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Abstract

Data deletion algorithms aim to remove the influence of deleted data points from
trained models at a cheaper computational cost than fully retraining those models.
However, for sequences of deletions, most prior work in the non-convex setting
gives valid guarantees only for sequences that are chosen independently of the
models that are published. If people choose to delete their data as a function
of the published models (because they don’t like what the models reveal about
them, for example), then the update sequence is adaptive. In this paper, we
give a general reduction from deletion guarantees against adaptive sequences to
deletion guarantees against non-adaptive sequences, using differential privacy and
its connection to max information. Combined with ideas from prior work which
give guarantees for non-adaptive deletion sequences, this leads to extremely flexible
algorithms able to handle arbitrary model classes and training methodologies,
giving strong provable deletion guarantees for adaptive deletion sequences. We
show in theory how prior work for non-convex models fails against adaptive
deletion sequences, and use this intuition to design a practical attack against the
SISA algorithm of Bourtoule et al. [2021] on CIFAR-10, MNIST, Fashion-MNIST.

1 Introduction

Businesses like Facebook and Google depend on training sophisticated models on user data.
Increasingly—in part because of regulations like the European Union’s General Data Protection Act
and the California Consumer Privacy Act—these organizations are receiving requests to delete the
data of particular users. But what should that mean? It is straightforward to delete a customer’s data
from a database and stop using it to train future models. But what about models that have already
been trained using an individual’s data? These are not necessarily safe; it is known that individual
training data can be exfiltrated from models trained in standard ways via model inversion attacks
[Shokri et al., 2017, Veale et al., 2018, Fredrikson et al., 2015]. Regulators are still grappling with
when a trained model should be considered to contain personal data of individuals in the training set
and the potential legal implications. In 2020 draft guidance, the U.K.’s Information Commissioner’s
Office addressed how to comply with data deletion requests as they pertain to ML models:

If the request is for rectification or erasure of the data, this may not be possible
without re-training the model...or deleting the model altogether [ICO, 2020].

Fully retraining the model every time a deletion request is received can be prohibitive in terms of
both time and money—especially for large models and frequent deletion requests. The problem of
data deletion (also known as machine unlearning) is to find an algorithmic middle ground between
the compliant but impractical baseline of retraining, and the potentially illegal standard of doing
nothing. We iteratively update models as deletion requests come in, with the twin goals of having
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computational cost that is substantially less than the cost of full retraining, and the guarantee that the
models we produce are (almost) indistinguishable from the models that would have resulted from full
retraining.

After an initial model is deployed deletion requests arrive over time as users make decisions about
whether to delete their data. It is easy to see how these decisions may be adaptive with respect to the
models. For example, security researchers may publish a new model inversion attack that identifies a
specific subset of people in the training data, thus leading to increased deletion requests for people
in that subset. In this paper we give the first machine unlearning algorithms that both have rigorous
deletion guarantees against these kind of adaptive deletion sequence, and can accommodate arbitrary
non-convex models like deep neural networks without requiring pretraining on non-user data.

1.1 Main Results

The deletion guarantees proven for several prior methods crucially rely on the implicit assumption that
the points that are deleted are independent of the randomness used to train the models. However this
assumption fails unless the sequence of deletion requests is chosen independently of the information
that the model provider has made public. This is a very strong assumption, because users may wish
to delete their data exactly because of what deployed models reveal about them.

We give a generic reduction. We show that if:

1. A data deletion algorithm RA for a learning algorithm A has deletion guarantees for
oblivious sequences of deletion requests (as those from past work do), and

2. Information about the internal randomness ofRA is revealed only in a manner that satisfies
differential privacy, then

(A,RA) also satisfies data deletion guarantees against an adaptive sequence of deletion requests,
that can depend in arbitrary ways on the information that the model provider has made public.

In Section 3, we motivate our main result with a theoretical example which illustrates that past
method’s lack of guarantees for adaptive sequences is not simply a failure of analysis, but an actual
failure of these methods to satisfy deletion guarantees for adaptive deletion sequences. As an exemplar,
we use a variant of SISA from Bourtoule et al. [2021] that satisfies perfect deletion guarantees for
non-adaptive deletion sequences and exhibit adaptive deletion sequences that strongly separate the
resulting distribution on models compared to the retraining baseline.

The generic reduction found in Section 4 can be used to give adaptive data deletion mechanisms for a
wide variety of problems by leveraging past work on deletion algorithms for non-adaptive sequences,
and a line of work on differentially private aggregation [Papernot et al., 2018, Dwork and Feldman,
2018]. Since prior deletion algorithms themselves tend to use existing learning algorithms in a
black-box way, the entire pipeline is modular and easy to bolt-on to existing methods. In Section 5,
we show how this can be accomplished by using a variant of the SISA framework of Bourtoule et al.
[2021] together with a differentially private aggregation method.

In Section 6, we complement our main result with a set of experimental results on CIFAR-10, MNIST,
and Fashion-MNIST that demonstrate differential privacy may be useful in giving adaptive guarantees
beyond the statement of our theorems. Specifically we show that small amounts of noise addition
(insufficient for our theorems to apply) already serve to break the adaptive deletion strategies that we
use to falsify the adaptive deletion guarantees in our experiments described in Section 3 and do so at
minimal expense in model accuracy.

1.2 Related Work

Data deletion was introduced by Cao and Yang [2015]; we adopt the randomized formulation of
Ginart et al. [2019]. Ginart et al. [2019] anticipate the problem of deletion requests that might be
correlated with internal state of the algorithm, and define (and propose as a study for future work)
robust data deletion which is a data deletion guarantee that holds for adversaries with knowledge of
the internal state. Our insight is that we can provide deletion guarantees against adaptive sequences
by instead obscuring the internal state of the algorithm using techniques from differential privacy.
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We are the first to explicitly consider the problem of adaptive sequences of deletion requests, but
some techniques from past work do have deletion guarantees that extend to adaptive sequences.
Deterministic methods and methods that depend only on randomness that is sampled after the deletion
request are already robust to adaptive deletion. This includes techniques that find an approximately
optimal solution to a strongly convex problem and then perturb the solution to obscure the optimizer
within a small radius e.g. Guo et al. [2019], Neel et al. [2021], Sekhari et al. [2021]. It also includes
the approach of Golatkar et al. [2020a,b] which pre-trains a nonconvex model on data that will never
be deleted and then does convex fine-tuning on user data on top of that. Techniques whose deletion
guarantees depend on randomness sampled at training in general do not have guarantees against
adaptive deletions. This includes algorithms given in Ginart et al. [2019], Bourtoule et al. [2021],
Neel et al. [2021] — the SISA framework of Bourtoule et al. [2021] being of particular interest as it
is agnostic to the class of models and training methodology, and so is extremely flexible.

Differential privacy has been used as a mitigation for adaptivity since the work of Dwork et al.
[2015c,a]. In machine learning, it has been used to mitigate the bias of adaptive data gathering
strategies as used in bandit learning algorithms [Neel and Roth, 2018]. The application that is
most similar to our work is Hassidim et al. [2020], which uses differential privacy of the internal
randomness of an algorithm (as we do) to reduce streaming algorithms with guarantees against
adaptive adversarial streams to streaming algorithms with guarantees against oblivious adversaries.
Our techniques differ; while Hassidim et al. [2020] reduce to the so-called “transfer theorem for
linear and low sensitivity queries” developed over a series of works Dwork et al. [2015c], Bassily
et al. [2021], Jung et al. [2020], we use a more general connection between differential privacy and
“max-information” established in Dwork et al. [2015b], Rogers et al. [2016].

2 Preliminaries

Let Z be the data domain. A dataset D is a multi-set of elements from Z . We consider update
requests of two types: deletion and addition. These update requests are formally defined below,
similar to how they are defined in [Neel et al., 2021].
Definition 2.1 (Update Operations and Sequences). An update u is a pair (z, •) where z ∈ Z is a
datapoint and • ∈ T = {′add′, ′delete′} determines the type of the update. An update sequence U
is a sequence (u1, u2, . . .) where ut ∈ Z × T for all t. Given a dataset D and an update u = (z, •),
the update operation is defined as:

D ◦ u ,

{
D ∪ {z} if • = ′add′

D \ {z} if • = ′delete′

Given an update sequence U = (u1, u2, . . .), we have D ◦ U , (((D ◦ u1) ◦ u2) ◦ . . .).

We use Θ to denote the space of models. A learning or training algorithm is a mappingA : Z∗ → Θ∗

that maps a dataset D ∈ Z∗ to a collection of models θ ∈ Θ∗. An unlearning or update algorithm
for A is a mapping RA : Z∗ × (Z × T ) × S → Θ∗ which takes in a data set D ∈ Z∗, an update
request u ∈ Z × T , and some current state for the algorithms s ∈ S (the domain S can be arbitrary),
and outputs an updated collection of models θ′ ∈ Θ∗. In this paper we consider a setting in which a
stream of update requests arrive in sequence. We note that in this sequential framework, the update
algorithmRA also updates the state of the algorithm after each update request is processed; however,
for notational economy, we do not explicitly write the updated state as an output of the algorithm.

At each round, we provide access to the models through a mapping f tpublish : Θ∗ → Ψ that takes
in the collection of models and outputs some object ψ ∈ Ψ. A published object ψ ∈ Ψ can, for
instance, be the aggregate predictions of the learned models on a data set, or, some aggregation of
the models. To model adaptively chosen update sequences, we define an arbitrary “update requester”
who interacts with the learning and unlearning algorithms (A,RA) through the publishing function
fpublish in rounds to generate a sequence of updates. The update requester is denoted by UpdReq and
defined in Definition 2.2, and the interaction between the algorithms and the update requester is
described in Algorithm 1.

Throughout we will use ut to denote the update request at round t. We will use Dt to denote the data
set at round t: D0 is the initial training data set and for all t ≥ 1, Dt = Dt−1 ◦ ut. We will use θt to
denote the learned models at round t: θ0 is generated by the initial training algorithm A, and θt for
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Algorithm 1: Interaction between (A,RA) and UpdReq

1: Input: Data set D
2: Let D0 ← D.
3: Train θ0 ← A(D).
4: Publish ψ0 ← f0publish(θ0).
5: Save the initial state s0.
6: for t = 1, 2, . . . do
7: The update requester requests a new update, given the history of interaction:
8: ut ← UpdReq

(
ψ0, u1, ψ1, u2, . . . , ut−1, ψt−1

)
.

9: The algorithms update, given ut:
10: Update the models θt ← RA

(
Dt−1, ut, st−1

)
.

11: Publish ψt ← f tpublish (θt).
12: Save the updated state st.
13: Update the data set Dt ← Dt−1 ◦ ut.

t ≥ 1 denotes the updated models at round t generated by the update algorithmRA. ψt denotes the
published object at round t: ψt = f tpublish(θt).

Definition 2.2 (Update Requester (UpdReq)). The update sequence is generated by an update
requester which is modeled by a (possibly randomized) mapping UpdReq : Ψ∗×(Z×T )∗ → (Z×T )
that takes as input the history of interaction between herself and the algorithms, and outputs a new
update for the current round. Given an update requester UpdReq, algorithms (A,RA) and publishing
functions {f tpublish}t, the update sequence U = {ut}t can be written as

u1 = UpdReq
(
ψ0
)
, u2 = UpdReq

(
ψ0, u1, ψ1

)
, . . . , ut = UpdReq

(
ψ0, u1, ψ1, . . . , ut−1, ψt−1

)
We say an update requester UpdReq is nonadaptive if it is independent of the published objects, i.e., if
there exists a mapping UpdReq′ : (Z × T )∗ → (Z × T ) such that for all t ≥ 1,

ut = UpdReq
(
ψ0, u1, ψ1, u2, . . . , ut−1, ψt−1

)
= UpdReq′

(
u1, u2, . . . , ut−1

)
This is equivalent to saying that the update sequence is fixed before the interaction occurs.

Following [Ginart et al., 2019], we propose the following definition for an unlearning algorithm in the
sequential update setting ([Ginart et al., 2019] gives a definition for a single deletion request, whereas
here we define a natural extension for an arbitrarily long sequence of deletions, as well as additions,
that can be chosen adaptively.). Informally, we require that at every round, and for all possible update
requesters, with high probability over the draw of the update sequence, no subset of models resulting
from deletion occurs with substantially higher probability than it would have under full retraining.

Definition 2.3 ((α, β, γ)-unlearning). We say that RA is an (α, β, γ)-unlearning algorithm for A,
if for all datasets D = D0 and all update requesters UpdReq, the following condition holds: For
every update step t ≥ 1, with probability at least 1 − γ over the draw of the update sequence
u≤t = (u1, . . . , ut) from UpdReq,

∀E ⊆ Θ∗ : Pr
[
RA

(
Dt−1, ut, st−1

)
∈ E

∣∣u≤t] ≤ eα · Pr
[
A
(
Dt
)
∈ E

]
+ β

We sayRA is a nonadaptive (α, β, γ)-unlearning algorithm for A if the above condition holds for
any nonadaptive UpdReq.

Remark 2.1. Our definition of unlearning is reminiscent of differential privacy, but following [Ginart
et al., 2019], we ask only for a one-sided guarantee: that the probability of any event under the
unlearning scheme is not too much larger than the probability of the same event under full retraining,
but not vice versa. The reason is that we do not want there to be events that can substantially increase
an observer’s confidence that we did not engage in full retraining, but we do not object to observers
who strongly update their beliefs that we did engage in full retraining. Our events E are defined
directly over the sets of models in Θ∗ output by A and RA — note that because of information
processing inequalities, this is only stronger than defining events E over the observable outcome
space Ψ.
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2.1 Differential Privacy and Max-Information

Differential privacy will be a key tool in our results. Let X denote an arbitrary data domain. We use
x ∈ X to denote an individual element of X , and X ∈ X ∗ to denote a collection of elements from X
— which we call a data set. We say two data sets X,X ′ ∈ X ∗ are neighboring if they differ in at most
one element. We say an algorithm M : Xn → O is differentially private if its output distributions on
neighboring data sets are close, formalized below.
Definition 2.4 (Differential Privacy (DP) [Dwork et al., 2006b,a]). An algorithm M : Xm → O
is (ε, δ)-differentially private, if for every neighboring X and X ′, and for every O ⊆ O, we have
Pr [M(X) ∈ O] ≤ eε Pr [M(X ′) ∈ O] + δ.

We remark at the outset that the “datasets” to which we will eventually ask for differential privacy
with respect to will not be the datasets on which our learning algorithms are trained, but will instead
be collections of random bits parameterizing our randomized algorithms.

Differentially private algorithms are robust to data-independent post-processing:
Lemma 2.1 (Post-processing preserves DP [Dwork et al., 2006b]). If M : Xm → O is (ε, δ)-
differentially private, then for all f : O → R, we have f ◦M : Xm → R defined by f ◦M(X) =
f(M(X)) is (ε, δ)-differentially private.

The max-information between two jointly distributed random variables measures how close their
joint distribution is to the product of their corresponding marginal distributions.
Definition 2.5 (Max-Information [Dwork et al., 2015b]). Let X and Y be jointly distributed random
variables over the domain (X ,Y). The β-approximate max-information between X and Y is:

Iβ∞(X;Y ) = log sup
E⊆(X ,Y),Pr[(X,Y )∈E]>β

Pr[(X,Y ) ∈ E]− β
Pr[(X ⊗ Y ) ∈ E]

where (X ⊗ Y ) represents the product distribution of X and Y .

The max-information of an algorithmM that takes a datasetX as input and outputsM(X), is defined
as the max-information between X and M(X) for the worst case product distribution over X:
Definition 2.6 (Max-Information of an Algorithm [Dwork et al., 2015b]). Let M : Xm → O be an
Algorithm. We say M has β-approximate max-information of k, written Iβ∞(M,m) ≤ k, if for every
distribution P over X , we have Iβ∞(X;M(X)) ≤ k when X ∼ Pm.

In this paper, we will use the fact that differentially private algorithms have bounded max-information:

Theorem 2.1 (DP implies bounded max-information [Rogers et al., 2016]). Let M : Xm → O
be an (ε, δ)-differentially private algorithm for 0 < ε ≤ 1/2 and 0 < δ < ε. Then, Iβ∞(M,m) =

O
(
ε2m+m

√
δ/ε
)

for β = e−ε
2m +O

(
m
√
δ/ε
)

.

3 Falsifying Unlearning Guarantees with Adaptivity

In this section we demonstrate that the deletion guarantees of algorithms in the SISA framework
[Bourtoule et al., 2021] fail for adaptive deletion sequences. We give a clean toy construction which
shows algorithms in the SISA framework fail to have nontrivial adaptive deletion guarantees even in
the black-box setting when the models within each shard are not made public, only aggregations of
their classification outputs. In the Appendix we experimentally evaluate a more realistic instantiation
of this construction.

The setting we consider directly corresponds to the setting in which our final algorithms operate: what
is made public is the aggregate predictions of the ensemble of models, but not the models themselves.
For non-adaptive sequences of deletions, distributed algorithms of the sort described in Section 5 have
perfect deletion guarantees. We demonstrate via a simple example that these guarantees dramatically
fail for adaptive deletion sequences.

Suppose we have a dataset consisting of real-valued points with binary labels {(xi, yi)}2ni=1, xi ∈ Rd,
yi ∈ {0, 1} in which there are exactly two copies of each distinct training example. Consider a
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simplistic classification model, resembling a lookup table, which given a point xi predicts the label
yi if the model has been trained on (xi, yi) and a dummy prediction value "⊥" otherwise:

fD(xi) =

{
yi if (xi, yi) ∈ D,
⊥ otherwise

Consider what happens when the training algorithm randomly partitions this dataset into three pieces
and trains such a model on each partition. This constructs an ensemble which, at query time, predicts
the class with the majority vote. On this dataset, the ensemble will predict the labels of roughly 2/3
of the training points correctly—that is, exactly those points for which the duplicates have fallen into
distinct partitions, so that the ensemble gets the majority vote right.

We construct an adaptive adversary who chooses to delete exactly those training points that the
ensemble correctly classifies (which are those points for whom the duplicates have fallen into distinct
shards). The result is that the model resulting from this deletion sequence will misclassify every
remaining training point. Full retraining (because it would rerandomize the partition) would again
lead to training accuracy of approximately 2/3. Recalling that our deletion notion requires that the
probability of any event under the unlearning scheme is not much larger than the probability of the
same event under full retraining, this demonstrates that there are algorithms in the SISA framework —
even if the models are not directly exposed — that do not satisfy (α, β, γ)-deletion guarantees for
any nontrivial value of α. We formalize this below:
Theorem 3.1. There are learning and unlearning algorithms in the SISA framework (A,RA) such
that for any α, and any β, γ < 1/4,RA is not an (α, β, γ)-unlearning algorithm for A.

A proof of this theorem can be found in the appendix.

4 A Reduction from Adaptive to Nonadaptive Update Requesters

In our analysis we imagine without loss of generality that the learning algorithm A draws an i.i.d.
sequence of random variables r ∼ Pm (that encodes all the randomness to be used over the course
of the updates) from some distribution P , and passes it to the unlearning algorithmRA. Note r is
drawn once in the initial training, and given r, A andRA become deterministic mappings. We can
also view the state st as a deterministic mapping of r, the update requests so far u≤t = (u1, . . . , ut),
and the original data set D0. We write st = gt(D0, u≤t, r) for some deterministic mapping gt. We
can therefore summarize the trajectory of the algorithms (A,RA) as follows.

• t = 0: draw r ∼ Pm, let θ0 = A(D) ≡ A(D; r), and ψ0 = f0publish

(
θ0
)
.

• t ≥ 1: θt = RA(Dt−1, ut, st−1) where st−1 = gt−1(D0, u≤t−1, r), and ψt = f tpublish (θt).

In this view, the randomness r used by the learning algorithm A and the subsequent invocations of
the unlearning algorithmRA is represented as part of the internal state. Past analyses of unlearning
algorithms have crucially assumed that r is statistically independent of the updates (u1, u2, . . .) (which
is the case for non-adaptive update requesters, but not for adaptive update requesters). In the following
general theorem, we show that if a learning/unlearning pair satisfies unlearning guarantees against
non-adaptive update requesters, and the publishing function is differentially private in the internal
randomness r, then the resulting algorithms also satisfy unlearning guarantees against adaptive update
requesters. Note that what is important is that the publishing algorithms are differentially private in
the internal randomness r, not in the datapoints used for training.
Theorem 4.1 (A General Theorem). Fix a pair of learning and unlearning algorithms (A,RA) and
the publishing functions {f tpublish}t. Suppose for every round t, the sequence of publishing functions
{f t′publish}t′≤t is (ε, δ)-differentially private in r ∼ Pm, for 0 < ε ≤ 1/2 and 0 < δ < ε. Suppose
RA is a non-adaptive (α, β, γ)-unlearning algorithm for A. ThenRA is an (α′, β′, γ′)-unlearning

algorithm for A for α′ = α+ ε′, β′ = βeε
′
+
√
δ′, γ′ = γ +

√
δ′ where ε′ = O

(
ε2m+m

√
δ/ε
)

and δ′ = e−ε
2m +O

(
m
√
δ/ε
)

.

The proof can be found in the Appendix, but at an intuitive level, it proceeds as follows. Because it
does not change the joint distribution on update requests and internal state, we can imagine in our
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Algorithm 2: Adistr: Distributed Learning Algorithm

Input: dataset D ≡ D0 of size n
Draw the shards: D0

i = Sampler(D0, p), for every i ∈ [k].
Train the models: θ0i = Asingle(D0

i ), for every i ∈ [k].
Save the state: s0 = ({D0

i }i∈[k], {θ0i }i∈[k]) // to be used for the 1st update.
Output: {θ0i }i∈[k]

analysis that r is redrawn after each update request from its conditional distribution, conditioned
on the observed update sequence so far. Because the publishing function is differentially private
in r, by the fact that post-processing preserves differential privacy (Lemma 2.1), so is the update
sequence. We may therefore apply the max-information bound (Theorem 2.1), which allows us
to relate the conditional distribution on r to its original (prior) distribution Pm. But resampling
r from Pm removes the dependence between r and the update sequence, which places us in the
non-adaptive case, and allows us to apply the hypothesized unlearning guarantees for nonadaptive
update requesters.

5 Distributed Algorithms

In this section, we describe a general family of distributed learning and unlearning algorithms that
are in the spirit of the “SISA” framework of Bourtoule et al. [2021] (with one crucial modification).
At a high level, the SISA framework operates by first randomly dividing the data into k “shards”,
and separately training a model on each shard. When a new point is deleted, it is removed from
the shards that contained it, and only the models corresponding to those shards are retrained. The
flexibility of this methodology is that the models and training procedures used in each shard can be
arbitrary, as can the aggregation done at the end to convert the resulting ensemble into predictions:
however these choices are instantiated, this framework gives a (0, 0, 0)-unlearning algorithm against
any non-adaptive update requester (Lemma 5.1). Here we show that if the k shards are selected
independently of one another, then we can apply our reduction given in the previous section with
m = k and obtain algorithms that satisfy deletion guarantees against adaptive update requesters.

A distributed learning algorithm Adistr : Z∗ → Θ∗ is described by a single-shard learning algorithm
Asingle : Z∗ → Θ and a routine Sampler, used to select the points in a shard. Sampler, given a
dataset D and some probability p ∈ [0, 1], includes each element of D in the shard with probability p.

Distributed learning algorithm Adistr creates k independent shards from the dataset D of size n by
running Sampler k times and training a model withAsingle on each shard i ∈ [k] to form an ensemble
of k models. To emphasize that the randomness across shards is independent, we will instantiate k
independent samplers Sampleri and training algorithms Asingle

i for each shard i ∈ [k]. We formally
describe Adistr in Algorithm 2.

The state s of the unlearning algorithm RAdistr records the k shards {Di}i and the ensemble of k
models {θi}i. Thus S = {Z∗}k × Θk. As an update request u is received, the update function
removes the data point from every shard that contains it (for deletion) or adds the new point to each
shard with probability p (for addition). In either case, only the models corresponding to shards that
have been updated are retrained using Asingle. We formally describeRAdistr in Algorithm 3.

First, we show that if the update requester is non-adaptive,RAdistr is a (0, 0, 0)-unlearning algorithm:
Lemma 5.1. RAdistr is a non-adaptive (0, 0, 0)-unlearning algorithm for Adistr.

Now, by combining Lemma 5.1 and our general Theorem 4.1, we can show the following:
Theorem 5.1 (Unlearning Guarantees). If for every round t, the sequence of publishing functions
{f t′publish}t′≤t is (ε, δ)-differentially private in the random seeds r ∼ Pk of the algorithms for
0 < ε ≤ 1/2 and 0 < δ < ε, thenRAdistr is an (α, β, γ)-unlearning algorithm for Adistr where

α = O
(
ε2k + k

√
δ/ε
)
, β = γ = O

(√
e−ε2k + k

√
δ/ε

)
Next, we bound the time complexity of our algorithms:
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Algorithm 3:RAdistr : Distributed Unlearning Algorithm: t’th round of unlearning

Input: dataset Dt−1, update ut = (zt, •t), state st−1 = ({Dt−1
i }i∈[k], {θt−1i }i∈[k])

if •t = ′delete′ then
S = {i ∈ [k] : zt ∈ Dt−1

i } // the shards zt belongs to.
else
S = {i ∈ [k] : Sampleri({zt}, p) 6= {}} // the shards zt will be added to.

Update the shards: Dt
i =

{
Dt−1
i ◦ ut if i ∈ S

Dt−1
i otherwise

, for every i ∈ [k].

Update the models: θti =

{
Asingle(Dt

i) if i ∈ S
θt−1i otherwise

, for every i ∈ [k].

Update the state: st = ({Dt
i}i∈[k], {θti}i∈[k]) // to be used for the next update.

Output: {θti}i∈[k]

Theorem 5.2 (Run-time Guarantees). Let p = 1/k. Suppose the publishing functions satisfy the
differential privacy requirement of Theorem 5.1. Let N t denote the number of times Rdistr

A calls
Asingle at round t. We have that N0 = k, and for every round t ≥ 1: 1) if the update requester is
non-adaptive, for every ξ, with probability at least 1− ξ, N t ≤ 1 +

√
2 log (1/ξ). 2) if the update

requester is adaptive, for every ξ, with probability at least 1 − ξ, N t ≤ 1 +
√

2 log ((n+ t)/ξ).
Furthermore, for ξ > δ′, with probability at least 1− ξ, we have

N t ≤ 1 + min
{√

2 log (2(n+ t)/(ξ − δ′)),
√

2ε′ + 2 log (2/(ξ − δ′))
}

where ε′ = O
(
ε2k + k

√
δ/ε
)

and δ′ = e−ε
2k +O

(
k
√
δ/ε
)

The proof can be found in the appendix, but at a high level it proceeds as follows. For a deletion
request, we must retrain every shard that contains the point to be deleted. For a non-adaptive deletion
request, we retrain one shard in expectation and we can obtain a high probability upper bound by
using a Hoeffding bound. In the adaptive case, this may no longer be true, but there are two ways to
obtain upper bounds that correspond to the two bounds in our Theorem. We can provide a worst-case
upper bound on the number of shards that any of the n data points belongs to, which incurs a cost of
order

√
log n. Alternately, we can apply max-information bounds to reduce to the non-adaptive case,

using an argument that is similar to our reduction for deletion guarantees.
Remark 5.1. We note that there is an alternative algorithm that one might consider, resulting
from group differential privacy. If a learning algorithm satisfies ε

k−differential privacy, a valid
unlearning procedure is to do nothing for k updates and then fully retrain on the (k + 1)th update.
This follows from the ε−differential privacy guarantee the algorithm will have for groups of size
k. Our algorithm substantially outperforms this alternative algorithm as well, namely because
our privacy parameter degrades much slower than in this group privacy baseline. Our analysis
leverages adaptive composition of privacy across the publishing functions which means that privacy
degrades with the square root of the number of updates, while it degrades linearly with group privacy.
Consequently the group privacy baseline would require a full retraining every k updates, but our
algorithm requires a full retraining only every k2 updates.

5.1 Private Aggregation

We briefly describe how we serve prediction requests by privately aggregating the output of the
ensemble of models such that the published predictions are differentially private in the random seeds
r. At each round t, while Rdistr

A is waiting for the next update request ut+1, we receive prediction
requests x and serve predictions ŷ. For each prediction request, we privately aggregate the predictions
made by the ensemble of models {θti}i; Dwork and Feldman [2018] show several ways to privately
aggregate predictions (one simple technique is to use the exponential mechanism to approximate
the majority vote). Suppose we aggregate the predictions made by the ensemble of models using
PrivatePredictkε′ : Θk × X → Y , which takes in an ensemble of k models and a data point,
aggregates predictions from the ensemble models, and outputs a label that is ε′-differentially private
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in the models. If we receive lt many prediction requests (xt1, . . . , x
t
lt) before our next update request

ut+1, we can write (ŷt1, . . . , ŷ
t
lt) = f tpublish({θti}i) where ŷtj = PrivatePredictkε′({θti}i, xtj).

Theorem 5.1, tells us that desired unlearning parameters (α, β, γ) can be obtained by guaranteeing
that the sequence of predictions is (ε, δ) differentially private in the models (and hence r), for target
parameters ε, δ. As we serve prediction requests using PrivatePredictkε′ our privacy loss will
accumulate and eventually exhaust our budget of (ε, δ)-differential privacy. Hence we must track our
accumulated privacy loss in the state of our unlearning algorithm, and when it is exhausted, fully
retrain usingAdistr. This resamples r and hence resets our privacy budget. Standard composition theo-
rems (see Dwork and Roth [2014]) show that we exhaust our privacy budget (and need to fully retrain)
every time the number of prediction requests made since the last full retraining exceeds

⌊
ε2

8(ε′)2 ln( 1
δ )

⌋
.

We formally describe this process denoted as PrivatePredictionInteraction(ε′, ε, δ, k) in the
appendix and state its unlearning guarantee in Theorem 5.3.

Theorem 5.3. The models {{θti}i}t in PrivatePredictionInteraction(ε′, ε, δ, k) satisfy

(α, β, γ)-unlearning guarantee for Adistr where α = O
(
ε2k + k

√
δ/ε
)

and β, γ =

O

(√
e−ε2k + k

√
δ/ε

)
, if 0 < ε ≤ 1/2 and 0 < δ < ε.

6 Evaluation of Unlearning Guarantees

In this section we consider the white-box setting in which the models in each shard are made public.
SISA continues to have perfect deletion guarantees against non-adaptive deletion sequences in this set-
ting. Experimental results on CIFAR-10 [Krizhevsky and Hinton, 2009], MNIST [Lecun et al., 1998],
and Fashion-MNIST [Xiao et al., 2017] show both the failure of SISA to satisfy adaptive deletion guar-
antees, and give evidence that differential privacy can mitigate this problem well beyond the setting of
our theorems while achieving accuracy only modestly worse than SISA. The code for our experiments
can be found at https://github.com/ChrisWaites/adaptive-machine-unlearning.

We train SISA with an ensemble of convolutional neural networks on several datasets of points with
categorical labels. Given a new point at query time, each model in the ensemble votes on the most
likely label and aggregates their votes. The models are exposed publicly. This scheme has perfect
non-adaptive deletion guarantees.

To construct an adaptive deletion sequence to falsify the hypothesis that the scheme has adaptive
deletion guarantees, we exploit the observation that neural networks are often overconfident in the
correct label for points on which they have been trained. For each training point, we guess that it falls
into the shard corresponding to the model that has the highest confidence for the correct label. We
then delete points for which we guess that they fall into the first k/2 of the shards, and do not delete
any others. After deleting the targeted points, we compute a test statistic: the indicator of whether the
average accuracy of the models from the targeted shards is lower than the average accuracy of the
models from the non-targeted shards. Under full retraining, by the symmetry of the random partition,
the expectation of this test statistic is 0.5. Thus under the null hypothesis that the deletion algorithm
satisfies perfect deletion guarantees, the test statistic also has expectation 0.5. Therefore, to the extent
that the expectation of the indicator differs from 0.5, we falsify the null hypothesis that SISA has
adaptive data deletion guarantees, and larger deviations from 0.5 falsify weaker deletion guarantees.

We run this experiment on three datasets (CIFAR-10, MNIST, and Fashion-MNIST), and plot the
results in Figure 1. We then repeat the experiment by adding various amounts of noise to the gradients
in the model training process to guarantee finite levels of differential privacy (though much weaker
privacy guarantees than would be needed to invoke our theorems). We observe that on each dataset,
modest amounts of noise are sufficient to break our attack (i.e. 95% confidence intervals for the
expectation of our indicator include 0.5, and hence fail to falsify the null hypothesis) while still
approaching the accuracy of our models trained without differential privacy. This is also plotted in
Figure 1. This gives evidence that differential privacy can improve deletion guarantees in the presence
of adaptivity even in regimes beyond which our theory gives nontrivial guarantees.

Full experimental details can be found in the appendix.

9

https://github.com/ChrisWaites/adaptive-machine-unlearning


(a) CIFAR-10k=6 (b) Fashion-MNISTk=6 (c) MNISTk=6

(d) CIFAR-10k=2 (e) Fashion-MNISTk=2 (f) MNISTk=2

Figure 1: The top row and bottom row show experiments with k = 6 and k = 2 shards respectively.
The 3 columns report on 3 datasets. The x axis denotes estimated expectation of our test statistic (the
null hypothesis is expectation 0.5). The y axis denotes the accuracy of the ensemble after deletion.
Each point is annotated with the noise multiplier used in DP-SGD, the standard deviation of Gaussian
noise applied to gradients during training. A label of 0.0 for a point represents the baseline case of no
noise (original SISA algorithm). Points are affixed with 95% confidence intervals along both axes
(over the randomness of repeating the training/deletion experiment). Horizontal confidence intervals
that overlap the line denoting expectation 0.5 fail to reject the null hypothesis that the algorithm has
adaptive data deletion guarantees at p ≤ 0.05. We get to this point with a level of noise addition that
results in only a modest degradation in ensemble performance compared to SISA.

7 Conclusion and Discussion

We identify an important blindspot in the data deletion literature (the tenuous implicit assumption
that deletion requests are independent of previously released models), and provide a very general
methodology to reduce adaptive deletion guarantees to oblivious deletion guarantees. Through this
reduction we get the first model and training algorithm agnostic methodology that allows for deletion
of arbitrary sequences of adaptively chosen points while giving rigorous guarantees. The constants
that our theorems inherit from the max information bounds of Rogers et al. [2016] are such that
in most realistic settings they will not give useful parameters. But we hope that these constants
will be improved in future work, and we give empirical evidence that differential privacy mitigates
adaptive deletion “attacks” at very practical levels, beyond the promises of our theoretical results.
We note that like for differential privacy, the (α, β, γ)-deletion guarantees we give in this paper are
parameterized, and are not meaningful absent a specification of those parameters. There is a risk
with such technologies that they will be used with large values of the parameters that give only very
weak guarantees, but will be described publicly in a way that glosses over this issue. We therefore
recommend that if adopted in deployed products, deletion guarantees always be discussed in public
in a way that is precise about what they promise, including the relevant parameter settings.
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