero-
shot transfer evaluation. NLI=Natural Language Infer-
ence, NER=Named-entity recognition, POS=Part-of-
speech tagging, QA=Question-Answering.

3.4 Experimental Setup286

Languages We choose four diverse natural lan-287

guages: English (Indo-European, Germanic),288

French (Indo-European, Romance), Hindi (Indo-289

European, Indo-Iranian), and Arabic (Afro-Asiatic,290

Semitic), which are represented in the multilingual291

XTREME benchmark (Hu et al., 2020). For each292

language, we consider four transformations (Sec-293

tion 3.2) to create derived counterparts, giving us294

16 different original-derived pairs in total. For the295

Syntax transformation, we use Qi et al. (2020) for296

parsing. We modify the syntax of FR, HI, and AR297

to that of EN, and the syntax of EN to that of FR.298

Datasets For the pre-training corpus (Corig), we299

use a 500MB (uncompressed) subset of Wikipedia300

(≈ 100M tokens) for each language. This matches301

the size of WikiText-103 (Merity et al., 2016), a302

standard language-modeling dataset. For down-303

stream evaluation, we choose four tasks from the304

XTREME benchmark (Hu et al., 2020). Table 4 305

lists all the datasets and their evaluation metrics. 306

Implementation Details We use a variant of 307

RoBERTa (Liu et al., 2019) which has 8 layers, 308

8 heads, and a hidden dimensionality of 512. We 309

train each model on 500K steps, a batch size of 128, 310

and a learning rate of 1e-4 with a linear warmup 311

of 10K steps. We use an original language vocab- 312

ulary size of 40000 for all the models and train 313

on 8 Cloud TPU v3 cores for 32-48 hours. For 314

fine-tuning, we use standard hyperparameters (Ap- 315

pendix F) from the XTREME benchmark and re- 316

port our scores on the development sets. 317

4 Results 318

Our experiments reveal several interesting findings 319

for bilingual models including the situational im- 320

portance of sub-word overlap for zero-shot transfer 321

(§ 4.1, 4.2), the effect of domain mismatch between 322

languages (§ 4.3), and correlation of zero-shot per- 323

formance with embedding alignment (§ 4.4). We 324

connect our findings to zero-shot transfer results 325

between natural languages in Section 4.5. 326

4XQuAD is a question-answering task where the correct
answer is a contiguous span. We do not report scores on
XQuAD for Tperm and Tsyn because they can potentially
reorder individual words in the contiguous answer, thus dis-
tributing them throughout the transformed sentence and mak-
ing the question unanswerable. On the other hand, Tinv and
Ttrans do not have this issue because they maintain the spans.

5



XNLI NER POS

0

10

20

30

40

50

60

70
|

(B
Z

BS
)|

2 2 0
3

44

1

19

52

43

trans

inv

trans inv

XNLI NER POS

0

10

20

30

40

50

60

70

2 2 0
5

28

12

28

46

59
trans

perm

trans perm

XNLI NER POS

0

10

20

30

40

50

60

70

2 2 02
8

1
6

14

2

trans

syn

trans syn

Figure 2: |∆(BZ−BS)| for composed transformations (§ 4.2) applied on EN as the original language. Larger scores
imply worse zero-shot transfer. Ttrans = Transliteration, Tinv = Inversion, Tperm = Permutation, and Tsyn =
Syntax. Sub-word overlap between the original and derived language is 0% when composed transformations
are used (e.g. Ttrans ◦ Tinv) and 100% when the second constituent is used (here, Tinv). We observe that the
composed transformations (green bars) do significantly worse than their constituents (blue and orange). Ttrans
◦ Tinv is worse than Tinv by over 16 points on XNLI and 42 points on POS, with similar trends for Ttrans ◦
Tperm. Ttrans ◦ Tsyn doesn’t suffer as much, but its performance degradation when compared to Syntax is still
large (ranges between 1 point on POS to 6 points on NER). These results show that the absence of sub-word
overlap can significantly hurt performance when languages differ in their word orders.

4.1 Sub-word overlap is not strictly necessary327

for strong zero-shot transfer328

Sub-word overlap is the number of common tokens329

between two different language corpora. If E1 and330

E2 are sets of tokens which appear in the two cor-331

pora, then: Sub-word overlap = |E1 ∩ E2|/|E1 ∪332

E2| (Pires et al., 2019). The Transliteration transfor-333

mation (Ttrans) creates original-derived language334

pairs that have 0% sub-word overlap (equivalently,335

different scripts), but follow the same word order.336

Table 3 displays ∆(BZ−BS) scores for Ttrans, av-337

eraged over four languages (Appendix B contains338

a breakdown). We observe that ∆(BZ−BS)≈ 0 for339

all tasks while ∆(MZ−BS) is highly negative, im-340

plying that zero-shot transfer is strong and on par341

with supervised learning. This result indicates that342

zero-shot transfer is possible even when languages343

with different scripts have similar word orders (in344

line with K et al. (2020)). However, it is unrealistic345

for natural languages to differ only in their script346

and not other properties (e.g., word order).347

4.2 Absence of sub-word overlap significantly348

hurts zero-shot performance when349

languages differ in their word-orders350

To simulate a more realistic scenario, we create351

original and derived language pairs which differ352

both in their scripts (0% sub-word overlap) and in353

word order. We achieve this by composing two354

transformations on the original language corpus, 355

one of which is Transliteration (Ttrans). We exper- 356

iment with three different compositions, (a) Ttrans 357

◦ Tinv, (b) Ttrans ◦ Tperm, and (c) Ttrans ◦ Tsyn. 358

Here, α ◦ β means that transformation β is applied 359

before α. A composed transformation (Ttrans ◦ 360

β) differs from its second constituent (β) in that 361

the former produces a derived language which has 362

0% sub-word overlap with the original language 363

whereas the latter has a 100% sub-word overlap. 364

Results Our results (Figure 2, breakdown in Ap- 365

pendix C) show that zero-shot performance is sig- 366

nificantly hurt for composed transformations when 367

compared to its constituents. |∆(BZ−BS)| is much 368

larger for Ttrans ◦ Tinv when compared to Ttrans 369

or Tinv individually. For example, for XNLI, 370

|∆(BZ−BS)| = 19 for the composed transformation 371

and just 2 and 3 for Ttrans and Tinv individually. 372

Ttrans ◦ Tperm is worse by ≈ 20 points on XNLI 373

and NER, and over 40 points on POS when com- 374

pared to Tperm. Ttrans ◦ Tsyn suffers lesser than 375

the other two composed transformations, but it is 376

still worse than Tsyn by 3, 6, and 1 point on XNLI, 377

NER, and POS. In conclusion, the absence of sub- 378

word overlap significantly degrades zero-shot per- 379

formance in the realistic case of languages with 380

different word orders. 381
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Figure 3: |∆(BZ−BS)| for Ttrans under different condi-
tions on the source of original and derived language
pre-training corpora (hereon, corpora) (§ 4.3), aver-
aged over four languages. Larger values imply worse
zero-shot transfer. The breakdown of scores for differ-
ent languages is in Appendix D. (1) Non-parallel (diff)
(green bar), which uses corpora from different domains
is worse than (2) Non-parallel (same) (orange bar),
which uses different sets of sentences sampled from the
same domain, which is in turn worse than (3) Parallel,
which uses the same sentences. Having pre-training
corpora from the same domain like Wikipedia (Non-
parallel (same)) gives performance boosts between 2
points for QA to 17 points for NER when compared to
Non-parallel (diff).

4.3 Data from the same domain boosts382

bilingual performance383

Previously, we considered transformations (T ) that384

modified the original pre-training corpus to get a385

parallel corpus, Cderiv = T (Corig), such that there386

is a one-to-one correspondence between sentences387

in Corig and Cderiv (we call this setting parallel).388

Since procuring large parallel corpora is expensive389

in practice, we consider two other settings which390

use different corpora for original and derived.391

Setup Consider two text corpora of the same size,392

C1orig and C2orig. We compare two settings: (1)393

The parallel setting pre-trains a bilingual model394

on C1orig + T (C1orig), whereas the (2) non-parallel395

corpus setting uses C1orig + T (C2orig). We con-396

sider two variants of non-parallel, (1) non-parallel397

(same) which uses different splits of Wikipedia398

data (hence, same domain), and (2) non-parallel399

(diff) which uses Wikipedia data for the original400

and common crawl data (web text) for the derived401

language (hence, diff erent domain). We use the402

Transliteration transformation (Ttrans) to generate403

the derived language corpus and report |∆(BZ−BS)|404

25 20 15 10 5
(BZ BS)

0

20

40

60

80

Al
ig

nm
en

t

Spearman's
= 0.94, p < . 005

Parallel

Non-parallel (Same)

Non-parallel (Diff)

trans inv

trans perm

trans syn

Non-parallel (50%)

XNLI

Figure 4: ∆(BZ−BS) for Transliteration (Ttrans) vari-
ants on XNLI. Larger values (less negative) imply bet-
ter zero-shot transfer. We see that alignment (§ 4.4)
between token embeddings of different languages is
correlated with ∆(BZ−BS), and hence with better zero-
shot transfer. For example, Ttrans ◦ Tinv (bottom left)
which has poor zero-shot transfer also has lower align-
ment, whereas Parallel (top right) which has strong
transfer is accompanied with higher alignment. We find
a strong and statistically significant Spearman’s correla-
tion of ρs = 0.94, p < .005 on XNLI, ρs = 0.93, p <
.005 on NER, and ρs = 0.89, p < .01 on POS. Plots
for other tasks are in Appendix E.

averaged over all languages in Figure 3. 405

Results We observe consistently on all tasks that 406

the parallel setting (blue bar) performs better than 407

both the non-parallel settings. Non-parallel (same) 408

performs better than non-parallel (diff), with gains 409

ranging between 2 points on XQuAD to 17 points 410

on NER. This result shows that even for original 411

and derived language pairs which differ only in 412

their script, having parallel pre-training corpora 413

leads to the best zero-shot transfer. Since large- 414

scale parallel unsupervised data is hard to procure, 415

the best alternative is to use corpora from simi- 416

lar domains (Wikipedia) rather than different ones 417

(Wikipedia v.s. web text). 418

4.4 Zero-shot performance is strongly 419

correlated with embedding alignment 420

Our previous results (§ 4.2, 4.3) showed cases 421

where zero-shot transfer between languages is poor 422

when there is no sub-word overlap. To investigate 423

this further, we analyze the static word embeddings 424

learned by bilingual models and find that zero-shot 425

transfer between languages is strongly correlated 426

with the alignment between word embeddings for 427

the original and derived languages. 428
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Setup The original and the derived languages429

have a one-to-one correspondence between their430

sub-word vocabularies when we use transliteration431

(Ttrans). For a token embedding in the original-432

language embedding matrix, its alignment score is433

100% if it retrieves the corresponding token em-434

bedding in the derived language when a nearest-435

neighbor search is performed, and 0% otherwise.436

We average the alignment score over all the tokens437

and call it alignment.438

Results We measure the alignment of bilin-439

gual models pre-trained on different original-440

derived language pairs created using translitera-441

tion, namely the composed transformations (§ 4.2),442

parallel, and non-parallel (§ 4.3). We plot the443

alignment along with the corresponding ∆(BZ−BS)444

scores for XNLI in Figure 4. Results for other tasks445

are in Appendix E.446

We observe that higher alignment is associ-447

ated with lower ∆(BZ−BS), implying better zero-448

shot transfer. Alignment is lower for composed449

transformations like Ttrans ◦ Tinv and Ttrans ◦450

Tperm which have large and negative ∆(BZ−BS).451

Alignment also explains the results in Section 4.3,452

with non-parallel variants having lower alignment453

scores than parallel, which is in line with their454

lower ∆(BZ−BS). Overall, we find a strong and455

significant Spearman’s rank correlation between456

alignment and ∆(BZ−BS), with ρ = 0.94, p < .005457

for XNLI, ρ = 0.93, p < .005 for NER, and458

ρ = 0.89, p < .01 for POS, indicating that increas-459

ing the embedding alignment between languages460

helps improve zero-shot transfer.461

4.5 Connections to results on natural462

language pairs463

Effect of sub-word overlap In § 4.2, we showed464

that when languages have different scripts (0% sub-465

word overlap), zero-shot transfer significantly de-466

grades when they additionally have different word467

orders. However, the zero-shot transfer is good468

when languages differ only in the script and have469

similar or the same word order. This is in line with470

anecdotal evidence in Pires et al. (2019), where471

zero-shot transfer works well between English472

and Bulgarian (different script but same subject-473

verb-object order – SVO), but is poor between474

English and Japanese (different script and word475

order – SVO v.s. SOV). Our result also corrobo-476

rates findings in Conneau et al. (2020b) that artifi-477

cially increasing sub-word overlap between natural478

languages (which have different word orders) im- 479

proves performance (e.g., 3 points on XNLI). 480

Effect of token embedding alignment In § 4.4, 481

we showed that zero-shot transfer is strongly corre- 482

lated with word embedding alignment between lan- 483

guages. This explains the usefulness of recent stud- 484

ies which try to improve multilingual pre-training 485

with the help of auxiliary objectives, which im- 486

prove word or sentence embedding alignment. 487

DICT-MLM (Chaudhary et al., 2020) and Re- 488

lateLM (Khemchandani et al., 2021) require the 489

model to predict cross-lingual synonyms as an aux- 490

iliary objective, thus indirectly improving word- 491

embedding alignment and the zero-shot perfor- 492

mance on multiple tasks. Hu et al. (2021) add 493

an auxiliary objective that implicitly improves 494

word embedding alignment and show that they 495

can achieve performance similar to larger mod- 496

els. Cao et al. (2019) explicitly improve contextual 497

word embedding alignment with the help of word- 498

level alignment information in machine-translated 499

cross-lingual sentence pairs. Since they apply this 500

post hoc and not during pre-training, the improve- 501

ment, albeit significant, is small (2 points on XNLI). 502

While these studies do not fully utilize word and 503

sentence embedding alignment information, our re- 504

sults lead us to posit that they are a step in the right 505

direction and that baking alignment information 506

more explicitly into pre-training will be beneficial. 507

5 Conclusion 508

Through a systematic study of zero-shot transfer 509

between four diverse natural languages and their 510

counterparts created by modifying specific prop- 511

erties like the script, word order, and syntax, we 512

showed that (1) absence of sub-word overlap hurts 513

zero-shot performance when languages differ in 514

their word order, and (2) zero-shot performance 515

is strongly correlated with word embedding align- 516

ment between languages. Some recent studies have 517

implicitly or unknowingly attempted to improve 518

alignment and have shown slight improvements 519

in zero-shot transfer performance. However, our 520

results lead us to posit that explicitly improving 521

word embedding alignment during pre-training by 522

using either supervised (e.g., parallel sentences and 523

translation dictionaries) or unsupervised data will 524

significantly improve zero-shot transfer. 525
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Ahrenberg, Lene Antonsen, Maria Jesus Aranzabe,650
Gashaw Arutie, Masayuki Asahara, Luma Ateyah,651
and Mohammed Attia et al. 2018. Universal de-652
pendencies 2.2. LINDAT/CLARIAH-CZ digital li-653
brary at the Institute of Formal and Applied Linguis-654
tics (ÚFAL), Faculty of Mathematics and Physics,655
Charles University.656

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel657
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-658
lingual name tagging and linking for 282 languages.659
In Proceedings of the 55th Annual Meeting of the660
Association for Computational Linguistics (Volume661
1: Long Papers), pages 1946–1958.662

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.663
How multilingual is multilingual bert? In Proceed-664
ings of the 57th Annual Meeting of the Association665
for Computational Linguistics, pages 4996–5001.666

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,667
and Christopher D Manning. 2020. Stanza: A668
python natural language processing toolkit for many669
human languages. In Proceedings of the 58th An-670
nual Meeting of the Association for Computational671
Linguistics: System Demonstrations, pages 101–672
108.673

Alec Radford, Karthik Narasimhan, Tim Salimans, and674
Ilya Sutskever. 2018. Improving language under-675
standing by generative pre-training.676

Rico Sennrich, Barry Haddow, and Alexandra Birch.677
2015. Neural machine translation of rare words with678
subword units. arXiv preprint arXiv:1508.07909.679

Dingquan Wang and Jason Eisner. 2016. The galactic680
dependencies treebanks: Getting more data by syn-681
thesizing new languages. Transactions of the Asso-682
ciation for Computational Linguistics, 4:491–505.683

Shijie Wu and Mark Dredze. 2019. Beto, bentz, becas:684
The surprising cross-lingual effectiveness of BERT.685
In Proceedings of the 2019 Conference on Empiri-686
cal Methods in Natural Language Processing and687
the 9th International Joint Conference on Natural688
Language Processing, EMNLP-IJCNLP 2019, Hong689
Kong, China, November 3-7, 2019, pages 833–844.690
Association for Computational Linguistics.691

10

http://hdl.handle.net/11234/1-2837
http://hdl.handle.net/11234/1-2837
http://hdl.handle.net/11234/1-2837
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077


Appendices692

A Mathematical Specification for693

Transformation of Downstream694

Datasets695

Text classification Text classification tasks like696

news classification or sentiment analysis typically697

have instances which contain a single sentence and698

a label. Instances in other classification tasks like699

natural language inference (NLI) (Bowman et al.,700

2015) contain two sentences and one label. For701

such tasks, we apply the transformation (T ) on702

each sentence within every instance, and leave the703

annotated label as is. Therefore, for a dataset of704

size n which containsm sentences per instance, we705

have:706

Dorig = {(si1, . . . , sim, yi) | i = 1 : N}
Dderiv = {(T (si1), . . . , T (sim), yi) | i = 1 : N}

707

Token-classification tasks Tasks like named-708

entity recognition (NER) and part-of-speech tag-709

ging (POS tagging) have labels associated with710

each token in the sentence. For these datasets, we711

ensure that any transformation (T ) that changes the712

order of the tokens also changes the order of the713

corresponding labels.714

We define a few quantities to express the trans-715

formation mathematically. Let si = (wi1, . . . , wik)716

be a sentence comprised of k tokens and yi =717

(yi1, . . . , yik) be labels corresponding to the tokens718

in the sentence. We define a new transformation719

(Taug) which operates on the label augmented sen-720

tence, saugi = ((wi1, yi1) , . . . , (wik, yik)). Let721

saugi [j] correspond to the jth element in the se-722

quence, and saugi [j][word] and saugi [j][label]723

correspond to the word and label of the jth ele-724

ment. Let Taug(saugi )[j][orig] denote the index725

of the jth element in the transformed sequence726

with respect to the original sequence saugi . Then,727

the new transformation Taug is such that,728

Taug(saugi )[j][orig] = T (si)[j][orig]

Let orig_j = Taug(saugi )[j][orig]

Taug(saugi )[j][label] = saugi [orig_j][label]

729

We transform the dataset using Taug:730

Dorig = {saugi | i = 1 : N}
Dderiv = {Taug(saugi ) | i = 1 : N}

731

B Zero-shot transfer results for different 732

transformations 733

Table 5 in the appendix is the extended version 734

of Table 3 in the main paper with a breakdown 735

for all languages. It reports ∆(BZ−BS), ∆(MZ−BS), 736

and BZ for different languages and transformations 737

considered. 738

C Composed Transformations 739

Table 6 in the appendix presents the breakdown 740

of results in Figure 2 of the main paper. It reports 741

∆(BZ−BS) scores for composed transformations and 742

their constituents. 743

D Comparing different sources for 744

original and derived language corpora 745

Table 8 in the appendix contains the breakdown 746

of results in Figure 3 of the main paper. It reports 747

∆(BZ−BS) for different languages on different tasks 748

for the settings mentioned in Section 4.3. 749

E Alignment Correlation 750

We present alignment results (Section 4.4) for all 751

XNLI, NER, and POS in Figure 5. We observe 752

strong correlations between alignment and zero- 753

shot transfer, with ρs = 0.94, p < .005 on XNLI, 754

ρs = 0.93, p < .005 on NER, and ρs = 0.89, p < 755

.01 on POS. We present the raw scores in Table 7. 756

F Hyperparameters for XTREME 757

• XNLI: Learning rate – 2e-5, maximum se- 758

quence length – 128, epochs – 5, batch size – 759

32. 760

• NER: Learning rate – 2e-5, maximum se- 761

quence length – 128, epochs – 10, batch size – 762

32. 763

• POS: Learning rate – 2e-5, maximum se- 764

quence length – 128, epochs – 10, batch size – 765

32. 766

• Tatoeba: Maximum sequence length – 128, 767

pooling strategy – representations from the 768

middle layer
(
n
2

)
of the model. 769

• XQuAD: Learning rate – 3e-5, maximum 770

sequence length – 384, epochs – 2, document 771

stride – 128, warmup steps – 500, batch size – 772

16, weight decay – 0.0001. 773
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Task Language Inversion Permutation Syntax Transliteration

BZ ∆(BZ−BS) ∆(MZ−BS) BZ ∆(BZ−BS) ∆(MZ−BS) BZ ∆(BZ−BS) ∆(MZ−BS) BZ ∆(BZ−BS) ∆(MZ−BS)

XNLI

English 73.2 -3.4 -14.9 68.6 -5 -7.7 74.1 -1.8 -1.5 74.1 -1.7 -42.5
French 62.5 -9.5 -8.8 68.4 -1 -7.6 69.6 -2.2 -1.4 71.6 -1.6 -39.9
Hindi 43.9 -15.7 -15.8 51.2 -6.2 -13.1 61.6 -0.3 -1.6 63.4 -0.1 -29.4
Arabic 54 -12.3 -12.5 62.1 -2.3 -6 65.9 0.7 0.3 68 -0.4 -35.1

Avg. 58.4 -10.2 -13 62.6 -3.6 -8.6 67.8 -0.9 -1.1 69.3 -1.0 -36.7

NER

English 39.8 -44.5 -35.9 40.2 -28.5 -33.2 61.1 -7.8 -10.3 78 -2.1 -70.2
French 54.5 -34.4 -51.3 44.4 -36.0 -39.8 59.6 -21.9 -25.9 84.3 -3.1 -87.4
Hindi 19.4 -63.9 -63.2 38.5 -21.9 -37.4 64.8 -8.4 -7.3 84.4 -0.5 -82.9
Arabic 37.8 -53.6 -36.3 66.2 -18.8 -31.1 66.1 -20.1 -23 88 -1.9 -89.9

Avg. 37.9 -49.1 -46.7 47.3 -26.3 -35.4 62.9 -14.6 -16.6 83.7 -1.9 -82.6

POS

English 94.4 -0.7 -24.3 78.3 -11.9 -17.6 92.9 -0.9 -2.2 94.6 -0.5 -95.1
French 74.3 -22.7 -22.9 82 -12.2 -20.9 93.5 -3.2 -5.2 97.2 -0.2 -97.4
Hindi 19 -74.5 -74.5 51 -14 -41.8 91.6 -3.3 -11.3 96.5 -0.1 -96.6
Arabic 69.2 -23 -23 83.1 -6.5 -20.6 79.4 -10 -11.5 93.2 -0.8 -90.9

Avg. 64.2 -30.2 -36.2 73.6 -11.2 -25.2 89.4 -4.4 -7.6 95.4 -0.4 -95.0

XQuAD

English 30.4 -43.2 -35.5 - - - - - - 72.4 -4 -73
French 25.2 -29.5 -29.6 - - - - - - 60.9 -1 -55.5
Hindi 14.5 -27.3 -27.3 - - - - - - 57.3 10.6 -43.5
Arabic 21 -31.2 -31.4 - - - - - - 54 -0.5 -51.7

Avg. 22.8 -32.8 -31.0 61.2 1.3 -55.9

Table 5: This table is an extended version of Table 3 in the main paper. Smaller (more negative) ∆(BZ−BS) implies
worse bilingual zero-shot transfer, whereas ∆(BZ−BS)≈ 0 implies strong transfer. ∆(BZ−BS) � ∆(MZ−BS) implies
that bilingual pre-training is extremely useful. Scores are highlighted based on their value (lower scores have a
higher intensity of red ). (1) Discussing ∆(BZ−BS): Ttrans exhibits strong transfer on all tasks and languages (high
∆(BZ−BS) scores), and bilingual pre-training is extremely useful (∆(BZ−BS)�∆(MZ−BS)), implying that zero-shot
transfer is possible between languages with different scripts but the same word order. Tinv and Tperm suffer on all
tasks (small ∆(BZ−BS) scores) whereas Tsyn suffers significantly lesser, which provides evidence that local changes
to the word order made by Syntax (Tsyn) hurts zero-shot transfer significantly lesser than global changes made by
Inversion (Tinv) and Permutation (Tperm). (1) Discussing ∆(MZ−BS): ∆(BZ−BS) is much larger than ∆(MZ−BS)
for Ttrans, implying that bilingual pre-training (hereon, pre-training) is extremely useful. ∆(BZ−BS) and ∆(MZ−BS)
are similar for Tinv and Tsyn, implying that pre-training is not beneficial for these transformations. ∆(BZ−BS) is
slightly larger than ∆(MZ−BS) for Tperm, which means that pre-training is moderately useful.

T XNLI NER POS

BZ ∆(BZ−BS) BZ ∆(BZ−BS) BZ ∆(BZ−BS)

Ttrans 74.1 -2.1 78 -2.3 94.6 -0.5

Tinv 73.2 -3.4 39.8 -44.5 94.4 -0.7
Ttrans ◦ Tinv 55.7 -19.2 32.5 -51.5 52.2 -42.7

Tperm 68.6 -5 40.2 -28.5 78.3 -11.9
Ttrans ◦ Tperm 44 -27.7 17.1 -46.3 29.5 -59

Tsyn 74.1 -1.8 61.1 -7.8 92.9 -0.9
Ttrans ◦ Tsyn 69.8 -5.7 53.5 -14.2 91.5 -2

Table 6: Breakdown of results in Figure 2 of the main
paper. BZ is the zero-shot performance. ∆(BZ−BS),
∆(MZ−BS), and BZ are described in Section 3.3 and
Table 2. Composing transformations always hurts
∆(BZ−BS) when compared to individual transforma-
tions.

Transliteration ∆(BZ−BS) (↑) Alignment (↑)
Variant XNLI NER POS

Parallel -2.1 -2.3 -0.5 90.0

Trans ◦ Syntax -5.7 -14.2 -2 57.3

Non-parallel
-3.8 -4.1 -0.7 43.0(Same)

Non-parallel
-5.7 -14.3 -1.5 11.8(Diff)

Trans ◦ Inv -19.2 -51.5 -42.7 0.16

Trans ◦ Perm -27.7 -46.3 -59 0.01

Table 7: ∆(BZ−BS) and alignment scores for different
Transliteration variants. The table contains raw scores
for results in Section 4.4 of the main paper. Rows are
sorted in descending order based on alignment. We ob-
serve strong correlations between alignment and zero-
shot transfer, with ρs = 0.94, p < .005 on XNLI,
ρs = 0.93, p < .005 on NER, and ρs = 0.89, p < .01
on POS.
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Task Language XNLI NER POS XQuAD

∆(BZ−BS) ∆(BZ−BS) ∆(BZ−BS) ∆(BZ−BS)

Parallel

English -1.7 -2.1 -0.5 -4
French -1.6 -3.1 -0.2 -1
Hindi -0.1 -0.5 -0.1 10.6
Arabic -0.4 -1.9 -0.8 -0.5

Avg. -1.0 -1.9 -0.4 1.3

Non-parallel (Same)

English -3.8 -4.1 -0.7 -6.9
French -1 -6.3 -0.5 -0.9
Hindi -0.4 -3.1 -0.2 4.5
Arabic -2 -6.1 -1.5 0.7

Avg. -1.8 -4.9 -0.7 -0.6

Non-parallel (Diff)

English -5.7 -14.3 -1.5 -9.3
French -10.9 -30.3 -10.5 -5.2
Hindi -0.5 -8.6 -1 5
Arabic -6.3 -34.7 -3.7 -1.9

Avg. -5.9 -22.0 -4.2 -2.9

Table 8: |∆(BZ−BS)| for Ttrans under different conditions on the source of original and derived language pre-
training corpora (§ 4.3). Larger values imply worse zero-shot transfer. For all languages: (1) Non-parallel (diff),
which uses corpora from different domains is worse than (2) Non-parallel (same), which uses different sets of
sentences sampled from the same domain, which is in turn worse than (3) Parallel, which uses the same sentences.
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Figure 5: Alignment v.s. ∆(BZ−BS) plots for XNLI, NER, and POS. We observe strong correlations between
alignment and zero-shot transfer, with ρs = 0.94, p < .005 on XNLI, ρs = 0.93, p < .005 on NER, and ρs =
0.89, p < .01 on POS.
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