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Abstract—The widespread adoption of machine learning (ML)
models, especially with the emergence of large language models
(LLMs), has introduced growing challenges in understanding
and optimizing both the models and their deployment systems.
Performance modeling plays an essential role to predict model
performance across various scenarios and guide optimization
techniques. In this work, we present TraceSim, a fine-grained,
trace-driven performance modeling and simulation framework.
TraceSim captures runtime details of models without any model-
specific instrumentation, and constructs a comprehensive execu-
tion graph to describe model execution. Evaluation with GPT-3
on a production-scale cluster of 256 GPUs achieves, on average,
95.6% accuracy in reproducing the end-to-end execution time,
and up to 99.5% accuracy in predicting performance for unseen
scaled-up scenarios.

I. INTRODUCTION

Over the past few years, ML, notably with the advent
of LLMs, has reshaped numerous aspects of daily life. The
abundance of available data, combined with advancements
in computational resources, has propelled the creation of
increasingly intricate models. With the rapid evolution of ML
models in both architecture and scale, significant computa-
tional resources are now necessary for training. It is crucial
to delve into the challenges and opportunities posed by these
models and their deployment systems.

Understanding and enhancing ML systems is an increas-
ingly popular domain. Recent studies have demonstrated that
employing various techniques for ML system optimization,
such as mixed precision [19], pruning [7], operator fusion [5],
data/model/tensor parallelism [11], and kernel auto-tuning [3],
can yield substantial benefits toward achieving these objec-
tives. However, determining “what” to optimize and “why”
optimization is necessary can pose even greater challenges
compared to the methods of optimization.

Building an accurate performance model capable of pre-
dicting an ML model’s performance is fundamental for many
optimization studies. While studies like AMPeD [10] employ
analytical models to predict performance for the entire for-
ward/backward pass with exposed model parameters, most
studies [1], [5], [8], [19] construct low-level execution graphs
and then use simulation to predict the end-to-end execution
time. The execution graph serves as the foundation of these
performance models and its comprehensiveness directly in-
fluences their accuracy. However, with the rapid evolution
of models and deployment systems, especially in distributed

LLM training, existing approaches have failed to capture and
incorporate the new features present in these models, such as
concurrent CUDA streams and inter-stream dependencies.

In this work, we present TraceSim, a fine-grained trace-
driven performance modeling and simulation framework for
large-scale ML training. It currently supports PyTorch models
and is adaptable to other ML frameworks. Compared with
previous endeavors like Daydream [19] and dPRO [5], our
main contributions are:

• TraceSim utilizes the most detailed runtime informa-
tion about a model, including operators, CUDA runtime
events, and kernels. It identifies all possible dependencies
among them and constructs a comprehensive execution
graph at operator- and kernel-level simultaneously. This
fine granularity also allows it to reproduce the detailed
execution statistics through simulation, enabling more
downstream performance analysis beyond simply predict-
ing the execution time.

• TraceSim only uses the built-in profiling tools from ML
frameworks, such as PyTorch Kineto [16]. It does not
require any custom instrumentation into the models or
frameworks, therefore minimizing the profiling effort.

• TraceSim is evaluated with GPT-3 on a production-scale
cluster comprising a total of 256 NVIDIA H100 GPUs,
and achieves 95.6% accuracy when predicting the model’s
end-to-end execution time. Furthermore, we demonstrate
a use case of TraceSim for predicting the performance
of scaled-up scenarios, achieving up to 99.5% accuracy
across various configurations.

II. RELATED WORK

A. Profiling Tools and Traces

As the ML system stack rapidly evolves, profiling tools
are crucial for understanding the execution characteristics of
models and pinpointing performance bottlenecks. With the
widespread use of hardware accelerators, such as GPUs and
TPUs, hardware vendors also provide associated profiling
tools like NVProf [14], CUPTI [12], and Nsight [13]. These
tools can expose hardware performance counters, enabling
developers to gain valuable insights into the performance
characteristics of their models and optimize them effectively.

For better interpretability of the profiling results, ML frame-
works also feature built-in tools to collect execution statistics
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Fig. 1. Overview of TraceSim.

for their framework operators. These tools often integrate
with hardware-level traces to provide a comprehensive view
of the entire stack, from host to device. For example, Py-
Torch Kineto [16] utilizes CUPTI [12] to record runtime
information for PyTorch operators, CUDA runtime events, and
GPU kernels, seamlessly linking them together for a holistic
perspective on model execution.

B. Performance Modeling, Simulation, and Optimization

There has been extensive research utilizing traces to con-
struct performance models, simulate executions, and offer in-
sights for optimization [4]–[6], [8], [15], [18], [19]. Ousterhout
et al. use blocked time analysis to understand the I/O, network
and stragglers for data analytics applications [15]. ASTRA-
sim [18] stands out as a distributed ML system simulator that
facilitates the exploration of bottlenecks and the development
of efficient methodologies for large DNN models, with a focus
on networking aspects.

Daydream [19] predicts model runtime under specific op-
timizations based on the kernel-level dependency graph col-
lected with CUPTI, while dPRO [5] tracks dependencies
among operators and constructs a global data flow graph to
estimate DNN model training. However, these approaches do
not consider concurrent streams and inter-stream dependen-
cies, leading to significant inaccuracies for today’s large-scale
distributed training workloads, as we will demonstrate later in
our design and evaluation section.

III. DESIGN

A. Overview

Figure 1 shows the overview of TraceSim, our trace-driven
performance modeling and simulation tool for ML models.
First, we collect the profiling traces of the models’ execu-
tion during runtime. These traces are then forwarded to the
analyzer, which extracts essential meta-information required
to describe and model the execution, essentially forming a
fine-grained execution graph. Finally, the execution graph is
fed into the simulator, where we have the option to faithfully
simulate the execution using the original trace data or adjust
the behavior of certain operators/kernels to emulate execution
for what-if scenarios and make performance predictions.

We now focus on PyTorch models as a first step because of
its widespread adoption in both industry and academia, as well
as the extensive profiling capabilities it offers. However, our
approach can be extended to support other ML frameworks,
such as TensorFlow and MXNet.

B. Profiling Traces

We collect profiling data using PyTorch Kineto [16], which
provides details for all PyTorch operators, CUDA runtime
events and GPU kernels, including name, start time, duration,
CUDA stream ID, thread ID, and more. In contrast to previous
approaches like Daydream which requires framework and
model instrumentation, our profiling only requires a few lines
of codes, improving the ease of use with minimal effort.

For additional use cases, such as the scaled-up prediction
discussed in Section IV-C, we leverage Chakra [2] as a com-
plement to Kineto. Chakra is officially supported by PyTorch
and can be seamlessly collected alongside Kineto. We will
delve into the specifics of why and how we use Chakra later.

C. Execution Graph

The essence of a model’s execution lies in its execution
graph, which is depicted by the tasks being executed and the
relationships between them.

1) Tasks: Our execution graph contains the following two
types of tasks:

CPU tasks: We classify all tasks executed on the CPU,
including PyTorch operators and CUDA runtime events, as
CPU tasks. We record the duration of each CPU task along
with the CPU thread on which it is executed.

GPU tasks: We classify all tasks executed on the GPU as
GPU tasks, which primarily consist of GPU kernels. We record
the duration of each GPU task along with the CUDA stream
on which it is executed.

2) Dependency: We identify four types of dependencies
that encompass all possible relationships between tasks.

CPU to CPU: This dependency includes both the intra-
/inter-thread dependency between CPU tasks. CPU tasks as-
signed to the same thread naturally execute in a serialized
manner. Therefore, we add a dependency between each pair of
consecutive CPU tasks within the same thread as intra-thread
dependency. Regarding inter-thread dependency, there are
cases where CPU tasks from one thread are blocked by tasks
from another thread. For example, in PyTorch, a dedicated
thread handles the backward pass, and its first operator needs
to wait for the last operator on the forward thread to complete.
We identify such dependencies by detecting significant gaps
in execution within each thread and build dependencies across
threads accordingly.

CPU to GPU: A GPU task is typically initiated by a corre-
sponding CPU-sided CUDA event, such as cudaLaunchKernel.
In Kineto trace, each CUDA runtime event and GPU kernel
is associated with a correlation ID. We utilize this ID to add
the dependency between CPU tasks and GPU tasks.
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Fig. 2. Four types of dependencies between the tasks.

GPU to CPU: CUDA synchronizations are frequently
encountered during model execution. When a CUDA syn-
chronization event, such as cudaDeviceSynchronize or cud-
aEventSynchronize, is invoked on the CPU, it blocks until
all relevant GPU kernels have completed execution. Conse-
quently, this introduces a dependency from one or multiple
GPU tasks to a CPU task.

GPU to GPU: Similar to CPU to CPU, this dependency
includes the intra- and inter-stream dependency between GPU
tasks. GPU kernels belonging to the same stream are executed
sequentially, thus two consecutive GPU tasks in the same
stream have a dependency between. To identify inter-stream
dependencies, we leverage the special CUDA synchronization
events captured in the Kineto trace. Specifically, we focus
on a pair of CUDA events: cudaEventRecord() and cudaS-
treamWaitEvent(). The kernel launched prior to cudaEven-
tRecord() serves as the source kernel, while cudaStreamWait-
Event() specifies a stream, and the next kernel scheduled on
that stream becomes the dependent kernel. By analyzing these
events, we can effectively detect dependencies between GPU
tasks across different streams.

This execution graph is similar to the approach proposed
in Daydream, as we find it necessary and effective to build a
performance model by constructing the dependencies among
low-level tasks. However, we have implemented several im-
provements. First, our profiling tool can capture detailed in-
formation about communication operators/kernels, eliminating
the need for manual insertion of communication tasks via
model instrumentation and estimation of performance. Second,
Daydream does not support concurrent streams and serializes
all GPU tasks’ execution on a single stream, and consequently
it does not consider any inter-stream dependency. However,
overlapping the execution of kernels is now a very common
practice to hide the communication overhead in distributed
training. Whether two kernels can execute in parallel is de-
termined by available stream resources and kernel-level de-
pendencies, which directly influences the end-to-end execution
time and other execution characteristics. This limitation is also
present in dPRO, which utilizes only operator-level traces.
In our evaluation section, we demonstrate the importance of
considering these factors, and showcase the improvements our
approach offers compared to existing work.

D. Simulation

We utilize this execution graph as input for our event-based
simulator written in Python. CPU and GPU tasks are assigned
to their respective threads and streams, and executed according
to their dependencies. The simulator will generate a new
Kineto trace that includes comprehensive details of all tasks.
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Fig. 3. Simulated execution time per iteration.

This output trace can serve as a simulated execution, enabling
further analysis and evaluation of performance across different
conditions and scenarios. Additionally, the simulation frame-
work allows manipulation of task execution to emulate various
what-if scenarios, as we will demonstrate in Section IV-C.

IV. EVALUATION

A. Methodology

We conduct our evaluation of TraceSim on a cluster of 32
servers equipped with a total of 256 NVIDIA H100 GPUs. We
use the GPT-3 model [9] open sourced in MLPerf and shrink
its size to 125M to fit in our smallest setup in terms of GPUs.
We collect the traces and evaluate the performance under
various parallel strategies, including TP (Tensor Parallelism),
PP (Pipeline Parallelism) and DP (Data Parallelism). We use
CUDA 12.0 and PyTorch 2.2 as our testing environment.

The main contribution of TraceSim compared to existing
work is the ability to handle concurrent streams and inter-
stream dependencies. To demonstrate the importance of that,
we implement two baseline versions of TraceSim for com-
parison: one is TraceSim-single, which does not consider
concurrent streams, with only one stream for computation
and one for communication. The other is TraceSim-w/o dep,
which does not account for inter-stream dependencies.

B. Same-scale simulation

1) End-to-end execution time: Figure 3 shows the simulated
per-iteration execution time under various settings. Notably,
TraceSim accurately reproduces the execution time, closely
aligning with the actual time with an average accuracy of
95.6%. This demonstrates that our fine-grained execution
graph can effectively capture the essential information of the
model’s execution. Comparatively, the execution time simu-
lated by TraceSim-w/o dep consistently underestimates the
actual results. This is attributed to the lack of consideration for
inter-stream dependencies, leading to additional parallel exe-
cution that does not exist in the actual execution. In contrast,
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Fig. 4. Exposed communication time per rank.

TraceSim-single consistently overestimates the execution time
since it prohibits any parallel execution. Although considering
concurrent streams may not exhibit significant differences in
our current results, it is crucial for enabling the overlap of
more kernels. While our tested model features multiple com-
munication streams, limited overlap occurs between kernels
on these streams due to inter-stream dependencies. We expect
a greater impact in other models where more overlap occurs.

2) Exposed communication time: Since the simulation can
emulate the model’s execution with per task details, including
start time, duration, and on which thread/stream a task is
executed, we can conduct more downstream performance
analysis beyond simulating the end-to-end execution time. In
large-scale distributed training, such as with LLMs, a signifi-
cant portion of time is dedicated to communication and syn-
chronization events between GPUs. Engineers are striving to
maximize overlap between the execution of computation and
communication kernels. One important metric they examine is
the exposed communication time, defined as the time spent in
communication that does not overlap with computation.

Figure 4 presents the exposed communication time for
different ranks, based on traces collected with TP = PP = 2
and DP = 4. Compared with the baselines, TraceSim achieves
highest accuracy compared to the actual model, demonstrating
that our fine-grained execution graph is necessary to accurately
reproduce the execution details.

3) SM utilization: In Figure 5, we showed Streaming
Multiprocessor (SM) utilization of one rank collected with
TP = PP = 2 and DP = 4. The utilization is derived from
the trace by analyzing the number of SMs used by each
kernel and aggregated per 1ms timestep. Similarly to the
exposed communication time, it again proves the necessity of
considering concurrent streams and inter-stream dependencies
to accurately reproduce the detailed execution statistics.

C. Scaled-up Prediction

Debugging and evaluating the performance of large-scale
ML training pose significant challenges due to the high cost
and complexity associated with the testing setups. There is
a need for a tool capable of predicting a model’s large-scale
performance using more manageable setups. In this section, we
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Fig. 5. SM utilization of one rank.
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Fig. 6. Predicted execution time per iteration.

demonstrate a use case of TraceSim to predict the scaled-up
performance of models with small-scale traces, such as using
traces collected with 16 GPUs to predict the performance of
128, 256, or even more GPUs.

We start with a simple scenario that predicts the scaled-up
behavior of models by changing the DP only, since this will
not change the computation of each rank, so that we only
need to alter the communication part. We utilize the execution
graph constructed from the 16 GPUs traces as input for the
simulator. During the simulation, we manipulate only the
behavior of communication operators/kernels by substituting
their execution time with pre-collected data for the target
larger scales. We assume we can obtain the execution time of
various communication operators at larger scales in advance.
Currently, we collect the actual traces of large scales as ground
truth, enabling us to directly analyze these traces and extract
this execution information. Since the behavior of communi-
cation operators is only determined by the arguments (e.g.,
data size, communicator group) and network environment,
this information only needs to be collected once and can be
easily reused for various models and simulation purposes.
Additionally, this information can also be simulated using
network simulators like ASTRA-sim [18] or predicted using
analytical models [10], [17]. As Kineto trace lacks arguments
information, we collect a Chakra trace [2] to supplement it.

4



Both traces can be collected simultaneously for the same
iteration, allowing us to easily link them together.

Figure 6 illustrates that we can accurately predict the per-
iteration execution time of larger scales using the traces
collected with 16 GPUs. When scaling only DP, the average
accuracy of execution time prediction is 97% with TP = PP = 1
and 99.5% with TP = PP = 2. This prediction capability holds
significant potential in eliminating the need for expensive
hardware resources when conducting performance debugging
or fine-tuning tasks. By reusing the execution graph built
from small-scale traces and altering only the necessary parts,
we can accelerate the iterative process, making performance
evaluation and optimization more efficient and cost-effective.

V. CONCLUSION

We present TraceSim, a trace-driven performance modeling
and simulation framework for large-scale ML training. By con-
structing a fine-grained execution graph, TraceSim is able to
capture and reproduce a model’s execution. Its fine granularity
and flexibility also opens up many interesting use cases, such
as scaled-up performance prediction.
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