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ABSTRACT

Since the introduction of Transformers, researchers have tackled the expensive
quadratic complexity of the attention mechanism. While significant complexity
improvements have been achieved, they often come at the cost of reduced accuracy.
In this paper, we propose Composite Slice Transformer (CST), a Transformer-
based network equipped with a composition of multi-scale multi-range attentions,
boosting both efficiency and modeling capability. After stacking fixed-length slices
of the input sequence, each layer in CST performs a pair of fine-and-coarse-grained
attentions with short and long ranges in a sequential manner, coupled with a volatile
instant positional embedding. In addition to significantly reducedO(NL+N2/L2)
complexity for sequence length N and slice length L, CST achieves superior
performance on a variety of tasks. We show that CST surpasses recently published
efficient Transformers on the Long Range Arena benchmark, demonstrating the
bidirectional long-range dependency modeling capability of our model with a
comparable complexity. It also outperforms the standard Transformer by a margin
of 6.9% in average accuracy across the five classification tasks. On the word-
level WikiText-103 autoregressive language modeling task with various sequence
lengths, and the masked language modeling followed by GLUE benchamrk, CST
outperforms most other efficient Transformers while being competitive against the
Transformer.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) are one of the most important recent advances in artificial
intelligence. Since they can be combined in a straightforward fashion with advanced training
methods and auxiliary modules, Transformers have proven extremely effective as a versatile backbone
architecture for achieving state-of-the-art performance in many domains such as natural language
processing (Devlin et al., 2018; Yang et al., 2019; Brown et al., 2020; Raffel et al., 2020; Sanh et al.,
2022), vision processing (Dosovitskiy et al., 2020; Liu et al., 2021b; Radford et al., 2021), visual
language modeling (Alayrac et al., 2022), speech recognition (Dong et al., 2018; Gulati et al., 2020;
Shi et al., 2021), and reinforcement learning (Chen et al., 2021b; Janner et al., 2021).

Despite this versatility, Transformers possess an expensive memory and computational complexity
of O(N2) with respect to input length N in the multi-head self-attention computation. As a result,
Transformers are often not applied to long sequence data. Since the introduction of Transformers
in (Vaswani et al., 2017), recent work has focused on improving Transformer complexity through
various techniques, achieving efficiency gains in complexity and memory requirements (Tay et al.,
2020c), with several models attaining O(N) complexity (Wang et al., 2020; Katharopoulos et al.,
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2020; Ma et al., 2021). Unfortunately, these efficiencies come at the cost of reduced accuracy and
often lack the ability to model fine-grained token dependencies, limiting the application of these
recent improvements to a wider range of practical problems. Recent studies (Zhu et al., 2021; Ren
et al., 2021; Nguyen et al., 2021; Zhu & Soricut, 2021; Han et al., 2021) show that combining efficient
techniques for global sequence modeling with fine-grained limited range attention can improve
accuracy, maintain low complexity, and enable longer context windows, allowing such models to
outperform the standard, full-resolution Transformer on certain tasks. However, optimally combining
sequence modeling at different levels of granularity remains an open problem.

To this end, we propose the Composite Slice Transformer (CST), an efficient Transformer-based
network architecture, consisting of a composition of attentions applied to a stacked slice representation
of the input sequence at different scales, coupled with a multi-scale volatile instant positional
embedding. For fixed slice lengthL, CST has a complexity ofO(NL+N2/L2), which is comparable
or more efficient to linear complexity in many practical settings (Section A.4). Since slicing restricts
fine-grained token interaction across boundaries, CST also leverages an extended local attention,
preventing context fragmentation (Dai et al., 2019b) and enabling seamless sequence modeling.
These improvements allow CST to outperform the standard Transformer on several benchmark tasks.
Similar to (Dosovitskiy et al., 2020), CST abstracts the input sequence into another with fewer tokens
to compute a low-resolution attention with longer range and a fixed-size segment-wise embedding.
With a segment length L, the reduced sequence has length N/L; evaluating attention on this reduced
sequence has complexity O(N2/L2). With an appropriately chosen L, CST can achieve a significant
complexity reduction without a loss of performance. Along with the segment-level attention, CST
also leverages a full-resolution local attention to form a multi-scale multi-range attention (MSMRA)
through a composition with the global attention, improving model expressiveness (Section A.5),
unlike (Zhu & Soricut, 2021; Zhu et al., 2021; Nguyen et al., 2021; Ren et al., 2021; Han et al., 2021).

CST extends the ideas of position-infused attention (Press et al., 2021) and applies them to MSMRA,
which we refer to as multi-scale volatile instant positional embedding (MS-VIPE). In addition to
its effectiveness as a positional embedding, MS-VIPE provides further parameter efficiency by
only requiring storage of reduced lengths of local (L) and global (N/L) attentions instead of the
full sequence length N . We evaluate our model on bidirectional long-range dependency modeling
tasks, an autoregressive language modeling task, and natural language understanding tasks. In our
experiments (Section 5), CST achieves state-of-the-art performance among all Transformer-based
models (including the standard Transformer and recently proposed efficient Transformers) and
demonstrates strong performance on a wide variety of tasks.

The paper is organized as follows. In Section 2 and Section 3, we discuss recent efficient Transformer
developments, discuss strengths and weaknesses, and outline the inspiration for CST. In Section 4,
we present our model, Composite Slice Transformer, and describe its features. In Section 5, we
provide our experimental results on the Long Range Arena, WikiText-103 autoregressive language
modeling, and the GLUE benchmarks, demonstrating the efficiency and versatility of CST. In Section
6, we conclude with a summary of our work.

2 RELATED WORK

Tay et al. (2020c) provides a comprehensive study of proposed approaches to accelerate the attention
mechanism of Vaswani et al. (2017). The key differentiating factor among the approaches presented
is the modeling assumptions used to approximate the original attention map. For example, common
assumptions include sparsity (Child et al., 2019; Ho et al., 2019; Beltagy et al., 2020; Ainslie et al.,
2020; Zaheer et al., 2020; Tay et al., 2020a; Kitaev et al., 2019) and low-rankness (Wang et al., 2020;
Choromanski et al., 2020; Katharopoulos et al., 2020). Chen et al. (2021a) combines these two
assumptions. Other architectures leverage additional memory for compressing the global context (Lee
et al., 2019; Ma et al., 2021; Jaegle et al., 2021). In order to capture fine-grained token interactions
that might be missing in the abstractive attention, (Zhu & Soricut, 2021; Zhu et al., 2021; Nguyen
et al., 2021; Ren et al., 2021) use a process akin to leverage a full-resolution local attention to form
a multi-scale multi-range attention (MSMRA). These approaches, however, do not compose the
local full-resolution attention and global reduced-resolution attentions in a series. Absent from this
literature, serial composition and positional embedding would improve accuracy while preserving
the efficiency (see the following sections for how we address this enhancement). More recently,
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there also have been proposed sequence models with structures or strong inductive biases achieving
significant improvements in benchmarks such as (Gu et al., 2021; Mehta et al., 2022; Ma et al., 2022;
Li et al., 2022). (Press et al., 2021) propose the position-infused attention (PIA), which is an attention
module with a layer-wise positional embedding applied only to queries and keys, to address token
representation reusability issue in increasing window attention due to positional information draft,
while avoiding expensive computation of relative position encoding (Dai et al., 2019b). Another
study of adding positional embedding to values is conducted in (Tsai et al., 2019), concluding that
positional embedding on value does not lead to performance improvement. We extend these ideas in
CST and apply in MSMRA.

3 PRELIMINARIES

3.1 TRANSFORMERS AND MULTI-HEAD SELF-ATTENTION

A Transformer layer consists of a multi-head self-attention sublayer followed by a feed-forward
network (Vaswani et al., 2017) with an optional cross-attention sublayer when used as a decoder. The
multi-head self-attention is defined as the concatenation of the self-attention output of all attention
heads:

Y = [Y0,Y1, ...,YH−1]2 , (1)

where [·]r denotes concatenation in the rth dimension, and each of the outputs Yh ∈ RN×dh is a
scaled dot-product attention computed from the input X ∈ RN×D as

Yh = softmax

(
QhKh

⊤
√
dh

)
Vh = AVh. (2)

In Eq. 2, Qh = XWq,h, Kh = XWk,h, and Vh = XWv,h are queries, keys and values, respec-
tively, expressed as linear transformations of the input X by W·,h ∈ RD×dh . We assume the queries,
keys, and values have the same hidden dimension: dh = D/H . For the rest of the paper, we omit the
head index h and scaling factor 1/

√
d for simplicity. We denote the query, key and value at some

position index i by ki, vi, qi ∈ R1×d, respectively. In this context, the attention output at the ith
token position yi ∈ R1×dh corresponds to

yi = softmax
(
qiK

⊤)V. (3)

Due to the nonlinearity and normalization property of the softmax function, QK⊤ must be computed
to obtain the attention weight, followed by value aggregation through the attention weights, AV,
resulting in O(N2) complexity with respect to the sequence length N for the self-attention.

3.2 ABSTRACTIVE ATTENTIONS AND MULTI-SCALE MULTI-RANGE ATTENTION (MSMRA)

We refer to the family of efficient attention approaches in which the lengths of the attention operands
are reduced to M < N by applying an abstraction function ϕ(·) as abstractive attentions. This
approach results in reduced attention complexity while retaining the form of basic attention compu-
tation in Eq. 3. Many recent approaches follow this template (Wang et al., 2020; Ma et al., 2021;
Dosovitskiy et al., 2020). We focus on cases where the operands of attention, i.e., query, key, and
value, are abstracted, noting that there are other possible choices, e.g., abstracting only query and key.

In such cases, the attention mechanism is reduced to

yi′ = softmax
(
qi′K

⊤)
V, (4)

where Q, K, and V are abstracted queries, keys, and values, respectively, qi′ is i′th row of Q, and
yi′ is the attention output token with the abstracted query token qi′ obtained by

qi′ = ϕ
(
{qi∈Ωi′}

)
. (5)

In order to restore the resolution of the output, since the query is abstracted, we define a one-to-many
mapping function ψ(·) as

yi∈Ωi′ = {ψ (yi′)}i. (6)
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Figure 1: Illustration of Composite Slice Attention. CSA consists of a full-resolution local attention with
computational complexity O(NL) and a low-resolution global attention with complexity O(N2/L2).

A more detailed description of abstractive attention is presented in Section A.1.

Although many previous abstractive attention approaches have achieved sub-quadratic or linear
complexities, they typically result in degraded benchmark performance. However, Transformer-based
models that leverage multi-scale attention by combining local attention and global attention perform
competitively against the standard Transformer. In fact, these models can outperform the standard
Transformer on certain tasks, while still maintaining efficiency (Zhu & Soricut, 2021; Zhu et al., 2021;
Nguyen et al., 2021; Ren et al., 2021). While other types of MSMRA are described in Section A.2,
our proposed attention mechanism is essentially an MSMRA of the form

yi = yl,i + ψ
(
yg,i′

)
, (7)

where yl,i is the local attention output and yg,i is the global attention output, leveraging a one-
dimensional version of the token abstraction used in (Dosovitskiy et al., 2020) for the global attention,
but with additional composition of local attention.

4 COMPOSITE SLICE TRANSFORMER

We describe the key ideas of Composite Slice Attention (CSA) and CST network, a Transformer-
based model with CSA replacing the full softmax dot-product attention in the standard Transformer.
CSA leverages both full-resolution attention in limited ranges and abstracted attention to capture
long-range interactions. Unlike previous approaches, the multi-scale, multi-range attentions are
combined through function composition in a serial connection, which allows information passing
across representations at different scales and improves expressiveness of the model. See Figure 1 for
an illustration of the CSA module and Appendix A.3 for full architecture diagrams.

4.1 SEQUENCE REPRESENTATION AS STACKED SLICES AND CSA

In a high-level categorization, the multi-scale multi-range attention of the CST corresponds to the
combination of block-wise local window attention (Beltagy et al., 2020) and patch-based global
attention (Dosovitskiy et al., 2020) in a one-dimensional form. CSA layer starts with converting the
input sequence X ∈ RN×D into a stack of slices S ∈ RN/L×L×D by slicing it with a fixed length
L, implemented simply as a Reshape operation. Two attentions with different granularity are then
performed sequentially in each direction. First, the batch size B and the number of slices N/L is
combined as a new batch size BN/L, so that we parallelize the local attention for all slices. Then,
the local attention is performed across the tokens within each of these new batches:

Yl = softmax
(
QlK

⊤
l

)
Vl, (8)

where Ql, Kl, and Vl ∈ RBN/L×L×d are the queries, keys, and values for each local attention
head, computed as SWl,q , SWl,k, and SWl,v , respectively, with Wl ∈ RD×d. Next, the dimension
of length L in the local attention output is collapsed using an abstraction function ϕ to get the
slice embedding S ∈ RBN/L×D. Specifically, we use a simple mean pooling Ss = ϕ(Yl,s) =
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∑L−1
l=0 ms,lYs,l/

∑L−1
l=0 ms,l, where s and l denote the slice index and the token index, respectively,

and m ∈ RN/L×L is the stack of slices of the binary attention mask that is optionally given in the
case that the input sequence is padded; e.g., when a data batch has samples with different lengths.
1 Then the second, global attention along the slice dimension is performed to model full-range
slice-wise interaction in a reduced resolution:

Yg = softmax
(
QgK

⊤
g

)
Vg, (9)

where Qg, Kg, and Vg is the abstracted queries, keys, and values for the global attention obtained by
applying Wg,q , Wg,k, and Wg,v to S. Finally, the output of the global attention is broadcasted to the
original resolution and added to the local output:

Yi = Yl,i +Yg,i = Yl,i + ψ
(
Yg,i′ ,

)
(10)

where ψ(Yg,i) is a broadcasting function that restores only the sequence length, i.e., Yg,i = Yg,i′

for i ∈ Ωi′ , since the output of the local attention still holds the full resolution. This process can be
implemented as a simple broadcast-add operation.

Slice Extension: Addressing Fine-Grained Context Fragmentation The local attention of the
stacked slice representation of the sequence S is strictly bounded, resulting in potential context
fragmentation (Dai et al., 2019b). Although the global attention models the slice-wise interactions, it
may not be sufficient to capture the important fine-grained token dependencies. To allow token-level
interaction between slices, we slightly extend each slice into its neighbors, allowing slices to share
tokens. This extended local attention can be computed by having keys Kl, ext and values Vl, ext
transformed from extended stacked slices Sext, where α denotes the extension ratio. The extension
can be implemented by concatenating shifted-slices in keys and values:

Sext =
[[
0(α−1)L/2,S:−1,(3−α)L/2:L

]
1
,S,
[
S1:,0:(α−1)L/2,0(α−1)L/2

]
1

]
2
∈ RN/L×αL×D, (11)

for α ≤ 3 where the Python notation of indices selection is used.

Slice Extension and Multi-Scale Causal Mask for Autoregressive Sequence Modeling In order
to apply CST to autoregressive sequence processing tasks, we propose custom causal masking and
slice extension schemes. For the local token-level attention, we apply an L× L causal mask map
with −∞ above the main diagonal and zero elsewhere to the score tensor QlK

⊤
l . However, since the

leftmost tokens in each slice have few (and possibly zero) tokens to attend to, we extend the keys and
values only on the left-hand side to encourage better fine-grained dependency modeling, i.e.,

SAR, ext =
[[
0(α−1)L/2,S:−1,(3−α)L/2:L

]
1
,S
]
2
. (12)

For the global attention, an extra care must be taken to prevent leftward information leakage while
computing the slice embedding via mean pooling. The diagonal elements in the N/L×N/L casual
mask are set to be −∞ in contrast to the local counterpart. In addition, at the slice index t, the shifted
query Qg,t−1 is used for query instead of Qg,t (note that Kg,t is handled by the global casual mask).

Increased Expressiveness of CST We mathematically motivate the improved performance of
CST over competing efficient Transformer models. We show that a given function that CST is
able to represent is ϵ away from a rational function with Euclidean degree 4d(ϵ), while competing
approaches such as H-Transformer-1D (Zhu & Soricut, 2021) can only approach a rational function
with Euclidean degree d(ϵ). This implies that CST is more expressive than other approaches that do
not involve compositions of multi-scale attentions. We state the main result below and present the
details in Appendix A.5.
Proposition 1. For any fixed ϵ > 0, there exists some Euclidean degree d(ϵ) = O(log(ϵ)) such that,

YH
g ⊆ Sϵ

M,d(ϵ), and YCS
g ⊆ Sϵ

M,4 d(ϵ), (13)

where M corresponds to the total number of weights in CST, and Sϵ
M,d is the space of ratios of real

analytic functions that are ϵ away from a rational function with Euclidean degree d with input in RM .
1Normalization with the sum of the binary mask, i.e., the number of nonzero mask values, instead of the

slice length L, avoids biases in the mean computation induced by masked tokens.
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4.2 MULTI-SCALE VOLATILE INSTANT POSITIONAL EMBEDDING (MS-VIPE)

Since we reduce the input lengths of both global and local attentions, the full positional embedding of
the maximum input sequence length is no longer necessary. For the local attention, we can limit the
positional embedding length to the attention range (i.e., the slice length L), sharing the embedding
across slices. In addition, as we aggregate the tokens from each slice for the global attention, it is
more natural to have a separate positional embedding of length N/L at the scale of slice embedding
instead of aggregating the full-resolution positional embedding with the same process as the token
embedding. The total number of parameters is ((L + N/L)D), less than that of a conventional
positional embedding (ND).

To this end, CST uses two positional embeddings Pl ∈ R1×L×D and Pg ∈ RN/L×D applied
at different scales, in a fashion similar to that used by (Han et al., 2021), but with a few crucial
differences: first, instead of adding the positional embedding to the stacked slices of token embedding
at the embedding layer and having aggregated positional information as the layers stack up (Press
et al., 2021), CST applies them instantly at the corresponding attentions in each layer before the
linear transformations. Second, the positional embeddings are applied for the queries and the keys,
not for the values, to prevent accumulation of positional information in sequence representations.
Since the positional embedding in all layers are added, they can be accumulated over the layers
and can undesirably dominate the contextual information at top layers which potentially leads to
performance degradation. Our experiments in Section A.6.2 show that the multi-scale volatile
instant positional embedding (MS-VIPE) is more effective as compared to the conventional absolute
full-length positional embedding. Equations (8) and (9) are rewritten as:

Yl = softmax
(
{(S+Pl)Wl,q}{(S+Pl)Wl,k}⊤

)
SWl,v, (14)

Yg = softmax
(
{
(
S+Pg

)
Wg,q}{

(
S+Pg

)
Wg,k}⊤

)
SWg,v. (15)

For the extended local attention, we modify the corresponding positional embedding Pl to have the
extended length αL, similarly to Kl, ext.

4.3 COMPLEXITY AND PARAMETER REDUCTION IN CST

CST has linear plus decimated quadratic complexity O(NL + N2/L2) compared to the O(N2)
complexity of the standard Transformer. However, in a practical range of sequence lengths, e.g., from
a few hundreds to a few tens of thousands, CST has a comparable or better efficiency than other
efficient transformers with linear complexity O(NM) with choices of the abstraction lengths M ,
e.g., from 64 to 256 or higher for even longer sequences, since the slice length L for CST is typically
less than M , even with additional for query, key, and value transformations of 3(N/L)d2, which is
almost negligible. Furthermore, unlike most efficient transformers that can have similar or higher
complexity than the standard transformers with short input sequences, CST has better efficiency even
in such cases. See Section A.4 for more details of practical complexity analysis.

5 EXPERIMENTS

To demonstrate the computational efficiency and sequence modeling capability of CST, we evaluate
our model in three different contexts: (1) bidirectional long-range dependency modeling on classifi-
cation tasks (2) word-level auto-regressive language modeling and (3) masked language modeling
and transfer learning to natural language understanding on short sequences. Throughout this section,
unless stated otherwise, it is implied that we train each model from random initialization, reporting
its test performance from the model with the best validation result in each case.

5.1 BIDIRECTIONAL LONG-RANGE DEPENDENCY MODELING

Datasets and Baselines The Long Range Arena (LRA) benchmark (Tay et al., 2020b) is a suite of
classification tasks that evaluate long-range dependency modeling capabilities with datasets from
several different modalities with lengths ranging from 1k to 16k. We evaluate CST on the five tasks
broadly used in literature, ListOps, Text, Retrieval, Image, and Pathfinder, where the maximum

6



Published as a conference paper at ICLR 2023

1 2 3 4 5
Relative Speed

52

54

56

58

60

62

64

66

LR
A 

Sc
or

e

FNet

H-Transformer-1D
Linear Transformer

Linformer

LS-Transformer

Luna
Nystromformer

Performer

Reformer

Transformer

CST (L=16)
CST (L=8)CST (L=8)

CST (L=16)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pa
ra

m
et

er
 C

ou
nt

 (M
)

Figure 2: LRA score (y-axis), relative speed (x-axis), relative GPU memory usage (circle radius), and parameter
count (color). With competitive efficiency and smaller model sizes, CSTs outperform strong efficient Transformer
baselines as well as the standard Transformer by significant margins. The speed and memory usage measurements
can be different depending on devices and implementations.

Table 1: Test accuracy on Long Range Arena (LRA) benchmark.

Model ListOps Text Retrieval Image Pathfinder Average

Transformer (ours) 39.92 64.20 82.11 44.25 74.79 61.05
Transformer (Tay et al., 2020b) 36.37 64.27 57.46 42.44 71.40 54.39
Transformer (Xiong et al., 2021) 37.10 65.02 79.35 38.20 74.16 58.77

FNet 36.74 64.37 74.29 44.08 50.22 53.94
Linear Transformer 37.40 65.16 82.73 43.81 74.74 60.77
Performer 37.25 64.65 81.69 41.73 72.91 59.65
Cosformer 38.26 64.59 82.17 41.91 67.72 59.73

Reformer 18.04 60.94 79.19 40.38 67.66 53.24
Linformer 38.71 58.73 79.88 45.31 70.11 58.55
Luna 38.36 65.20 81.88 43.16 74.04 60.53
Nyströmformer 37.50 65.01 80.42 51.13 69.73 60.76

H-Transformer-1D 38.21 66.09 84.19 46.03 72.45 61.39
Long Short Transformer 38.86 64.93 83.88 47.45 75.28 62.08
Scatterbrain 38.71 63.52 81.12 41.01 70.11 58.89

CST (L = 8) 37.45 77.23 84.15 51.27 76.32 65.28
CST (L = 16) 37.90 73.60 84.00 51.39 76.97 64.77

sequence length is 4k. We compare CST’s efficiency and performance against several state-of-
the-art efficient Transformer models. Specifically, we evaluate our model and other Transformer
models from a group of non-abstractive attention methods: FNet (Lee-Thorp et al., 2021), Linear
Transformer (Katharopoulos et al., 2020), Performer (Choromanski et al., 2020), Cosformer (Qin et al.,
2021), a group of abstractive attention methods: Reformer (Kitaev et al., 2019), Linformer (Wang
et al., 2020), Luna (Ma et al., 2021), Nyströmformer (Xiong et al., 2021), and another group of
multi-scale multi-range attention methods: H-Transformer-1D (Zhu & Soricut, 2021), Long Short
Transformer (Zhu et al., 2021), and Scatterbrain (Chen et al., 2021a), as well as the standard
Transformer (Vaswani et al., 2017). We outline experimental setup for the Long Range Arena in
Appendix A.6.1. Our setup is favorable to the baseline Transformer to provide a fair condition to the
challengers, explaining the difference in performances of Transformers from previous work.

Results Our experimental results on the LRA benchmark are given in Table 1. We observe that
CST surpasses the state-of-the-art efficient Transformers with large margins. The best performance
is achieved using a slice length 8, outperforming the Transformer baseline by 4.23 points in average
score across all tasks. The largest improvements are observed on the Text, Retrieval, and Image
tasks, while a minimal degradation is observed on the ListOps task. In addition, as discussed in
Section 4.1, CST has the added benefit of requiring fewer parameters for a given model size thanks
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Table 2: Autoregressive language modeling perplexity on WikiText-103 withN = 256. Results for other models
are taken from (Nguyen et al., 2021).

Model Validation Perplexity Test Perplexity

Transformer 33.15 34.29
Linear Transformer 37.27 38.40

FMMFormer (2-kernel + Band20) 35.10 36.11

CST (L = 32, α = 3) 34.18 34.98

Table 3: CST ablation study on WikiText-103 with
varied slice length L and extension ratio α with
N = 256.

L α Valid PPL Test PPL Relative Speedup

8 1 39.15 39.78 1.50×
8 2 36.59 37.33 1.51×
8 3 36.10 36.78 1.49×
16 2 35.78 36.52 1.52×
16 3 35.28 36.04 1.47×
32 2 34.83 35.60 1.54×
32 3 34.18 34.98 1.51×

Table 4: CST WikiText-103 test perplexity with
N = 1024. Results for other models are taken
from (Chen et al., 2021a)

Attention Test PPL

Full Attention 25.258
Reformer 27.68
Performer 66

Scatterbrain 26.72

CST(L = 32, α = 3) 26.82

to its positional embedding characteristics, although this benefit may be marginal as the network size
increases.

We also measure relative speed, and relative GPU memory usage for each model under comparison on
a NVIDIA Tesla V100 GPU with 32GB memory on Retrieval dataset with the sequence length
of 4k and report the results in Figure 2. Here, relative speed is computed as the number of training
steps per second divided by that of Transformer, and GPU memory usage is measured using the
PyTorch command, torch.cuda.max_memory_allocated(), both on the Retrieval task. It
is clearly seen that CST outperforms all models while having competitive computation and memory
efficiency to other efficient Transformer models.

We present an ablation study regarding the choice of positional embedding and aggregation method
on the LRA benchmark in Section A.6.2. In summary, variants of CST consistently outperform all
other efficient models (Table 7), except that switching the MSMRA composition order, i.e. attentions
in global-local order, performs slightly worse than Long Short Transformer (Zhu et al., 2021). We
demonstrate that the composition of MSMRA in the local-global order and the proposed positional
embedding are the most important components contributing to CST’s accuracy. While the best
overall performance is achieved with L = 8, we find that the slice length L has less effect than other
hyperparameters. We also find that attention outperforms an MLP-based local token mixing scheme
and that mean pooling aggregation outperforms max pooling and linear projection (Table 8).

5.2 AUTOREGRESSIVE LANGUAGE MODELING

In this section, to evaluate its applicability as language model, we conduct an autoregressive language
modeling experiment on the word-level WikiText-103 dataset (Merity et al., 2016).

Dataset and Experimental Setup The WikiText-103 (Merity et al., 2016) dataset is a collection
of featured articles on Wikipedia. It has 103M/218K/246K words in training/validation/test sets,
respectively. The task in this experiment is to predict the next word given the history of past words.
We follow the experimental setup in (Nguyen et al., 2021) and that in (Chen et al., 2021a) for the
context window length 256 and 1024, respectively, and train CSTs to compare the results with their
reported results. While the dataset allows for a larger context, we used the 256 and 1024 context
window lengths to match the baselines. CST also uses the causal mask and slice embedding described
in Section 4.1. More discussion of the experimental setup can be found in Appendix A.7.1.

Results We report the perplexities of the best performing variant of CST (L = 32, α = 3)
compared to other state-of-the-art efficient Transformer models in Table 2 and Table 4. CST
outperforms other efficient Transformer including Linear Transformer (Katharopoulos et al., 2020)
and Performer (Choromanski et al., 2020), kernel method-based linear-complexity models, and

8



Published as a conference paper at ICLR 2023

Table 5: Bidirectional MLM and NLU transfer learning evaluation on GLUE benchmark.
Model MLM COLA MNLI MRPC QNLI QQP RTE SST STSB GLUE Average

BERTbase 4.84 60.63 83.35 91.17 90.04 87.67 69.68 92.89 87.43 82.86
Nyströmformer (64) 6.77 39.39 78.75 87.23 87.35 85.64 54.87 90.48 84.28 76

Performer (64) 6.44 46.64 77.48 82.23 85.7 85.8 57.76 90.02 78.00 75.46
Luna (64) 5.63 42.63 78.26 82.94 85.78 84.18 59.21 90.94 75.89 74.98

FNet 8.62 44.58 75.15 84.00 84.15 84.61 63.18 89.33 82.84 75.98

CST (L = 16, α = 1) 6.00 58.49 76.45 81.76 84.44 85.24 59.57 91.74 73.77 76.43
CST (L = 16, α = 2) 5.42 58.87 78.04 82.39 85.52 85.70 60.29 92.20 75.59 77.33
CST (L = 16, α = 3) 5.28 55.98 79.68 83.49 84.83 86.90 61.37 92.20 81.67 78.27
CST (L = 32, α = 1) 5.77 60.34 78.47 83.06 85.17 86.36 59.93 91.74 78.26 77.92
CST (L = 32, α = 2) 5.30 57.34 80.73 85.85 86.31 87.08 59.21 91.97 85.95 79.31
CST (L = 64, α = 1) 5.56 59.69 81.12 89.42 88.21 87.42 61.37 92.43 87.76 80.93

FMMformer, while being comparable to Scatterbrain (Chen et al., 2021a), noting that the latter two
are MSMRA-based models. In Table 3, we provide an ablation study demonstrating the impact of
L and α on validation and test perplexity. We observe that longer local attention length leads to
better perplexities while being much shorter than the the context window length, e.g. CST with
L = 32, α = 3 has the local window length 64 that is 4 and 16 times smaller than the context
window lengths 256 and 1024, respectively. We believe that addressing the missing global context,
as discussed in A.9, and a better hyperparameter search will improve the perplexity. We also observe
consistent 1.5x speed-ups across configurations compared to the standard Transformer in Table 3.

Additional Experiment on PG-19 We additionally conduct an experiment on PG-19 dataset (Rae
et al., 2019). We use various combinations of sequence length N , slice length L, and extension
ratio α to match the attention complexity of CSTs to those of Transformers with N = 256 and 512.
While the validation and the test perplexities with discussion can be found in A.7.2, we observe CST
consistently outperforms the Transformer counterparts with the same attention complexities.

5.3 BIDIRECTIONAL LANGUAGE MODELING AND TRANSFER LEARNING

We further evaluate CST on bidirectional language modeling and transfer learning on GLUE bench-
mark with relatively short input sequences, i.e., N = 128. Masked language modeling (MLM) was
proposed in (Devlin et al., 2018) as a pretraining method of transformer encoder models and it
greatly improves downstream natural language understanding (NLU) performances when fine-tuning
the pretrained models. We follow the experimental setup of (Devlin et al., 2018) for conducting
both pre-training and fine-tuning including datasets, masking rate, batch size, optimizer settings, and
evaluation metrics with a few exceptions. We report the MLM validation perplexities and GLUE
scores with accuracy on each task for a variation of L and α in Table 5. Further experimental details,
more experimental results, and discussion can be found in A.8. CST consistently outperforms other
efficient transformers and closes the gap to the baseline BERT model by 0.46 validation perplexity
and 2.45 points in GLUE score.

6 CONCLUSION

In this paper, we present Composite Slice Transformer (CST), an efficient Transformer-based network
equipped with composition of multi-scale multi-range attentions. Using stacked slice representation
of input sequences, a CST layer performs a set of local fine-grained attention and global coarse-
grained attention in a sequential manner at a low complexity cost of O(NL+N2/L2). In addition to
the reduced complexity, we also show that CST improves performance on various sequence modeling
tasks. On Long Range Arena, word-level autoregressive language modeling on WikiText-103, masked
language modeling, and natural language understanding benchmarks, CST significantly surpasses
strong baselines including recently proposed efficient Transformers, and sometimes the standard
Transformer. We highlight limitations and potential directions for future work in A.9.
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A APPENDIX

A.1 ABSTRACTIVE ATTENTIONS

Abstractive attentions are the family of efficient attention approaches in which the lengths of the
attention operands are reduced to M(< N) by applying an abstraction function, resulting in reduced
complexity of the attention while retaining the form of basic attention computation in Eq. 3. Abstrac-
tive attentions can be further categorized to either resolution preserving or non-preserving, according
to which operands are chosen to be abstracted. Resolution non-preserving attention is the result of
abstracted queries, further producing abstracted output. This categorization is determined by the
requirement of the given task. For example, tasks such as language modeling and machine translation
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require the full resolution at the output to be retained. In such cases, it is common to have only
abstracted keys and values while the query resolution is retained; the abstractive attention can be
expressed as

yi = softmax
(
qiK

⊤)
V, (16)

K =
[
k0, ...,kj′ , ...,kMk

]
1
, (17)

kj′ = ϕ
(
{kj∈Ωj′}

)
, (18)

where Ωj′ denotes the abstraction range with the cardinality |Ωj′ | =Mk for the j′th key abstraction
kj′ and ϕ(·) : KΩj′ ∈ R|Ωj′ |×dh → kj′ ∈ R1×dh is a many-to-one abstraction function. The
abstracted values Vj′ can be expressed similarly. The queries Q can be similarly abstracted to Q as

qi′ = ϕq
(
{qi∈Ωi′}

)
, (19)

where qi′ is the i′th row of Q. The attention mechanism is reduced to

yi′ = softmax
(
qi′K

⊤)
V, (20)

where an attention output vector yi′ is obtained at each abstract position i′. In order to restore the
resolution of the output, we define a one-to-many mapping function ψy as

yi∈Ωi′ = {ψy (yi′)}i. (21)

Resolution non-preserving abstraction is often used for the tasks where the full-resolution output is
not needed such as sequence-level classification problem. However, in some cases, with additional
processing leveraging representations at a lower layer, e.g., cross attention with input tokens, it is
possible to restore the resolution (Dai et al., 2020; Jaegle et al., 2021).

A.2 MULTI-SCALE MULTI-RANGE ATTENTIONS (MSMRA)

Although many previous abstractive attention approaches have achieved sub-quadratic or linear com-
plexities, they typically come at the cost of degraded benchmark performance. However, Transformer-
based models that leverage multi-scale attention by combining local attention and global attention
perform competitively against the standard Transformer; in fact, these models can outperform the
standard Transformer on some benchmarks, while still maintaining efficiency (Zhu & Soricut, 2021;
Zhu et al., 2021; Nguyen et al., 2021; Ren et al., 2021).

The local attention, also known as sliding window attention, limits the attention range to the vicinity of
query locations. That is, the key abstraction with the whole abstraction range and the query location-
dependent abstraction function becomes Kl,i = ϕsliding

k,i (K) = K⊙(H(i−j−w/2)−H(i−j+w/2))
for the ith query token, where H is the Heaviside step function, w is the window length, and ⊙ is the
element-wise product. This results in the following equation:

yl,i = softmax
(
qiK

⊤
l,i

)
Vl,i (22)

For better computational efficiency, block-wise key abstraction in Equation equation 22 can be
adopted as Kl,i = ϕblock

k,i (K) = K⊙ (H(ti−j−w/2)−H(ti−j+w/2)) for a block-wise attention
where ti = (b− 1/2)w for the block index b such that (b− 1)w ≤ i < bw.

For the global attention, abstractive attention with either positional abstractions (Zhu & Soricut, 2021;
Yang et al., 2021; Ren et al., 2021) or contextual abstractions (Ma et al., 2021; Zhu et al., 2021) can
be employed. The former can be loosely seen as having patch embedding in ViT (Dosovitskiy et al.,
2020).

MSMRAs can also be categorized according to how the two attentions are combined. While one
approach involves concatenating the abstractions of multi-scale keys and values for a single attention
operation (Zhu & Soricut, 2021; Zhu et al., 2021; Yang et al., 2021):

yi = softmax
(
qi

[
Kl,i,Kg

]⊤
1

) [
Vl,i,Vg

]
1
, (23)
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another separates attentions at different scales and combining the outputs (Han et al., 2021) (possibly
with some weighting coefficients):

yi = yl,i + ψy (yg,i) . (24)

In this case, other non-attentive methods such as kernel method (Nguyen et al., 2021) can also be
used for the global attention.

CST belongs to the latter of the two approaches, where the local and global attentions are performed
separately and their outputs are combined. This is closely related to Transformer-In-Transformer
(TNT) (Han et al., 2021); however, since TNT has a path for the local attention that is independent of
the global attention, information exchange between patches is not allowed for the features in the local
attention path. Unlike TNT, the composition of multi-granular attentions in CST enables two-way
information passing. This is more suitable for modeling highly non-stationary data, such as natural
language text data for example, where the locality assumption does not hold.

A.3 ARCHITECTURE OF COMPOSITE SLICE TRANSFORMER NETWORK

We present the overall architecture of CST alongside the detailed CSA architecture in Figure 3. CST
consists of a fine-grained local attention with computational complexity O(NL) and a coarse-grained
global attention with complexity O(N2/L2). A shared multi-scale positional embedding, MS-VIPE,
is applied to all layers. CSA replaces self-attention sublayer in each Transformer block to form a
Composite Slice Transformer (CST) network.

Two sets of Wq,Wk,Wv transformations in CST may also affect the parameter count. While TNT
(Han et al., 2021) reduces the hidden dimension for local attention to limit the network size increase,
we keep the same dimension for representations at different scales and share the weights between
local and global attentions, resulting in no increase in parameter count.

A.4 CONSIDERATION ON PRACTICAL EFFICIENCY AND EFFECTIVENESS OF CST

In this section, we provide an intuition for how and why a multi-scale multi-range attention with
O(NL+N2/L2) complexity can be a better alternative to the vanilla self-attention than abstraction
attentions with linear complexities in terms of both complexity and modeling capability. Improved
expressiveness from composition of them is further discussed in Section A.5. A linear complexity
can be easily considered to be more efficient than a quadratic complexity. A linear complexity often
accompanies another variable; i.e., the abstraction length M in the case of abstractive attention
such as (Wang et al., 2020; Ma et al., 2021), resulting in O(NM) complexity. It is obvious that
the quadratic complexity O(N2) is higher than the linear complexity whenever the abstraction
length M is smaller than the sequence length, which is mostly true by the definition of abstraction.
However, when a notion of sequence decimation comes into play, we come to a little different
conclusion. Consider an attention on an abstracted sequence of patch embeddings in (Dosovitskiy
et al., 2020) or slice embeddings in CST. Then the complexity of the abstractive attention becomes
a decimated quadratic O(N2/L2). In addition to this, if a full-resolution local attention is used
as in CST or (Han et al., 2021) as a multi-scale multi-range attention, the complexity becomes
O(N2/L2+N/L·L2) = O(N2/L2+NL). We plot the comparison of the linear complexityO(NM)
andO(N2/L2+NL) in Figure 4a with several practical choices of the number of abstractionsM and
the decimation ratio, e.g., slice length, L. Here, one can find that a decimated quadratic complexity
attention can have better efficiency a linear complexity attention, when the sequence length is less
than a few tens of thousands which is considered as a practical range of sequence lengths in many
tasks and data types.

Figures 4b shows effective number of tokens for each abstraction for both cases with the same
choices of M and L. While a decimation, e.g., slicing, retains constant numbers of tokens in each
abstraction, the linear complexity attention methods that uses fixed number of abstraction has linearly
increasing effective number of tokens per abstraction with respect to the sequence length. Given a
fixed hidden dimension, larger number of effective tokens per abstraction requires the abstraction
process to compress more information, resulting in loss of potentially important information and
negatively affecting the modeling capability.

Since the complexity of CST has a decimated quadratic term N2/L2, the efficiency benefit compared
to linear-complexity method keeps closing as the sequence length becomes larger, and eventually

15



Published as a conference paper at ICLR 2023

Slice

LayerNorm

CSA

LayerNorm

FFN

De-Slice

Embedding

Input Token Indices

(a) CST Network Architecture

Fine-Grained
Local Attention

Slice Embedding

Coarse-Grained 
Global Attention

Linear

Embedding LayerInput Sequence

Output Sequence

(b) CSA Architecture
Figure 3: Architectures of CST and CSA.

the efficiency order is reversed, as it can be seen in 4a. However, we argue that our model can still
be beneficial in two aspects. First, it is still more efficient than the standard Transformer. Second,
it is possible to find an optimal set of hyperparameters such as the slice length L and the extension
ratio α which result in comparably efficient and more effective in modeling capability to the linear-
complexity counterpart, considering the discussion made in this section on the effective number of
tokens per abstraction.

A.5 IMPROVED EXPRESSIVENESS OF CST SLICE ATTENTION

Recall from Eq.equation 10 that the attention mechanism under consideration takes the form,

Y = Yl + ψ(Yg) (25)

where Yl represents local attention, Yg represents global attention and ψ(·) is a (linear) one-to-many
map. In this section, we will compare CST with the H-transformer described in Zhu & Soricut
(2021). In particular, we argue that, for a given number of weights (degrees of freedom), our proposed
attention mechanism, which involves the composition of attention mechanisms, is more expressive
than the H-matrix-based approach proposed Zhu & Soricut (2021).Zhu & Soricut (2021) shares
similar characteristics with CST, but does not involve composition, which explains our superior
prediction performance (Section 5).

To explain why this is so, we first define

γ (X; Wq, Wk, Wv) = softmax
(
(XWq)(XWk)

T
)
(XWv), (26)

which is the standard attention mechanism found in Eq.equation 2. Here, X is generally a matrix or
a 3-tensor; in the latter case, we apply attention independently to each matrix slice along the third
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Figure 4: Comparison between linear complexity attention and CSA. CSA with the complexityO(N2/L2+NL)
is more efficient than linear complexity methods with O(NM) for practical sequence lengths and choices of
model-specific hyperparameters M and L. Due to increasing effective number of tokens per abstraction,
performance of an abstractive attention with linear complexity can degrade as the sequence length gets large.

dimension. Expressing our local and global attention using this notation leads to,2

YCS
l = γ (S; Wl,q, Wl,k, Wl,v) ∈ RN/L×L×D (27)

YCS
g = γ

(
YCS

l ×2 µ; Wg,q, Wg,k, Wg,v
)
∈ RN/L×D (28)

where µ =
[
1
L ,

1
L , ... ,

1
L

]T
is a fixed vector of mask values, S corresponds to the stack of L-length

slices of X described in Section 4.1, and ×2 indicates a tensor product along the second dimension,
i.e.,

[YCS
l ×2 µ]ij =

L∑
k=1

[YCS
l ]ijk µk (29)

which corresponds to mean pooling within each slice. For the purpose of comparison, we focus on a
2-level H-transformer where each element at level 1 has L children at level 0.3 In this case, it can be
shown that the H-tranformer approximation takes the form of Eq. equation 25 with,4

YH
l = γ (S; Wl,q, Wl,k, Wl,v) = YM

l ∈ RN/L×L×D (30)

YH
g = γ (S×2 µ; Wg,q, Wg,k, Wg,v) ∈ RN/L×D (31)

Note that the main difference between H-Transformer these and CST lies in Eq.equation 31 and
Eq.equation 28; in the former, the argument to the global attention is S×2 µ, whereas it is YCS

l ×2 µ
in the latter.

2In practice, it is common to have equal weights at local and global scales, i.e., Wl,· = Wg,·. This is a
special case of the analysis presented here and changes the conclusion in no significant way.

3More levels have little impact on our conclusion since H-transformers ultimately exhibit the same level of
nonlinearity in the weights whatever the number of levels.

4Refer to Eq.(29) in Zhu & Soricut (2021) for two levels, i.e., Y = Y (0) + P (0) Ỹ (1). In this case, P (0)

corresponds to the one-to-many map ψ(·) whereas Ỹ (1) = Ã(1)(R(1)T V ) corresponds to applying the level-1
matrix Ã(1) to the vector V after averaging over slices (i.e., applying R(1)T ). In this context, this is analogous
to applying a global attention to the averaged slices vector, namely, S×2 µ.
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To demonstrate our claim, let us first introduce some quantities of interest, starting with the families
of parameterized functions that the aforementioned attention mechanisms encompass. First, assume
without loss of generality that all the weights are limited to the interval [−1, 1].5 Then, any attention
function learned during the training process must belong to the following sets,

YCS
l :=

{
Y ∈ RN/L×L×D : Yijk = γijk(S; Wl,q,Wl,k,Wl,v) ∀ i, j, k

}
(32)

YCS
g :=

{
Y ∈ RN/L×D : Yij = γij(σ(S)×2 µ ;Wg,q,Wg,k,Wg,v)), σ(·) ∈ YM

l

}
(33)

in the case of CST and,

YH
l :=

{
Y ∈ RN/L×L×D : Yijk = γijk(S; Wl,q,Wl,k,Wl,v) ∀ i, j, k

}
= YH

l (34)

YH
g :=

{
Y ∈ RN/L×D : Yij = γij(S×2 µ ;Wg,q,Wg,k,Wg,v)

}
(35)

in the case of H-transformer. We want to show that YCS
g has more expressive set than YH

g , which
explains why CST exhibits better empirical prediction performance than its competitors. To this end,
let us introduce the following quantities:
Definition 1. Let p(x), q(x) be polynomials of Euclidean degree d from RM to R. We denote by
SM,d the set of rational functions with numerator and denominator of Euclidean degree at most d,
i.e.,

SM,d :=

{
p(x)

q(x)
: deg(p), deg(q) ≤ d, x ∈ RM

}
imbued with the metric,6

d

(
p(x)

q(x)
,
a(x)

b(x)

)
:= ||p(x)− a(x)||∞ + ||q(x)− b(x)||∞ (36)

where ||f(x)||∞ = maxx∈[−1,1]M |f(x)|. We also introduce SM,∞ to indicate the space of ratios of
real analytic functions, which is a vector space. Further, given any fixed positive ϵ ∈ R, we define,

Sϵ
M,d :=

{
p(x)

q(x)
∈ SM,∞ : d

(
p(x)

q(x)
, SM,d

)
≤ ϵ

}
(37)

as the ϵ-ball surrounding SM,d in the topology induced on SM,∞ by the metric.

Clearly, for any fixed dimension M , ϵ > 0 and Euclidean degrees d′ > d, the family of functions
Sϵ
M,d′ is more expressive than Sϵ

M,d, since the latter is a proper subset of the former, i.e., SM,d ⊂
SM,d′ .

Next, we show that the families of functions YCS
g and YH

g are in fact subsets of Sϵ
M,d′ and Sϵ

M,d

respectively, for appropriately-chosen values of ϵ, d′ and d with d′ > d. To do so, we need the
following result adapted from Trefethen (2017),
Theorem 1. Let f(x) be an analytic function from RM to R. Then for every fixed ϵ > 0, there exists
a polynomial p(x) of Euclidean degree d(ϵ) = O(log(ϵ)) such that,

||f(x)− p(x)||∞ = max
x∈[−1,1]D

|f(x)− p(x)| ≤ ϵ (38)

We are now ready to demonstrate our main result,
Proposition 2. For any fixed ϵ > 0, there exists some Euclidean degree d(ϵ) = O(log(ϵ)) such that,

YH
g ⊆ Sϵ

M,d(ϵ), (39)

and,
YCS

g ⊆ Sϵ
M,4 d(ϵ), (40)

where M corresponds to the total number of weights.
5Any finite bound may be use and has little impact as long as all expressions are subject to the same

constraints.
6It can be shown that d(·, ·) is in fact a proper metric on SM,d.
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Proof. First, recall that (assuming a single head) the parameterized functions γ(·) from Eq. equa-
tion 26 takes the following form

γij (X; Wq, Wk, Wv) =

∑
k e

[(XWq)(XWk)
T ]ik [XWv]kj∑

m,n e
[(XWq)(XWk)T ]mn

. (41)

This should be recognized as the ratio of two analytic functions (because the exponential is analytic)
paramatrized by the elements of the weight matrices. Following Theorem 1, for every fixed set
of weights Wg = [Wq,Wk,Wv], there exists polynomials {pWg

ij (x)}, { qWg

ij (x)} of Euclidean
degree d(ϵ) = O(log(ϵ)) such that

max
x∈[−1,1]D

∣∣∣∣∣∑
k

e[(XWq)(XWk)
T ]ik [XWv]kj − p

Wg

ij (x)

∣∣∣∣∣ ≤ ϵ

2
(42)

max
x∈[−1,1]D

∣∣∣∣∣∑
m,n

e[(XWq)(XWk)
T ]mn − q

Wg

ij (x)

∣∣∣∣∣ ≤ ϵ

2
. (43)

This means that

d

(
γij (X; Wq, Wk, Wv) ,

pWij (x)

qWij (x)

)
≤ ϵ (44)

and that γij( · ;Wq,Wk,Wv) ∈ Sϵ
M,d(ϵ). In particular, this shows that YH

g ⊂ Sϵ
Mg,d(ϵ)

since every
element of YH

g has the form of Eq.equation 41. A similar conclusion can be reached for YH
l and

YCS
l since elements of these families have the same functional form as those of YH

g .

All that remains is YCS
g . In this case, it suffices to note that the result of polynomial composition

creates polynomials with Euclidean degree bounded by the sum of the degree of the polynomials
involved in the composition. Indeed, the above analysis shows that elements of YCS

g are within ϵ
distance from rational functions of the form,

p
Wg

ij

(
1
L

∑L
k=1

p
Wl
ijk (x)

q
Wl
ijk (x)

)
q
Wg

ij

(
1
L

∑L
k=1

p
Wl
ijk (x)

q
Wl
ijk (x)

) , (45)

for some polynomials {pWl

ijk(x)}, { qWl

ijk(x)} of degree d(ϵ). Upon expanding the polynomials and
expressing terms using a common denominator, this expression should be recognized as the ratio
of two polynomials, each of which has degree 4d(ϵ), following polynomial composition. Thus, we
conclude that YCS

g ⊂ Sϵ
M,4 d(ϵ). This proves our claim.

In other words, Proposition 2 shows that our proposed family of attention mechanisms belongs
to Sϵ

M,4 d(ϵ) which possesses more expressive power (since 4 d(ϵ) > d(ϵ) ) than the family of
functions Sϵ

M,d(ϵ) to which global attention mechanism without composition, such as H-transfomers
(YH

l + ψ
(
YH

g

)
), belong.

We claim that this is the reason why our proposed approach performs better than the approach
proposed by (Zhu & Soricut, 2021) and other similar mechanisms where linear combinations of
attentions, rather than composition, are used. In other words, for the same number of parameters
(weights), our proposed approach can capture more complex attentive interactions than that of (Zhu
& Soricut, 2021) and related mechanisms, which leads to a richer set of attentions over which to train
the network and, ultimately, better performance.

A.6 MORE INFORMATION AND DETAILS ON LRA BENCHMARK

A.6.1 EXPERIMENTAL SETUP

We follow the experimental setup described in (Xiong et al., 2021) with a few exceptions in hyperpa-
rameters. Specifically, we use the same Transformer encoder network backbone that consists of 2
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Table 6: Hyperparameters for LRA benchmark

Network Configuration

Dembed Dmodel DFFN dh nhead nlayer pdropout

256 256 1024 64 4 2 0.1

Task-Specific Training Configuration

Task N Batch Size LR0 nstep,warmup nstep,train

ListOps 2k 32 1× 10−5 1000 20k
Text 4k 32 2× 10−5 8000 20k

Retrieval 4k 32 5× 10−5 800 30k
Image 1k 256 2× 10−4 175 35k

Pathfinder 1k 256 1× 10−4 312 62k

transformer layers with pre-norm (Xiong et al., 2020) with 4 attention heads and the model dimension
256 across all tasks. Further, we replace the self-attention sub-layer by efficient attention alternatives
including the slice attention of CST. To obtain label output for classification, we additionally use
a classification head network with 2 fully-connected layers of the same hidden dimension with the
feed-forward network in the backbone network and a ReLU layer between them. We aggregate the
output sequence from the encoder by a mean pooling across the length dimension and feed it to the
classification head. For a fair comparison between models with different characteristics, we optimize
the learning rates for the baseline Transformer model on each task while keeping all other hyperpa-
rameters fixed. For the experimental setup, this allows for a strong baseline model, advantageous for
the standard Transformer. We then evaluate each model with a learning rate search within a small
bracket [0.5l0, l0, 2l0], where l0 is the base learning rate providing the highest validation accuracy of
the Transformer in each task, and report the test accuracy of the model trained with a learning rate
that gives the highest validation accuracy among the bracket. We note that our experiments have
stronger baselines than those found in literature (Tay et al., 2020b; Xiong et al., 2021) as highlighted
in Table 1. For other efficient Transformer models, we perform a model-specific hyperparameter
search as described below and report the test accuracy of the best models.

For the Long Range Arena benchmark, we performed experiments on our PyTorch version imple-
mentation of the original open-source JAX/Flax code (Tay et al., 2020b) where we followed its
dataset preparation procedure and verified the results, and implemented our model on it. Since we
found the performances of LRA tasks have relatively high variances, especially on certain tasks
such as ListOps, we first performed a hyperparameter search with the standard Transformer with the
base setup in (Xiong et al., 2021). The hyperparameters we used for the search include number of
layers {2, 4}, number of attention heads {2, 4}, and model dimension {128, 256}, and learning rate
{1, 2, 5} × 10{−3,−4,−5,−6}. In addition, for better convergence, we also increased the number of
training steps in some tasks. The hyperparameters we determined after the search can be found in
Table 6. As this step is essentially a hyperparameter tuning for the baseline Transformer, we note that
we have stronger baseline Transformer model than those reported in (Tay et al., 2020b) and (Xiong
et al., 2021), and compare them in Table 1. While fixing all other hyperparameters, we performed a
learning rate sweep using a learning rate bracket as described in 5.1. For each model and task, we
pick the best model on the validation dataset with early stopping, and report its accuracy on the test
dataset. For the model training, we used AdamW optimizer (Loshchilov & Hutter, 2017) with linear
learning rate warmup and decay, but without weight decay and other training hyperparameters as
shown in Table 6.

Since each efficient Transformer has its own hyperparameters and they can affect the performance,
we tried a few different values, around the default values used in each paper. Specifically, they
are: the number of random features {64, 128, 256} in Performer (Choromanski et al., 2020), the
projection length {64, 128, 256} in Linformer (Wang et al., 2020) and Luna (Ma et al., 2021), the
number of landmarks {64, 128, 256} in Nyströmformer (Xiong et al., 2021), the number of hashes
{2, 4} in Reformer (Kitaev et al., 2019), the numerical rank of off-diagonal blocks {16 ,32, 64, 128}
in H-Transformer-1D (Zhu & Soricut, 2021), and the local window segment size {8, 16, 32} and
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Table 7: Performances of CST with various slice lengths L, extension ratios α, positional embeddings P, and
combinations of local and global attentions, on LRA benchmark
L α P Local-Global ListOps Text Retrieval Image Pathfinder Average

8 1 MS-VIPE Composition 37.45 77.23 84.15 51.27 76.32 65.28
16 1 MS-VIPE Composition 37.90 73.60 84.00 51.39 76.97 64.77
32 1 MS-VIPE Composition 39.01 69.24 83.92 54.21 76.73 64.62
64 1 MS-VIPE Composition 38.91 66.87 83.59 51.83 78.12 63.86

8 1 Conventional Composition 38.26 69.39 83.21 47.77 70.46 61.82
16 1 Conventional Composition 39.31 68.22 82.68 49.02 71.30 62.11
32 1 Conventional Composition 38.81 66.09 82.16 47.81 71.16 61.21
64 1 Conventional Composition 37.60 65.28 82.27 47.58 72.49 61.04

16 2 MS-VIPE Composition 37.90 72.81 84.62 53.41 74.87 64.72
16 3 MS-VIPE Composition 37.60 70.08 84.42 48.95 74.52 63.11

16 1 MS-VIPE Parallel 37.85 71.15 84.02 46.05 75.13 62.84
16 1 MS-VIPE Global First 36.19 73.09 84.16 43.36 71.30 61.62

Table 8: Performances of CST with different local modeling and slice aggregation methods, on LRA benchmark.
(L=16, α=1)

Local Modeling Aggregation ListOps Text Retrieval Image Pathfinder Average

Attention Mean Pooling 37.90 73.60 84.00 51.39 76.97 64.77

MLP (dhidden = 16) Mean Pooling 37.65 66.12 81.66 45.47 74.51 61.08
MLP (dhidden = 32) Mean Pooling 37.25 69.70 83.63 46.79 74.19 62.31

Attention Max Pooling 38.05 73.72 84.61 47.88 73.97 63.65
Attention Linear Projection 37.70 73.36 82.33 50.24 72.79 63.28

the rank of dynamic projection {32, 64} in Long Short Transformer (Zhu et al., 2021). For Long
Short Transformer, we optionally used additional 1D depth-wise convolution with the kernel 35 as
described in (Zhu et al., 2021). For scatterbrain (Chen et al., 2021a), we follow the default setting
for the model specific hyperparameters as in the official code release. Specifically, for text task, we
have cluster size for query/key = 16, number of features = 16. For Listops task, we have cluster size
for query/key = 32 and number of features = 32. For image and pathfinder task, we have cluster
size = 16 and number of features = 16. For retrieval task, we have cluster size for query/key = 64
and number of features = 64. Additionally, we have number of hashes = 2 for all tasks. While each
option produces different performances requiring different computation and memory costs, we found
variants in each model have similar accuracy and report only the best accuracy among them and the
corresponding complexity as comparing them is out of scope of this paper.

A.6.2 ABLATION STUDY ON LRA

We investigate the effect of each component in CST by performing an ablation study. We set the slice
length of 16 without extension for local attention as the base configuration. Then, we train a CST
variant from scratch where one component is changed. Specifically, we consider the variations in: 1)
Slice length, 2) Extended local attention, 3) Positional embedding, and 4) Composition of MSMRA.
The test accuracies of the variants are given in Table 7. We note that all variants of CST consistently
outperforms other models, except for one case of the global first composition.

Slice Length First, we vary the slice length L and test how the local attention range and abstraction
length for the global attention affects the accuracy. Intuitively, one can expect a trade-off between
fine-grained token interaction modeling and coarse-grained global context capturing, since in the
extreme cases either local attention or global attention converges to the standard self-attention7. While
each task has its own best L, shorter slice length tends to give better overall accuracy. One possible

7CSA converges to the standard self-attention with the global attention at L = 1 or the local attention at
L = N with V = XW2

v
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interpretation is that L = 8 or 16 provides better-formed tokens to the global attention in a dynamic
manner by the local attention.

Local Attention Extension Ratio While slight improvements are observed on Retrieval and Image
tasks, on the contrary to our expectation, extended local attention does not always improve the
accuracy on LRA tasks. We conjecture it is because LRA datasets has tokens of very fine granularity,
i.e., byte-level or pixel-level, and abstraction of the extended local attention output may result in
redundant information for global attention. Thus, we evaluate the effect of the extension ratio on a
dataset with a coarser-grained tokenization in the Section 5.2.

Position Embedding We compare the MS-VIPE with the conventional learned positional em-
bedding that is applied at the bottom embedding layer of the network. MS-VIPE shows consistent
improvement over the conventional positional embedding except for the ListOps task where the
fined-grained order of each token is essential in this particular task.

Combination of MSMRA Instead of the proposed composition of MSMRA that has a serial
connection of MSMRA in the local-global order, we try two different connections, i.e., parallel and
global-local connection. Both of them degrade the accuracy compared to the local-global composition,
supporting effectiveness of our design.

Local Modeling with MLP As shown in (Tolstikhin et al., 2021) and (Liu et al., 2021a), a
multilayer perceptron (MLP) can effectively replace the attention without loss of accuracy in some
applications. In CST, since the slice length is fixed and relatively short, use of MLP instead of
attention can be considered as another source of efficiency with a small increase of parameters. We
evaluate a variant of CST with 2-layer MLP replacing the local attention, with 2 different hidden
dimensions dhidden = 16 or 32 while L = 16 and α = 1. MLP in each slice is equivalent to 1D
convolution with the kernel size and the stride set to the same with the slice length. We observe that
using attention for local modeling module is still preferred in terms of accuracy.

Slice aggregation We further evaluate use of different aggregation methods from the simple mean
pooling. Similarly to (Rae et al., 2019), we try max pooling and linear projection. Again, a linear
projection is equivalent to 1D convolution with the kernel size and stride set to L. While showing
comparable results, they lead to degraded performances in Image and Pathfinder tasks. One can
expect better accuracy from the linear projection as it is a general form of other pooling methods,
but this result can be interpreted as limitation of a simple linear projection for modeling sequence
translations. The mean pooling has already generalized well, and with better initialization, linear
projection is expected to converge to the mean pooling or slightly better.

A.7 MORE INFORMATION AND DETAILS ON AUTOREGRESSIVE LANGUAGE MODELING

A.7.1 EXPERIMENTAL DETAIL OF AUTOREGRESSIVE LANGUAGE MODELING

For the autoregressive language modeling experiment, we use an open-source language modeling
experiment framework (Schlag et al., 2021) and plug in our CST implementation. We follow
all training setup including dataset preparation and hyperparameters given in (Dai et al., 2019a),
and evaluate with the small-sized network configuration: 16 layers, 8 attention heads, 128 model
dimension, and 2,048 hidden dimension. We train all models using the Adam optimizer (Kingma
& Ba, 2014), the cosine annealing learning rate scheduler with 2000 warmup steps while the base
learning rate is 2.5× 10−4 for 500K steps with the batch size of 96.

We also conduct autoregressive language modeling experiments with 1024 sequence length. Here, we
roughly follow the experiment setup used in (Chen et al., 2021a). The larger model has 512 model
dimension instead of 128, and we change the learning rate to 5× 10−4, number of steps to 90K, and
batch size to 32, while keeping all the remaining hyperparameters same as that of the small model.

Different choices of slice length L and extension ratio α results in the same local attention range.
For instance, the combination of L = 8, α = 3 has the same key/value lengths with those in the
L = 16, α = 1 setting, i.e., L×(3−1)/2 = L. However, since the abstraction length and the resulting
granularity of the global attention only depends on L, the choices of these hyperparameters can affect
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Table 9: Autoregressive language modeling results on PG-19. Models within double-lined sections have matched
attention complexities. Models at the top of each section is the baseline Transformer while others are CST
variants.

Network L α Context Length N Valid PPL Test PPL Attention Complexity

Transformer - - 256 19.66 18.70 C1 = O(2562)
CST 64 3 512 17.61 16.67 1.00× C1

CST 32 3 1024 16.55 15.60 1.02× C1

CST 16 2 2048 16.19 15.28 1.00× C1

CST 16 3 2048 15.93 15.01 1.25× C1

Transformer - - 512 17.29 16.39 C2 = O(5122)
CST 64 3 2048 15.29 14.39 1.00× C2 (0.25× C3)
CST 32 3 4096 15.11 14.15 1.06× C2 (0.27× C3)

Transformer - - 1024 15.57 14.76 C3 = O(10242)

the performance differently. We examine how the performance is affected by this configuration.
To this end, we evaluate CST with combinations of a set of slice lengths {8, 16, 32} and a set of
extension ratios α {1, 2, 3}.

To ensure that the current query token has no interaction with the future key tokens, we design the
causal mask and local attention extension scheme to better suit CSA as described in Section 4.1, and
use it throughout this experiment.

A.7.2 AUTOREGRESSIVE LANGUAGE MODELING WITH MATCHED ATTENTION COMPLEXITY
TO TRANSFORMERS ON PG-19

We additionally perform evaluation of CST on PG-19 dataset (Rae et al., 2019) compare to Trans-
formers where their attention complexities are matched, i.e., O(N2/N2+0.5(α+1)NL) ≃ O(N2).
We use GPT-2 (Radford et al., 2019) implementation in Huggingface transformers library (Wolf
et al., 2020), and use the same architecture to implement CST equipped with CSA and MS-VIPE.
We train all models for 1M training steps using the batch size 32. We use AdamW optimizer with
the learning rate= 1e − 3, β = [0.9, 0.99], and the weight decay= 0.1. We report the validation
and test perplexities in Table 9. Efficient attention in CST enables longer context length with the
same complexity in attention computation, leading to significantly improved perplexity compared
to the Transformer baseline. Note that, with the current architecture in these cases, the overall
complexity can be higher in CST since there still are complexity increases in linear layers when they
are processing longer inputs. We leave application of caching techniques as future work, that saves
complexity in linear layers to match the overall network complexity while enjoying the long-range
attention.

A.8 MORE INFORMATION AND DETAILS ON BIDIRECTIONAL MASKED LANGUAGE
MODELING AND GLUE BENCHMARK

In this section, we present more details about the experimental setup and results on the bidirectional
masked language modeling (MLM) task Devlin et al. (2018) and the natural language understanding
tasks in the GLUE benchmark Wang et al. (2018) with discussion.

A.8.1 EXPERIMENTAL SETUP

We pre-train transformer models with the masked language modeling (MLM) objective on Book-
Corpus Zhu et al. (2015) and English Wikipedia. After pre-training, the models are fine-tuned on
downstream natural language understanding tasks from GLUE benchmark Wang et al. (2018). We
follow the experimental setup of Devlin et al. (2018) for conducting both pre-training and fine-tuning
experiment, including datasets, masking rate, batch size, and optimizer settings, with several excep-
tions. We pre-train the models for 900k steps with sequences of 128 tokens. This corresponds to the
first phase of BERT pre-training and we consider it to be enough for evaluating on GLUE tasks while
expediting the experiment.
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With the baseline network architecture of BERTbase Devlin et al. (2018), we replace its self-attention
layer with different types of efficient attentions such as Nyströmformer, Performer, Luna, and FNet.

For downstream NLU tasks, we also follow the setup of Devlin et al. (2018) with one minor change:
instead of prepending [CLS] token in the input sequence, we use mean pooling to get the classifier
input vector from the sequence output, as discussed in the following part of this section.

A.8.2 RESULTS AND DISCUSSION

As shown in Table 5, we can see that CST outperforms competing efficient transformers in terms of
MLM perplexity. It can be seen that, while CSTs achieve consistently lower perplexity than most
of the efficient transformers, its perplexity decreases as slice length and extension ratio increases.
However, CST does not outperform BERTbase on contrary to our results on the LRA benchmark. We
conjecture this is due to fine-grained masking strategy in the original MLM objective. The MLM
pre-training stage involves replacing random tokens in the input sequence with a dummy token that
the model must predict. After applying the positional embedding, replacing a standard token with
a dummy token, i.e., [MASK], translates to injecting high-frequency noise into the input sequence.
CST and other efficient attention alternatives are approximations to the full attention, which must
truncate the high-frequency modes in exchange for faster evaluation. In MLM pre-training, all of the
input sequences have high-frequency content that attention approximations have difficulty capturing.
Meanwhile, the sequences in the LRA benchmark are long, low-frequency sequences which can be
efficiently compressed. An alternative pre-training method could eventually be developed specifically
for efficient transformers that circumvents this issue.

On downstream NLU classification tasks, CST also outperforms among the efficient transformers.
But with under-performing pre-trained models compared to BERT, similar degradation trend is
observed in evaluation on downstream tasks after fine-tuning them.

One drawback of the current version of CST in the original setting is that the use of [CLS] token is
not trivial. [CLS] token can be seen as a global token that summarizes the sequence in the context of
the given classification task, and it is often prepended in the input sequence to summarize information
from the sequence for the classification purpose. In CST, naively prepending it limits attention range
in local attention part and also make the summarization in the global attention highly implicit. We
believe this can be addressed by an additional well-designed architecture that uses global tokens
and input them to classifier. We leave this as a future work and we instead use mean pooling for the
experiment for all models.

While the efficiency gain is reduced due to the short sequence length, one can still expect reduction in
total FLOPS from using CST. For instance, in the simple case of N = 128, L = 64 and α = 1, the
complexity of CST isO(128 ·64+1282/642) which is almost half of that of the standard transformer
O(1282).

A.9 LIMITATIONS AND FUTURE WORK

A.9.1 LIMITATIONS

We summarize limitations of CST discussed in the previous sections.

As discussed in A.8, there is a mismatch of using token-wise random masking for MLM pretraining.
In the abstraction of sequence slices for global attention, high-frequency modes are truncated, i.e.,
smoothed out, that leads to loss of information. While similar arguments can be made to other
transformers with abstractive attention, we plan to carefully analyze it and address the issue by
designing an alternative pretraining method.

There are some limitations on the casual mask and slice embedding introduced in Section 4.1, In the
global attention, no information of tokens in current slice is taken into account because of the query
shift and the attention mask excluding diagonal elements. As a result, there is missing information
from coarse-grained modeling in the current design. This is only happening during the training
phase, not in the testing, since the next token prediction with sliding window always has access to
all tokens in the sequence up to the current time step. Therefore, this mismatch may prohibit the
full modeling capability of CST. To address the issue, we plan to design more suitable yet efficient
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training objective that allows full use of abstractions in the global attention during training. We leave
design of more advanced autoregressive modeling as a future work.

CST requires additional computations of the complexityO(N/L) for theQ,K, and V transformation
for the global attention, from the local attention output. However, this increase in complexity is
negligible compared to the overall computation, especially when N/L is small, as discussed in 4.3.

A.9.2 FUTURE WORKS

There are several potential avenues for extending CST. First, we can easily generalize our work to
multi-level slicing with a higher level than two. This will lead to more improvement in expressiveness
of the model while adding more degree of freedoms for better efficiency while enabling its application
to much longer sequences. Second, as discussed in Section 4.1, more advanced design of autoregres-
sive sequence modeling scheme will further improve the performance. Third, while CST is based on
fixed-length slicing of the sequence, dynamic or semantic slicing would further improve applicability
to non-stationary sequences. With end-to-end training, the model can learn the optimal slicing of the
data for given tasks and provide layer-wise dynamic tokens. To this end, efficient realization of the
dynamic slicing would be the most challenging task. Finally, as a meaningful next step, modification
of CST to better fit vision tasks or training a CST-based large language model would lead to more
general and practical impacts.
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