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Abstract

In this paper we derive non-asymptotic Berry-Esseen bounds for Polyak-Ruppert
averaged iterates of the Linear Stochastic Approximation (LSA) algorithm driven
by the Markovian noise. Our analysis yields O(n−1/4) convergence rates to
the Gaussian limit in the Kolmogorov distance. We further establish the non-
asymptotic validity of a multiplier block bootstrap procedure for constructing the
confidence intervals, guaranteeing consistent inference under Markovian sampling.
Our work provides the first non-asymptotic guarantees on the rate of convergence
of bootstrap-based confidence intervals for stochastic approximation with Markov
noise. Moreover, we recover the classical rate of order O(n−1/8) up to logarithmic
factors for estimating the asymptotic variance of the iterates of the LSA algorithm.

1 Introduction

Stochastic approximation (SA) has become foundational to modern machine learning, especially its
reinforcement learning (RL) domain. Many classical RL algorithms, including Q-learning [80, 76],
the actor–critic algorithm [35], and policy evaluation algorithms, such as temporal difference (TD)
learning [76] are special instances of SA. Recent research has extensively studied both the asymptotic
[14] and non-asymptotic behavior [49] of these algorithms. It is important not only to establish the
convergence of SA estimators, but also to quantify their uncertainty, which is typically done through
the asymptotic normality of corresponding estimates, see [57, 46]. Recent works have focused on
deriving non-asymptotic convergence rates for SA methods [69, 67, 82]. Notably, most existing
results consider settings with independent and identically distributed (i.i.d.) noise. In contrast,
many practical SA applications involve dependent noise, often forming a Markov chain. This
additionally complicates the problem. Indeed, even the problem of deriving precise Berry–Esseen
type convergence rates for additive functionals of Markov chains is challenging compared to i.i.d.
setting, where quantitative results are well-established, starting from Bentkus’ influential work [7].

Asymptotic normality of SA estimates is particularly important in practice, as it allows one to
construct approximate confidence intervals for the parameters of interest. Different approaches either
directly utilize the asymptotic normality and aim to estimate the asymptotic covariance matrix directly
(the plug-in or batch-mean methods, see [17, 15, 63]), or rely on the non-parametric methods, based
on the bootstrap [27, 64]. When the latter approach is applied to the dependent observations, standard
bootstrap methods need to be carefully adjusted to account for the dependence structure, see [29, 42].
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In this paper, we study a linear stochastic approximation (LSA) procedure. This setting covers
several important scenarios, such as the classical TD learning algorithm [76] with linear function
approximation, while allowing for sharper theoretical analysis. The LSA procedure aims to find
an approximate solution to the linear system Āθ⋆ = b̄ with a unique solution θ⋆, based on obser-
vations {(A(Zk),b(Zk))}k∈N. Here A : Z → Rd×d and b : Z → Rd are measurable functions,
and {Zk}k∈N is a sequence of noise variables taking values in a measurable space (Z,Z) with a
distribution π satisfying Eπ[A(Zk)] = Ā and Eπ[b(Zk)] = b̄. We focus on the setting where
{Zk}k∈N is an ergodic Markov chain. Given a sequence of decreasing step sizes {αk}k∈N and an
initial point θ0 ∈ Rd, we consider the estimates {θ̄n}n∈N given by

θk = θk−1 − αk{A(Zk)θk−1 − b(Zk)} , k ≥ 1, θ̄n = n−1
∑n−1

k=0 θk , n ≥ 1 . (1)

The sequence {θk}k∈N corresponds to the standard LSA iterates, while {θ̄n}n∈N corresponds to
the Polyak-Ruppert (PR) averaged iterates [65, 57]. It is known that, under appropriate technical
conditions on the step sizes {αk} and the noisy observations {Zk} (see [57] and [31] for a discussion),

√
n(θ̄n − θ⋆)

d→ N (0,Σ∞) . (2)

Here the asymptotic covariance matrix Σ∞ is defined in Section 3; see (8). Recent works have
provided a number of non-asymptotic guarantees for the averaged LSA iterates of θ̄n, in particular,
[39, 74, 47, 25, 48, 24], which study the mean-squared error, high-order moment bounds, and
concentration bounds for

√
n(θ̄n − θ⋆). However, these results are not enough to establish explicit

convergence rates in (2) in some appropriate probability metric d:

d(
√
n(θ̄n − θ⋆),Σ1/2

∞ Y ) ,

where Y ∼ N (0, I). Notable exceptions are recent papers [67, 82, 70, 83], which study non-
asymptotic convergence rates in the LSA and stochastic gradient descent (SGD) algorithms, as well
as in the specific setting of the TD learning algorithm. Our paper aims to complement these findings
by providing both a non-asymptotic analysis of the convergence rate in (2) and an analysis of an
appropriate procedure for constructing confidence sets for θ⋆. Our primary contributions are as
follows:

• We derive a novel non-asymptotic bound for normal approximation for projected
Polyak–Ruppert averaged LSA iterates

√
nu⊤(θ̄n − θ⋆) under Markovian noise in (2). Here

u is a vector on the unit sphere Sd−1. Precisely, we establish a convergence rate of order
O(n−1/4) in Kolmogorov distance. The rate O(n−1/4) matches the recent result of [83],
which considered the particular setting of the TD learning algorithm, and improves over
the previous results from [73]. Our proof strategy differs from that of [83] and is based on
a Poisson decomposition for Markov chains, combined with an appropriate version of the
Berry–Esseen bound for martingales, building on the results of Fan [28] and Bolthausen [12].

• We provide a non-asymptotic analysis of the multiplier subsample bootstrap approach [43] for
the LSA algorithm under Markovian noise. Our bounds imply that the coverage probabilities
of the true parameter θ⋆ can be approximated at a rate of O(n−1/10), where n is the number
of samples used in the procedure. To the best of our knowledge, this is the first non-asymptotic
bound on the accuracy of bootstrap approximation for SA algorithms with Markov noise. As
a byproduct of our analysis, we also recover the rate of O(n−1/8) (up to logarithmic factors)
for estimating the asymptotic variance of projected LSA iterates using the overlapping batch
means (OBM) estimator, previously obtained in [17, 79].

• We apply the proposed methodology to the temporal difference learning (TD) algorithm for
policy evaluation in reinforcement learning.

The rest of the paper is organized as follows. In Section 2, we review the literature on Berry–Esseen
type results for stochastic approximation (SA) algorithms and methods for constructing confidence
intervals for the parameter θ⋆ in these settings. In Section 3, we obtain a quantitative version of
the Berry–Esseen theorem for the projected error of the Polyak–Ruppert averaged LSA under the
Kolmogorov distance. In Section 4, we discuss the multiplier subsample bootstrap approach (as
proposed in [43]) for LSA and provide non-asymptotic bounds on the accuracy of approximating the
exact distribution of

√
nu⊤(θ̄n − θ⋆) with its bootstrap counterpart. Then in Section 5 we apply the

proposed methodology to the temporal difference learning (TD) algorithm, based on the sequence of
states, which form a geometrically ergodic Markov chain. Proofs are postponed to appendix.
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Notations. We denote by P(Z) the set of probability measures on a measurable space (Z,Z). For
probability measures µ and ν on (Z,Z) we denote by dtv(µ, ν) the total variation distance between
them µ and ν, that is, dtv(µ, ν) = supC∈Z |µ(C) − ν(C)|. For matrix A ∈ Rd×d we denote by
∥A∥ its operator norm. Given a sequence of matrices {Aℓ}ℓ∈N, Aℓ ∈ Rd×d, we use the following
convention for matrix products:

∏k
ℓ=m Aℓ = AkAk−1 . . . Am, where m ≤ k. For the matrix

Q ∈ Rd×d, which is symmetric and positive-definite, and x ∈ Rd, we define the corresponding
norm ∥x∥Q =

√
x⊤Qx, and define the respective matrix Q-norm of the matrix B ∈ Rd×d by

∥B∥Q = supx ̸=0 ∥Bx∥Q/∥x∥Q. For sequences an and bn, we write an ≲ bn if there exist a
(numeric) constant c > 0 such that an ≤ cbn. For simplicity of presentation, we state the main results
of the paper up to absolute constants. We also use a notation an ≲logn bn, if there exist β > 0 and
c > 0, such that an ≤ c(1 + log n)βbn for any n. Additionally, we use the standard abbreviations
"i.i.d. " for "independent and identically distributed" and "w.r.t." for "with respect to". We use index k
to present results which hold true for any intermediate iteration, and index n denotes the total number
of iterations of the algorithm.

2 Related works

The analysis of linear stochastic approximation (LSA) algorithms under Markovian noise has a long
history, with classical works establishing almost sure convergence and asymptotic normality under
broad conditions [57, 14, 38, 8]. These asymptotic results, however, lack explicit finite-sample error
bounds. Recently, non-asymptotic performance analysis of stochastic approximation and gradient
methods has gained attention. In the i.i.d. setting of stochastic gradient descent (SGD), finite-time
error bounds were provided by [51, 58]. For Markovian LSA contexts, convergence rates were
analyzed by [10, 39], focusing on temporal-difference learning, and instance-dependent bounds were
derived by [48] and [24]. These studies establish guarantees on mean-square error or high-probability
deviations but do not address the distributional approximation of the estimator.

Rates of convergence in CLT are widely studied in probability theory [7], primarily for sums of random
variables or univariate martingale difference sequences [55, 12]. Berry-Esseen bounds and Edgeworth
expansions for Markov chains under various ergodicity assumptions are also available [13, 11, 9, 34],
though typically restricted to the 1-dimensional case. Our analysis leverages recent concentration
results on quadratic forms of Markov chains [50], building upon martingale decomposition techniques
for U -statistics developed in [5].

Recent studies have analyzed convergence rates of SA iterates to their limiting normal distributions.
[67] derived an O(n−1/4) convergence rate in (2) in convex distance for TD learning under i.i.d. noise,
improved to O(n−1/3) by [82] specifically for TD learning. [3] applied Stein’s method to averaged
SGD and LSA iterates in smooth Wasserstein distance, again under i.i.d. conditions. Recently, [73]
analyzed rates for martingale CLT in 1-st order Wasserstein distance with Markovian samples but
achieved slower convergence than our result (see Theorem 1 and discussion after it). Lastly, [1]
provided last-iterate bounds for SGD for high-dimensional linear regression, also with i.i.d. noise.

Originally introduced for i.i.d. data [27], the bootstrap method has been adapted to complex settings,
including high-dimensional tests [18, 19] and linear regression [72]. For SA methods, an online
bootstrap for SGD was proposed in [29], with recent non-asymptotic analysis showing approximation
rates up to O(n−1/2) for coverage probabilities in case of strongly convex objectives with independent
noise [70]. A similar analysis for linear stochastic approximation (LSA) yields rates of order
O(n−1/4) [67]. Extensions to Markovian settings by [59] proved inconsistent, as demonstrated in
[42, Proposition 1]. Meanwhile, [42] proposed consistent mini-batch SGD estimators for φ-mixing
noise. They also suggested a consistent procedure for constructing the confidence intervals, but
studied only its asymptotic properties using the independent block trick [84]. Lastly, multiplier
bootstrap techniques for online non-convex SGD were considered by [85].

Among other approaches for constructing confidence intervals for dependent data, we mention
methods based on (asymptotically) pivotal statistics [40, 41]. The authors of [41] considered the
Polyak–Ruppert averaged Q-learning algorithm under the i.i.d. noise assumption (generative model),
while [40] generalized this approach to nonlinear stochastic approximation under Markov noise.
Another group of methods are based on estimating the asymptotic covariance matrix Σ∞ appearing
in the central limit theorem (2). Among these approaches we mention the plug-in estimator of
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[17] and batch-mean estimators, see e.g. [15, 79, 63]. Specifically, [63] treats SGD with Markov
noise, contrasted with the independent-noise SGD analyses in [17, 15, 79], and [85] investigates
both multiplier bootstrap and batch-mean estimators for nonconvex objectives. These methods yield
non-asymptotic error bounds in expectation, E[∥Σ̂n − Σ∞∥], but do not study convergence rates in
(2). A notable exception is [82], which delivers a non-asymptotic analysis of TD-learning under i.i.d.
noise, using plug-in covariance estimates to achieve an O(n−1/3) approximation rate for coverage
probabilities of θ⋆.

3 Accuracy of Gaussian approximation for LSA with Markov noise

3.1 Gaussian approximation for non-linear statistics

We first discuss a general scheme for proving quantitative normal approximation bounds for non-linear
statistics. Consider the statistic T (X1, . . . , Xn) ∈ Rd, which can be written as

T = W +D , (3)

where W is a linear statistic of the random variables X1, . . . , Xn, and D is a nonlinear term, which is
typically small. Multidimensional versions of CLT based on the decomposition (3) are well-studied
when X1, . . . , Xn are i.i.d. random variables [16, 69]. In this case, one can follow the randomized
concentration approach [69], which requires only a finite 2-nd moment of the term D. To our
knowledge, there are no such results readily available for Markov chains or martingales. Moreover,
even the Berry-Esseen type result for d-dimensional linear statistics of Markov chains or martingale-
differences with explicit dependence on d remains an interesting and open question. There is no
affirmative result comparable to the one of [7] for i.i.d. random vectors. This is the primary reason
why we focus on the setting of 1-dimensional statistics and use the following proposition to obtain
the rates of Gaussian approximation for T given in (3):

Proposition 1. Let Φ(x), x ∈ R be the c.d.f. of the standard normal law. Then for any random
variables W and D and any p ≥ 1,

supx∈R |P(W +D ≤ x)− Φ(x)| ≤ supx∈R |P(W ≤ x)− Φ(x)|+ 2E1/(p+1)[|D|p] .

This result is classical and can be found e.g. in [71, 16]. For completeness, we provide the proof in
Appendix F. The most involved part of applications of Proposition 1 is the proper bound on E[|D|p].
This requires to select large values of p, which later requires to introduce additional assumptions on
the step size choice in the LSA procedure, see A3 in Section 3.2.

3.2 Gaussian approximation for LSA with Markov noise

When there is no risk of ambiguity, we use the simplified notations An = A(Zn) and bn = b(Zn).
Starting from the definition (1), we get with elementary transformations that

θn − θ⋆ = (I− αnAn)(θn−1 − θ⋆)− αnεn , (4)

where we have set εn = ε(Zn) with ε(z) = Ã(z)θ⋆ − b̃(z), Ã(z) = A(z)− Ā, b̃(z) = b(z)− b̄.
Here the random variable ε(Zn) can be viewed as a noise, measured at the optimal point θ⋆. We also
define the noise covariance matrix under the stationary distribution π:

Σε = Eπ[ε(Z0){ε(Z0)}⊤] + 2
∑∞

ℓ=1 Eπ[ε(Z0){ε(Zℓ)}⊤] . (5)

We now impose the following conditions:

A1. The sequence (Zk)k∈N is a Markov chain taking values in a Polish space (Z,Z) with Markov
kernel P. Moreover, P admits π as a unique invariant distribution and is uniformly geometrically
ergodic, that is, there exists tmix ∈ N, such that for any k ∈ N, it holds that

∆(Pk) := supz,z′∈Z dtv(P
k(z, ·),Pk(z′, ·)) ≤ (1/4)⌈k/tmix⌉ . (6)

Parameter tmix in (6) is referred to as mixing time, see [54]. We also impose the following assumptions
on the noise variables ε(z):

4



A2.
∫
Z
A(z)dπ(z) = Ā and

∫
Z
b(z)dπ(z) = b̄, with the matrix −Ā being Hurwitz. Moreover,

∥ε∥∞ = supz∈Z ∥ε(z)∥ < +∞, and the mapping z → A(z) is bounded, that is,

CA = sup
z∈Z

∥A(z)∥ ∨ sup
z∈Z

∥Ã(z)∥ < ∞ .

Moreover, for Σε defined in (5), we assume that λmin(Σε) > 0.

To motivate the introduction of Σε in this particular form, note that under assumption A 2,
Eπ[ε(Z0)] = 0, the following central limit theorem holds (see e.g. [23, Chapter 21]):

1√
n

n−1∑
ℓ=0

ε(Zℓ) → N (0,Σε) .

The fact that the matrix −Ā is Hurwitz implies that the linear system Āθ = b̄ has a unique solution
θ⋆. Moreover, this fact is sufficient to show that the matrix I− αĀ is a contraction in an appropriate
matrix Q-norm for small enough α > 0. Precisely, the following result holds:
Proposition 2 (Proposition 1 in [67]). Let −Ā be a Hurwitz matrix. Then for any P = P⊤ ≻ 0,
there exists a unique matrix Q = Q⊤ ≻ 0, satisfying the Lyapunov equation Ā⊤Q + QĀ = P .
Moreover, setting

a = λmin(P )
2∥Q∥ , and α∞ = λmin(P )

2κQ∥Ā∥2
Q

∧ ∥Q∥
λmin(P ) , (7)

where κQ = λmax(Q)/λmin(Q), it holds for any α ∈ [0, α∞] that αa ≤ 1/2, and

∥I− αĀ∥2Q ≤ 1− αa .

For completeness we provide the proof of this result in Appendix D. Now, we make an assumption
about the form of step sizes αk in (4) and the total number of observations n:
A3. Step sizes {αk}k∈N have a form αk = c0/(k + k0)

γ , where γ ∈ [1/2; 1), and the constant
c0 ≤ 1/(2a). Moreover, we assume that n is sufficiently large and

k0 > g(a, tmix, c0,CA κQ, α∞)(log n)1/γ .

Precise expressions for g(a, tmix, c0,CA κQ, α∞) and for n are given in Appendix A (see A’ 3).

The main aim of lower bounding n is to ensure that the error related to the choice of initial condition
θ0 becomes small enough. Note also that our bound of A 3 requires to known the number of
observations n in advance and adjust k0 accordingly. The same problem can be traced in the existing
high-probability results for LSA [47, 24, 82], in the regime when the confidence parameter δ in
high-probability bounds scales with the number of iterations n.

It is known (see e.g. [31]), that the assumptions A 1 - A 3 guarantee that the sequence θ̄n is
asymptotically normal, that is,

√
n(θ̄n − θ⋆)

d→ N (0,Σ∞), where the covariance matrix Σ∞ has a
form

Σ∞ = Ā−1ΣεĀ
−⊤ . (8)

For a fixed u ∈ Sd−1 we consider projection of
√
n(θ̄n−θ⋆) on u and quantify the rate of convergence

in the Kolmogorov distance, i.e., we consider the quantity

dK
(√

nu⊤(θ̄n − θ⋆)/σ(u),N (0, 1)
)
= sup

x∈R
|P(

√
nu⊤(θ̄n − θ⋆)/σ(u) ≤ x)− Φ(x)| , (9)

where Φ(x) is the c.d.f. of the standard normal law N (0, 1), and σ2(u) = u⊤Ā−1ΣεĀ
−⊤u. To

control the quantity (9), we will first present an auxiliary result. Define

Gm:k =

k∏
ℓ=m

(I− αℓĀ), Qℓ = αℓ

n−1∑
k=ℓ

Gℓ+1:k , Σn =
1

n

n−1∑
ℓ=2

QℓΣεQ
⊤
ℓ , σ2

n(u) = u⊤Σnu . (10)

Theorem 1. Assume A1, A2, and A3. Then for any u ∈ Sd−1, θ0 ∈ Rd, and initial distribution ξ on
(Z,Z), it holds that

dK
(√

nu⊤(θ̄n − θ⋆)/σn(u),N (0, 1)
)
≤ Bn ,

where we set

Bn =
CK,1 log

3/4 n

n1/4
+

CK,2 log n

n1/2
+

CD
1 ∥θ0 − θ⋆∥+CD

2√
n

+CD
3

(log n)2

nγ−1/2
+CD

4

(log n)5/2

nγ−1/2
, (11)

where CK,1 and CK,2 are defined in Appendix F, and {CD
i }4i=1 are defined in Appendix B.
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Proof. We provide below the main elements of the proof and refer the reader to Appendix B for a
complete derivations. We use the expansion (35) and (39), detailed in the appendix:

θk − θ⋆ = Γ1:k(θ0 − θ⋆) + J
(0)
k +H

(0)
k ,

where we set Γm:k =
∏k

ℓ=m(I− αℓA(Zℓ)) and for m ≤ k,

J
(0)
k = −

k∑
ℓ=1

αℓGℓ+1:kε(Zℓ) , J
(0)
0 = 0

H
(0)
k = −

k∑
ℓ=1

αℓΓℓ+1:k(A(Zℓ)− Ā)J
(0)
ℓ−1 , H

(0)
0 = 0

(12)

Taking average and changing the order of summation we get that
√
n(θ̄n − θ⋆) = W +D1, with

W = − 1√
n

n−1∑
ℓ=1

Qℓε(Zℓ), D1 =
1√
n

n−1∑
k=0

Γ1:k(θ0 − θ⋆) +
1√
n

n−1∑
k=1

H
(0)
k . (13)

Note that W is a linear statistic of the Markov chain {Zℓ}ℓ∈N. We further expand it into a sum of
martingale-differences and remainder terms. Note that under A1 the function ε̂(z) =

∑∞
k=0 P

kε(z)
is a solution to Poisson equation ε̂(z)− Pε̂(z) = ε(z). We rewrite the term W in the following way
W = n−1/2M +D2, with

M = −
n−1∑
ℓ=2

∆Mℓ , ∆Mℓ = Qℓ

(
ε̂(Zℓ)− Pε̂(Zℓ−1)

)
D2 = − 1√

n
Q1ε̂(Z1) +

1√
n
Qn−1Pε̂(Zn−1) +

n−2∑
ℓ=1

(Qℓ −Qℓ+1)Pε̂(Zℓ) .

Note that {∆Mℓ}n−1
ℓ=2 is a martingale-difference sequence w.r.t. Fℓ = σ(Zk, k ≤ ℓ). Note that

EFℓ−1
π [∆Mℓ∆M⊤

ℓ ] = Qℓε̃(Zℓ−1)Q
⊤
ℓ , ε̃(z) = Pε̂ε̂⊤(z)− Pε̂(z)Pε̂⊤(z) . (14)

Furthermore, we have π
(
ε̃
)
= Σε . The term M is a martingale, whose quadratic characteristic is

given by ⟨M⟩n =
∑n−2

ℓ=1 Qℓ+1ε̃(Zℓ)Q
⊤
ℓ+1. With these notations, we get

√
n(θ̄n − θ⋆) = n−1/2M +D ,

where we denote D = D1 + D2. Applying Proposition 14 with X = n−1/2u⊤M/σn(u) and
Y = u⊤D/σn(u), we obtain for any p ≥ 2,

dK
(√nu⊤(θ̄n−θ⋆)

σn(u)
,N (0, 1)

)
≤ dK

(
u⊤M√
nσn(u)

,N (0, 1)
)
+ 2
{
E[
∣∣ u⊤D
σn(u)

∣∣p]}1/(p+1)
. (15)

To obtain the rate of Gaussian approximation for
√
nu⊤(θ̄n − θ⋆)/σn(u) it remains to con-

trol the moments of the term |u⊤D/σn(u)|, which is done in Proposition 7, and to control
dK
(
u⊤M/(

√
nσn(u))

)
. To bound the latter term we use a normal approximation result for sums of

martingale-difference sequences, which builds upon the arguments of [12] and [28] - see Proposition 6,
applied with p = log n.

Note that the result of Theorem 1 yields an approximation of
√
nu⊤(θ̄n − θ⋆) with N (0, σ2

n(u)),
and not the limiting quantity σ2(u) from the CLT (2). In order to complete the result, we need an
additional result on the Gaussian comparison between N (0, σ2

n(u)) and N (0, σ2(u)). This result is
based is based on the quantitative estimates provided first in [6], and then revised in [21].
Corollary 1. Under assumptions of Theorem 1 it holds, with Bn given in (11), that

dK
(√

nu⊤(θ̄n − θ⋆)/σ(u),N (0, 1)
)
≤ Bn + C∞nγ−1 ,

where C∞ is defined in (30).
Remark 1. The bound of Corollary 1 predicts the optimal error of normal approximation for Polyak-
Ruppert averaged estimates of order n−1/4 up to a logarithmic factors in n, which is achieved with
the step size αk = c0/(k + k0)

3/4, that is, when setting γ = 3/4 in (11). In this case we obtain the
optimized bound:

dK
(√

nu⊤(θ̄n − θ⋆)/σ(u),N (0, 1)
)
≲pr

(logn)5/2

n1/4 .

where ≲pr stands for inequality up to absolute and problem-specific constants (such as
CA, κQ, a, tmix), but not n.
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Discussion. The proof of Corollary 1 is given in Appendix B.3. Results similar to the one of
Corollary 1 have been recently obtained in the literature in [67], [73] and [3]. [67] considered the
LSA algorithm based on i.i.d. noise variables {Zk}1≤k≤n and a randomized concentration approach
based on [69]. This result was later refined in [82]. However, this technique does not extend to
Markovian noise {Zk}1≤k≤n. While preparing this manuscript, we became aware of a recent paper
[83], which provides a quantitative d-dimensional CLT for martingales. Given this work, a natural
direction for further research is to use this result and generalize Theorem 1 to the d-dimensional
setting. The authors in [83] applied their findings to the particular setting of the TD learning algorithm
with Markov noise and obtained a bound of the form

dC(
√
n(θ̄n − θ⋆),Σ

1/2
∞ η) ≲ logn

n1/4 ,

where η ∼ N (0, Id), and dC(X,Y ) = supB∈Conv(Rd)

∣∣P(X ∈ B
)
− P(Y ∈ B)

∣∣ denotes the convex
distance. The authors in [73] obtained the convergence rate for the general LSA procedure with
Markov noise

dW (
√
n(θ̄n − θ⋆),Σ

1/2
∞ η) ≲

√
logn
n1/6 ,

where dW is the 1-st order Wasserstein distance. This result implies, due to the classical relations of
between Kolmogorov and Wasserstein distance (see [62]), the final rate approximation on Kolmogorov
distance of order O(n−1/12), which is slower compared to the rate of Theorem 1. On the other hand,
the result of [73] holds in d-dimensional setting, whereas our analysis is restricted to one-dimensional
projections of the estimation error. Nevertheless, the essential part of our analysis, namely controlling
the remainder term D in (15), can be generalized to the d-dimensional case through bounds on
E1/p
ξ [∥D∥p], following an approach similar to that presented in Appendix B.

4 Multiplier subsample bootstrap for LSA

We will apply the multiplier subsample bootstrap (MSB) procedure, a block-based approach that
constructs the bootstrap statistic via a blockwise scheme; see [37, 43]. Below we describe in details the
MSB approach, closely following [43]. Let bn be the length of block, and for each t = 0, . . . , n− bn,
define θ̄bn,t = (1/bn)

∑t+bn−1
ℓ=t θℓ, the ”scale bn” version of θ̄n. To imitate θ̄n, the MSB estimator

of θ̄n is given by

θ̄n,bn(u) =

√
bn√

n− bn + 1

n−bn∑
t=0

wt(θ̄bn,t − θ̄n)
⊤u , (16)

where Ξn = {Zℓ}nℓ=1, and {wℓ}0≤ℓ≤n−bn , the multiplier weights, are i.i.d. N (0, 1) random
variables, which are independent of Ξn. We write, respectively, Pb = P(·|Ξn) and Eb = E(·|Ξn) for
the corresponding conditional probability and expectation. For simplicity, we do not "subsample" the
blocks: the theory extends readily, but we do not want to add another layer of notations. The key idea
of the MSB procedure (16) is that the "bootstrap world" distribution Pb

(
θ̄n,bn(u) ≤ x

)
should be

close to their "real world" counterparts P
(√

n(θ̄n − θ⋆) ≤ x
)

for any x ∈ R. Formally, the procedure
(16) is said to be asymptotically valid, if the quantity

sup
x∈R

|P(
√
n(θ̄n − θ⋆)⊤u ≤ x)− Pb(θ̄n,bn(u) ≤ x)| (17)

converges to 0 in P-probability. Typically the authors consider the asymptotic validity of the
procedures for constructing the confidence intervals (either with multiplier bootstrap [29, 43] or with
direct estimation of the asymptotic covariance [17, 79]). Our aim in this section is to provide fully
non-asymptotic bounds on the rate at which the supremum in (17) decays as a function of n.

The MSB estimator (16) θ̄n,bn(u) is normally distributed w.r.t. Pb, that is,

θ̄n,bn(u) ∼ N (0, σ̂2
θ(u)) ,

with the variance σ̂2
θ(u) given by

σ̂2
θ(u) =

bn
n− bn + 1

n−bn∑
t=0

((θ̄bn,t − θ̄n)
⊤u)2 . (18)

The parameter bn is commonly referred to as lag window, or bandwidth (see [30] and references
therein). Under the bootstrap probability Pb, θ̄n,bn(u) (see (16)) is a Gaussian approximation of θ̄n
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with estimated variance σ̂2
θ(u). Up to a multiplicative factor tending to 1 as n goes to ∞, the variance

formula in (18) coincides with the overlapping batch mean estimator (OBM), a well-known technique
for estimating the asymptotic variance of the Markov chain, suggested in [45]. The properties of
OBM estimator are studied, see e.g. [81, 20, 30]. In particular, it is known (see [30]), that the OBM
is a consistent estimator of the asymptotic variance of a Markov chain under suitable ergodicity
assumptions, provided that bn → ∞ as n → ∞.

Note that even if {Zk}k∈N is a Markov chain, the iterates {θk}k∈N alone do not form a Markov
chain (one must rather consider the joint process (θk, Zk)). Consequently, the classical consistency
results for overlapping-batch-means variance estimators do not apply directly to (18). Fortunately,
we show below that applying the block bootstrap for the sequence {θℓ}, is equivalent, up to a suitable
correction, to the block bootstrap procedure applied to the non-observable random variables {ε(Zℓ)}.
To make this precise, we define for each block start t ∈ {0, . . . , n− bn} the quantities:

W̄bn,t =
1

bn

t+bn−1∑
ℓ=t+1

Ā−1ε(Zℓ) , W̄n =
1

n

n−1∑
ℓ=1

Ā−1ε(Zℓ),

σ̂2
ε(u) =

bn
n− bn + 1

n−bn∑
t=0

((W̄bn,t − W̄n)
⊤u)2 .

Then the following proposition holds:
Proposition 3. Assume A1, A2, and A3. Then for any u ∈ Sd−1, it holds that

σ̂2
θ(u) = σ̂2

ε(u) +Rvar(u) ,

where Rvar(u) is a remainder term defined in Appendix E.1 (see (63)). Moreover, for any 2 ≤ p ≤
log n, and any initial distribution ξ on (Z,Z), it holds that

E1/p
ξ

[∣∣Rvar(u)
∣∣p] ≲ M1pb

1/2
n nγ/2−1 +M2p

4(log n)b1/2n n−γ

+M3pb
−1/2
n nγ/2 +M4p

4(log n)n−1 +M5pn
2γ−2

(19)

and the constants Mi are defined in Appendix E.1, equation (66).

The proof of Proposition 3 is given in Appendix E.1. The bound of Proposition 3 has some noteworthy
properties. First, our bound requires that the block size bn to grow at least like nγ to ensure that
the residual term Rvar(u) is small. Careful inspection of the bootstrap estimator θ̄n,bn(u) from (16)
explains this dependence. Indeed, one can expect that the decay rate of the covariance between θk and
θk+bn depends on the quantity

∑t+bn
k=t+1 αk, see e.g. [22]. At the same time, for bn ≃ nβ , 0 < β < 1,

and αk = c0/(k0 + k)γ , which is set according to A3, we obtain that∑t+bn
k=t+1 αk ≲ bn/t

γ .

Hence, if bn ≪ nγ , the sequence {θk} does not mix within each block t ≤ k ≤ t+ bn.

Given that the remainder term Rvar(u) in (19) is negligible, it remains to analyze the concentration
properties of σ2

ε(u). Indeed, under A1 and A2, the (normalized) linear statistic n−1/2
∑n−1

ℓ=0 u⊤ε(Zℓ)
is asymptotically normal with the asymptotic variance equal to σ2(u) defined in (9). Moreover,
σ̂2
ε(u) coincides with the overlapping batch mean estimator of σ2(u). In order to prove concentration

bounds for σ̂2
ε(u) around σ2(u), we apply the result of [50, Theorem 1].

Proposition 4. Assume A1 and A2. Then for any p ≥ 2, and n ≥ 2bn+1, and any initial distribution
ξ on (Z,Z), it holds that

E1/p
ξ [|σ̂2

ε(u)− σ2(u)|p] ≲ pt3mix∥ε∥2∞√
n

+
p2t2mix

√
bn∥ε∥2∞√
n

+
pt2mix∥ε∥2∞√

bn
.

The result above is based on martingale decomposition, associated with the Poisson equation for
quadratic forms of Markov chains, as introduced in [5]. Now, combining the estimates of Proposi-
tions 3 and 4 and applying Markov’s inequality with p = log n, we obtain the following result:
Corollary 2. Let n be large enough. Set bn = ⌈n3/4⌉, ε ∈ (0; 1/ log n), and let αk = c0/(k0 +
k)1/2+ε. Then, with probability at least 1− n−1, it holds that∣∣σ̂2

θ(u)− σ2(u)
∣∣ ≲logn n−1/8+ε/2 . (20)
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Discussion. The version of Corollary 2 with explicit constants and explicit power of log n is
provided in Appendix E.3, together with the proof of Corollary 2. Note that the fastest decay rate in the
r.h.s of (20) is achieved when we set bn = O(n3/4) and aggressive step sizes αk = c0/(k0+k)1/2+ε.
The same choice of hyperparameters appears to be optimal in the recent work of [63] for batch-mean
estimators of the asymptotic variance for the SGD algorithm, even in case of controlled Markov
chain. We also recover the rate n−1/8 (up to logarithmic factors), that previously appeared in [63].
The authors of [17, 79] also considered the batch mean estimators Σ̂n of the asymptotic variance Σ∞
in case of SGD algorithms with independent noise and obtained the same (up to logarithmic factors)
convergence rate E[∥Σ̂n − Σ∞∥] ≲ n−1/8. Moreover, the optimal rate for recovering Σ∞ in [17,
Corollary 4.5] and [79, Corollary 3.4] is attained for the step sizes αk = 1/kγ with γ → 1/2. This is
on par with our findings of Corollary 2. At the same time, one should note that this choice of step
sizes yields extremely slow convergence rates in the CLT in Theorem 1. This introduces an additional
trade-off, that needs to be taken into account when considering the decay rate of (17). Namely, one
needs to balance not only the right-hand sides of Corollary 2 and Proposition 3, but also to take into
account the convergence rate in Theorem 1. The respective trade-off yields

bn = ⌈n4/5⌉ , αk = c0/(k0 + k)3/5 . (21)

The corresponding main theorem writes as follows:

Theorem 2. Assume A1, A2, and A3, let n be large enough, set bn = ⌈n4/5⌉, αk = c0/(k0 + k)3/5.
Then for any u ∈ Sd−1, and any initial distribution ξ on (Z,Z), it holds with P – probability at least
1− 1/n that

sup
x∈R

|P(
√
n(θ̄n − θ⋆)⊤u ≤ x)− Pb(θ̄n,bn(u) ≤ x)| ≲logn n−1/10 .

Proof. We provide the detailed proof of Theorem 2 in Appendix E.4 together with the explicit form
of condition on n. The proof is based on the following scheme:

Real world:
√
nu⊤(θ̄n − θ⋆) ξ ∼ N (0, σ2(u))

Bootstrap world: θ̄n,b(u) ξb ∼ N (0, σ̂2
θ(u))

Gaussian approximation, Cor. 1

Gaussian comparison

exactly matches the distribution

(22)

Due to Corollary 1, it holds that

dK
(√

nu⊤(θ̄n − θ⋆), ξ
)
≲logn n−1/4 + n1/2−γ + nγ−1 ,

where ξ ∼ N (0, 1). This result allows for the first horizontal bar above. We now use the Gaussian
comparison (see [6], [21]), which states that for ξi ∼ N (0, σ2

i ), i = 1, 2, are such that |σ2
1/σ

2
2 − 1| ≤

δ, for some δ ≥ 0, supx∈R |P(ξ1 ≤ x) − P(ξ2 ≤ x)| ≤ 3
2δ. We apply the Gaussian comparison

between the limiting Gaussian ξ ∼ N (0, σ2(u)) and ξb ∼ N (0, σ̂2
θ(u)). For this purpose, we need to

obtain a high probability bound for |σ̂2
θ(u)− σ2(u)|/σ2(u). Combining Proposition 3, Proposition 4

and Markov’s inequality, we get that with probability at least 1− 1/n,

|σ̂2
θ(u)− σ2(u)|/σ2(u) ≲logn b1/2n nγ/2−1 + b1/2n n−γ + b−1/2

n nγ/2 + n2γ−2 + b1/2n−1/2 .

Now note that by construction θ̄n,b ∼ N (0, σ̂2
θ(u)) under the bootstrap probability. Hence, with

probability at least 1− 1/n, it holds that

dK
(√

nu⊤(θ̄n − θ⋆), θ̄n,b
)
≲logn

b
1/2
n

n1−γ/2
+

b
1/2
n

nγ/2
+

b
1/2
n

n1/2
+

1

n1/4
+

1

nγ−1/2
+

1

n1−γ
.

To complete the proof, it remains to optimize our choice of γ and bn, which yields to (21).

Discussion. Non-asymptotic analysis of coverage probabilities has been carried out for the modifi-
cations of multiplier bootstrap approach of [29] in recent papers [67, 70]. These approaches showed
that coverage probabilities of θ⋆ can be approximated by their bootstrap counterparts with the order
up to O(n−1/2). Yet for this bootstrap approach it is crucial to work in the independent noise setting.
The attempt of [59] to generalize it for the case of Markovian noise yields inconsistent procedure, as
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shown in [42, Proposition 1]. That is why we prefer to start from the asymptotically consistent MSB
procedure of [43]. Our bootstrap validity proof relies on direct approximation of

√
nu⊤(θ̄n − θ⋆) by

the limiting Gaussian distribution N (0, σ2(u)). At the same time, it is known (see [70]) that under
i.i.d. conditions, it may be more advantageous in the proof scheme 22 of the non-asymptotic validity
of the bootstrap procedure for

√
nu⊤(θ̄n − θ⋆) using another Gaussian distribution N (0, σ2

n(u)) and
its “bootstrap” analogue. It remains an open question if this reasoning can be applied in case of
dependent random variables.

5 Application to the TD learning

We illustrate our findings via the temporal-difference (TD) learning algorithm [75, 76] for policy
evaluation in a discounted Markov Reward Process (MRP) (S,P,R, λ). Here, S is a complete metric
space with its Borel σ-algebra; P(· | s) denotes the state transition kernel; R : S → [0, 1] is the
scalar reward function; λ ∈ [0, 1) is the discount factor. The value function is given by

V (s) = E[
∞∑
k=0

λk R(Sk) |S0 = s] where Sk+1 ∼ P(· | Sk) .

We approximate V (s) in a linear feature space: Vθ(s) = φ(s)⊤θ, where φ : S → Rd. We impose
two standard assumptions:
TD 1. P is uniformly geometrically ergodic with unique invariant distribution µ and mixing time τ .

We also define the design matrix Σφ = Eµ[φ(S)φ(S)
⊤] and require that it is non-degenerate:

TD 2. Σφ is non-degenerate, i.e. λmin(Σφ) > 0. Moreover, sups∈S ∥φ(s)∥ ≤ 1.

Then TD learning is an instance of LSA with

Ak = φ(Sk)
[
φ(Sk)− λφ(Sk+1)

]⊤
, Ā = Eµ[Ak] , bk = φ(Sk)R(Sk) .

Detailed derivations are given in Appendix H. Refining constants following [53, 68], one shows:
Proposition 5. Under TD 1 and TD 2, the TD updates satisfy the noise level condition A2 with
CA = 2(1+λ) and ∥ε∥∞ = 2(1+λ)(∥θ⋆∥+1). Moreover, for step size α ≤ α∞ = (1−λ)/(1+λ)2,
it holds that ∥I− αĀ∥2 ≤ 1− αa, where a = (1− λ)λmin(Σφ).

By [67, Proposition 2], this ensures that Proposition 2 holds with Q = I, and hence Theorem 2
applies directly to the TD scheme. We provide numerical simulations in Appendix H.

6 Conclusion

We presented the non-asymptotic Berry–Esseen bounds for Polyak–Ruppert averaged iterates of
linear stochastic approximation algorithm under Markovian noise, achieving convergence rates of
order up to n−1/4 in Kolmogorov distance. Additionally, we established the theoretical validity
of a multiplier subsample bootstrap procedure, enabling reliable uncertainty quantification in the
setting of the LSA algorithm with Markovian noise. Our paper suggest a number of further research
directions. One of them is related with the generalizations of Theorem 1 to the setting of non-linear
SA algorithms, as well as with obtaining multivariate version of it. It is also an interesting and
important question if our non-asymptotic bounds on coverage probabilities provided in Theorem 2
can be further improved.
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A Extended version of A3

In this section, we present the full version of A3 with explicit constants.

A’ 3. The sequence of step sizes {αk}k∈N has a form αk = c0/(k + k0)
γ , where γ ∈ [1/2; 1) and,

with

h =

⌈
16tmixκ

1/2
Q CA

a

⌉
, (23)

it holds that

c0 ≤ 1

2a
. (24)

Moreover, the number of observations n and parameter k0 satisfy

n1−γ ≥ max(
2C ′

∞
λmin(Σ∞)

, e2(1−γ)) ,

k0 ≥ max

{( 24
ac0

)1/(1−γ)
, c

1/γ
0 ,

(
c0(h+ 1)max(α∞, κ
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Q CA, 6eκQ C2

A /a)

)1/γ

,

8tmixκ
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Q CA

a
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12(h+ 1)(log n)c0 C

2
σ

a

)1/γ}
,

k1−γ
0 ≥ 2

c0b

(
log{ c0

b(2γ − 1)2γ
}+ γ log{k0}

)
,

(25)

Discussion. The lower bound on the sample size n in (25) is required to guarantee the non-
degeneracy of the empirical covariance matrix Σn (see its definition in (10) and Lemma 10). This
condition ensures that λmin(Σn) remains bounded away from zero, which is crucial for the proof of
rate of convergence in CLT for LSA problem.

Furthermore, the constraint on k0, which scales as k0 ≳ (log n)1/γ , is imposed to control higher-
order moments of the product of random matrices appearing in the recursion (see Proposition 12).
In particular, this ensures that moments up to order p ∼ log n remain finite, which is necessary for
establishing the Gaussian approximation bounds used in the main result.

While this assumption could, in principle, be relaxed, doing so would lead to a degradation in the
Gaussian approximation rate from n−1/4 to n−1/4+ε(p), where the function ε(p) depends on the
number of finite moments available for the random matrix product.

B Proof of Section 3

Recall that in the proof of Theorem 1 (see (15)), we obtained that

dK
(√nu⊤(θ̄n − θ⋆)

σn(u)
,N (0, 1)

)
≤ dK

( u⊤M√
nσn(u)

,N (0, 1)
)
+ 2
{
E[
∣∣ u⊤D

σn(u)

∣∣p]}1/(p+1)
.

Hence, to conclude with the proof it remains to

(i) control the Kolmogorov distance dK
(

u⊤M√
nσn(u)

)
;

(ii) bound the moments of
∣∣∣ u⊤D
σn(u)

∣∣∣.
We present the required result for item (i) in Appendix B.1 (see Proposition 6) and for (ii) in
Appendix B.1 below.
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B.1 Gaussian approximation for sums of martingale-difference sequences

In this section we establish rate of convergence sums of martingale-difference to the gaussian limit.
We follow the approach of [28], which builds upon the work [12]. Recall that

M = −
n−1∑
ℓ=2

∆Mℓ , ∆Mℓ = Qℓ

(
ε̂(Zℓ)− Pε̂(Zℓ−1)

)
.

Note that the quadratic characteristic

E[|u⊤∆Mℓ|2|Zℓ−1] = u⊤Qℓε̃(Zℓ−1)Q
⊤
ℓ+1u , ε̃(z) = Pε̂ε̂⊤(z)− Pε̂(z)Pε̂⊤(z)

is not constant a.s.. Hence, one can not directly apply the results on martingale CLT due to [12,
Theorem 2]. Below we first formulate this result, and then demonstrate how to mitigate the problem
of time-varying quadratic characteristic following the approach of [66, 28].

CLT for martingales with constant quadratic characteristic. Let X = (X1, . . . , Xn) be a
sequence of real valued random variables which are square integrable and satisfy E[Xi|Fi−1] = 0,
a.s. for 1 ≤ i ≤ n, where Fi = σ(X1, . . . , Xi). We denote the class of such sequences of length n
by Mn. Denote

σ2
j = E[X2

j |Fj−1], σ̂2
j = E[X2

j ],

s2n =

n∑
j=1

σ̂2
j ,

∥X∥p = max
1≤j≤n

∥Xj∥p, 1 ≤ p ≤ ∞ ,

and, with 1 ≤ k ≤ n, we have

V 2
k =

k∑
j=1

σ2
j /s

2
n, Sk =

k∑
j=1

Xj .

Theorem 3 (Theorem 2 in [12]). Let 0 < κ < ∞. There exists a constant 0 < L(κ) < ∞ depending
only on κ, such that for all X ∈ Mn, n ≥ 2, satisfying

∥X∥∞ ≤ κ, V 2
n = 1 a.s. ,

the following bound holds
dK
(
Sn/sn

)
≤ L(κ)n log n/s3n.

The constant L(κ) can be quantified following the work of Adrian Röllin, see [66], but exact
calculations are beyond the scope of this paper. Now we adapt the arguments from [28] based on
[12] to provide the counterpart of this result with time-varying quadratic characteristic. We specify
the constants and dependence on p since we need to have possibility to take p of logarithmic order
with respect to n.
Lemma 1. Let 0 < κ < ∞. Then, with L(κ) defined in Theorem 3, for all X ∈ Mn, n ≥ 2,
satisfying ∥X∥∞ ≤ κ, the following bound holds for any p ≥ 1

dK
(
Sn/sn

)
≤ L(κ)(2n+ 1) log(2n+ 1)

s3n

+ C1
√
ps

− 2p
2p+1

n

(
E|
∑n

i=1
σ2
i − s2n|p

)1/(2p+1)
+ C2s

− 2p
2p+1

n pκ2p/(2p+1).

where we have defined the constants C1 = 2
√
2CRm,1, C2 = 4(CRm,1 +CRm,2).

Proof. Consider the following stopping time τ = sup{0 ≤ k ≤ n : V 2
k ≤ 1}. Denote

r = ⌊(s2τ −
τ∑

j=1

σ2
j )/κ2⌋ .
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Note that r ≤ n. Let N = 2n+ 1. Construct the following sequence X ′ = (X ′
1, . . . , X

′
N ):

X ′
i = Xi, i ≤ τ ; X ′

i = κηi, τ +1 ≤ i ≤ τ +r; X ′
i = (s2n−

τ∑
i=1

σ2
i −rκ2)1/2ηi, i = τ +r+1;

and X ′
i = 0, i ≥ τ + r + 2. Here ηi are Rademacher random variables, which are independent

of all other r.v.’s. Then X ′ is a vector of martingale increments w.r.t. an extended filtration F ′
i =

σ(Xj , ηj , j ≤ i), and, by construction

N∑
i=1

E[(X ′
i)

2|F ′
i−1] =

τ∑
i=1

σ2
i + rκ2 + s2n −

τ∑
i=1

σ2
i − rκ2 = s2n.

Applying Proposition 14 with X = Sn/sn and Y = S′
N/sn, we get

dK
(
Sn/sn

)
≤ dK

(
S′
N/sn

)
+ 2s

− 2p
2p+1

n (E[|Sn − S′
N |2p])1/(2p+1). (26)

We control the term dK
(
S′
N/sn

)
with [12, Theorem 2]:

dK
(
S′
N/sn

)
≤ L(κ)N logN

s3n
.

In order to control the second term in the right-hand side of (26), we notice that

Sn − S′
N =

∑
i≥τ+1

(Xi −X ′
i) =

N∑
i=1

1τ≤i−1(Xi −X ′
i) .

Since τ is a stopping time, we can condition on it and get by the Rosenthal’s inequality

E[|Sn − S′
N |2p] ≤ C2p

Rm,1 p
pE[|

N∑
i=τ+1

E[(Xi −X ′
i)

2|F ′
i−1]|p] + C2p

Rm,2 p
2pE[ max

τ+1≤i≤N
|Xi −X ′

i|2p]

It is easy to see that
N∑

i=τ+1

E[(Xi−X ′
i)

2|F ′
i−1] =

n∑
i=τ+1

E[X2
i |F ′

i−1]+

N∑
i=τ+1

E[(X ′
i)

2|F ′
i−1] =

n∑
i=1

σ2
i +s2n−2

τ∑
i=1

σ2
i .

Note that

s2n − κ2 ≤
τ∑

i=1

σ2
i ≤ s2n .

Hence, it holds that
N∑

i=τ+1

E[(Xi −X ′
i)

2|F ′
i−1] ≤

n∑
i=1

σ2
i − s2n + 2κ2.

Finally,

E[|Sn − S′
N |2p] ≤ 2p−1 C2p

Rm,1 p
p
(
E|

n∑
i=1

σ2
i − s2n|p + 2pκ2p

)
+C2p

Rm,2(2p)
2pκ2p)1/(2p+1).

Substituting the above bound into (26), we obtain

dK
(
Sn/sn

)
≤ dK

(
S′
N/sn

)
+ 2s

− 2p
2p+1

n (2p−1 C2p
Rm,1 p

p(E|
n∑

i=1

σ2
i − s2n|p + 2pκ2p) + C2p

Rm,2(2p)
2pκ2p)1/(2p+1) ,

and the statement follows.

We now state a lemma that allows us to specify the result of Lemma 1 to the martingale M and its
quadratic characteristic ⟨M⟩n, given in (14).
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Lemma 2. Assume A1. Then for any u ∈ Sd−1, probability measure ξ on (Z,Z), and p ≥ 2:

E1/p
ξ [|u⊤⟨M⟩nu− nσ2

n(u)|p] ≤ 32n1/2p1/2L2
Q∥ε∥2∞t

5/2
mix

Proof. Using the definition (14), we get:

u⊤⟨M⟩nu− σ2
n(u) =

n−2∑
ℓ=1

{hℓ(Zℓ)− π(hℓ)} where hℓ(z) = u⊤Qℓ+1ε̃(z)Q
⊤
ℓ+1u .

Note that using Lemma 3, for any z, z′ ∈ Z and any ℓ ∈ [1, . . . , n− 2] we have

|hℓ(z)− hℓ(z
′)| ≤ 2L2

Q∥ε̃(z)∥ ≤ 4L2
Q∥ε̂(z)∥2 ≤ 8L2

Q∥ε∥2∞(

∞∑
k=0

∆(Pk))2

≤ 8L2
Q∥ε∥2∞(

∞∑
k=0

tmix−1∑
r=0

(1/4)⌈(ktmix+r)/tmix⌉)2 ≤ 2(8/3)2L2
Q∥ε∥2∞t2mix

We then apply [54][Corollary 2.11], showing that for all t ≥ 0,

Pξ(|
n−1∑
ℓ=1

{hℓ(Zℓ)− π(hℓ)}| ≥ t) ≤ 2 exp

(
− t2

2u2
n

)
,where un = (64/3)L2

Q∥ε∥2∞t
5/2
mixn

1/2

We conclude by using [24, Lemma 7].

By combining Lemma 1 and Lemma 2, we finally get the following result:

Proposition 6. Assume A1, A2, and A3. Then for any u ∈ Sd−1 and p ≥ 1:

dK
( u⊤M√

nσn(u)

)
≤ L(κ)(2n+ 1) log(2n+ 1)C3

Σ

n3/2

+4
√
2C1

(
LQ∥ε∥∞CΣ

) 2p
2p+1

t
5/4
mixp

3/4n
− p

2(2p+1) +C2n
− p

2p+1

(
16LQ∥ε∥∞CΣ

3

) 2p
2p+1

ptmix ,

where κ = (16/3)∥ε∥∞LQtmix, constants C1, C2 are defined in Lemma 1, LQ is defined in Lemma 3,
and CΣ is defined in Lemma 10. Moreover, setting p = log n, we obtain that

dK
( u⊤M√

nσn(u)

)
≤ CK,1 log

3/4 n

n1/4
+

CK,2 log n

n1/2
,

where the constants CK,1 and CK,2 are given by

CK,1 = 4
√
2e1/8C1t

5/4
mixLQ∥ε∥∞CΣ ,

CK,2 =
16e1/4tmixC2LQ∥ε∥∞CΣ

3
+ 3L(κ)C3

Σ + 3L(κ) log 3C3
Σ .

Proof of Proposition 6. Using Lemma 1 with s2n = nσ2
n(u), we obtain

dK
( u⊤M√

nσn(u)

)
≤ L(κ)(2n+ 1) log(2n+ 1)

n3/2σ3
n(u)

+ C1
√
p(nσ2

n(u))
− 2p

2p+1
(
E|u⊤⟨M⟩nu− nσ2

n(u)|p
)1/(2p+1)

+ C2(nσ
2
n(u))

− p
2p+1 pκ2p/(2p+1) ,

where the particular form of κ follows from (70). To complete the proof, it remains to control the
p-th moment of u⊤⟨M⟩nu−nσ2

n(u), which is established in Lemma 2. Finally, we note that σ−1
n (u)

is bounded, as follows from Lemma 10, which concludes the argument.
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B.2 Bound for the remainder term D

Recall that D = D1 +D2, where

D1 =
1√
n

n−1∑
k=0

Γ1:k(θ0 − θ⋆) +
1√
n

n−1∑
k=1

H
(0)
k ε(Zℓ) ,

D2 = − 1√
n
Q1ε̂(Z1) +

1√
n
Qn−1Pε̂(Zn−1) +

n−2∑
ℓ=1

(Qℓ −Qℓ+1)Pε̂(Zℓ) ,

(27)

and H
(0)
k are defined in (12). Then we obtain the following bound on the moments of D:

Proposition 7. Assume A1, A2, and A3 and k0 ≥ max(
(

24
ac0

)1/(1−γ)
, c

1/γ
0 ). Then for any 2 ≤ p ≤

log n, u ∈ Sd−1, and any initial distribution ξ on (Z,Z), it holds that

E1/(p+1)
ξ

[∣∣(u⊤D)/σn(u)
∣∣p] ≲ (CD

1,1 ∥θ0 − θ⋆∥+CD
1,2)n

p/(2p+2) +CD
1,3{p2n1/2−γ}p/(p+1)

+CD
1,4{p2

√
log nn1/2−γ}p/(p+1) ,

where

CD
1,1 = CΣCΓd

1/logn kγ0
ac0(1− γ)

,

CD
1,2 = CΣ∥ε∥∞LQtmix ,

CD
1,3 =

CΣc0tmix

1− γ

(
LQ,2∥ε∥∞ +

√
log

kγ0
c0

D
(M)
3

)
,

CD
1,4 =

CΣD
(M)
3 c0tmix

√
γ

1− γ
.

Moreover setting p = log n we have

E1/(p+1)
ξ

[∣∣(u⊤D)/σn(u)
∣∣p] ≲ (CD

1 ∥θ0 − θ⋆∥+CD
2 )n

−1/2 +CD
3 (log n)

2n1/2−γ

+CD
4 (log n)

5/2n1/2−γ ,

and
CD

i =
√
eCD

1,i for i ∈ {1, 2, 3, 4}

Proof. We first note that σ−1
n (u) is bounded, as follows from Lemma 10, that is,

E1/p
ξ

[∣∣(u⊤D)/σn(u)
∣∣p] ≤ CΣE1/p

ξ

[
|u⊤D|p

]
.

In order to bound E1/p
ξ

[
|u⊤D|p

]
, we bound the terms D1 and D2 from (27) separately. Note that

u⊤D1 = D11 +D12 , D11 =
1√
n

n−1∑
k=0

u⊤Γ1:k(θ0 − θ⋆), D12 =
1√
n

n−1∑
k=1

u⊤H
(0)
k .

Now we use the result of Proposition 12 to bound Eξ[∥Γ1:k∥p], and obtain that

E1/p
ξ [|D11|p] ≲ CΓd

1/logn 1√
n

n−1∑
k=0

exp

{
−(a/12)

k∑
j=1

αj

}
∥θ0 − θ⋆∥ .

Applying Lemma 24 and Lemma 31,

E1/p
ξ [|D11|p] ≲ CΓd

1/logn 1√
n

n−1∑
k=0

exp

{
− ac0
24(1− γ)

((k + k0)
1−γ − kγ0 )

}
∥θ0 − θ⋆∥ (28)

≲ CΓd
1/logn 1√

n

kγ0
ac0(1− γ)

∥θ0 − θ⋆∥ .
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It follows from Minkowski’s inequality and Proposition 10 that

E1/p
ξ [|D12|p] ≤

1√
n

n−1∑
k=1

E1/p
ξ [|u⊤H

(0)
k |p] ≤ D

(M)
3 tmixp

2

√
n

n−1∑
k=1

αk

√
log (1/αk)

≲
D

(M)
3 tmixp

2c0
1− γ

√
log

(n+ k0 − 1)γ

c0

((n− 1 + k0)
1−γ − k1−γ

0 )√
n

≲
D

(M)
3 tmixp

2c0
1− γ

(
√

γ log n+

√
kγ0
c0

)n1/2−γ .

(29)

Similarly, u⊤D2 = D21 +D22 +D32, where

D21 = − 1√
n
u⊤Q1ε̂(Z1) ,

D22 =
1√
n
u⊤Qn−1Pε̂(Zn−1) ,

D32 =
n−2∑
ℓ=1

u⊤(Qℓ −Qℓ+1)Pε̂(Zℓ) .

For D21 and D22 we use Lemma 3 to bound ∥Qℓ∥ together with the upper bound ∥ε̂(z)∥ ≤
(8/3)tmix∥ε∥∞. Then we obtain

E1/p
ξ [|D21]

p] + E1/p
ξ [|D22]

p] ≲
tmix∥ε∥∞LQ√

n
.

It remains to bound E1/p
ξ [|D23|p]. Using Lemma 6 to bound the difference Qℓ − Qℓ+1, and

Minkowski’s inequality, we get

E1/p
ξ [|D23|p] ≲

LQ,2tmix∥ε∥∞√
n

n−1∑
ℓ=2

αℓ ≲
LQ,2tmix∥ε∥∞c0

1− γ
n1/2−γ .

It remains to combine the above bounds.

B.3 Proof of Corollary 1

Proof. Let Φ(x) is the c.d.f. of the standard normal law N (0, 1), Φσ(x) is the c.d.f. of the normal
law N (0, σ(u)) and Φσn(x) is the c.d.f. of the normal law N (0, σn(u)). Then we have

dK
(√

nu⊤(θ̄n − θ⋆)/σ(u)
)
= sup

x∈R
|P(

√
nu⊤(θ̄n − θ⋆)/σ(u) ≤ x)− Φ(x)|

= sup
x∈R

|P(
√
nu⊤(θ̄n − θ⋆) ≤ x)− Φσ(x)|

≤ sup
x∈R

|P(
√
nu⊤(θ̄n − θ⋆) ≤ x)− Φσn(x)|+ sup

x∈R
|Φσ(x)− Φσn(x)|

= dK
(√

nu⊤(θ̄n − θ⋆)/σn(u)
)
+ sup

x∈R
|Φσ(x)− Φσn

(x)|

Using Lemma 9 to bound |σ2(u)− σ2
n(u)| and Lemma 10 to bound σ−2

n (u) we obtain

|σ2(u)/σ2
n(u)− 1| ≤ C ′

∞C2
Σ

n1−γ
.

Setting

C∞ =
3C ′

∞
λmin(Σ∞)

, where C ′
∞ is defined in (31) (30)

and applying the Gaussian comparison inequality (68) we conclude the proof.
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B.4 Technical bounds

Lemma 3. Assume A1, A2, and A3. Then for any ℓ ∈ N it holds that

∥Qℓ∥ ≤ LQ ,

where

LQ = κ
1/2
Q

(
c0 +

4

a(1− γ)

)
and κQ is defined in Proposition 2.

Proof. Using the definition of Qℓ from (10) and Proposition 2, we get

∥Qℓ∥ ≤ κ
1/2
Q αℓ

n−1∑
k=ℓ

∥Gℓ+1:k∥Q ≤ κ
1/2
Q αℓ

n−1∑
k=ℓ

k∏
j=ℓ+1

√
1− aαj

≤ κ
1/2
Q αℓ

n−1∑
k=ℓ

k∏
j=ℓ+1

(1− (a/2)αj) ≤ LQ ,

where in the last bound we applied Lemma 23 with b = a/2.

Lemma 4. The following identity holds

Qℓ − Ā−1 = Sℓ − Ā−1Gℓ:n−1 , where Sℓ =

n−1∑
j=ℓ+1

(αℓ − αj)Gℓ+1:j−1 ,

and
n−1∑
i=1

(Qi − Ā−1) = −Ā−1
n−1∑
j=1

G1:j .

Proof. See [82, pp. 26-30].

Lemma 5. Let c0 ∈ (0, α∞] and ℓ ∈ N. Then under A1, A2, and A3, it holds

∥Sℓ∥ ≤ √
κQ · C(S)

γ,β · (ℓ+ k0)
γ−1 ,

where

C(S)
γ,a = 2c0 exp

{
ac0
2kγ0

}(
2γ/(1−γ) 2

ac0
+ (

2

ac0
)1/(1−γ)Γ(

1

1− γ
)

)
.

Proof. For simplicity we define mj
i =

∑j
k=i(k + k0)

−γ and β = a/2. Note that

∥
n−1∑

j=i+1

(αi − αj)G
(α)
i+1:j−1∥ ≤ √

κQ

n−2∑
j=i

c0
(j + k0 + 1)γ

((
j + k0 + 1

i+ k0

)γ

− 1

)
exp{−βc0m

j
i+1}

Following the proof of [82, Lemma A.7], we have(
j + k0 + 1

i+ k0

)γ

− 1 ≤ (i+ k0)
γ−1

(
1 + (1− γ)mj

i

)γ/(1−γ)
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Hence, we obtain

∥Si∥√
κQ

≤ c0(i+ k0)
γ−1

n−2∑
j=i

1

(j + k0 + 1)γ

(
1 + (1− γ)mj

i

)γ/(1−γ)

exp{−βc0m
j
i+1}

≤ c0(i+ k0)
γ−1

n−2∑
j=i

1

(j + k0)γ

(
1 + (1− γ)mj

i

)γ/(1−γ)

exp{βc0(k0 + i)−γ} exp{−βc0m
j
i}

≤ c0 exp{
βc0
kγ0

}(i+ k0)
γ−1

n−2∑
j=i

(mj
i −mj−1

i )

(
1 + (1− γ)mj

i

)γ/(1−γ)

exp{−βc0m
j
i}

≤ 2c0 exp{
βc0
kγ0

}(i+ k0)
γ−1

∫ +∞

0

(
1 + (1− γ)m

)γ/(1−γ)

exp{−βc0m}dm

≤ 2c0 exp{
βc0
kγ0

}(i+ k0)
γ−1

(
2γ/(1−γ) 1

βc0
+ (

1

βc0
)1/(1−γ)Γ(

1

1− γ
)

)
.

Lemma 6. Let c0 ∈ (0, α∞] and ℓ ∈ N. Then under A1, A2, and A3, it holds

∥Qℓ+1 −Qℓ∥ ≤ LQ,2 · αℓ+1 ,

where

LQ,2 =
√
κQ

(
2γ + (2CA +a/4)(c0 +

4

a(1− γ)
)

)
.

Proof. Using the definition of Qℓ we have

Qℓ+1 −Qℓ = αℓ+1

n−1∑
k=l+1

Gℓ+2:k − αℓ

n−1∑
k=l

Gℓ+1:k = αℓ+1

n−1∑
k=l+1

Gℓ+2:k+1 − αℓ

n−1∑
k=l+1

Gℓ+1:k − αℓ

= −αℓ +

n−1∑
k=l+1

Gl+2:k(αℓ+1I − αℓI + αℓ+1αℓĀ) .

Hence, using Lemma 27 with r = a/4 and Lemma 3 we get

∥Qℓ+1 −Qℓ∥ ≤ αℓ +

n−1∑
k=l+1

α2
ℓ+1∥Gl+2:k∥(2CA +a/4) ≤ (2γ + LQ(2CA +a/4))αℓ+1 .

Lemma 7. Let c0 ∈ (0, α∞], k1−γ
0 > bc0 and ℓ ∈ N. Then under A1, A2, and A3 it holds

∥Sℓ+1 − Sℓ∥ ≤ √
κQ · C(S,2)

γ,a · αℓ+1 ,

where
C(S,2)

γ,a = (c0 +
4

a(1− γ)
)(a/2 + 3CA) .

Proof. Using Lemma 4 we obtain

Sℓ+1 − Sℓ = Qℓ+1 −Qℓ + Ā−1(Gℓ+1:n−1 −Gℓ:n−1)

= αℓ+1

n−1∑
k=l+1

Gℓ+2:k − αℓ

n−1∑
k=l

Gℓ+1:k + Ā−1(I − (I − αℓĀ))Gℓ+1:n−1

= αℓ+1

n−2∑
k=l

Gℓ+2:k+1 − αℓ

n−2∑
k=l

Gℓ+1:k

= (αℓ+1 − αℓ)I +

n−2∑
k=l+1

(αℓ+1(I − αk+1Ā)− αℓ(I − αℓ+1Ā))Gl+2:k .
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Hence, using Lemma 27 with r = a/4 we get

∥Sℓ+1 − Sℓ∥ ≤ (a/4)α2
ℓ+1 +

n−2∑
k=l+1

((a/4)α2
ℓ+1 +CA α2

ℓ+1 + 2γ CA α2
ℓ+1)∥Gl+2:k∥

≤ (LQ((a/4) + CA +2γ CA) + (a/4))αℓ+1 ,

where in the last inequality we applying lemma 3. Since LQ ≥ 1 and 2γ < 2 we complete the
proof.

Lemma 8. Let c0 ∈ (0, α∞]. Then under A2 for any m ∈ N it holds
n−1∑
t=1

∥Gt:n−1∥m ≤
κ
m/2
Q

1− (1− c0(a/2)(n+ k0 − 2)−γ)m

Proof. Note that
n−1∑
t=1

∥Gt:n−1∥m ≤ κ
m/2
Q

n−1∑
l=1

n−1∏
i=t

(1− (a/2)αi)

=
κ
m/2
Q

(1− (1− (a/2)αn−2)m)

n−1∑
l=1

(1− (1− (a/2)αt−1)
m)

n−1∏
i=t

(1− (a/2)αi)
m

≤
κ
m/2
Q

(1− (1− (a/2)αn−2)m)
.

Lemma 9. Let c0 ∈ (0, α∞]. Then under A1, A2, and A3 it holds

|σ2
n(u)− σ2(u)| ≤ C ′

∞nγ−1 ,

where

C ′
∞ = ∥Σε∥

κQ(C
(S)
γ,a )2

2γ − 1
+ ∥Σ∞∥

(
2γ+15 + 3

ac0(1− γ)
kγ0 +

4CA κQC
(S)
γ,a

ac0
k2γ−1
0

)
(31)

Proof. Note that
|σ2

n(u)− σ2(u)| ≤ ∥Σn − Σ∞∥ .

Then, we express the Σn − Σ∞ in the following form:

Σn − Σ∞ =
1

n

n−1∑
t=2

(Qt − Ā−1)ΣεĀ
−⊤ +

1

n

n−1∑
t=2

Ā−1Σε(Qt − Ā−1)⊤︸ ︷︷ ︸
R1

+
1

n

n−1∑
t=2

(Qt − Ā−1)Σε(Qt − Ā−1)⊤︸ ︷︷ ︸
R2

− 2

n
Σ∞ .

First, we bound R1, using Lemma 23 we obtain

∥ 1
n

n−1∑
t=2

(Qt − Ā−1)ΣεĀ
−⊤∥ = ∥ 1

n
Ā−1

n−1∑
j=2

G1:jΣεĀ
−⊤∥

≤ ∥n−1Σ∞

n−1∑
j=2

G1:j∥ ≤ n−1∥Σ∞∥ ·
n−1∑
j=1

∥G1:j∥

≤ n−1∥Σ∞∥(1 + 4

ac0(1− γ)
)(1 + k0)

γ

≤ 2γnγ−1∥Σ∞∥(1 + 4

ac0(1− γ)
)kγ0 .
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Hence, we get that

∥R1∥ ≤ 2γ+1nγ−1∥Σ∞∥(1 + 4

ac0(1− γ)
)kγ0 .

Now, we rewrite term R2 as follows:

n−1
n−1∑
t=2

(Qt − Ā−1)Σε(Qt − Ā−1)⊤

= n−1
n−1∑
t=2

(
St − Ā−1

n−1∏
k=t

(I− αkĀ)

)
Σε

(
St − Ā−1

n−1∏
k=t

(I− αkĀ)

)⊤

= n−1
n−1∑
t=2

StΣεS
⊤
t︸ ︷︷ ︸

R21

+n−1
n−1∑
t=2

Ā−1
n−1∏
k=t

(I− αkĀ)ΣεĀ
−⊤

n−1∏
k=t

(I− αkĀ)⊤︸ ︷︷ ︸
R22

− n−1
n−1∑
t=2

Ā−1
n−1∏
k=t

(I− αkĀ) · ΣεS
⊤
t︸ ︷︷ ︸

R23

−n−1
n−1∑
t=2

StΣεĀ
−⊤

n−1∏
k=t

(I− αkĀ)⊤︸ ︷︷ ︸
R24

.

To bound ∥R21∥ we use Lemma 5 and obtain

∥R21∥ = ∥n−1
n−1∑
t=2

StΣεS
⊤
t ∥ ≤ n−1

n−1∑
t=2

∥Σε∥∥St∥2

≤ n−1∥Σε∥
n−1∑
t=2

κQ

(
C(S)

γ,a

)2
(t+ k0)

2(γ−1)

≤ n−1∥Σε∥κQ

(
C(S)

γ,a

)2 (n+ k0 − 1)2γ−1 − (k0 + 1)2γ−1

2γ − 1

≤ n2(γ−1)
∥Σε∥κQ

(
C

(S)
γ,a

)2
2γ − 1

,

where the last inequality holds since (n+ k0 − 1)2γ−1 ≤ n2γ−1 + (k0 + 1)2γ−1 for γ ∈ (1/2, 1).
The bound for R22 follows from Lemma 8 and simple inequality (n+ k0 − 2)γ ≤ (k0n)

γ :

∥R22∥ = ∥n−1
n−1∑
i=2

Gi:n−1Ā
−1ΣεĀ

−⊤G⊤
i:n−1∥ ≤ n−1∥Σ∞∥

n−1∑
i=1

∥Gi:n−1∥2

≤ n−1 ∥Σ∞∥
c0a(n+ k0 − 2)−γ − c20(a

2/4)(n+ k0 − 2)−2γ
≤ 2∥Σ∞∥kγ0

nγ−1

c0a
.

Since R23 = R⊤
24, we concentrate on ∥D24∥. Lemma 8 immediately imply

∥R24∥ ≤ n−1∥ΣεĀ
−⊤∥

n−1∑
i=1

∥Si∥∥Gi:n−1∥

≤ n−1∥ĀΣ∞∥κQC
(S)
γ,a

n−1∑
i=1

(i+ k0)
γ−1

n−1∏
k=i

(1− ac0
2(k + k0)γ

)

≤ n−1∥ĀΣ∞∥κQC
(S)
γ,a

n−1∑
i=1

(i+ k0)
2γ−1(i+ k0)

−γ
n−1∏

k=i+1

(1− ac0
2(k + k0)γ

)

≤ CA ∥Σ∞∥κQC
(S)
γ,ak

2γ−1
0

2n2(γ−1)

ac0

By combining all the inequalities, we complete the proof.
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Lemma 10. Let c0 ∈ (0, α∞] and C ′
∞nγ−1 ≤ λmin(Σ∞)/2. Then under A1, A2, and A3 it holds

σ−1
n (u) ≤ CΣ ,

where CΣ =
√

2
λmin(Σ∞) .

Proof. Note that σ2
n(u) > λmin(Σn). Using Lidskii’s inequality, we obtain

λmin(Σn) ≥ λmin(Σ∞)− ∥Σn − Σ∞∥ ≥ λmin(Σ∞)/2 ,

where in the last inequality we use C ′
∞nγ−1 ≤ λmin(Σ∞)/2.

C Last iterate bound

The main result of this section is the following bound on the p-th moment of the LSA iterate θk − θ⋆.
Proposition 8. Assume A1, A2, and A3. Then for any 2 ≤ p ≤ log n, k ≥ 1, u ∈ Sd−1, and any
initial distribution ξ on (Z,Z), it holds that

E1/p
ξ

[∣∣u⊤(θk − θ⋆)
∣∣p] ≲ D

(M)
1 tmix

√
pαk + CΓd

1/ logn exp

{
−(a/12)

k∑
ℓ=1

αℓ

}
∥θ0 − θ⋆∥ , (32)

where the constant D(M)
1 is given by

D
(M)
1 = d1/2+1/ logn

(
CΓ CA D

(M)
2 /a

)
∥ε∥∞ + ∥ε∥∞(κQ/a)

1/2(3 + 4CA /a) ,

and D
(M)
2 is defined in (37).

We provide the result above only for 1-dimensional projections of the error u⊤(θn−θ⋆), as previously
considered in [47]. Note that the scaling of the right-hand side of (32) with a tmix factor can be
suboptimal. However, this scaling corresponds to the second-order (in n) terms. Tighter analysis of
this term using the Rosenthal-type inequality should reveal a

√
tmix dependence of the leading term,

however, we leave this improvement for future work.

Our proof of the last iterate bound is based on the perturbation-expansion framework [2], see also
[24]. Within this framework, we expand the error recurrence (4), using the notation Γ

(α)
m:k for the

product of random matrices:

Γ
(α)
m:k =

k∏
i=m

(I− αiA(Zi)) , m, k ∈ N, m ≤ k , (33)

with the convention that Γ(α)
m:k = I for m > k. Using the recurrence (4), we arrive at the following

decomposition of the LSA error:

u⊤(θk − θ⋆) = u⊤θ̃
(tr)
k + u⊤θ̃

(fl)
k , (34)

where we have defined

θ̃
(tr)
k = u⊤Γ

(α)
1:k{θ0 − θ⋆} , θ̃

(fl)
k = −

k∑
j=1

u⊤Γ
(α)
j+1:kαjε(Zj) .

Here θ̃(tr)k is a transient term (reflecting the forgetting of the initial condition) and θ̃
(fl)
k is a fluctuation

term (reflecting misadjustement noise). We treat the θ̃
(tr)
k and θ̃

(fl)
k terms separately. In particular, we

control θ̃(tr)k using Proposition 12. For estimating θ̃
(fl)
k we use the decomposition

u⊤θ̃
(fl)
k = u⊤J

(0)
k + u⊤H

(0)
k , (35)

where the latter terms are defined by the following pair of recursions

J
(0)
k =

(
I− αkĀ

)
J
(0)
k−1 − αkε(Zk) , J

(0)
0 = 0 ,

H
(0)
k = (I− αkA(Zk))H

(0)
k−1 − αkÃ(Zk)J

(0)
k−1 , H

(0)
0 = 0 .

34



For notation convenience we introduce, for m ≤ k, the deterministic counterpart of the product of
random matrices (33), that is,

Gm:k =

k∏
i=m

(I− αiĀ) ,

keeping the convention Gm:k = I if m > k. Thus we obtain that

J
(0)
k = −

k∑
j=1

αjGj+1:kε(Zj), H
(0)
k = −

k∑
j=1

αjΓj+1:kÃ(Zj)J
(0)
j−1 , (36)

and we analyze these terms above separately. We first bound the term J
(0)
n :

Proposition 9. Assume A 1, A 2, and A 3. Let k0 ≥ { 16γ
ac0

}1/1−γ . Then, for any p ≥ 2, initial
probability measure ξ on (Z,Z), and k ≥ 1, it holds that

E1/p
ξ

[∣∣u⊤J
(0)
k

∣∣p] ≤ D
(M)
2 tmix

√
pαk ,

where
D

(M)
2 = (32/3)∥ε∥∞(κQ/a)

1/2(3 + 4CA /a) . (37)

Proof. Note that J (0)
k is an additive functional of {ε(Zj)}kj=1. Using the representation (36), we

obtain that

u⊤J
(0)
k = −

k∑
j=1

αju
⊤Gj+1:kε(Zj) .

Applying Proposition 2, we get that

∥Gj+1:k∥ ≤ κ
1/2
Q

k∏
ℓ=j+1

√
1− aαℓ .

Using Lemma 20 with Aj = αjGj+1:k, we obtain that

E1/p
ξ [|uTJ

(0)
k |p] ≤ (16/3)p1/2tmix∥ε∥∞

( k∑
j=2

α2
j∥Gj+1:k∥2

)1/2
+ (8/3)tmix(α1∥G2:k∥ + αk +

k−1∑
j=1

∥αjGj+1:k − αj−1Gj:k∥)∥ε∥∞ .

Using Lemma 28 with b = a, we get

k∑
j=1

α2
j∥Gj+1:k∥2 ≤ κQ

k∑
j=1

α2
j

k∏
ℓ=j+1

(1− aαℓ) ≤ 4(κQ/a)αk .

Applying Lemma 26 with b = a/2, we get α1∥G2:k∥ ≤ αk. Moreover, using Lemma 27 with
r = a/4, we get that

∥αjGj+1:k − αj−1Gj:k∥ = ∥Gj+1:k(αjI− αj−1I + αj−1αjĀ)∥ ≤ α2
j∥Gj+1:k∥(2CA +a/4) .

Then, applying Lemma 28 with b = a/2, we get

α1∥G2:k∥ + αk +

k∑
j=2

∥αjGj+1:k − αj−1Gj:k∥ ≤ 2αk + κ
1/2
Q (a/4 + 2CA)

k∑
j=1

α2
j

k∏
l=j+1

(1− aαℓ/2)

≤ αk(2 + 8κ
1/2
Q (a/4 + 2CA)/a) .

Combining the above results and using that p ≥ 2 yields (37).
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C.1 Proof of Proposition 8

Proceeding as in (34) and (35), we obtain that

E1/p
ξ

[∣∣u⊤(θk − θ⋆)
∣∣p] ≤ E1/p

ξ

[∣∣u⊤Γ
(α)
1:k{θ0 − θ⋆}

∣∣p]+ E1/p
ξ

[∣∣u⊤J
(0)
k

∣∣p]+ E1/p
ξ

[∣∣u⊤H
(0)
k

∣∣p] .

The first two terms are bounded using Proposition 12 and Proposition 9, respectively. In order to
bound the term, corresponding to H

(0)
k , we apply Minkowski’s inequality together with Hölder’s

inequlity to (36):

E1/p
ξ

[∣∣u⊤H
(0)
k

∣∣p] ≤ k∑
j=1

αj CA

{
Eξ

[
∥Γ(α)

j+1:k∥
2p
]}1/2p{Eξ

[∣∣J (0)
j−1

∣∣2p]}1/2p .

Note that {
Eξ

[∥∥J (0)
j−1

∥∥2p]}1/p =
{
Eξ

[
(

d∑
r=1

|eTr J
(0)
j−1|

2)p
]}1/p

≤
d∑

r=1

{
Eξ

[
|eTr J

(0)
j−1|

2p
]}1/p

.

(38)

Using Proposition 9 and proposition 12 with a simple inequality e−x ≤ 1− x/2, valid for x ∈ [0, 1],
we get

E1/p
ξ

[∣∣u⊤H
(0)
k

∣∣p] ≲ CΓ CA D
(M)
2 ∥ε∥∞tmix

√
pd1/2+1/ logn

k∑
j=1

α
3/2
j

k∏
ℓ=j+1

(1− aαℓ/24)

≲ d1/2+1/ logn
(
CΓ CA D

(M)
2 /a

)
∥ε∥∞tmix

√
pαk ,

where in the last inequality we use Lemma 28.

C.2 Proof of J (1)
n bound

In order to proceed further, we need to obtain the tighter bound on H
(0)
k , which requires a tighter

moment bound on the quality J
(1)
k .

Proposition 10. Assume A1, A2, and A3. Then, for any p ≥ 2, initial probability measure ξ on
(Z,Z), and k ≥ 1, it holds that

E1/p
ξ

[∣∣u⊤H
(0)
k

∣∣p] ≲ D
(M)
3 tmixp

2αk

√
log (1/αk) ,

where

D
(M)
3 = D

(M)
4 (1 +

d1/2+1/ lognCΓ CA

a
) ,

and the constant D(M)
4 is defined in (42).

Proof. It is known (see e.g. [2] and [24]), that the term H
(0)
k can be further decomposed as follows:

H
(0)
k =

L∑
ℓ=1

J
(ℓ)
k +H

(L)
k . (39)

Here the parameter L ≥ 1 control the depth of expansion, and the terms J (ℓ)
k and H

(ℓ)
k are given by

the following recurrences:

J
(ℓ)
k =

(
I− αkĀ

)
J
(ℓ)
k−1 − αkÃ(Zk)J

(ℓ−1)
k−1 , J

(ℓ)
0 = 0 ,

H
(ℓ)
k = (I− αkA(Zk))H

(ℓ)
k−1 − αkÃ(Zk)J

(ℓ)
k−1 , H

(ℓ)
0 = 0 .

(40)

The expansion depth L here controls the desired approximation accuracy. For our further results
it is enough to take L = 1 and estimate the respective terms J

(1)
k and H

(1)
k . Now the rest of

the proof follows from Proposition 11 (see the bounds (41) and (43) for E1/p
ξ

[∣∣u⊤J
(1)
k

∣∣p] and

E1/p
ξ

[∣∣u⊤H
(1)
k

∣∣p], respectively), and Minkoski’s inequality.
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Proposition 11. Assume A1, A2, and A3. Then, for any p ≥ 2, initial probability measure ξ on
(Z,Z), and k ≥ 1, it holds that

E1/p
ξ

[∣∣u⊤J
(1)
k

∣∣p] ≲ D
(M)
4 tmixp

2αk

√
log (1/αk) , (41)

where

D
(M)
4 =

κ
3/2
Q CA ∥ε∥∞

a
+

κ
3/2
Q CA ∥ε∥∞

a3/2
3γ/2 +

κ
3/2
Q CA ∥ε∥∞

a
3γ
(

8γ

ac0

)γ/(1−γ)

. (42)

Moreover,
E1/p
ξ

[∣∣u⊤H
(1)
k

∣∣p] ≲ D
(M)
5 tmixp

2αk

√
log (1/αk) , (43)

where

D
(M)
5 =

d1/2+1/ lognD
(M)
4 CΓ CA

a
. (44)

Proof. Solving the recursion in (40) yields the double summation:

J
(1)
k = −

k∑
ℓ=1

αℓGℓ+1:kÃ(Zℓ)J
(0)
ℓ−1 =

k∑
ℓ=1

αℓ

ℓ−1∑
j=1

αjGℓ+1:kÃ(Zℓ)Gj+1:ℓ−1ε(Zj) .

Changing the order of summation yields

J
(1)
k =

k−1∑
j=1

αj

{ k∑
ℓ=j+1

αℓGℓ+1:kÃ(Zℓ)Gj+1:ℓ−1

}
ε(Zj) =

k−1∑
j=1

αjSj+1:kε(Zj),

where for j ≤ k we have defined

Sj:k :=

k∑
ℓ=j

αℓGℓ+1:kÃ(Zℓ)Gj:ℓ−1 .

Fix a constant m ∈ N, m ≤ k (to be determined later). Then we can rewrite Sj+1:k as

Sj+1:k =

j+m∑
ℓ=j+1

αℓGℓ+1:kÃ(Zℓ)Gj+1:ℓ−1 +

k∑
ℓ=j+m+1

αℓGℓ+1:kÃ(Zℓ)Gj+1:ℓ−1

= Gj+m+1:kSj+1:j+m + Sj+m+1:kGj+1:j+m .

Let N := ⌊k/m⌋. In these notations, we can express J (1)
k as a sum of three terms:

J
(1)
k =

m(N−1)∑
j=1

αjGj+m+1:kSj+1:j+mε(Zj)︸ ︷︷ ︸
T1

+

m(N−1)∑
j=1

αjSj+m+1:kGj+1:j+mε(Zj)︸ ︷︷ ︸
T2

+

k−1∑
j=m(N−1)+1

αjSj+1:kε(Zj)︸ ︷︷ ︸
T3

.

Consider the first term T1. Applying Minkowski’s inequality, Lemma 11, and Lemma 28, we get that

E1/p
ξ [
∣∣u⊤T1

∣∣p] (a)≲ κ
3/2
Q CA p1/2t

1/2
mix∥ε∥∞

(m−1)N∑
j=1

αj

( j+m∑
r=j+1

α2
r

)1/2 k∏
ℓ=j+1

√
1− aαℓ

≲ κ
3/2
Q CA

√
mptmix∥ε∥∞

(m−1)N∑
j=1

α2
j

k∏
ℓ=j+1

√
1− aαℓ

(b)

≲ C1

√
mptmixαk ,
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where we set
C1 = (κ

3/2
Q /a) CA ∥ε∥∞ .

In the line (a) above we used Lemma 11, and in (b) we used Lemma 28. Similarly, using the same
lemmas, we bound the term T3:

E1/p
ξ

[∣∣u⊤T3

∣∣p] ≲ C1
√
mptmixαk .

Note that the second term T2 is non-zero only for N ≥ 2 and it can be rewritten as T2 = T21 + T22,
where

T21 :=

N−2∑
j=0

m∑
i=1

αjm+iS(j+1)m+i+1:kGjm+i+1:(j+1)m+iε(Z
∗
jm+i),

T22 :=

N−2∑
j=0

m∑
i=1

αjm+iS(j+1)m+i+1:kGjm+i+1:(j+1)m+i(ε(Zjm+i)− ε(Z∗
jm+i)) .

The set of random variables Z∗
jm+i is constructed for each i ∈ [1,m], with {Z∗

jm+i}
N−2
j=0 having the

following properties:

1. Z∗
jm+i is independent of Fk

(j+1)m+i := σ{Z(j+1)m+i, . . . , Zk};

2. Pξ(Z
∗
jm+i ̸= Zjm+i) ≤ 2 (1/4)⌈m/tmix⌉;

3. Z∗
jm+i and Zjm+i have the same distribution,

(45)

The existence of the random variables Z∗
jm+i is guaranteed by Berbee’s lemma, see e.g [60, Lemma

5.1], together with the fact that uniformly geometrically ergodic Markov chains are a special instance
of β-mixing processes. We control β-mixing coefficient via total variation distance, see [23, Theorem
F.3.3]. In order to analyze the term T21 we use Minkowski’s and Burkholder’s inequality [52,
Theorem 8.6], and obtain that:

E1/p
ξ [
∣∣u⊤T21

∣∣p] ≤ m∑
i=1

E1/p
ξ

[∣∣∣∣N−2∑
j=0

αjm+iu
⊤S(j+1)m+i+1:kGjm+i+1:(j+1)m+iε(Z

∗
jm+i)

∣∣∣∣p]

≤ p

m∑
i=1

(N−2∑
j=0

α2
jm+iE2/p[

∣∣u⊤S(j+1)m+i+1:kGjm+i+1:(j+1)m+iε(Z
∗
jm+i)

∣∣p])1/2

≤ p
√
m

( k∑
j=1

α2
jE2/p

[∣∣u⊤Sj+m+1:kGj+1:j+mε(Z∗
j )
∣∣p])1/2

.

Applying now Lemma 11, we arrive at the bound

E1/p
ξ [
∣∣u⊤T21

∣∣p] ≲ κ
3/2
Q CA ∥ε∥∞t

1/2
mixp

3/2
√
m

( k∑
j=1

α2
j

( k∑
ℓ=j+m+1

α2
ℓ

) k∏
ℓ=j+1

(1−αℓa)

)1/2

. (46)

In order to bound the term T22 we first note that

E1/p
ξ [
∣∣u⊤S(j+1)m+i+1:kGjm+i+1:(j+1)m+i(ε(Zjm+i)− ε(Z∗

jm+i))
∣∣p]

≤ E1/p
ξ

[
∥Gjm+i+1:(j+1)m+i{ε(Zjm+i)−ε(Z∗

jm+i)}∥p sup
u,v∈Sd−1,ξ′

Eξ′ [
∣∣u⊤S(j+1)m+i+1:kv

∣∣p]] .
Hence, using Minkowski’s inequality for T22, we obtain that

E1/p
ξ [
∣∣u⊤T22

∣∣p] ≤ √
κQ

N−2∑
j=0

m∑
i=1

αjm+i sup
u,v∈Sd−1,ξ′

E1/p
ξ′ [
∣∣u⊤S(j+1)m+i+1:kv

∣∣p]E1/p
ξ [∥ε(Zjm+i)− ε(Z∗

jm+i)∥p]

×
(j+1)m+i∏
ℓ=jm+i+1

(
√
1− αℓa).
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Using the definition of Z∗
km+i and the Cauchy-Schwartz inequality,

E1/p
ξ [∥ε(Zkm+i)− ε(Z∗

km+i)∥p] = E1/p
ξ [∥ε(Zkm+i)− ε(Z∗

km+i))1{Z∗
km+i ̸= Zkm+i}∥p]

(a)

≲ ∥ε∥∞(1/4)m/(2ptmix) .

where in (a) we used (45). The last two inequalities together with Lemma 11 imply

E1/p
ξ [
∣∣u⊤T22

∣∣p] ≲ κ
3/2
Q CA ∥ε∥∞t

1/2
mixp

1/2(1/4)m/(2ptmix)
k∑

j=1

αj

( k∑
ℓ=j+1

α2
ℓ

)1/2 k∏
ℓ=j+1

√
1− aαℓ .

(47)
Combining now (46) and (47), we obtain

E1/p
ξ

[∣∣u⊤J
(1)
k

∣∣p] ≲ C1
√
mpt

1/2
mixαk

+ κ
3/2
Q CA ∥ε∥∞t

1/2
mixp

3/2
√
m

( k∑
j=1

α2
j

( k∑
ℓ=j+1

α2
ℓ

) k∏
ℓ=j+1

√
1− αℓa

)1/2

+ κ
3/2
Q CA ∥ε∥∞t

1/2
mixp

1/2(1/4)m/(2ptmix)
k∑

j=1

αj

( k∑
ℓ=j+1+m

α2
ℓ

)1/2 k∏
ℓ=j+1

√
1− aαℓ .

Applying now Lemma 29, we arrive at the bound:

E1/p
ξ

[∣∣u⊤J
(1)
k

∣∣p] ≲ C1
√
mpt

1/2
mixαk

+ (κ
3/2
Q CA ∥ε∥∞/a)t

1/2
mixp

3/2
√
m3γ

(
8γ

ac0

)γ/(1−γ)

αk

(κ
3/2
Q CA ∥ε∥∞/a3/2)t

1/2
mixp

1/2(1/4)m/(4ptmix)3γ/2
√
αk .

Hence, it remains to set the block size m as

(1/4)m/(4ptmix) ≤
√
αk, i.e. m =

⌈
2ptmix log(1/αk)

log 4

⌉
.

With this choice of m we obtain from the above inequality that

E1/p
ξ

[∣∣u⊤J
(1)
k

∣∣p] ≲ C1 ptmix

√
log(1/αk)αk

+ (κ
3/2
Q CA ∥ε∥∞/a)tmixp

2
√
log(1/αk)3

γ

(
8γ

ac0

)γ/(1−γ)

αk

+ (κ
3/2
Q CA ∥ε∥∞/a3/2)t

1/2
mixp

1/23γ/2αk

≲ C3 p
2tmix

√
log(1/αk)αk

where we have defined

C3 =
κ
3/2
Q CA ∥ε∥∞

a
+

κ
3/2
Q CA ∥ε∥∞

a3/2
3γ/2 +

κ
3/2
Q CA ∥ε∥∞

a
3γ
(

8γ

ac0

)γ/(1−γ)

,

and the bound (41) holds. To estimate H
(1)
k we rewrite it as follows

H
(1)
k = −

k∑
j=1

αjΓ
(α)
j+1:kÃ(Zj)J

(1)
j−1 .

Using Minkowski’s inequality together with Hölder’s inequlity, we get

E1/p
ξ [
∣∣u⊤H

(1)
k

∣∣p] ≤ k∑
j=1

CA αj

{
Eξ

[
∥Γ(α)

j+1:k∥
2p
]}1/2p{Eξ

[
∥J (1)

j−1∥
2p
]}1/2p

.
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Applying similar argument to (38) together with Proposition 12 and an elementary inequality e−x ≤
1− x/2, valid for x ∈ [0, 1], we obtain the bound (41), we get

E1/p
ξ [
∣∣u⊤H

(1)
k

∣∣p] ≲ d1/2+1/ lognCΓ CA D
(M)
4 tmixp

2
k∑

j=1

α2
j

√
log (1/αj)

k∏
ℓ=j+1

(1− aαℓ/24)

≲ d1/2+1/ lognCΓ CA D
(M)
4 tmixp

2
√

log (1/αk)

k∑
j=1

α2
j

k∏
ℓ=j+1

(1− aαℓ/24)

(a)

≲ D
(M)
5 tmixp

2αk

√
log (1/αk) ,

where in (a) we have additionally used Lemma 28 and used the definition of D(M)
5 from (44).

C.3 Technical bounds related to J
(1)
k .

Recall that Sℓ+1:ℓ+m is defined, for ℓ,m ∈ N, as

Sℓ+1:ℓ+m =
ℓ+m∑

k=ℓ+1

αkBk(Zk) , with Bk(z) = Gk+1:ℓ+mÃ(z)Gℓ+1:k−1 . (48)

Lemma 11. Under the assumptions of Proposition 11, it holds for any vector u ∈ Sd−1, ℓ,m ∈ N,
and any initial distribution ξ on (Z,Z), that

E1/p
ξ

[∣∣u⊤Sℓ+1:ℓ+mε(Zℓ)
∣∣p] ≤ CS

( ℓ+m∑
r=ℓ+1

α2
r

)1/2 ℓ+m∏
k=ℓ+1

√
1− aαk ,

where
CS = 7κQ CA p1/2t

1/2
mix∥ε∥∞ .

Proof. We first prove the auxiliary inequality for deterministic vectors u, v ∈ Sd−1. Indeed, using
(48), we obtain that

u⊤Sℓ+1:ℓ+mv =

ℓ+m∑
k=ℓ+1

hk(Zk) , where hk(z) := αku
⊤Bk(z)v .

It is easy to check that u⊤Sℓ+1:ℓ+mv satisfies the bounded differences property, since for any
z, z′ ∈ Z, and r ∈ {ℓ+ 1, . . . , ℓ+m}, it holds that∣∣hr(z)− hr(z

′)
∣∣ ≤ 2κQ CA αr

ℓ+m∏
k=ℓ+1,k ̸=r

√
1− aαk ≤ 23/2κQ CA αr

ℓ+m∏
k=ℓ+1

√
1− aαk .

In the last inequality we have additionally used the fact that αka ≤ 1/2 for any k ∈ N. Applying the
bounded differences inequality from [54][Corollary 2.11], we get that for any t ≥ 0,

Pξ

(∣∣u⊤Sj+1:j+mv
∣∣ ≥ t

)
≤ 2 exp

{
− 2(t− |Eξ[u

⊤Sj+1:j+mv]|)2

72tmixκ2
Q C2

A

(∑ℓ+m
r=ℓ+1 α

2
r

)∏ℓ+m
k=ℓ+1(1− aαk)

}
.

It remains to upper bound Eξ[u
⊤Sj+1:j+mv]. Note that

(Eξ[u
⊤Sj+1:j+mv])2 ≤ Eξ[(

l+m∑
k=l+1

hk(Zk))
2] =

l+m∑
k=l+1

Eξ[hk(Zk)
2] + 2

l+m∑
k=l+1

l+m−k∑
j=1

Eξ[hk(Zk)hk+j(Zk+j)] .

Using that π(hk) = 0 and A1, we obtain

|Eξ[hk(Zk)hk+j(Zk+j)]| = |
∫
Z

hk(z)(P
jhk+j(z)− π(hk+j))ξP

k(dz)| ≤ ∥hk∥∞∥hk+j∥∞∆(Pj)

≤ 2αkαk+jκ
2
Q(2CA)2

l+m∏
t=l+1

(1− aαt)(1/4)
⌈j/tmix⌉ ,
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and

Eξ[hk(Zk)
2] ≤ 2α2

kκ
2
Q(2CA)2

l+m∏
t=l+1

(1− aαt) .

Combining inequalities above, we obtain

(Eξ[u
⊤Sj+1:j+mv])2 ≤ 32

3
tmixκ

2
Q C2

A(

l+m∑
k=l+1

α2
k)

l+m∏
t=l+1

(1− aαt) .

Note that for t ≥ |Eξ[u
⊤Sj+1:j+mv]|, we have

Pξ

(∣∣u⊤Sj+1:j+mv
∣∣ ≥ t

)
≤ 2 exp

{
− t2

49tmixκ2
Q C2

A

(∑ℓ+m
r=ℓ+1 α

2
r

)∏ℓ+m
k=ℓ+1(1− aαk)

}
.

And for t ≤ |Eξ[u
⊤Sj+1:j+m+mv]|, the right side of the inequality is greater than 1, so this inequality

is also true for t ≤ |Eξ[u
⊤Sj+1:j+m+mv]|. Hence, using [24, Lemma 7], we obtain that

E1/p
ξ

[∣∣u⊤Sj+1:j+mv
∣∣p] ≤ 7p1/2κQ CA t

1/2
mix

( ℓ+m∑
r=ℓ+1

α2
r

)1/2 ℓ+m∏
k=ℓ+1

√
1− aαk . (49)

Now, with Fℓ = σ{Zj , j ≤ ℓ}, it holds that

E1/p
ξ [
∣∣u⊤Sℓ+1:ℓ+mε(Zℓ)

∣∣p] = E1/p
ξ

[
∥ε(Zℓ)∥pEFℓ

[∣∣u⊤Sℓ+1:ℓ+mε(Zℓ)
∣∣p/∥ε(Zℓ)∥p

]]
≤ ∥ε∥∞ sup

u,v∈Sd−1, ξ′∈P(Z)

E1/p
ξ′

[∣∣u⊤Sℓ+1:ℓ+mv
∣∣p] .

Combining the above bounds with (49) and A2 yields the statement.

D Proofs for stability of matrix products

D.1 Stability

We first provide a result on the product of dependent random matrices. Our proof technique is based
on the approach of [33] and the results, previously obtained in [24]. Let (Ω,F, {Fℓ}ℓ∈N,P) be a
filtered probability space. For the matrix B ∈ Rd×d we denote by (σℓ(B))dℓ=1 its singular values.
For q ≥ 1, the Shatten q-norm is denoted by ∥B∥q = {

∑d
ℓ=1 σ

q
ℓ (B)}1/q . For q, p ≥ 1 and a random

matrix X we write ∥X∥q,p = {E[∥X∥pq ]}1/p. The main result of this section is stated below:
Proposition 12. Assume A1, A2, and A3. Then, for any 2 ≤ p ≤ log n, n ∈ N, and probability
distribution ξ on (Z,Z), it holds that

E1/p
ξ

[
∥Γ(α)

j:n∥
p
]
≤ CΓd

1/logn exp

{
−(a/12)

n∑
k=j

αk

}
,

where
CΓ =

√
κQe

2 .

The proof is given in Appendix D.2. It is based on a simplification of the arguments in [26] together
with a new result about the matrix concentration for the product of random matrices, using a proof
method introduced in [33]. We first state a result from [24]:
Proposition 13 (Proposition 15 in [24]). Let {Yℓ}ℓ∈N be a sequence of random matrices adapted to
the filtration {Fℓ}ℓ∈N and P be a positive definite matrix. Assume that for each ℓ ∈ N∗ there exist
mℓ ∈ (0, 1] and σℓ > 0 such that

∥EFℓ−1 [Yℓ]∥2P ≤ 1− mℓ and ∥Yℓ − EFℓ−1 [Yℓ]∥P ≤ σℓ P-a.s. .
Define Zn =

∏n
ℓ=0 Yℓ = YnZn−1, for n ≥ 1. Then, for any 2 ≤ p ≤ q and n ≥ 1,

∥Zn∥2q,p ≤ κP

∏n
ℓ=1(1− mℓ + (q − 1)σ2

ℓ )∥P 1/2Z0P
−1/2∥2q,p ,

where κP = λmax(P )/λmin(P ) and λmax(P ), λmin(P ) correspond to the largest and smallest eigen-
values of P .
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Now we fix some N ∈ N, block size h ∈ N defined in (23), and a sequence 0 = j0 < j1 < . . . <
jN = 2n, where jℓ = hℓ, ℓ ≤ N − 1. Note that it is possible that jN − jn−1 < h. Now we set

Yℓ =

jℓ−1∏
i=jℓ−1

(I− αiA(Zi)) .

Then the following lemma holds:
Lemma 12. Assume A1, A2, and A3. Then for any ℓ ∈ {1, . . . , N − 1}, and any probability measure
ξ on (Z,Z), it holds that

∥Eξ[Yℓ]∥Q ≤ 1−
( jℓ−1∑
k=jℓ−1

αk

)
a/6 .

Proof. We decompose the matrix product Yℓ as follows:

Yℓ = I−
(∑jℓ−1

k=jℓ−1
αk

)
Ā− Sℓ +Rℓ . (50)

Here Sℓ =
∑jℓ−1

k=jℓ−1
αk

{
A(Zk) − Ā

}
is a linear statistics in {A(Zk)}jℓ−1

k=jℓ−1
, and the remainder

term Rℓ is defined as

Rℓ =
∑h

r=2(−1)r
∑

(i1,...,ir)∈Iℓr

∏r
u=1{αiuA(Ziu)} ,

where Iℓr = {(i1, . . . , ir) ∈ {1, . . . , h}r : i1 < · · · < ir}. Since ∥M∥Q = ∥Q1/2MQ−1/2∥, it is
straightforward to check that P-a.s. it holds

∥Rℓ∥Q ≤
(
∑jℓ−1

k=jℓ−1
αk)

2κQ C2
A

2 exp
{
κ
1/2
Q CA

∑jℓ−1
k=jℓ−1

αk

}
=: T2 . (51)

On the other hand, using A1 and A2, we have for any k ∈ N, that

∥Eξ[A(Zk)− Ā]∥ = sup
u,v∈Sd−1

[Eξ[u
⊤A(Zk)v]− u⊤Āv] ≤ CA ∆(Pk) .

Hence, with the triangle inequality we obtain that

∥Eξ[Sℓ]∥Q ≤ κ
1/2
Q

jℓ−1∑
k=jℓ−1

αk∥Eξ[A(Zk)− Ā]∥ ≤ κ
1/2
Q CA

jℓ−1∑
k=jℓ−1

αk∆(Pk)

≤ (4/3)αjℓ−1
tmixκ

1/2
Q CA =: T1 .

This result combined with (51) in (50) implies that

∥Eξ[Yℓ]∥Q ≤ ∥I−
jℓ−1∑

k=jℓ−1

αkĀ∥Q + T1 + T2 .

First, by definition (23) of h (see details in Lemma 13), we have

T1 ≤
( jℓ−1∑
k=jℓ−1

αk

)
a/6 . (52)

Second, with the definition of c0 in (24), we obtain that

T2 ≤ (κ
1/2
Q CA

jℓ−1∑
k=jℓ−1

αk)
2e ≤

( jℓ−1∑
k=jℓ−1

αk

)
a/6 . (53)

Finally, Proposition 2 implies that, for
∑jℓ−1

k=jℓ−1
αk ≤ α∞, it holds that

∥I−
(∑jℓ−1

k=jℓ−1
αk

)
Ā∥Q ≤ 1− (a/2)

∑jℓ−1
k=jℓ−1

αk . (54)

Combining (52), (53), and (54) yield that

∥Eξ[Y1]∥Q ≤ 1−
( jℓ−1∑
k=jℓ−1

αk

)
a/6 ,

and the statement follows.
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Lemma 13. Assume A3. Then, for the block size h defined in (23), and any ℓ ∈ {1, . . . , 2n− h}, it
holds that

ℓ+h∑
k=ℓ

αk ≤ α∞ , κ
1/2
Q CA

ℓ+h∑
k=ℓ

αk ≤ 1 , κQ C2
A e

ℓ+h∑
k=ℓ

αk ≤ a/6 ,

(4/3)αℓtmixκ
1/2
Q CA ≤

(ℓ+h∑
k=ℓ

αk

)
a/6 , (55)

(log n) C2
σ

ℓ+h∑
k=ℓ

αk ≤ a

12
. (56)

Proof. First three inequalities above are easy to check, since

ℓ+h∑
k=ℓ

αk ≤
1+h∑
k=1

c0
(k + k0)

γ ≤ c0

∫ 1+k0+h

k0

dx

xγ
=

c0{(1 + h+ k0)
1−γ − k1−γ

0 }
1− γ

=
c0k

1−γ
0 ((1 + h+1

k0
)1−γ − 1)

1− γ
≤ c0k

−γ
0 (h+ 1) ,

hence, in order to satisfy these inequalities, it is enough to choose h in such a manner that

kγ0 ≥ c0(h+ 1)max(α∞, κ
1/2
Q CA, 6eκQ C2

A /a) ,

which is guaranteed by our choice of c0 in A3 and (23). Now note that

ℓ+h∑
k=ℓ

αk ≥ c0

∫ ℓ+k0+h+1

ℓ+k0

dx

xγ
=

c0{(ℓ+ k0 + h+ 1)1−γ − (ℓ+ k0)
1−γ}

1− γ
,

hence, in order to check (55), we need to ensure that

4c0tmixκ
1/2
Q CA

3(ℓ+ k0)γ
≤ c0a{(ℓ+ k0 + h+ 1)1−γ − (ℓ+ k0)

1−γ}
6(1− γ)

.

Equivalently, it is enough to set h in such a way, that

(ℓ+ k0 + h+ 1)1−γ − (ℓ+ k0)
1−γ ≥ C1

(ℓ+ k0)γ
,

where we set C1 = 8(1− γ)tmixκ
1/2
Q CA /a. Hence, (55) will be satisfied if

h ≥ (ℓ+ k0)

(
1 +

C1

ℓ+ k0

)1/(1−γ)

− (ℓ+ k0 + 1) .

Note that, with α > 1, it holds that (1 + x)α ≤ 1 + 2αx for 0 < x ≤ 1/α. Hence, provided that
k0 > C1/(1− γ), or, equivalently,

k0 ≥
8tmixκ

1/2
Q CA

a
,

it is enough to set

h ≥ (ℓ+ k0)
(
1 +

2C1

(ℓ+ k0)(1− γ)

)
− (ℓ+ k0 + 1) =

16tmixκ
1/2
Q CA

a
− 1 .

Now it remains to check (56), that is,

(log n) C2
σ

ℓ+h∑
k=ℓ

c0
kγ

≤ a

12
.
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Since
ℓ+h∑
k=ℓ

1

(k + k0)γ
≤

h+1∑
k=1

1

(k + k0)γ
≤
∫ h+1+k0

k0

dx

xγ
=

(h+ k0 + 1)1−γ − (k0)
1−γ

1− γ
,

it is enough to choose k0 in such a way that

(log n) C2
σ c0

(h+ k0 + 1)1−γ − (k0)
1−γ

1− γ
≤ a

12
,

or, equivalently,

(k0)
1−γ((1 +

h+ 1

k0
)1−γ − 1) ≤ a(1− γ)

12(log n) C2
σ c0

. (57)

Since (1 + x)1−γ ≤ 1 + (1− γ)x for x ≥ −1, (57) holds if

k−γ
0 (1− γ)(h+ 1) ≤ a(1− γ)

12(log n) C2
σ c0

,

or, equivalently,

k0 ≥
(
12(h+ 1)(log n)c0 C

2
σ

a

)1/γ

which is guaranteed by the condition (25).

Lemma 14. Assume A1, A2, and A3. Then, for any probability ξ on (Z,Z), and any ℓ ∈ {1, . . . , N−
1}, we have

∥Yℓ − Eξ[Yℓ]∥Q ≤ Cσ

( jℓ−1∑
k=jℓ−1

αk

)
, where Cσ = 2(κ

1/2
Q CA +a/6) , (58)

and h is given in (23).

Proof. Using the decomposition (50), we obtain

∥Yℓ − Eξ[Yℓ]∥Q ≤
∑jℓ−1

k=jℓ−1
αk∥A(Zk)− Eξ[A(Zk)]∥Q + ∥Rℓ − Eξ[Rℓ]∥Q .

Applying the definition of Rℓ in (51), the definition of h,α(M)
∞ , and T2 in (53), we get from the above

inequalities that

∥Yℓ − Eξ[Yℓ]∥Q ≤ 2κ
1/2
Q CA

(∑jℓ−1
k=jℓ−1

αk

)
+ (a/3)

(∑jℓ−1
k=jℓ−1

αk

)
,

and the statement follows.

We have now all ingredients required to prove Proposition 12.

D.2 Proof of Proposition 12

Denote by h ∈ N a block length, the value of which is determined later. Define the sequence
j0 = j, jℓ+1 = min(jℓ + h, n). By construction jℓ+1 − jℓ ≤ h. Let N = ⌈(n − j)/h⌉. Now we
introduce the decomposition

Γ
(α)
j:n =

N∏
ℓ=1

Yℓ , where Yℓ =

{∏jℓ−1
i=jℓ−1

(I− αA(Zi)) , ℓ ∈ {1, . . . , N − 1} ,∏n
i=jN−1

(I− αA(Zi)) , ℓ = N .
(59)

The last block, YN , can be of smaller size than h. Now we apply the bound

∥YN∥ ≤
n∏

k=jN−1

(1 + αk CA) ≤ exp
{
CA

N∑
k=jN−1

αk

}
≤ e ,
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where the last bound follows from the relation (24). Hence, substituting into (59), we get the following
bound:

E1/p
ξ [∥Γ(α)

j:n∥p] ≤ eE1/p
ξ [∥

∏N−1
ℓ=1 Yℓ∥p] .

Now we bound E1/p
ξ [∥

∏N−1
ℓ=1 Yℓ∥p] using the results from Proposition 13. To do so, we define,

for ℓ ∈ {1, . . . , N − 1}, the filtration Hℓ = σ(Zk : k ≤ jℓ) and establish almost sure bounds on
∥EHℓ−1

ξ [Yℓ] ∥Q and ∥Yℓ − EHℓ−1

ξ [Yℓ] ∥Q for ℓ ∈ {1, . . . , N − 1}. More precisely, by the Markov
property, it is sufficient to show that there exist m ∈ (0, 1] and σ > 0 such that for any probabilities
ξ, ξ′ on (Z,Z),

∥Eξ′ [Yℓ]∥2Q ≤ 1− mℓ and ∥Yℓ − Eξ′ [Yℓ]∥Q ≤ σℓ , Pξ-a.s. . (60)

Such bounds require the blocking procedure, since (60) not necessarily holds with h = 1. Setting h
as in equation (23), and applying Lemma 12 and Lemma 14, we show that (60) hold with

mℓ =
( jℓ−1∑
k=jℓ−1

αk

)
a/6 , σℓ = Cσ

( jℓ−1∑
k=jℓ−1

αk

)
,

where Cσ is given in (58). Then, applying Proposition 13 with q = log n, we get

E1/p
ξ

[
∥Γ(α)

1:n∥p
]
≤ E1/q

ξ

[
∥Γ(α)

1:n∥q
]

≤ √
κQd

1/qe

N−1∏
ℓ=1

(
1−

( jℓ−1∑
k=jℓ−1

αk

)
a/6 + (log n) C2

σ

( jℓ−1∑
k=jℓ−1

αk

)2)

≤ √
κQd

1/qe

N−1∏
ℓ=1

exp

{
−
( jℓ−1∑
k=jℓ−1

αk

)
a/6 + (log n) C2

σ

( jℓ−1∑
k=jℓ−1

αk

)2}
(a)

≤ √
κQe

2d1/q exp

{
−
( n∑
k=j

αk

)
a/12

}
.

Here in (a) we used the fact that

(log n) C2
σ

( jℓ−1∑
k=jℓ−1

αk

)
≤ a

12
,

which holds due to A3.

D.3 Proof of Proposition 2

First part of the statement (existence of Q) follows from [67, Proposition 1]. For the second part, we
note that for any non-zero vector x ∈ Rd, we have

x⊤(I− αĀ)⊤Q(I− αĀ)x

x⊤Qx
= 1− α

x⊤(Ā⊤Q+QĀ)x

x⊤Qx
+ α2x

⊤Ā⊤QĀx

x⊤Qx

= 1− α
x⊤Px

x⊤Qx
+ α2 x⊤Ā⊤QĀx

x⊤Qx

≤ 1− α
λmin(P )

∥Q∥
+ α2 ∥Ā∥2Q

≤ 1− αa ,

where we set

a =
1

2

λmin(P )

∥Q∥
,

and used the fact that α ≤ α∞, where α∞ is defined in (7).
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E Proofs of Section 4

E.1 Proof of Proposition 3

For completeness, we recall the setting considered in the main text. Even though the sequence
{Zk}k∈N forms a Markov chain, the iterates {θk}k∈N do not form the Markov chain. As a conse-
quence, the standard consistency results for overlapping batch means variance estimators cannot be
applied directly to (18). In this appendix, we provide the detailed derivations underlying the statement
that applying the block bootstrap to the sequence {θℓ} is asymptotically equivalent, up to a suitable
correction, to applying the same procedure to the latent variables {ε(Zℓ)}.

Note that for any 0 ≤ t ≤ n− bn, we unroll the LSA recursion only up to θt − θ⋆, rather than all the
way to the initial iterate θ0 − θ⋆:

θk+t − θ⋆ = Γt+1:t+k(θt − θ⋆)−
k+t∑

ℓ=t+1

αℓΓℓ+1:t+kε(Zℓ) . (61)

While one could also unroll the recursion fully to θ0 − θ⋆, leading to an alternative representation
suitable for the multiplier subsample bootstrap and yielding the same convergence rate, we adopt the
form in (61) as it simplifies subsequent analysis and notation.

Using (61), similarly to (13), we can extract from the MSB estimate a linear statistic that depends on
{ε(Zℓ)} and get

θ̄n,bn(u) =

√
bn√

n− bn + 1

n−bn∑
t=0

wt(θ̄bn,t − θ̄n)
⊤u (62)

=

√
bn√

n− bn + 1

n−bn∑
t=0

wt(W̃bn,t − W̃n)
⊤u+

√
bn√

n− bn + 1

n−bn∑
t=0

wt(D̃bn,t − D̃n)
⊤u ,

where we have set

W̃bn,t = − 1

bn

bn−1∑
k=1

Qk,t,bnε(Zk+t), W̃n = − 1

n

n−1∑
k=1

Qkε(Zk),

D̃bn,t =
1

bn

bn−1∑
k=1

Γt+1:t+k(θt − θ⋆) +
1

bn

bn−1∑
k=1

H
(0)
k,t,bn

ε(Zk+t)

D̃n =
1

n

n−1∑
k=0

Γ1:k(θ0 − θ⋆) +
1

n

n−1∑
k=1

H
(0)
k ε(Zℓ) ,

and Qk,t,bn , H
(0)
k,t,bn

, J
(0)
k,t,bn

are analogues of Qk, H
(0)
k , J

(0)
k for the bootstrap procedure and are

defined as follows

Qk,t,bn = αk+t

bn−1∑
ℓ=k

Gk+t+1:ℓ+t ,

H
(0)
k,t,bn

= −
k+t∑

ℓ=t+1

αℓΓℓ+1:t+kÃ(Zℓ)J
(0)
ℓ−1,t,bn

J
(0)
k,t,bn

= −
k+t∑

ℓ=t+1

αℓGℓ+1:k+tε(Zℓ) .

Since existing results on the concentration of overlapping batch means variance estimators for Markov
chains do not consider weighted sums, we replace the leading terms W̃bn,t and W̃n with expressions
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involving the constant matrix Ā−1 and obtain

θ̄n,bn(u) =

√
bn√

n− bn + 1

n−bn∑
t=0

wt(θ̄bn,t − θ̄n)
⊤u

=

√
bn√

n− bn + 1

n−bn∑
t=0

wt(W̄bn,t − W̄n)
⊤u+

√
bn√

n− bn + 1

n−bn∑
t=0

wt(D̄bn,t − D̄n)
⊤u ,

where we have set

W̄bn,t = − 1

bn

bn−1∑
k=1

Ā−1ε(Zk+t), W̄n = − 1

n

n−1∑
k=1

Ā−1ε(Zk),

D̄bn,t =
1

bn

bn−1∑
k=1

Γt+1:t+k(θt − θ⋆) +
1

bn

bn−1∑
k=1

H
(0)
k,t,bn

− 1

bn

bn−1∑
k=1

(Qk,t,bn − Ā−1)ε(Zk+t)

D̄n =
1

n

n−1∑
k=0

Γ1:k(θ0 − θ⋆) +
1

n

n−1∑
k=1

H
(0)
k − 1

n

n−1∑
ℓ=1

(Qℓ − Ā−1)ε(Zℓ) ,

Then we can decompose the variance w.r.t. Pb of θ̄n,bn(u) and extract the variance of block bootstrap
procedure applied to the non-observable random variables {ε(Zℓ)}

σ̂2
θ(u) =

bn
n− bn + 1

n−bn∑
t=0

((θ̄bn,t − θ̄n)
⊤u)2

=
bn

n− bn + 1

n−bn∑
t=0

((W̄bn,t − W̄n)
⊤u)2︸ ︷︷ ︸

σ̂2
ε(u)

+Rvar(u)

where we define the remainder term as follows
Rvar(u) = Db

1 +Db
2

Db
1 =

bn
n− bn + 1

n−bn∑
t=0

((D̄bn,t − D̄n)
⊤u)2

Db
2 =

2bn
n− bn + 1

n−bn∑
t=0

u⊤(W̄bn,t − W̄n)(D̄bn,t − D̄n)
⊤u

(63)

To bound Rvar(u) it remains to bound E1/p
ξ [|Db

1|p] and E1/p
ξ [|Db

2|p]. Hence, from Lemma 18 and
Lemma 19, we obtain the following bound for the residual term Rvar(u):

E1/p
ξ

[∣∣Rvar(u)
∣∣p] ≲ pb1/2n nγ/2−1 + p4(log n)b1/2n n−γ (64)

+ pb−1/2
n nγ/2 + p4(log n)n−1 + pn2γ−2 .

The version of this results with constants, you can see in (65). Below we present some technical
lemmas that are necessary in order to bound the residual term Rvar(u).

E.2 Technical bounds

Bounds for D̄bn,t and D̄n. First, we establish bounds for D̄bn,t and D̄n. The argument follows the
same reasoning as in the proof of the bound for D1 in (27). The main difference lies in the appearance
of additional terms arising from the modification of the linear component in the decomposition (62).
Lemma 15. Assume A1, A2 and A3. Then it holds

E1/p
ξ [|u⊤D̄bn,t|p] ≲

CD,b
1,1 p1/2

bn
√
αt

+
CD,b

1,2

bn
+CD,b

1,3 p2
√

log(1/αbn+t−1)

∑bn+t−1
k=1+t αk

bn

+CD,b
1,4

p1/2

bn
(

bn−1∑
k=2

(k + k0 + t)2γ−2)1/2 +
CD,b

1,5 p1/2b−1
n√

αt+bn−2
+CD,b

1,6

(k0 + t− 1)γ−1

bn
,
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where

CD,b
1,1 =

CΓd
1/ logn+1/2D

(M)
1 tmix

a(1− γ)

CD,b
1,2 =

kγ0
ac0(1− γ)

C2
Γd

2/ logn+1/2∥θ0 − θ⋆∥ + tmix∥ε∥∞(
√
κQC

(S)
γ,ak

γ−1
0 +

√
κQ(∥Ā−1∥ + (8/a))

CD,b
1,3 = D

(M)
3 tmix + tmix∥ε∥∞

√
κQC

(S,2)
γ,a

CD,b
1,4 = tmix∥ε∥∞

√
κQC

(S)
γ,a

CD,b
1,5 =

∥A−1∥tmix∥ε∥∞
√
κQ√

a

CD,b
1,6 = tmix∥ε∥∞

√
κQC

(S)
γ,a

Proof. We split D̄bn,t into three parts:

T1 =
1

bn

bn−1∑
k=1

u⊤Γt+1:t+k(θt − θ⋆) ,

T2 =
1

bn

bn−1∑
k=1

u⊤H
(0)
k,t,bn

,

T3 = − 1

bn

bn−1∑
k=1

u⊤(Qk,t,bn − Ā−1)ε(Zk+t) .

We start from T1. Using Minkowski’s and Hölder’s inequality, we obtain

E1/p
ξ [|u⊤T1|p] ≤

1

bn

bn−1∑
k=1

(E1/p
ξ [∥Γt+1:t+k∥2p])1/(2p)(E1/p

ξ [∥(θt − θ⋆)∥2p])1/(2p) .

Applying similar arguments as in (38) together with Proposition 12 and Proposition 8 we get

E1/p
ξ [|u⊤T1|p] ≲

1

bn

bn−1∑
k=1

CΓd
1/ logn+1/2 exp

{
−(a/12)

t+k∑
ℓ=t+1

αℓ

}
D

(M)
1 tmix

√
pαt

+
1

bn

bn−1∑
k=1

C2
Γd

2/ logn+1/2 exp

{
−(a/12)

t+k∑
ℓ=1

αℓ

}
∥θ0 − θ⋆∥ .

Using Lemma 24, Lemma 31 and that k1−γ
0 > 24

ac0
we get

E1/p
ξ [|u⊤T1|p] ≲

1

bn
√
αta(1− γ)

CΓd
1/ logn+1/2D

(M)
1 tmix

√
p

+
kγ0 exp{− ac0

24(1−γ) t
1−γ}

bnac0(1− γ)
C2

Γd
2/ logn+1/2∥θ0 − θ⋆∥ .

For T2 we use Proposition 10 and Minkowski’s inequality and get

E1/p
ξ [|T2|p] ≤

1

bn

bn−1∑
k=1

E1/p
ξ [∥u⊤H

(0)
k,t,bn

∥p] ≤ D
(M)
3 tmixp

2

bn

bn+t−1∑
k=1+t

αk

√
log (1/αk)

≲ D
(M)
3 tmixp

2
√
log(1/αbn+t−1)

∑bn+t−1
k=1+t αk

bn
.

We first use Lemma 4 to show that

T3 = − 1

bn

bn−1∑
ℓ=1

u⊤Sℓ,t,bnε(Zℓ+t) +
1

bn

bn−1∑
ℓ=1

u⊤Ā−1Gℓ+t:bn+t−1ε(Zℓ+t) = T31 + T32 ,
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where Sℓ,t,bn =
∑bn−1

j=ℓ+1(αk+t − αj+t)Gl+t+1:j+t−1. It is easy to see that T31 is a weighed linear
statistics of MC. We apply Markov property together with Lemma 20 and obtain

E1/p
ξ [|T31|p] ≲

tmixp
1/2∥ε∥∞
bn

(

bn−1∑
k=2

∥Sk,t,bn∥2)1/2

+
tmix∥ε∥∞

bn

(
∥S1,t,bn∥+ ∥Sbn−1,t,bn∥+

bn−2∑
k=1

∥Sk+1,t,bn − Sk,t,bn∥
)
.

Applying Lemma 5 and Lemma 7, we get

E1/p
ξ [|T31|p] ≲

tmixp
1/2∥ε∥∞

√
κQC

(S)
γ,a

bn
(

bn−1∑
k=2

(k + k0 + t)2γ−2)1/2

+
tmix∥ε∥∞

bn

(√
κQC

(S)
γ,a ((k0 + t+ 1)γ−1 + (bn + k0 + t− 1)γ−1)

+
√
κQC

(S,2)
γ,a

bn−2∑
k=1

αk+1+t

)

For term T32 we also apply Lemma 20 and get

E1/p
ξ [|T32|p] ≲

∥Ā−1∥tmixp
1/2∥ε∥∞

bn
(

bn−1∑
k=2

∥Gk+t:bn+t−1∥2)1/2

+
tmix∥ε∥∞

bn

(
∥Ā−1∥(∥G1+t:bn+t−1∥+ ∥Gbn+t−1:bn+t−1∥) +

bn−2∑
k=1

∥Ā−1(Gk+1+t:bn+t−1 −Gk+t:bn+t−1)∥
)
.

Using Lemma 8, Lemma 26 and Lemma 28 with b = a/2 we get

E1/p
ξ [|T32|p] ≲

∥Ā−1∥tmixp
1/2∥ε∥∞

√
κQ√

ac0bn
(bn + t+ k0 − 2)γ/2

+
tmix∥ε∥∞

bn

(
∥Ā−1∥(αbn+t−1/αt +

√
κQ(1− (a/2)αbn+t−1)) +

√
κQ

bn−1∑
k=1

αk+t

bn+t−1∏
i=k+t+1

(1− (a/2)αi)
)

≲
∥Ā−1∥tmixp

1/2∥ε∥∞
√
κQ√

abn
√
αbn+t−2

+
tmix∥ε∥∞

√
κQ

bn

(
∥Ā−1∥ + (8/a)

)
.

Lemma 16. Assume A1, A2 and A3. Then it holds

E1/p
ξ [|u⊤D̄n|p] ≲

CD,b
2,1

n
+CD,b

2,2 p2n−γ +CD,b
2,3 p1/2nγ−3/2

+CD,b
2,4 p1/2nγ/2−1 +CD,b

2,5 p2
√
log nn−γ ,
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where

CD,b
2,1 = CΓd

1/logn kγ0
ac0(1− γ)

∥θ0 − θ⋆∥+ tmix∥ε∥∞(
√
κQ(∥Ā−1∥ + 1/a) +

√
κQC

(S)
γ,ak

γ−1
0 )

CD,b
2,2 =

D
(M)
3 tmix

√
log

kγ
0

c0

c0(1− γ)
+

√
κQtmix∥ε∥∞C

(S,2)
γ,a c0

1− γ

CD,b
2,3 =

tmix∥ε∥∞
√
κQC

(S)
γ,a√

2γ − 1

CD,b
2,4 =

∥Ā−1∥tmix∥ε∥∞
√
κQk

γ/2
0√

ac0

CD,b
2,5 =

D
(M)
3 tmixc0

√
γ

1− γ

Proof. Using (28) and (29) we get

E1/p
ξ [u⊤(

1

n

n−1∑
k=0

Γ1:k(θ0 − θ⋆) +
1

n

n−1∑
k=1

H
(0)
k )|p] ≲ CΓd

1/logn 1

n

kγ0
ac0(1− γ)

∥θ0 − θ⋆∥

+
D

(M)
3 tmixp

2c0
1− γ

(
√

γ log n+

√
log

kγ0
c0

)n−γ .

For simplicity we define

T4 = −u⊤ 1

n

n−1∑
ℓ=1

(Qℓ − Ā−1)ε(Zℓ)

We first use Lemma 4 to show that

T4 = − 1

n

n−1∑
ℓ=1

u⊤Sℓε(Zℓ) +
1

n

n−1∑
ℓ=1

u⊤Ā−1Gℓ:n−1ε(Zℓ) = T41 + T42 .

It is easy to see that T41 is a weighed linear statistics of MC. We apply Lemma 20,

E1/p
ξ [|T41|p] ≲

tmixp
1/2∥ε∥∞
n

(

n−1∑
k=2

∥Sk∥2)1/2

+
tmix∥ε∥∞

n

(
∥S1∥+ ∥Sn−1∥+

n−2∑
k=1

∥Sk+1 − Sk∥
)
.

Applying Lemma 5 and Lemma 7, we get

E1/p
ξ [|T41|p] ≲

tmixp
1/2∥ε∥∞

√
κQC

(S)
γ,a√

2γ − 1
nγ−3/2

+
tmix∥ε∥∞

n

(√
κQC

(S)
γ,a ((k0 + 1)γ−1 + (n+ k0 − 1)γ−1) +

√
κQC

(S,2)
γ,a c0

1− γ
n1−γ

)
≲

tmixp
1/2∥ε∥∞

√
κQC

(S)
γ,a√

2γ − 1
nγ−3/2 + tmix∥ε∥∞

√
κQC

(S)
γ,ak

γ−1
0 n−1

+

√
κQtmix∥ε∥∞C

(S,2)
γ,a c0

1− γ
n−γ

For term T42 we also apply Lemma 20 and get

E1/p
ξ [|T42|p] ≲

∥Ā−1∥tmixp
1/2∥ε∥∞

n
(

n−1∑
k=2

∥Gk:n−1∥2)1/2

+
tmix∥ε∥∞

n

(
∥Ā−1∥(∥G1:n−1∥+ ∥Gn−1:n−1∥) +

n−2∑
k=1

∥Ā−1(Gk+1:n−1 −Gk:n−1)∥
)
.
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Using Lemma 8, Lemma 26 and Lemma 28 with b = a/2 we get

E1/p
ξ [|T32|p] ≲

∥Ā−1∥tmixp
1/2∥ε∥∞

√
κQ√

ac0n
(n+ k0 − 2)γ/2

+
tmix∥ε∥∞

n

(
∥Ā−1∥(αn−1/α0 +

√
κQ(1− (a/2)αn−1)) +

√
κQ(8/a)

)
≲

∥Ā−1∥tmixp
1/2∥ε∥∞

√
κQk

γ/2
0√

ac0
nγ/2−1

+
tmix∥ε∥∞(∥Ā−1∥ +

√
κQ)

n
.

Bounds for W̄bn,t and W̄n. Note that the terms W̄ bn, t and W̄n are linear statistics of a Markov
chain. Their moments can therefore be bounded directly using our Rosenthal-type inequality (see
Lemma 20).
Lemma 17. Assume A1, A2 and A3. Then in holds

E1/p
ξ [|u⊤W̄n|p] ≲ CD,b

3,1 p1/2n−1/2 +
CD,b

3,2

n
,

and

E1/p
ξ [|u⊤W̄bn,t|p] ≲ CD,b

3,1 p1/2b−1/2
n +

CD,b
3,2

bn
,

where
CD,b

3,1 = tmix∥Ā−1∥∥ε∥∞
CD,b

3,2 = tmix∥Ā−1∥ .

Proof. Using Lemma 20, we get

E1/p
ξ [|u⊤W̄n|p] ≲

tmixp
1/2∥Ā−1∥∥ε∥∞√

n
+

tmix∥Ā−1∥
n

The boundary for W̄bn,t is obtained similarly.

Bounds for Db
1 and Db

2 In this section, the previously obtained bounds for W̄bn,t, D̄bn,t, W̄n, and
D̄n are combined to establish corresponding bounds for Db

1 and Db
2 in Rvar(u).

Lemma 18. Assume A1, A2 and A3. Then it holds

E1/p
ξ [|Db

1|p] ≲ M1,1pn
γb−1

n +M1,2b
−1
n +M1,3p

4(log n)n−1 +M1,4pn
2γ−2

+M2,1bnn
−2 +M2,2p

4bn(log n)n
−2γ +M2,3pbnn

2γ−3 +M2,4pbnn
γ−2 ,

where

M1,1 =
(2k0)

γ+1((CD,b
1,1 )

2 + (CD,b
1,5 )

2)

c0(γ + 1)

M1,2 = (CD,b
1,2 )

2 + (CD,b
1,6 )

2

M1,3 = (CD,b
1,3 )

2(γ + log
kγ0
c0

)
c20

2γ − 1

M1,4 = (CD,b
1,4 )

2 2
2γ−1 − 1

2γ − 1

M2,1 = (CD,b
2,1 )

2

M2,2 = (CD,b
2,2 )

2 + (CD,b
2,5 )

2

M2,3 = (CD,b
2,3 )

2

M2,4 = (CD,b
2,4 )

2 .
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Proof. Note that using Minkowski’s inequality and Hölder’s inequality, we have

E1/p
ξ [|Db

1|p] ≤
bn

n− bn + 1

n−bn∑
t=0

(
E1/p
ξ [|u⊤D̄bn,t|2p + E1/p

ξ [|u⊤D̄b|2p

+ 2E1/(2p)
ξ [|u⊤D̄bn,t|2pE

1/(2p)
ξ [|u⊤D̄b|2p]

)
≤ 2bn

n− bn + 1

n−bn∑
t=0

{
E1/p
ξ [|u⊤D̄bn,t|2p + E1/p

ξ [|u⊤D̄b|2p
}

Using Lemma 15 and Lemma 24 we obtain

2bn
n− bn + 1

n−bn∑
t=0

E1/p
ξ [|u⊤D̄bn,t|2p ≲

bn
n− bn + 1

{n−bn∑
t=0

(CD,b
1,1 )

2p

b2nαt
+

(CD,b
1,2 )

2

b2n

+ (CD,b
1,3 )

2p4 log(1/αbn+t−1)
(
∑bn+t−1

k=1+t αk)
2

b2n

+ (CD,b
1,4 )

2 p

b2n

bn−1∑
k=2

(k + k0 + t)2γ−2 +
(CD,b

1,5 )
2pb−2

n

αt+bn−2
+ (CD,b

1,6 )
2 (k0 + t− 1)2γ−2

b2n

}
≲ M1,1pn

γb−1
n +M1,2b

−1
n +M1,3p

4 log nn−1 +M1,4pn
2γ−2

Using Lemma 16, we get

2bn
n− bn + 1

n−bn∑
t=0

E1/p
ξ [|u⊤D̄b|2p ≲ M2,1bnn

−2 +M2,2p
4bn(log n)n

−2γ +M2,3pbnn
2γ−3 +M2,4pbnn

γ−2 .

Lemma 19. Assume A1, A2 and A3. Then it holds

E1/p
ξ [|Db

2|p] ≲ M3,1p
1/2b1/2n n−1 +M3,2pb

1/2
n nγ−3/2 +M3,3pb

1/2
n nγ/2−1 +M3,4p

5/2
√
log nn−γb1/2n

+M3,5p
1/2b−1/2

n +M3,6p
5/2
√
log nb1/2n n−γ +M3,7pb

−1/2
n nγ−1/2 +M3,8pb

−1/2
n nγ/2 ,

where
M3,1 = CD,b

2,1 (C
D,b
3,1 +CD,b

3,2 )

M3,2 = CD,b
2,3 (C

D,b
3,1 +CD,b

3,2 )

M3,3 = CD,b
2,4 (C

D,b
3,1 +CD,b

3,2 )

M3,4 = (CD,b
2,5 +CD,b

2,2 )(C
D,b
3,1 +CD,b

3,2 )

M3,5 = (CD,b
1,2 +CD,b

1,6 )(C
D,b
3,1 +CD,b

3,2 )

M3,6 =
CD,b

1,3

1− γ
(
√
γ +

√
log

kγ0
c0

)(CD,b
3,1 +CD,b

3,2 )

M3,7 =
CD,b

1,4 (2k0)
γ+1/2

√
2γ − 1(γ + 1/2)

(CD,b
3,1 +CD,b

3,2 )

M3,8 =
(2k0)

γ/2+1(CD,b
1,5 +CD,b

1,1 )√
c0(γ/2 + 1)

(CD,b
3,1 +CD,b

3,2 )

Proof. Note that using Minkowski’s inequality together with Hölder’s inequality we get

E1/p
ξ [|Db

2|p] ≲
bn

n− bn + 1

n−bn∑
t=0

E1/(2p)
ξ [|u⊤W̄bn,t|2p](E

1/(2p)
ξ [|u⊤D̄bn,t|2p] + E1/(2p)

ξ [|u⊤D̄n|2p])

+
bn

n− bn + 1

n−bn∑
t=0

E1/(2p)
ξ [|u⊤W̄n|2p](E1/(2p)

ξ [|u⊤D̄bn,t|2p] + E1/(2p)
ξ [|u⊤D̄n|2p])
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Note that bound on E1/(2p)
ξ [|u⊤W̄bn,t|2p], E

1/(2p)
ξ [|u⊤W̄n|2p], E1/(2p)

ξ [|u⊤D̄n|2p] does not depend
upon t, hence, we can rewrite formula above as follows

E1/p
ξ [|Db

2|p] ≲
bn

n− bn + 1

{n−bn∑
t=0

E1/(2p)
ξ [|u⊤D̄bn,t|2p]

}
(E1/(2p)

ξ [|u⊤W̄bn,t|2p] + E1/(2p)
ξ [|u⊤W̄n|2p])

+ bnE1/(2p)
ξ [|u⊤D̄n|2p](E1/(2p)

ξ [|u⊤W̄bn,t|2p] + E1/(2p)
ξ [|u⊤W̄n|2p])

Applying Lemma 15 and Lemma 24 we get

bn
n− bn + 1

n−bn∑
t=0

E1/(2p)
ξ [|(u⊤D̄bn,t)|2p ≲

bn
n− bn + 1

n−bn∑
t=0

{
CD,b

1,1 p1/2

bn
√
αt

+
CD,b

1,2

bn

+CD,b
1,3 p2

√
log(1/αbn+t−1)

∑bn+t−1
k=1+t αk

bn

+CD,b
1,4

p1/2

bn
(

bn−1∑
k=2

(k + k0 + t)2γ−2)1/2 +
CD,b

1,5 p1/2b−1
n√

αt+bn−2
+CD,b

1,6

(k0 + t− 1)γ−1

bn

}

Using Lemma 16 and Lemma 17 we get

E1/p
ξ [|Db

2|p] ≲
{
CD,b

2,1 bnn
−1 +CD,b

2,3 p1/2bnn
γ−3/2 +CD,b

2,4 p1/2bnn
γ/2−1

+ (CD,b
2,5 +CD,b

2,2 )p
2
√

log nn−γbn +CD,b
1,2 +

CD,b
1,3

1− γ
p2(

√
γ +

√
log

kγ0
c0

)
√
log nbnn

−γ

+
CD,b

1,4 (2k0)
γ+1/2

√
2γ − 1(γ + 1/2)

p1/2nγ−1/2 +
(2k0)

γ/2+1(CD,b
1,5 +CD,b

1,1 )p
1/2(n− bn + 1)γ/2

√
c0(γ/2 + 1)

}
·

· (CD,b
3,1 +CD,b

3,2 )p
1/2(n−1/2 + b−1/2

n )

Version of (64) with constants. Finally, from Lemma 18 and Lemma 19, we obtain the following
bound for the residual term Rvar(u):

E1/p
ξ

[∣∣Rvar(u)
∣∣p] ≲ M1pb

1/2
n nγ/2−1 +M2p

4(log n)b1/2n n−γ (65)

+M3pb
−1/2
n nγ/2 +M4p

4(log n)n−1 +M5pn
2γ−2 ,

where

M1 = M3,1 +M3,2 +M3,3 +M2,3 +M2,4

M2 = M3,4 +M3,6 +M2,2

M3 = M3,5 +M3,7 +M3,8 +M1,1 +M1,2

M4 = M1,3 +M2,1

M5 = M1,4 .

(66)
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E.3 Proof of Corollary 2

The proof of Corollary 2 follows directly from From Proposition 3 and Proposition 4. Indeed, note
that

E1/p
ξ [
∣∣σ̂2

θ(u)− σ2(u)
∣∣p] ≤ E1/p

ξ [|σ̂2
ε(u)− σ2(u)|p] + E1/p

ξ

[∣∣Rvar(u)
∣∣p]

≲
pt3mix∥ε∥2∞√

n
+

p2t2mix

√
bn∥ε∥2∞√
n

+
pt2mix∥ε∥2∞√

bn

+M1pb
1/2
n nγ/2−1 +M2p

4(log n)b1/2n n−γ

+M3pb
−1/2
n nγ/2 +M4p

4(log n)n−1 +M5pn
2γ−2

≲ p4(t2mix∥ε∥2∞ +M2 +M1)(log n)
b
1/2
n√
n

+ p4(t2mix∥ε∥2∞ +M3)
nγ/2

√
bn

+ p4(t3mix∥ε∥2∞ +M4)
(log n)√

n
+ p4M5n

2γ−2

Hence, applying Lemma 21 with p = log n we obtain that with probability 1− 1
n it holds

∣∣σ̂2
θ(u)− σ2(u)

∣∣ ≲ (t2mix∥ε∥2∞ +M2 +M1)(log n)
5 b

1/2
n√
n

+ (log n)4(t2mix∥ε∥2∞ +M3)
nγ/2

√
bn

+ (t3mix∥ε∥2∞ +M4)
(log n)5√

n

+ (log n)4M5n
2γ−2

(67)

By setting bn = bβ , we can optimize the inequality above by γ and β. And by putting β = 3/4 and
γ = 1/2 + ε where ε < 1/ log n we finally get that with probability 1− 1

n it holds∣∣σ̂2
θ(u)− σ2(u)

∣∣
≲ (t2mix∥ε∥2∞ +M2 +M1 + t2mix∥ε∥2∞ +M3 + t3mix∥ε∥2∞ +M4 +M5)(log n)

5n−1/8+ε/2

E.4 Detailed version of the proof of Theorem 2

We preface the proof with a Gaussian comparison inequality due to [21, Theorem 1.3]. It states that
for ξi ∼ N (0, σ2

i ), i = 1, 2,

sup
x∈R

|P(ξ1 ≤ x)− P(ξ2 ≤ x)| ≤ (3/2)|σ2
1/σ

2
2 − 1|. (68)

Now we proceed with the proof of Theorem 2. Using (67) together with the inequality σ−2(u) ≤
1/λmin(Σ∞) we get that with probability 1− 1/n it holds

∣∣σ̂2
θ(u)− σ2(u)

∣∣/σ2(u) ≲
e

λmin(Σ∞)
(t2mix∥ε∥2∞ +M2 +M1)(log n)

5 b
1/2
n√
n

+
e

λmin(Σ∞)
(log n)4(t2mix∥ε∥2∞ +M3)

nγ/2

√
bn

+
e

λmin(Σ∞)
(t3mix∥ε∥2∞ +M4)

(log n)5√
n

+
e

λmin(Σ∞)
(log n)4M5n

2γ−2
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Now we apply (68) and obtain that with probability 1− 1/n it holds

dK
(
N (0, σ̂2

θ(u)),N (0, σ2(u))
)
≲

1

λmin(Σ∞)
(t2mix∥ε∥2∞ +M2 +M1)(log n)

5 b
1/2
n√
n

+
1

λmin(Σ∞)
(log n)4(t2mix∥ε∥2∞ +M3)

nγ/2

√
bn

+
1

λmin(Σ∞)
(t3mix∥ε∥2∞ +M4)

(log n)5√
n

+
1

λmin(Σ∞)
(log n)4M5n

2γ−2 .

Combining this inequality with Corollary 1 we obtain with probability 1− 1/n

sup
x∈R

|P(
√
n(θ̄n − θ⋆)⊤u ≤ x)− Pb(θ̄n,bn(u) ≤ x)| ≲ (CK,1 +CK,2 +CD

1 ∥θ0 − θ⋆∥+CD
2 )

log n

n1/4

+ (CD
4 +CD

3 )
(log n)5/2

nγ−1/2

+
1

λmin(Σ∞)
(t2mix∥ε∥2∞ +M2 +M1)(log n)

5 b
1/2
n√
n

+
1

λmin(Σ∞)
(log n)4(t2mix∥ε∥2∞ +M3)

nγ/2

√
bn

+
1

λmin(Σ∞)
(t3mix∥ε∥2∞ +M4)

(log n)5√
n

+
1

λmin(Σ∞)
(log n)4M5n

2γ−2

To complete the proof, it remains to optimize the bound above. Setting bn = ⌈n4/5⌉ and γ = 3/5,
we obtain with probability 1− 1/n

sup
x∈R

|P(
√
n(θ̄n − θ⋆)⊤u ≤ x)− Pb(θ̄n,bn(u) ≤ x)| ≲ (CK,1 +CK,2 +CD

1 ∥θ0 − θ⋆∥+CD
2 )

log n

n1/4

+
1

λmin(Σ∞)
(t3mix∥ε∥2∞ +M4)

(log n)5√
n

+

(
CD

3 +CD
4 +

t3mix∥ε∥2∞ +M1 +M2 +M3 +M5

λmin(Σ∞)

)
(log n)5n−1/10 .

F Probability inequalities

Denote by Φ the c.d.f. of a standard Gaussian random variable and set

dK
(
X
)
= sup

x∈R
|P(X ≤ x)− Φ(x)|.

Proposition 14. For any random variables X,Y , and any p ≥ 1,

dK
(
X + Y

)
≤ dK

(
X
)
+ 2E1/(p+1)[|Y |p] . (69)

Proof. Let t ≥ 0. By Markov’s inequality

P(X + Y ≤ x) ≤ P(X + Y ≤ x, |Y | ≤ t) +
1

tp
E[|Y |p]

≤ P(X ≤ x+ t)− Φ(x+ t) + Φ(x+ t) +
1

tp
E[|Y |p]

≤ Φ(x) + sup
x∈R

|P(X ≤ x)− Φ(x)|+ t√
2π

+
1

tp
E[|Y |p].
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Choosing t = E1/(p+1)[|Y |p] we obtain

sup
x∈R

(P(X + Y ≤ x)− Φ(x)) ≤ sup
x∈R

|P(X ≤ x)− Φ(x)|+ 2E1/(p+1)[|Y |p]

Similarly, we may estimate supx∈R(Φ(x)− P(X + Y ≤ x)). Hence, (69) holds.

Remark 2. The result similar to Proposition 14 was previously obtained in [44, Lemma 1]. It states
that for random variables X and Y and any p ≥ 1, it holds that

dK
(
X + Y

)
≤ 2dK

(
X
)
+ 3∥E[|Y |2p|X]∥1/(2p+1)

1 .

F.1 Rosenthal and Burkholder inequalities

We begin this section with a version of Rosenthal inequality (see the original paper [61] and the
Pinelis version of the Rosenthal inequality [56]). Let f : Z → R be a bounded function with
∥f∥∞ < ∞ and define

S̄n =

n−1∑
k=0

{f(Zk)− π(f)} .

Then the following bound holds:

Lemma 20. Assume A 1. Then for any p ≥ 2 and f : Z → Rd with ∥f∥∞ < ∞, any initial
distribution ξ on (Z,Z), and any u ∈ Sd−1, Ai ∈ Rd×d, it holds that

E1/p
ξ

[∣∣ n∑
k=1

u⊤Ak(f(Zk)− π(f))
∣∣p] ≤ (16/3)tmixp

1/2∥f∥∞(

n∑
k=2

∥Ak∥2)1/2

+ (8/3)tmix

(
∥A1∥+ ∥An∥+

n−1∑
k=1

∥Ak+1 −Ak∥
)
∥f∥∞ .

Proof. Under A1 the Poisson equation

g(z)− Pg(z) = f(z)− π(f)

has a unique solution for any bounded f , which is given by the formula

g(z) =

∞∑
k=0

{Pkf(z)− π(f)} .

Thus, using A1, we obtain that g(z) is also bounded with

∥g(z)∥ ≤
+∞∑
k=0

∥Pkf(z)− π(f)∥ ≤ 2∥f∥∞
+∞∑
k=0

(1/4)⌊k/tmix⌋ ≤ (8/3)tmix∥f∥∞ . (70)

Hence, we can represent
n∑

k=1

u⊤Ak(f(Zk)− π(f)) =

n∑
k=2

u⊤Ak(g(Zk)− Pg(Zk−1))︸ ︷︷ ︸
T1

+

n−1∑
k=1

u⊤(Ak+1 −Ak)Pg(Zk) + u⊤A1g(Z1)− u⊤AnPg(Zn)︸ ︷︷ ︸
T2

.

The term T2 can be controlled using Minkowski’s inequality:

E1/p
ξ [
∣∣T2

∣∣p] ≤ (8/3)tmix

(
∥A1∥+ ∥An∥+

n−1∑
k=1

∥Ak+1 −Ak∥
)
∥f∥∞ .
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Now we proceed with T1. Since EFk−1 [g(Zk)− Pg(Zk−1)] = 0 a.s. and |u⊤Ak(g(Zk) −
Pg(Zk−1))| ≤ (16/3)∥Ak∥tmix∥f∥∞, we get, using the Azuma-Hoeffding inequality [78, Corollary
3.9], that

Pξ[|T1| ≥ t] ≤ 2 exp

{
− 2t2

(16/3)2t2mix∥f∥2∞
∑n

k=2 ∥Ak∥2

}
.

Hence, applying [24, Lemma 7], we get

E1/p
ξ [|T1|p] ≤ (16/3)p1/2tmix∥f∥∞(

n∑
k=2

∥Ak∥2)1/2 .

The lemma below is a simple technical statement used to switch between p-th moment bounds and
high-probability bounds.

Lemma 21. Fix δ ∈ (0, 1/e2) and let Y be a positive random variable, such that

E1/p[Y p] ≤ pυC1

for any 2 ≤ p ≤ log (1/δ). Then it holds with probability at least 1− δ, that

Y ≤ eC1(log (1/δ))
υ .

Proof. Applying Markov’s inequality, for any t ≥ 0 we get that

P(Y ≥ t) ≤ E[Y p]

tp
≤ (C1p

υ)p

tp
.

Now we set p = log (1/δ), t = eC1(log (1/δ))
υ , and aim to check that

(C1(log (1/δ))
υ)log (1/δ)

(eC1(log (1/δ))υ)log (1/δ)
≤ δ .

Taking logarithms from both sides, the latter inequality is equivalent to

− log (1/δ) ≤ log δ ,

which turns into exact equality.

G Auxiliary results on the sequences of step sizes {αk}k∈N under A3

In this section we provide the auxiliary results on the sequences of step sizes {αk}k∈N under A3.

For simplicity, we denote

gn:m =

m∑
k=n

k−γ , n ≤ m

Lemma 22. Let n ≤ m. Then

(m+ 1)1−γ − n1−γ

1− γ
≤ gn:m ≤ m1−γ − (n− 1)1−γ

1− γ
.

Lemma 23. Let b, c0 > 0 and αℓ = c0(ℓ + k0)
−γ for γ ∈ (1/2, 1), k0 ≥ 0. Assume that bc0 < 1

and k1−γ
0 ≥ 2/(bc0). Then

n−1∑
k=ℓ

αℓ

k∏
j=ℓ+1

(1− bαj) ≤ Lb ,

where we set
Lb = c0 +

2

b(1− γ)
.
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Proof. Note that

n−1∑
k=ℓ

k∏
j=ℓ+1

(1− bαj) ≤
n−1∑
k=ℓ

exp

{
−b

k∑
j=l+1

αj

}
≤

n+k0−1∑
k=ℓ+k0

exp

{
− bc0
2(1− γ)

(k1−γ − (l+ k0)
1−γ)

}
Applying Lemma 31 with k1−γ

0 ≥ 2/(bc0), we finish the proof.

Lemma 24. Assume A3. Then the following bounds holds:

1.
k∑

i=1

αi ≤
c0

1− γ
((k + k0)

1−γ − k1−γ
0 )

2. for any p ≥ 2
k∑

i=1

αp
i ≤ cp0

pγ − 1
,

3. for any m ∈ {0, . . . , k}
k∑

i=m+1

αi ≥
c0

2(1− γ)
((k + k0)

1−γ − (m+ k0)
1−γ) ,

Proof. To proof 1, note that

k∑
i=1

αi ≤ c0

∫ k+k0

k0

dx

xγ
≤ c0

1− γ
((k + k0)

1−γ − k1−γ
0 ) ,

To proof 2, note that
k∑

i=1

αp
i ≤ cp0

∫ +∞

1

dx

xpγ
≤ cp0

pγ − 1
,

To proof 3, note that for any i ≥ 1 we have 2(i+ k0)
−γ ≥ (i+ k0 − 1)−γ . Hence,

k∑
i=m+1

αi ≥
1

2

k−1∑
i=m

αi ≥
c0
2

∫ k+k0

m+k0

dx

xγ
=

c0
2(1− γ)

((k + k0)
1−γ − (m+ k0)

1−γ) .

Lemma 25 (Lemma 24 in [26]). Let b > 0 and {αk}k≥0 be a non-increasing sequence such that
α1 ≤ 1/b. Then

k∑
j=1

αj

k∏
l=j+1

(1− αlb) =
1

b

{
1−

k∏
l=1

(1− αlb)

}

Proof. The proof is given in [26].

Lemma 26. Let b > 0 and αk = c0
(k0+k)γ be a non-increasing sequence such that c0 ≤ 1/b and

k0 ≥ { γ
2bc0

}1/(1−γ). Then it holds

αj

k∏
l=j+1

(1− αlb) ≤ αk

Proof. Note that

αj

k∏
l=j+1

(1− αlb) = αk

k∏
l=j+1

αl−1

αl
(1− αlb) .
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It remains to note that,

αl−1

αl
(1−αlb) =

{
k0 + l

k0 + l − 1

}γ

− bc0
(k0 + l − 1)γ

≤ 1+
γ

k0 + l − 1
− bc0
(k0 + l − 1)γ

≤ 1−(b/2)αl−1 ,

where the last inequality holds since k0 ≥ { 2γ
bc0

}1/(1−γ).

Lemma 27. Let b > 0, and let αk = c0/(k + k0)
γ , γ ∈ (0; 1), such that c0 ≤ 1/b and k0 ≥

{ 2γ
rc0

}1/1−γ with some constant r > 0. Then it holds that

αk

αk+1
≤ 1 + rαk+1

Proof. Note that

αk

αk+1
≤
(
1 +

1

k + k0

)γ

≤ 1 +
2γ

k0 + k + 1
≤ 1 +

rc0
(k0 + k + 1)γ

,

where the last inequality holds since k0 ≥ { 2γ
rc0

}1/1−γ .

Lemma 28. Let b > 0, and let αk = c0/(k + k0)
γ , γ ∈ (0; 1), such that c0b ≤ 1/2 and k0 ≥

{ 8γ
bc0

}1/1−γ . Then for any q ∈ (1; 3], it holds that

k∑
j=1

αq
j

k∏
ℓ=j+1

(1− αℓb) ≤
4

b
αq−1
k .

Proof. Using Lemma 27, we obtain that

k∑
j=1

αq
j

k∏
ℓ=j+1

(1− αℓb) = αq−1
k

k∑
j=1

αj

k∏
ℓ=j+1

(
αℓ−1

αℓ

)q−1

(1− αℓb)

≤ αq−1
k

k∑
j=1

αj

k∏
ℓ=j+1

(1 + rαℓ)
q−1

(1− αℓb) .

We set r = b
2(q−1) . If q ∈ (1, 2) then we use Bernoulli’s inequality and obtain

k∑
j=1

αq
j

k∏
ℓ=j+1

(1− αℓb) ≤ αq−1
k

k∑
j=1

αj

k∏
ℓ=j+1

(1 + bαℓ/2) (1− αℓb)

≤ αq−1
k

k∑
j=1

αj

k∏
ℓ=j+1

(1− bαℓ/2)
(a)

≤ 2

b
αq−1
k ,

where in (a) we used Lemma 25. If q ∈ [2, 3], using that 1−αℓb ≤
(
1− b/(q− 1)αℓ

)q−1
, we obtain

k∑
j=1

αq
j

k∏
ℓ=j+1

(1− αℓb) ≤ αq−1
k

k∑
j=1

αj

k∏
ℓ=j+1

(
1 +

b

2(q − 1)
αℓ

)q−1(
1− b

q − 1
αℓ

)q−1

≤ αq−1
k

k∑
j=1

αj

k∏
ℓ=j+1

(
1− b

2(q − 1)
αℓ

)q−1

≤ αq−1
k

k∑
j=1

αj

k∏
ℓ=j+1

(
1− b

2(q − 1)
αℓ

)
≤ 2(q − 1)

b
αq−1
k ,

and the statement follows.

We conclude with a technical statement on the coefficients {αj}j∈N under A3.
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Lemma 29. Let b > 0, and let αℓ = c0/{ℓ+ k0}γ , γ ∈ (1/2; 1), such that c0 ≤ 1/b. Then, for any
k0 satisfying

k1−γ
0 ≥ 2

c0b

(
log{ c0

b(2γ − 1)2γ
}+ γ log{k0}

)
, (71)

any s ∈ (1; 2], q ∈ (0; 1], and k ∈ N, it holds that

k∑
j=1

αs
j

( k∑
ℓ=j+1

α2
ℓ

)q k∏
ℓ=j+1

(1− αℓb) ≤ C(s, q, b)αs+q−1
k /b1+q , (72)

where C(s, q, b) = 12 · 3γ(s+q−1)

(
4(s−1)γ

bc0

)2γ(s−1)/(1−γ)

.

Proof. We denote t = ⌊(k + k0)/2⌋ and split the sum in (72) into two parts:

k∑
j=1

(
c0

(j + k0)γ

)s( k∑
ℓ=j+1

(
c0

(l + k0)γ

)2)q k∏
ℓ=j+1

(1− c0
(l + k0)γ

b)

=

k+k0∑
j=1+k0

(
c0
jγ

)s( k+k0∑
ℓ=j+1

(
c0
lγ

)2)q k+k0∏
ℓ=j+1

(1− c0
lγ
b)

≤
t∑

j=1

(
c0
jγ

)s( k+k0∑
ℓ=j+1

(
c0
lγ

)2)q k+k0∏
ℓ=j+1

(1− c0
lγ
b)︸ ︷︷ ︸

T1

+

k+k0∑
j=t+1

(
c0
jγ

)s( k+k0∑
ℓ=j+1

(
c0
lγ

)2)q k+k0∏
ℓ=j+1

(1− c0
lγ
b)︸ ︷︷ ︸

T2

.

For the term T2 we notice that c0
jγ ≤ 2γαk for j ∈ {t+ 1, . . . , k + k0}, hence, we can upper bound

T2 as follows:

T2 ≤ 2γ(s+2q)
k+k0∑
j=t+1

αs+2q
k (k + k0 − j)q exp

{
−b(k + k0 − j)αk

}
≤ 2γ(s+2q)+1αs+2q

k

∫ +∞

0

xq exp
{
−bαkx

}
dx

≤ 2γ(s+2q)+1αs+q−1
k /b1+q

∫ +∞

0

uq exp
{
−u
}
du

≤ 2γ(s+2q)+1αs+q−1
k /b1+q ,

where we have used that Γ(q + 1) ≤ 1 for q ∈ (0, 1). Now it remains to provide an upper bound for
T1. Since k0 satisfies (71), we get that, for j ≤ t,( k+k0∑

ℓ=j+1

(
c0
ℓγ

)2)q k+k0∏
ℓ=j+1

(1− c0
ℓγ

b) ≤ (
c0
btγ

)q
t∏

ℓ=j+1

(1− c0
ℓγ

b) . (73)

Then, applying (73), we get that

T1 ≤ (
c0
btγ

)q
t∑

j=1

(
c0
jγ

)s t∏
ℓ=j+1

(1− c0
ℓγ

b)
(a)

≤ (4/bq+1)

(
4(s− 1)γ

bc0

)2γ(s−1)/(1−γ)(
c0
tγ

)q+s−1

≤ (4/b1+q)

(
4(s− 1)γ

bc0

)2γ(s−1)/(1−γ)

3γ(s+q−1)αq+s−1
k ,
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where in (a) we have additionally used Lemma 30 and in (b) we used c0
tγ ≤ 3γαk. It remains to check

the relation (73), that is, it is enough to obtain an upper bound(k+k0∑
ℓ=2

c20
ℓ2γ
)q k+k0∏

ℓ=t+1

(1− c0
ℓγ

b) ≤ (
c0
btγ

)q . (74)

Since
k+k0∑
ℓ=2

c20
ℓ2γ

≤ c20

∫ k+k0

2

dx

x2γ
≤ c20

2γ − 1
.

Hence, (74) will follow from

c20
2γ − 1

exp

{
− (k + k0 − t)αkb

q

}
≤ c0

tγb
,

which is guaranteed by relations (71).

Lemma 30. Let b > 0, and let αk = c0/(k)
γ , γ ∈ (1/2; 1), such that c0b ≤ 1/2. Then for any

q ∈ [1; 2], it holds that
k∑

j=1

αq
j

k∏
ℓ=j+1

(1− αℓb) ≤ Cqα
q−1
k ,

where Cq = 4
b

(
4(q−1)γ

bc0

)2γ(q−1)/(1−γ)

.

Proof. Note that
k∑

j=1

αq
j

k∏
ℓ=j+1

(1− αℓb) = αq−1
k

k∑
j=1

αj

k∏
ℓ=j+1

(
αℓ−1

αℓ

)q−1

(1− αℓb)

≤ αq−1
k

k∑
j=1

αj

k∏
ℓ=j+1

(
1 +

1

ℓ− 1

)γ(q−1)

(1− αℓb)

≤ αq−1
k

k∑
j=1

αj exp

{ k∑
ℓ=j+1

{
γ(q − 1)

ℓ− 1
− bc0

ℓγ

}}
.

Define ℓ0 = ⌈
( 4(q−1)γ

bc0

)1/(1−γ)⌉ ≥ 2, then for any l > l0 we have γ(q−1)
ℓ−1 − bc0

ℓγ ≤ − bc0
2ℓγ . Hence, we

get
k∑

j=1

αq
j

k∏
ℓ=j+1

(1− αℓb) ≤ αq−1
k

k∑
j=1

αj exp

{ k∑
ℓ=j+1

{
− bc0
2ℓγ

}}
exp

{ ℓ0∑
ℓ=2

{
γ(q − 1)

ℓ− 1

}}
.

Therefore, Lemma 25 together with the elementary inequality e−x ≤ 1 − x/2 for x ∈ (0; 1/2),
implies that

k∑
j=1

αq
j

k∏
ℓ=j+1

(1− αℓb) ≤ αq−1
k

k∑
j=1

αj

k∏
ℓ=j+1

(1− b

4
αℓ) exp

{
γ(q − 1)(log(ℓ0 − 1) + 1)

}

≤ αq−1
k

4

b

(
4(q − 1)γ

bc0

)2γ(q−1)/(1−γ)

.

Lemma 31. For any A > 0, any 0 ≤ i ≤ n− 1 and any γ ∈ (1/2, 1) it holds

n−1∑
j=i

exp

{
−A(j1−γ−i1−γ)

}
≤


1 + exp

{
1

1−γ

}
1

A1/(1−γ)(1−γ)
Γ( 1

1−γ ) , if Ai1−γ ≤ 1
1−γ and i ≥ 1 ;

1 + 1
A(1−γ)2 i

γ , if Ai1−γ > 1
1−γ and i ≥ 1 ;

1 + 1
A1/(1−γ)(1−γ)

Γ( 1
1−γ ) , if i = 0 .

Proof. The proof is given in [70, Lemma 16].
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H Applications to the TD learning algorithm

Recall that the TD learning algorithm within the framework of linear stochastic approximation (LSA)
can be written as

θk = θk−1 − αk(Akθk−1 − bk) , (75)
where the matrices Ak and vectors bk are defined by

Ak = φ(sk){φ(sk)− λφ(sk+1)}⊤ ,

bk = φ(sk)R(sk) .

Our primary objective is to estimate the agent’s value function, defined as

V (s) = E[
∑∞

k=0 λ
k R(Sk) |S0 = s] ,

where Sk+1 ∼ P(· | Sk) for all k ∈ N. In this context, the TD learning updates (75) correspond to
approximating solutions to the deterministic linear system Āθ⋆ = b̄ (see [77]), where the matrix Ā
and right-hand side b̄ are given by

Ā = Es∼µ,s′∼P(·|s)
[
φ(s){φ(s)− λφ(s′)}⊤

]
b̄ = Es∼µ [φ(s)R(s)] .

The rest of the proof of Proposition 5 reduces to checking the properties of Ā and direct verification
of conditions of Proposition 2, which is done by the lines of [67, Proposition 2]

Numerical experiments. We consider the simple instance of the Garnet problem [4, 32]. This
problem is characterized by the number of states Ns, number of actions a, and branching factor b.
Here b corresponds to the number of states s′, that can be reached when starting from a given state-
action pair (s, a). The reward r(s, a) ∈ [0, 1] is a deterministic function. We set the hyperparameter
values Ns = 6, a = 2, b = 3, feature dimension d = 2, and discount factor λ = 0.8. We aim
to evaluate the value function of policy π(·|s), which is given, for any a ∈ A = {1, 2}, by the
expression

π(a|s) = U
(s)
a∑|A|

i=1 U
(s)
i

,

where the U
(s)
i are i.i.d. observations with U [0, 1]. In this case we can suppose that R(s) =

Ea∼π(a|s)r(s, a) is a random variable which depends on state s and some independent random
variable. We consider the problem of policy evaluation in this MDP using the TD learning algorithm
with randomly generated feature mapping, that is, we generate the matrix

Φ ∈ RNs×d

with i.i.d. N (0, 1) entries, and then take ϕ(s), s ∈ {1, . . . , |S|}, to its s-th row, normalized by
its euclidean norm: ϕ(s) = Φs/∥Φs∥. We run the procedure (1) with the learning rates αk =
c0/(k0 + k)γ with γ = 2/3 with appropriately chosen c0 and k0. We generate random vector u form
unitary sphere, and compute coverage probabilities for u⊤θ⋆ for confidence levels {0.8, 0.9, 0.95}.
The detailed setting of the experiments follows [29]. Results are given in Table 1 and illustrates the
consistency of multiplier subsample bootstrap procedure applied on the Garnet problem.

Table 1: Coverage probabilities of OBM estimation for the empirical distribution.

n | bn
0.95 0.9 0.8 stddev

×103
σ̂2
θ(u) σ2(u) σ̂2

θ(u) σ2(u) σ̂2
θ(u) σ2(u)

20480 | 250 0.873 0.881 0.773 0.805 0.641 0.662 10.89
204800 | 1200 0.935 0.945 0.880 0.892 0.768 0.784 3.49
1024000 | 3600 0.942 0.948 0.887 0.897 0.769 0.788 1.56

Code to reproduce experiments is given in https://github.com/svsamsonov/markov_lsa_
normal_approximation. Our experiments were conducted on a single Intel Xeon Gold 6248R
CPU (48 cores, 3.0–4.0 GHz), 768 GB RAM, and 240 GB SSD storage, without GPU accelerators.
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