
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STARK: STRATEGIC TEAM OF AGENTS FOR REFINING
KERNELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The efficiency of GPU kernels is central to the progress of modern AI, yet optimiz-
ing them remains a difficult and labor-intensive task due to complex interactions
between memory hierarchies, thread scheduling, and hardware-specific character-
istics. While recent advances in large language models (LLMs) provide new op-
portunities for automated code generation, existing approaches largely treat LLMs
as single-shot generators or naive refinement tools, limiting their effectiveness in
navigating the irregular kernel optimization landscape. We introduce an LLM
agentic framework for GPU kernel optimization that systematically explores the
design space through multi-agent collaboration, grounded instruction, dynamic
context management, and strategic search. This framework mimics the workflow
of expert engineers, enabling LLMs to reason about hardware trade-offs, incorpo-
rate profiling feedback, and refine kernels iteratively. We evaluate our approach
on KernelBench, a benchmark for LLM-based kernel optimization, and demon-
strate substantial improvements over baseline agents: our system produces correct
solutions where baselines often fail, and achieves kernels with up to 16× faster
runtime performance. These results highlight the potential of agentic LLM frame-
works to advance fully automated, scalable GPU kernel optimization.

1 INTRODUCTION

Level 1 Level 2 Level 30.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sp
ee

du
p

(×
)

10.7×

2.35×

5.51×

13.7×

16×

6.54×

KernelBench Speedup by Agent and Level
Sampling Agent
Reflexion Agent

Figure 1: Speedup of STARK over baseline agents
on KernelBench (L1–L3) with same number of at-
tempts. Bars report GPU wall-clock speedups (×) rel-
ative to the Sampling and Reflexion agents; higher is
better. STARK reaches up to 16× over Reflexion (L2)
and 10.7× over Sampling (L1).

Artificial intelligence (AI) has advanced at
an unprecedented pace, transforming both re-
search and real-world applications. While in-
novations in model architectures and training
algorithms have been central to this progress,
the efficiency of the computational infrastruc-
ture that executes them is equally critical. At
the core of modern AI systems are GPU ker-
nels, which implement fundamental operations
such as matrix multiplication and convolution.
Even modest improvements in GPU kernel effi-
ciency can translate into significant reductions
in training time, inference latency, and deploy-
ment cost, making kernel optimization a corner-
stone for sustaining AI’s rapid growth.

Despite their importance, designing and opti-
mizing GPU kernels remains a major challenge.
The performance of a kernel depends on sub-
tle interactions between thread scheduling, memory hierarchy utilization, synchronization, and
hardware-specific characteristics. Small changes in tiling strategies, loop unrolling, or memory
alignment can yield disproportionate effects on runtime. As a result, the kernel optimization land-
scape is highly irregular, architecture-dependent, and difficult to navigate. Existing approaches
largely fall into two categories: manual optimization by expert engineers, which is effective but
labor-intensive and difficult to scale; and automated compilers and domain-specific languages
(DSLs) such as TVM and Triton (Chen et al., 2018; Tillet et al., 2019), which apply heuristics or
search but often struggle with irregular operators and hardware variability (Zheng et al., 2020a;b).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

The rapid progress of large language models (LLMs) opens a new opportunity for kernel optimiza-
tion. Beyond their ability to generate correct code, LLMs can be guided to reason about hardware
trade-offs, adapt to profiling feedback, and iteratively refine implementations. However, prior work
has mostly treated LLMs as single-shot code generators or simple refinement tools (Ouyang et al.,
2025), which underutilizes their potential for structured exploration of the kernel design space. To
build a more powerful agent, we identify and address three critical limitations in existing methods:

1. Naive exploration strategy. Current agents typically refine code linearly, learning only
from the immediately preceding attempt. This simplistic process neglects the rich history
of prior attempts and fails to effectively balance the exploration-exploitation trade-off, often
getting trapped in local optima.

2. Monolithic agent design. Kernel optimization is a multifaceted task requiring distinct
capabilities for planning, implementation, and reflection. By assigning all these responsi-
bilities to a single, generalist LLM, current agents operate inefficiently.

3. Planning-implementation gap. We observe a failure mode particularly acute in this do-
main: LLMs frequently devise a correct high-level optimization plan (e.g., “apply memory
tiling”) but fail to translate it into valid low-level CUDA code. This gap stems from the
relative scarcity of expert-level kernel code in the models’ training data.

To address these limitations, we introduce STARK (Strategic Team of Agents for Refining Kernels),
a novel framework for automated GPU-kernel optimization. Our contributions are threefold:

• Collaborative multi-agent workflow. We design a workflow with specialized agents for
planning, coding, and reflection, mirroring an expert development cycle and overcoming
the inefficiencies of monolithic designs.

• Bridging the planning–implementation gap. We propose two mechanisms—grounded
instruction and dynamic context windows—that translate high-level strategies into precise,
actionable code edits, ensuring robust coordination across agents.

• Strategic search for refinement. We incorporate a search policy that balances exploration
and exploitation over prior attempts, enabling systematic discovery of strong kernels.

Figure 2: Overview of STARK. (a) Prior LLM-based kernel optimizers rely on a monolithic agent with local
iterative refinement. (b) STARK replaces this with a collaborative multi-agent workflow (plan/code/debug)
coupled with strategic search over a tree memory. (c) The plan agent issues grounded instructions that anchor
edits to code spans; dynamic context windows surface role-specific history; and the debug agent repairs failures.
See Section 4 for details.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

We evaluate our framework on KernelBench Ouyang et al. (2025), a benchmark designed to as-
sess LLM-based GPU kernel optimization. Experiments show that combining these improvements
leads to an agent system significantly more competitive than the baseline agents in both runtime
performance and success rate across diverse kernel problems, authoring competitive kernels for the
challenging problems in KernelBench where the baseline agents struggle to even find a working
solution. Notably, STARK achieves more than 10× speedup over kernels produced by the base-
line agents (i.e., the optimized kernels run in under one-tenth the time of the baseline.). Overall,
our work suggests that LLM-driven agents represent a promising step toward fully automated GPU
kernel optimization.

2 RELATED WORK

Due to space constrain, we only review the most relevant prior work here and defer the complete
discussion to Appendix E.

The optimization of GPU kernels has progressed from empirical auto-tuning frameworks that
perform black-box parameter searches (van Werkhoven, 2019; Nugteren & Codreanu, 2015) and
compiler-based approaches with static heuristics (Yang et al., 2010), to the use of machine learning
(ML). ML-based techniques have been used to replace hand-tuned heuristics in production compil-
ers (Trofin et al., 2021), learn cost models to guide optimization (Chen et al., 2018), and even learn
directly from raw source code without manual feature engineering (Cummins et al., 2017). A sig-
nificant leap was the use of deep reinforcement learning to discover fundamentally new algorithms,
as demonstrated by AlphaTensor’s success in finding faster matrix multiplication methods (Fawzi
et al., 2022). While powerful, these prior works either optimize within a fixed search space or oper-
ate in purely formal domains. Our work addresses these limitations by operating directly on source
code to implement novel, structural changes.

The emergence of powerful Large Language Models (LLMs) has revolutionized programmatic in-
teraction with source code, demonstrating a remarkable proficiency in generating code for diverse
applications from competitive programming to compiler testing (Gu, 2023; Zhong & Wang, 2024;
Jain et al., 2025). This capability has catalyzed a paradigm shift away from single-shot code genera-
tion and toward the development of autonomous LLM agents. An agent enhances a base LLM with
planning, memory, and tool-use capabilities to direct its own workflow (Weng, 2023). The success
of frameworks like SWE-agent in independently resolving complex GitHub issues has validated the
power of this approach for software engineering (SWE) (Yang et al., 2024). While the application
of LLM agents to SWE is a burgeoning field of research (Yang et al., 2024; Antoniades et al., 2024;
Yang et al., 2025), their potential in the specialized domain of GPU kernel optimization remains
largely unexplored. To fill this gap, we designed STARK, an agent framework with capabilities
tailored to the unique challenges of this domain.

3 PRELIMINARY

3.1 LLMS AND AUTOREGRESSIVE GENERATION

Given an input sequence x = (x1, x2, . . . , xn) (e.g., the task instruction) as the context, an LLM pθ
with parameters θ generates an output sequence y = (y1, y2, . . . , ym) where yt ∈ Y, t ∈ {1, . . . ,m}
are tokens. Pretrained on a massive corpus of text, LLMs autoregressively generate the next token
yt conditioning on x and all the previously generated token y<t = (y1, . . . , yt−1). Specifically, at
each time t, the LLM first computes the logits zθ(y|y<t, x) for each token y in the vocabulary Y and
generate yt following the conditional distribution

pθ(yt|y<t, x) =
exp(zθ(yt|y<t, x)/τ)∑

y′∈Y exp(zθ(y′|y<t, x)/τ)
. (1)

The temperature parameter τ > 0 modulates the randomness of an LLM’s output. Higher values
of τ flatten the next token distribution in Equation 1, encouraging creative and diverse responses.
Conversely, lower values sharpen the distribution, promoting deterministic and high-fidelity outputs.

This trade-off is critical in complex tasks, as different sub-problems demand different behaviors.
For instance, planning and exploration benefit from a high temperature to generate novel strategies,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

whereas tasks requiring precision and factual correctness, such as code implementation, necessitate
a low temperature to ensure reliability. A single agent with a fixed temperature is ill-equipped to
handle this dichotomy. This observation is a core motivation for STARK’s multi-agent design, which
allows specialized agents to operate at distinct temperatures tailored to their roles, i.e., a high τ for
the creative plan agent and a low τ for the precise code agent.

3.2 KERNELBENCH

KernelBench Ouyang et al. (2025) is a recently proposed benchmark specifically designed for as-
sessing LLM-based GPU kernel optimization. Unlike prior evaluations that focus only on code cor-
rectness or small-scale operator tests, KernelBench provides a principled and reproducible testbed
that measures both correctness and runtime efficiency across a broad spectrum of GPU workloads.
KernelBench comprises a suite of optimization tasks, categorized into three difficulty levels. For
each task, the objective is to create a custom GPU kernel that is functionally equivalent to a pro-
vided PyTorch reference implementation while minimizing its wall-clock execution time. See an
example of the KernelBench task in Appendix D.

Specifically, Level 1 tasks focus on single, common operators such as matrix multiplication and
convolution, serving as a baseline for fundamental optimization capabilities; Level 2 tasks com-
prise tasks with multiple operators fused into a single kernel, testing the ability to manage more
complex dataflows and scheduling; Level 3 tasks represent the highest difficulty, featuring popular
full ML architectures such as the ResNet (He et al., 2016) and LSTM (Hochreiter & Schmidhuber,
1997), which involve highly irregular computations and intricate memory access patterns that are
challenging for both human experts and automated systems to optimize effectively.

4 STARK: STRATEGIC TEAM OF AGENTS FOR REFINING KERNELS

Framework Overview. We now present STARK, an agentic framework for GPU-kernel optimiza-
tion. STARK organizes kernel refinement into three layers: (i) a multi-agent workflow that separates
planning, coding, and debugging, (ii) coordination mechanisms with grounded instruction to anchor
planned edits to concrete code spans and dynamic context windows that surface role-specific history
(e.g., prior attempts, failures, profiler feedback) to each agent, and (iii) a strategic search policy that
balances exploration and exploitation across iterative attempts. Notably, multi-agent workflow and
grounded instruction improve reliability even under a single-attempt budget, whereas dynamic con-
text windows and strategic search deliver most of their gains when multiple attempts are allowed.
Figure 2 provides an overview; the following subsections detail each component in turn.

4.1 MULTI-AGENT COLLABORATION

Optimizing GPU kernels is inherently multifaceted and mirrors expert team workflows. A single
agent typically fails to balance correctness, performance, and exploration across a vast, irregular
design space. In particular, strategy discovery (e.g., fusion, vectorization, shared-memory tiling)
benefits from higher-temperature generation that encourages diversity whereas strategy realization,
i.e., committing those ideas to code, requires low-temperature precision to avoid errors. We therefore
adopt a multi-agent framework that enables role specialization through LLMs.

Multi-Agent Design (MAD). Specifically, STARK decomposes kernel optimization into three roles
– plan, code, and debug. Using a role-specific context window (Section 4.4) with selected prior at-
tempts and execution outcomes, the plan agent proposes targeted transformations to either the source
kernel or a candidate chosen by the strategic search policy (Section 4.2), emitting grounded instruc-
tions (Section 4.3) that anchor edits to explicit code spans. The code agent consumes grounded
instructions and translates them into executable GPU-kernel code, conditioning on its own context
window to improve adherence and code quality. The debug agent repairs promising but failing can-
didates by consulting the plan agent’s instructions and compiler/runtime diagnostics, producing a
working kernel that realizes the intended transformation.

Benefits of MAD. Role specialization lets each agent use prompts and base LLMs matched to its ob-
jective. In our instantiation, we choose Claude Sonnet 4 with temperature τ=0.8 for the plan
agent to encourage strategy diversity, and the same model with τ=0.1 for the code and debug agents

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

to enforce precision. Despite this simple setup, MAD already performs strongly (see Section 5).
We underscore that because the design is modular, we can swap in planners with richer kernel-
optimization priors or code-specialist reasoning models to further improve results. In addition,
modularity also exposes bottlenecks. We observe that the dominant bottleneck is code-synthesis
fidelity: LLMs often need multiple attempts to faithfully implement a given instruction. Finally,
MAD makes targeted post-training straightforward: we can fine-tune the base LLM for a specific
agent (e.g., the code agent) without affecting the others, improving stability and predictability. How-
ever,, a systematic study of agent-specific post-training is orthogonal to our core contributions and
is left to future work.

4.2 STRATEGIC SEARCH WITH TREE MEMORY

Prior LLM-driven kernel optimizers typically use either best-of-K sampling that generates multiple
candidates independently and select the fastest correct one or iterative refinement which repeatedly
edits the latest kernel (Ouyang et al., 2025). However, best-of-K is unguided and wasteful: all the
new attempts ignore feedback from earlier attempts and repeatedly probe redundant regions of the
design space. On the other hand, iterative refinement is feedback-aware but myopic: by building
only on the most recent candidate, it is prone to getting trapped in narrow, suboptimal basins.

To address these limitations, STARK reframes kernel optimization as strategic search over a persis-
tent tree memory. We maintain a search tree T whose nodes store candidates and their observations
(runtime, correctness, and compiler diagnostics). The root represents the source architecture; each
edge corresponds to applying a grounded instruction from the plan agent and realizing it via the code
agent (or repairing via the debug agent). Each node n is assigned a score s(n) reflecting competi-
tiveness; in our implementation we use the straightforward kernel runtime as s(n) and treat lower
is better. For kernels that are incorrect or failing to compile, we give them scores of +∞. At each
step, we (1) select a node to expand using a strategic policy, (2) expand by invoking the plan/code (or
debug) agents to produce a child candidate, (3) evaluate for correctness and runtime, and (4) record
results in T to inform subsequent selections. This converts ad-hoc trial-and-error into a directed,
feedback-driven process.

Policy choice and an adapted ϵ-greedy rule. We compared representative search policies includ-
ing Monte-Carlo Tree-Search (MCTS), evolutionary, greedy, and ϵ-greedy policies and found that
ϵ-greedy consistently performs best under the same budget constraint. Importantly, we observe that
kernel optimization poses domain-specific challenges that are root dominance (it is very challeng-
ing to even outperform the source architecture in the root node) and frequent compilation/runtime
failures. To address these challenges, we adapt the canonical rule as follows: (1) Root throttling:
cap the number of direct children of the root at nroot to avoid redundant first-hop edits; once the cap
is reached, the root is ineligible for selection; (2) Dead-branch pruning: if a node has more than
nchild children and all current children fail, mark the node ineligible to prevent wasting trials; (3)
High exploration rate: use a relatively large ϵ (empirically 0.3–0.4) to counteract local traps; (4)
Leaf-biased exploration: with probability ϵ, sample uniformly from expandable leaves (not only
failing nodes), encouraging discovery beyond the immediate failure set.

4.3 GROUNDED INSTRUCTION

We introduce grounded instruction for kernel enhancement. The plan agent must not only pro-
pose an optimization, but also insert explicit span anchors in the kernel source that mark
exactly where the change should occur. Each anchor is a short, machine-checkable tag (i.e,
<<<IMPROVE BEGINS>>> . . . <<<IMPROVE ENDS>>>) wrapped around the target site, such
as a load/store, loop body, or the launch configuration. The code agent consumes this annotated scaf-
fold and resolves each anchor by emitting concrete CUDA that realizes the instruction. Grounded in-
struction tightens plan–code alignment, curbs hallucinated guidance, and narrows the coder’s search
space. It also improves traceability: every proposal leaves a visible, verifiable footprint in the final
code. In practice, we observe fewer misinterpretations and markedly fewer faulty kernels. Despite
its simplicity, the mechanism is especially effective on Level 3 KernelBench tasks with deeper ar-
chitectures (e.g., VGG).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.4 DYNAMIC CONTEXT WINDOW

Past attempts provide rich, actionable signals for subsequent decisions, but different agents ben-
efit from different views of this history. We therefore maintain a dynamic, agent-specific context
window that is rebuilt at each selection step for different agents. See Figure 3 for a visual demon-
stration. Throughout this section, let node i be the node selected by the search policy defined in
Section 4.2. We useW(i) to denote the context window containing a subset of historical attempts
and their evaluation outcomes (e.g., compiler information and runtime). As we always include the
source architecture as part of the prompt for agents,W(i) always includes the root node nroot. For a
naive search algorithm without dynamic context window,W(i) = {i, nroot} only includes node i in
addition to the root.

Figure 3: Dynamic Context Window. Nodes with ✓’s represent selected nodes.

Tree relations. We use tree relations to build agent-specific context windows. Let p(i) be the parent
of node i. Define the siblings of i as S(i) = { j : p(j) = p(i) }. Moreover, define the set of child
nodes of a node i as D(i). We also maintain a small global leaderboard C of top-performing nodes.

Plan agent (local & contrastive global context). For a selected node i, the plan agent conditions
on a context window Wplan(i) that aggregates node i’s children and a small set of global leaders
from the leaderboard C. Formally,

Wplan(i) = {i, nroot} ∪ D(i) ∪ Top−r(C),

where D(i) contains all evaluated children of i with their observations, and Top−r(C) returns the
r highest-scoring distinct kernels from the global leaderboard (excluding i’s subtree) to discourage
duplication.

This design serves three purposes. (i) reflection: the plan agent can revise or stack its prior instruc-
tions rather than rediscovering them; (ii) ambition calibration: top competitors prevent redundant
exploration and provide transferable motifs such as warp-shuffle reductions, vectorized LD/ST, and
shared-memory tiling; (ii) capability estimation: by inspecting how past instructions were real-
ized or failed by the code agent, the next instruction is adapted to what the code agent can reliably
execute, improving first-pass success and avoiding instructions beyond current ability. To achieve
this, we explicitly require the plan agent to adapt its instruction to the code agent’s demonstrated
capabilities observed in D(i).
Code agent (extended context). For kernel code emission at node i, the code agent conditions on

Wcode(i) = {i, nroot} ∪ D(i) ∪ {j : p(j) ∈ S(i)}.

The nodes in {j : p(j) ∈ S(i)} are essentially the children of node i’s siblings. Our insight is that
these nodes typically share near-identical scaffolds with node i from a common planning lineage,
so successful patches and micro-optimizations transfer with high probability; conversely, seeing
failures in closely related contexts helps the coder avoid repeating the same mistakes. Hence, this
extended window serves two aims: (i) reduce implementation errors by letting the coder imitate
successful patches from closely related scaffolds and avoid previously observed failure modes; (ii)
surface stronger implementations by transferring micro-optimizations (e.g., warp-shuffle motifs,
vectorized LD/ST, shared-memory tiling) that have already worked on cousin nodes.

Debug agent (local context). For fault repair, we construct the context window for the debug code
as

Wdebug(i) = {i, nroot} ∪ S(i),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We choose this design mainly for two reasons. Most fixes are structural and local, e.g., off-by-
one guards, stride/indexing alignment, launch-parameter tweaks, or shared-memory sizing often
transfer directly among siblings that share the same scaffold. Moreover, restricting the window to S
avoids distracting the debug agent with globally unrelated kernels, improving precision and reducing
hallucinated edits.

4.5 FRAMEWORK OVERVIEW

Here we provide an overview of our framework STARK and describe its execution process. Algo-
rithm 1 presents its pseudocode.

At a high level, STARK repeatedly (i) selects a promising node (a prior attempt) from a search
tree, (ii) builds agent-specific context windows from local history and global leaders, (iii) asks the
planning agent to propose a concrete optimization along with grounded instruction anchors inserted
into a scaffold, (iv) asks the code agent to realize those anchors into an executable kernel, (v) if
the selected node has a problematic kernel, we build the debugger’s dynamic context window and
request a minimal fix. The new attempt is evaluated, appended as a child node, and the leaderboard
C is updated. We repeat this process until we reach a pre-specified max attempts B.

Algorithm 1 STARK: Strategic Team of Agents for Refining Kernels

Require: Budget B (max attempts), selection policy πselect (adapted ε-greedy), leaderboard size r
1: Initialize search tree T with root nroot (PyTorch reference)
2: Initialize leaderboard C ← {nroot}
3: for t = 1, 2, . . . , B do
4: i← πselect(T, C) ▷ pick a node to refine
5: if HASBUG(i) then ▷ compile fail or unit-test fail recorded at i
6: Wdebug(i)← BUILDCONTEXTDEBUG(i, T)

7: kernel′ ← DEBUGAGENT(Wdbg, i.kernel, i.logs)
8: (ok, correct, runtime, logs)← EVALUATE(kernel′) ▷ compile, correctness check,

timing
9: (plan,anchors)← (i.plans, i.anchors)

10: else
11: Wplan(i)← BUILDCONTEXTPLAN(i, T, C)
12: (plan, anchors)← PLANAGENT(Wplan)
13: Wcode(i)← BUILDCONTEXTCODE(i, T)
14: kernel′ ← CODEAGENT(Wcode, plan, anchors)
15: (ok, correct, runtime, logs)← EVALUATE(kernel′)
16: end if
17: j ← ADDCHILD(T, i, kernel′, plan, anchors, ok, correct, runtime, logs)
18: C ← UPDATELEADERS(C, j, r)
19: end for
20: return BEST(C) ▷ fastest correct, grounded kernel

5 EXPERIMENTS

We use KernelBench (Ouyang et al., 2025), a recently proposed benchmark consisting of compre-
hensive and challenging GPU kernel tasks, to validate the effectiveness of our proposed approaches.

Baselines and Metrics. We compare our framework STARK with the following list of approaches:

• Torch Eager: the out-of-box PyTorch modules without any compilation or optimization.

• Torch Compile : We use torch.compile to produce optimized versions of the given
PyTorch modules. While torch.compile offers different compilation modes, we com-
pare to two of the most representative and competitive ones – default and max-autotune.

• Sampling Agent: the single agent framework originally proposed and used by Kernel-
Bench to evaluate the difficulty of the tasks in KernelBench and the ability of LLMs to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

write efficient kernels. This agent repeatedly samples responses when given the source
model to optimize and chooses the best generated custom kernel as the solution.

• Reflexion Agent: this agent follows the Reflexion paradigm (Shinn et al., 2023), where at
each optimization step, it tries to update its last attempt using its corresponding observa-
tions such as the compiler and runtime information.

We report the following metrics to comprehensively understand the agents’ performances: (i) Fast1
rate is the percentage of the problems for which the agent can generate kernels that are at least as
fast as the torch baselines; (ii) Success rate represents the percentage of the problems for which the
agent can generate compiled and correct kernels; (iii) Speed: To better understand how good the
generated kernels are, we also report the average speed across all tasks.

Comparison with Torch Baselines. In Table 1, we present the results about success rate, Fast1
rate and speed over all 3 levels of KernelBench challenges. For each task, we let all agents to
have a maximum of B = 30 attempts. Due to limited computation resource, we evaluate on the
representative subset of KernelBench (Ouyang et al., 2025). We use Claude Sonnet 4 as the
base LLMs for all the LLM-based baselines and our agents. Due to space constraint, we defer
implementation and evaluation details to Appendix B.

The results in Table 1 demonstrate that our proposed framework, STARK, consistently outperforms
both the Sampling and Reflexion baselines across all KernelBench difficulty levels. At Level 1,
STARK not only achieves a perfect 100% success rate but also delivers up to a 3.0× speedup over
Torch Eager baselines, while Sampling and Reflexion agents frequently generate kernels that are
slower than the baselines. This advantage becomes even more pronounced at Level 2, where the
complexity of the kernels increases. Here, STARK maintains a perfect success rate and achieves
speedups of 2.7×, whereas the Reflexion agent, despite attaining 100% correctness, produces ker-
nels that run slower than the baseline. At Level 3, which involves the most irregular and challenging
tasks, both Sampling and Reflexion degrade significantly, with success rates falling and runtimes
dropping below baseline. In contrast, STARK continues to maintain full success while producing
kernels that outperform the Torch implementations by up to 1.6×. These results highlight that
STARK not only generates correct kernels but also delivers substantial performance improvements,
even as task difficulty increases.

Torch Eager Default Max-autotune
Level 1 Success ↑ Fast1 ↑ Speed ↑ Fast1 ↑ Speed↑ Fast1 ↑ Speed↑
Sampling Agent 57.1% 14.3% 0.81× 7.1% 0.46× 7.1% 0.81×
Reflexion Agent 92.6% 28.6% 1.24× 14.3% 0.57× 35.7% 0.92×
STARK 100% 71.4% 3.03× 78.6% 2.37× 78.6% 2.76×
Level 2 Success Fast1 Speed Fast1 Speed Fast1 Speed
Sampling Agent 87.5% 50% 1.06× 37.5% 0.91× 37.5% 0.91×
Reflexion Agent 100% 75% 0.88× 62.5% 0.78× 62.5% 0.78×
STARK 100% 100% 2.69× 87.5% 2.51× 87.5% 2.52×
Level 3 Success Fast1 Speed Fast1 Speed Fast1 Speed
Sampling Agent 100% 50% 0.87× 12.5% 0.67× 12.5% 0.66×
Reflexion Agent 67.5% 25% 0.79× 12.5% 0.62× 12.5% 0.61×
STARK 100% 87.5% 1.58× 87.5% 1.27× 87.5% 1.26×

Table 1: Performance of LLM Agents on the KernelBench Tasks. Fast1 represents the percentage of problems
for which the agent can generate custom kernels that are correct and as fast as the Torch baselines (higher is
better). Speed is computed as the ratio of the kernel runtime of the baseline to that of the generated kernel.

Comparison between Agents. We investigate deeper into the behavior of our agent STARK with
the two baseline agents to better understand their optimization behaviors. A deeper analysis of
compile and correctness rates, shown in Table 2, provides further insight into why STARK succeeds
where baselines struggle. While all agents achieve relatively high compile rates (mostly above 80%),

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the fraction of kernels that are both compilable and correct varies widely. The Sampling agent,
for example, compiles over 90% of its outputs on Level 1 but only 43% of these are functionally
correct. Reflexion improves correctness slightly through iterative refinement, but its correctness
rate remains below 55% at all levels. In contrast, STARK achieves the highest correctness rates
across the board, reaching 61.2% on Level 2 tasks. This suggests that STARK ’s structured planning
and feedback-driven refinement not only increase the chance of generating efficient kernels but
also reduce wasted attempts on invalid or incorrect code. Finally, Figure 1 highlights the dramatic
runtime improvements of STARK relative to baseline agents. On Level 1 tasks, STARK achieves
over a 10× speedup compared to Sampling and a 13.7× speedup over Reflexion. On Level 2, these
gains rise as high as 16×, and even at the most challenging Level 3 tasks STARK maintains 5–6×
improvements. These relative gains indicate that while baselines occasionally achieve correctness,
they rarely deliver true runtime efficiency. By contrast, STARK ’s ability to jointly optimize for
correctness and speed allows it to close both gaps simultaneously. Taken together, these findings
confirm that multi-agent collaboration and strategic search are key enablers for scaling LLMs to the
demands of GPU kernel optimization.

Compile Rate↑ Correct Rate↑
KernelBench Level 1 2 3 1 2 3

Sampling Agent 90.8% 97.0% 84.9% 43% 44.0% 15.1%
Reflexion Agent 86.0% 86.2% 78.9% 48.3% 53.4% 28.4%
STARK 84.5% 90.7% 83.4% 50.6% 61.2% 35.5%

Table 2: Percentages of Successfully Compiled and Correct Kernels.

Ablations. We ablate the agentic components of our system. We compare (i) Search Agent, which
is a single-agent model equipped with our strategic search, and (ii) MA-only, which employs the
multi-agent workflow (plan/code/debug with grounded instruction) using best-of-K sampling in-
stead of search. As shown in Table 3, both variants outperform the Sampling baseline, confirming
that each component helps. When combined in STARK, the effects compound: strategic search
exploits the structured proposals produced by the multi-agent workflow, yielding the largest gains.

Torch Eager Default Max-autotune
Fast1 ↑ Speed↑ Fast1 ↑ Speed↑ Fast1 ↑ Speed↑

Sampling Agent 50% 0.87× 12.5% 0.67× 12.5% 0.66×
Search Agent 67.5% 0.89× 25% 0.71× 25% 0.70×
MA-Only 67.5% 1.11× 25% 0.92× 25% 0.91×
STARK 87.5% 1.58× 87.5% 1.27× 87.5% 1.26×

Table 3: Ablation on the Proposed Agentic Features.

6 CONCLUSION

In this work, we introduced an agentic framework for GPU kernel optimization that combines multi-
agent role play, dynamic context management, and strategic search. Our evaluation on KernelBench
demonstrated that the proposed framework consistently outperforms baseline methods in both suc-
cess rate and runtime efficiency, across tasks of varying complexity. These results highlight the
value of moving beyond single-agent or unguided sampling approaches, and point to the promise
of collaborative, feedback-driven optimization. Looking forward, we envision that agentic LLM
frameworks will play an increasingly important role in automated system optimization. Extend-
ing our approach to broader classes of operators, diverse hardware architectures, and cross-kernel
scheduling decisions are natural directions for future research. More broadly, our work suggests that
multi-agent LLMs can meaningfully accelerate the co-design of AI algorithms and infrastructure,
pushing the boundaries of what is possible in efficient large-scale computation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This study complies with the ICLR Code of Ethics. All datasets employed are publicly available
and open-source under licenses that permit research use. No private or personally identifiable in-
formation was accessed, and no new data were collected from human subjects. The research does
not pose privacy, security, or fairness concerns. The authors declare no conflicts of interest and no
external sponsorship.

REPRODUCIBILITY STATEMENT

We document all algorithmic and implementation details in the paper and appendix, including the
exact prompts for every agent, full hyperparameters, and ablation settings. Upon acceptance, we
will release an open-source repository with configuration files, an environment file and Dockerfile,
and step-by-step commands to recreate every table and figure.

REFERENCES

Antonis Antoniades, Albert Örwall, Kexun Zhang, Yuxi Xie, Anirudh Goyal, and William Wang.
Swe-search: Enhancing software agents with monte carlo tree search and iterative refinement.
arXiv preprint arXiv:2410.20285, 2024.

Ian Buck. Gpu program optimization. In Matt Pharr (ed.), GPU Gems 2. NVIDIA, 2008.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Hangu Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Tvm:
An automated end-to-end optimizing compiler for deep learning. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), 2018.

Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. End-to-end deep learning
of optimization heuristics. In 2017 26th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 219–232. IEEE, 2017.

DeepMind. Discovering faster matrix multiplication algorithms
with alphatensor. https://www.deepmind.com/blog/
discovering-faster-matrix-multiplication-algorithms-with-alphatensor,
2022. Accessed: 2024.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mo-
hammadamin Barekatain, Alexander Novikov, Francisco JR Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement learning.
Nature, 610(7930):47–53, 2022.

Qiuhan Gu. Llm-based code generation method for golang compiler testing. In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 2201–2203, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Stijn Heldens and Ben van Werkhoven. Kernel launcher: C++ library for optimal-performance
portable cuda applications. In 2023 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW), pp. 556–565. IEEE, 2023.

Erik Hellsten, Artur Souza, Johannes Lenfers, Rubens Lacouture, Olivia Hsu, Adel Ejjeh, Fredrik
Kjolstad, Michel Steuwer, Kunle Olukotun, and Luigi Nardi. Baco: A fast and portable bayesian
compiler optimization framework, 2023. URL https://arxiv.org/abs/2212.11142.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

10

https://www.deepmind.com/blog/discovering-faster-matrix-multiplication-algorithms-with-alphatensor
https://www.deepmind.com/blog/discovering-faster-matrix-multiplication-algorithms-with-alphatensor
https://arxiv.org/abs/2212.11142

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamina-
tion free evaluation of large language models for code. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
chfJJYC3iL.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In Interna-
tional Conference on Learning Representations, 2024.

Jakub Kurzak, Stanimire Tomov, and Jack Dongarra. Autotuning gemm kernels for the fermi gpu.
IEEE Transactions on Parallel and Distributed Systems, 23(11):2045–2054, 2012.

LangChain Inc. Langgraph: Build resilient language agents as graphs, 2025. URL https://
github.com/langchain-ai/langgraph. Version 0.6.7; accessed 2025-09-24.

Teodor V. Marinov, Alekh Agarwal, and Mircea Trofin. Offline imitation learning from multi-
ple baselines with applications to compiler optimization, 2024. URL https://arxiv.org/
abs/2403.19462.

Cedric Nugteren and Valeriu Codreanu. Cltune: A generic auto-tuner for opencl kernels. In
2015 IEEE International Parallel and Distributed Processing Symposium Workshop, pp. 846–
851. IEEE, 2015.

NVIDIA Developer. Improving gemm kernel auto-tuning efficiency on nvidia gpus
with heuristics and cutlass 4.2. https://developer.nvidia.com/blog/
improving-gemm-kernel-auto-tuning-efficiency-on-nvidia-gpus-with-heuristics-and-cutlass-4-2/,
2024. Accessed: 2024.

Anne Ouyang, Simon Guo, Simran Arora, Alex L Zhang, William Hu, Christopher Re, and Azalia
Mirhoseini. Kernelbench: Can LLMs write efficient GPU kernels? In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
yeoN1iQT1x.

Ari Rasch, Markus Haidl, and Sergei Gorlatch. Atf: A generic auto-tuning framework. In 2017 IEEE
19th International Conference on High Performance Computing and Communications (HPCC),
pp. 64–71. IEEE, 2017.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10–19, 2019.

Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choromanski, and David
Li. Mlgo: a machine learning guided compiler optimizations framework. arXiv preprint
arXiv:2101.04808, 2021.

Ben van Werkhoven. Kernel tuner: A search-optimizing gpu code auto-tuner. In Future Generation
Computer Systems, volume 90, pp. 347–358. Elsevier, 2019.

Lilian Weng. Llm-powered autonomous agents. https://lilianweng.github.io/
posts/2023-06-23-agent/, 2023. Accessed: 2024.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik R Narasimhan,
and Ofir Press. SWE-agent: Agent-computer interfaces enable automated software engineering.
In Thirty-eighth Conference on Neural Information Processing Systems, 2024.

John Yang, Kilian Lieret, Carlos E Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents. arXiv preprint arXiv:2504.21798, 2025.

11

https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://github.com/langchain-ai/langgraph
https://github.com/langchain-ai/langgraph
https://arxiv.org/abs/2403.19462
https://arxiv.org/abs/2403.19462
https://developer.nvidia.com/blog/improving-gemm-kernel-auto-tuning-efficiency-on-nvidia-gpus-with-heuristics-and-cutlass-4-2/
https://developer.nvidia.com/blog/improving-gemm-kernel-auto-tuning-efficiency-on-nvidia-gpus-with-heuristics-and-cutlass-4-2/
https://openreview.net/forum?id=yeoN1iQT1x
https://openreview.net/forum?id=yeoN1iQT1x
https://lilianweng.github.io/posts/2023-06-23-agent/
https://lilianweng.github.io/posts/2023-06-23-agent/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. A gpgpu compiler for memory optimiza-
tion and parallelism management. In Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 86–97. ACM, 2010.

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang,
Jun Yang, Danyang Zhuo, Koushik Sen, et al. Ansor: Generating {High-Performance} tensor
programs for deep learning. In 14th USENIX symposium on operating systems design and imple-
mentation (OSDI 20), pp. 863–879, 2020a.

Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. Flextensor: An automatic
schedule exploration and optimization framework for tensor computation on heterogeneous sys-
tem. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 859–873, 2020b.

Li Zhong and Zilong Wang. Can llm replace stack overflow? a study on robustness and reliability
of large language model code generation. In Proceedings of the AAAI conference on artificial
intelligence, volume 38, pp. 21841–21849, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used solely as general-purpose assistive tools to improve the
clarity and readability of the manuscript. Specifically, we used an LLM to help rephrase and polish
text that we had already drafted.

B IMPLEMENTATION AND EVALUATION

Agent Implementation. We use Claude Sonnet 4 as the base LLMs for all agent baselines and
agents of STARK. For both sampling and reflexion agents, we follow KernelBench to set temperature
τ = 0.7 during generating, with other generation parameters such as top-p set to the default value.
For STARK, we use Claude Sonnet 4 with temperature τ = 0.8 for the plan agent, and τ = 0.1
for the code and debug agents. For all tasks, all agent baselines and STARK have a maximum of
B = 30 attempts to optimize each task. Regarding the hyperparameters of STARK, we choose the
root throtting number to be 5, dead-branch pruning number to be 3, ϵ = 0.3 for the search, r = 2
for the leaderboard C. To prevent exploding context to the LLMs, we set an upper limit for the
number of nodes in the dynamic context window: whenever the dynamic context window has more
than 5 nodes, we randomly sample 5 from all the nodes in the window. We implement STARK with
LangGraph (LangChain Inc., 2025).

Runtime Evaluation. We evaluate all the Pytorch baselines and LLM-generated kernels on the same
NVIDIA A100 40GB GPU. We use the source code provided by KernelBench at its official repo1 to
benchmark the kernels’ runtime. In particular, to ensure stable measurement, runtime is measured
with CUDA events after warm-up runs using fixed input shapes; we choose a large number of 100
warm-up runs to ensure accurate measurement.

C PROMPTS

Our prompts follow the templates of KernelBench (Ouyang et al., 2025), which has four compo-
nents: system message, in-context example, architecture source code, and instruction.

As we have multiple agents in STARK with different tasks, they require different prompts to fulfill
their tasks. Specifically, we reuse the system message and in-context example from KernelBench
for all agents and include the architecture source code regardless of which node is selected for opti-
mization. To motivate the agents to use the already optimized modules such as cuBLAS, we include
an additional instruction in the system message to consider using existing highly optimized kernels.
We show the system prompt in Figure 7, the in-context example in Figures 11 and 12. In addition,
we include the information within the dynamic context window and role-specific instructions for dif-
ferent agents. See Figure 4 for the prompt template of STARK. We show the role-specific instruction
in Figures 8, 9, and 10.

D EXAMPLE KERNELBENCH TASKS

Here we show three examples of KernelBench tasks, one for each level. See Figures 13, 14, and 15
for example tasks in Level 1, 2, and 3. We refer interested readers to Ouyang et al. (2025) for the
complete list.

E RELATED WORK

Optimizing GPU kernels to extract maximum performance from underlying hardware is a long-
standing and formidable challenge. The vast, non-convex, and hardware-specific search space of
possible kernel implementations necessitates sophisticated optimization strategies. The evolution of
these strategies can be broadly categorized into three paradigms: empirical auto-tuning, compiler-
and model-driven optimization, and most recently, generative approaches using Large Language

1https://github.com/ScalingIntelligence/KernelBench

13

https://github.com/ScalingIntelligence/KernelBench

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

1 {System Message}
2

3 Here’s an example to show you the syntax of inline embedding
custom CUDA operators in torch: The example given architecture is:

4 {Example Architecture Source Code}
5 The example new arch with custom CUDA kernels looks like this:
6 {Example New Architecture Source Code}
7

8 You are given the following architecture:
9 {Architecture Source Code}

10

11 Here is your latest attempt:
12 {Source Code of the Selected Node}
13

14 [Dynamic Context Window] You should use the following observations
regarding your historical attempts to provide better

implementations:
15 - Learn from the failed examples to avoid bugs and write

successful kernels.
16 - Learn from the successful examples to design improved kernels.
17

18 **Kernel Source Code #1**
19 {Source Code of Historical Attempt}
20

21 **Compiler Observation**
22 {Compiler Log}
23

24 **Kernel Execuation Result**
25 {Runtime or Correctness Error}
26

27 **Kernel Source Code #2**
28 [...skipped]
29

30 {Role-specific Instruction}

Figure 4: Prompt Template for Agents.

Models (LLMs). Our work builds upon this trajectory by introducing a fully autonomous agent that
manages the entire optimization lifecycle.

E.1 EMPIRICAL AND COMPILER-BASED OPTIMIZATION

The foundational approach to GPU performance tuning is empirical auto-tuning, which treats the
problem as a black-box search over a set of tunable parameters, such as thread block dimensions,
memory tiling factors, and loop unrolling factors (van Werkhoven, 2019). Traditional methods often
rely on an exhaustive or brute-force search, where thousands of potential kernel configurations are
generated, compiled, and benchmarked to identify the top performer (Kurzak et al., 2012).While
effective, this process is prohibitively time-consuming; for instance, an exhaustive search for a single
GEMM kernel can take over 700 minutes to complete (NVIDIA Developer, 2024).

To mitigate this cost, heuristic-driven methods prune the search space. NVIDIA’s
nvMatmulHeuristics, for example, uses a predictive model to recommend a small subset of
high-potential configurations, achieving near-optimal performance in a fraction of the time (NVIDIA
Developer, 2024). Frameworks like Kernel Tuner (van Werkhoven, 2019), ATF (Rasch et al., 2017),
and CLTune (Nugteren & Codreanu, 2015) provide robust environments for orchestrating these
searches and support more advanced strategies like Bayesian Optimization, which builds a prob-
abilistic performance model to guide the search more intelligently (Hellsten et al., 2023; Heldens &
van Werkhoven, 2023).

Concurrently, compiler-based approaches aim to automate optimization through a series of program
transformations applied to an intermediate representation (Yang et al., 2010). GPU compilers em-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

1 ## System Message
2

3 You are an expert in writing efficient code.
4 You write custom CUDA kernels to replace the pytorch operators in
the given architecture to get speedups.

5

6 You have complete freedom to choose the set of operators you want
to replace. You may make the decision to replace some operators
with custom CUDA kernels and leave others unchanged. You may
replace multiple operators with custom implementations, consider
operator fusion opportunities (combining multiple operators into a
single kernel, for example, combining matmul+relu), or

algorithmic changes (such as online softmax). You are only limited
by your imagination.

7

8 You should consider using CUDA’s existing highly optimized kernels
and operations whenever appropriate. Try building on these

optimized blocks and further improve it with your custom kernels.

Figure 5: System Message for All Agents.

1 ## System Message
2

3 You act as an LLM agent specializing in GPU optimization. Your
goal is to speed up a given PyTorch architecture by generating
custom CUDA kernels to replace its existing operators.

4 You may freely choose which operators to target, whether to
rewrite one operator, many operators, or none. You can pursue
kernel fusion opportunities (e.g., folding linear layers and
elementwise ops together) or restructure the computation
algorithmically to achieve higher throughput or lower memory
traffic.

5

6 There are no constraints on what transformations you may
proposeinnovation is encouraged.

7

8 Use CUDAs existing highly optimized kernel libraries whenever
advantageous; treat them as strong baselines that your custom
kernels can refine, fuse, or extend to achieve even greater
efficiency.

Figure 6: Alternate System Message V 1 for STARK.

ploy passes for memory coalescing, data prefetching, vectorization, and loop optimizations to adapt
naive code to the hardware architecture (Buck, 2008). While these approaches excel at finding op-
timal configurations within a predefined search space, they cannot fundamentally alter the kernel’s
algorithm. Our work introduces an agent that reasons about performance bottlenecks to implement
novel, structural code changes, moving beyond simple parameter tuning.

E.2 MACHINE LEARNING FOR CODE OPTIMIZATION

Machine learning (ML) has emerged as a powerful tool to transcend the limitations of hand-crafted
heuristics. Early work focused on using ML to make better decisions within existing compiler and
tuning frameworks. Systems like TVM employ a learned cost model to predict the performance of
kernel variants, guiding the search process and avoiding exhaustive empirical evaluation (Chen et al.,
2018). More recent efforts have integrated ML directly into production compilers. Google’s MLGO
framework uses reinforcement learning (RL) to train policies for classic compiler optimizations like
function inlining and register allocation, demonstrating significant improvements in code size and
performance over decades-old, manually-tuned heuristics in LLVM (Trofin et al., 2021; Marinov

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

1 ## System Message
2

3 You are a GPU kernel engineer tasked with accelerating a PyTorch
model by selectively replacing its operators with custom CUDA
kernels.

4 You have full discretion in deciding which operators should be
rewritten, fused, or left as-is. You may implement multiple custom
kernels, explore operator fusion (e.g., matmul + activation), or

introduce more efficient algorithmic variants (such as online
softmax or tiled reductions).

5

6 Your design space is unrestrictedcreativity and performance
intuition should guide your choices.

7

8 Whenever beneficial, leverage CUDAs high-performance primitives (
tensor cores, cutlass, cuBLAS, cuDNN, etc.). Build upon these
optimized components and push performance further with your own
implementations.

Figure 7: Alternate System Message V 2 for STARK.

et al., 2024). These models can learn from massive code corpora and discover complex feature
interactions that are opaque to human experts (Cummins et al., 2017).

A more profound application of ML has been in algorithmic discovery. DeepMind’s AlphaTen-
sor framed the search for faster matrix multiplication algorithms as a single-player game, using a
deep RL agent based on AlphaZero to navigate the enormous search space of tensor decomposi-
tions (Fawzi et al., 2022). This approach successfully discovered novel, provably correct algorithms
that outperform human-derived state-of-the-art methods, including improving upon Strassen’s algo-
rithm for 4×4 matrices for the first time in over 50 years (Fawzi et al., 2022; DeepMind, 2022). This
work marked a critical shift from using ML to configure existing optimization strategies to using it
to invent new ones from first principles. However, AlphaTensor operated in a clean, formal mathe-
matical domain. Translating this power to the messy, syntactic, and hardware-constrained domain
of GPU kernel programming presents a distinct challenge. Our work addresses this by employing
an agent that operates directly on source code, navigating the complexities of syntax, compilation,
and hardware-specific performance characteristics.

E.3 LLM-POWERED AUTONOMOUS AGENTS

The capabilities of LLMs have given rise to a new paradigm of autonomous agents. An LLM agent
uses a core LLM as its ”brain” or controller, augmented with capabilities for planning, memory, and
tool use to perform complex tasks autonomously (Weng, 2023). The key distinction from simple
LLM prompting is the agent’s ability to decompose a high-level goal into a sequence of manageable
subtasks, execute them iteratively, and use reflection to gauge progress and self-correct. This agentic
workflow involves the LLM interacting with an external environment through a set of tools, such
as a code interpreter or a web search API, to gather information and perform actions. While this
paradigm is powerful for general problem-solving, its application to specialized domains like soft-
ware engineering requires tailored tools and reasoning processes. Our work specializes this agentic
concept for the domain of performance optimization, which presents unique challenges not found in
general-purpose agent tasks.

E.4 LLMS FOR CODE OPTIMIZATION AND GENERATION

The advent of powerful LLMs has opened a new frontier in performance engineering. To grant
LLMs greater autonomy, the agentic paradigm has been adapted specifically for software engineer-
ing. The success of systems like SWE-agent, which autonomously resolves complex bugs in large
GitHub repositories, has demonstrated the viability of this approach (Yang et al., 2024). SWE-agent
equips an LLM with a specialized Agent-Computer Interface (ACI) containing tools for file naviga-
tion, editing, and test execution, enabling it to perform long-horizon tasks far beyond the scope of

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

1 ## Instruction
2

3 - Optimize the architecture named Model with custom CUDA operators
!

4 - Give explicit and actonable advice to improve the efficiency, in
terms of the GPU wall-clock time, of the architecture named Model

.
5

6 - Give ONE advice of the top priority! Don’t over-request.
7 - Include necessary details such as how to change pointers and
indices or how to achieve shared memory tiling so that your advice
can be correctly implemented.

8

9 - After your advice, modify and return the given source code in
the following way:

10 - Identify the code block whose efficiency can be improved (
that is where your advice should be implemented)

11 and mark it with comments ’<<<IMPROVE BEGIN>>>’ at the
beginning and ’<<<IMPROVE END>>>’ at the end

12 - The markers ’<<<IMPROVE BEGIN>>>’ and ’<<<IMPROVE END>>>’
should be valid comments for the marked coding language. For
example, when marking source code of custom kernels, you need to
use comments for the C++ language as ’// <<<IMPROVE BEGIN>>>’ and
’// <<<IMPROVE END>>>’; when marking source code of Python, you
should use ’## <<<IMPROVE BEGIN>>>’ and ’## <<<IMPROVE END>>>’

13 - Add your advice as comments at the identified code block to
help the following agent’s implementation

14 - There will be another agent focusing on improving the
efficiency of the identified code block.

15 - Return the complete code block with the identified code
block as its subpart.

16

17 - You should consider using CUDA’s existing highly optimized
kernels and operations whenever appropriate. Try building on these
optimized blocks and further improve it with your custom kernels.

18 - When presented with multiple prior attempts, you should consider
exploration of more diverse optimization strategies.

19 - Pay careful attention to the implementation agent’s capability
demonstrated from the historical implementations.

20 - Adjust your advice accordingly to ensure that it can
successfully implement.

Figure 8: Instruction for the Plan Agent.

simple code generation (Yang et al., 2024; Jimenez et al., 2024). While these agents are a signif-
icant step towards autonomous software engineering, their focus has primarily been on functional
correctness, such as bug fixing. Our work extends this agentic software engineering paradigm to
the non-functional, performance-oriented domain of GPU kernel optimization. We introduce an
agent that not only interacts with a codebase but also with hardware profiling tools, allowing it
to autonomously diagnose performance bottlenecks, form hypotheses, and conduct experiments to
iteratively improve kernel efficiency, thus acting as a true autonomous performance engineer.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1 ## Instruction
2

3 Optimize the architecture named Model with custom CUDA operators!
4

5 - Think about the given advice from human experts and implement
the ones that you believe are correct and you are confident
implementing.

6 - Only focus on the code block marked with ’<<<IMPROVE BEGIN>>>’
and ’<<<IMPROVE END>>>’

7 - Write custom cuda kernel to replace the pytorch operators within
the marked code block to improve its efficiency

8 - Name your optimized output architecture ModelNew.
9 - Output the new code in codeblocks.

10 - Explain your implementation and how you follow the advice.
11 - Using the given tool to return your final structured answer.
12

13 Please generate real code, NOT pseudocode, make sure the code
compiles and is fully functional.

14

15 NO testing code!

Figure 9: Instruction for the Code Agent.

1 ## Instruction
2

3 Fix the issues of your implementation named ModelNew, which should
improve efficiency of the source model named Model.

4

5 - ModelNew and Model should have the same functionality, that is,
the same input-output mapping.

6 - The given architecture ModelNew ieither does not compile, or has
run-time error, or has different functionality to the source

Model.
7 - Use the given observations to infer bugs and then fix them.
8 - Explain how the bugs happen and how you fix it.
9 - Return the fixed bug-free code and name your optimized output
architecture ModelNew.

Figure 10: Instruction for the Debug Agent.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1 ## Example Architecture Source Code
2 import torch
3 import torch.nn as nn
4 import torch.nn.functional as F
5

6

7 class Model(nn.Module):
8 def __init__(self) -> None:
9 super().__init__()

10

11 def forward(self, a, b):
12 return a + b
13

14

15 def get_inputs():
16 # randomly generate input tensors based on the model

architecture
17 a = torch.randn(1, 128).cuda()
18 b = torch.randn(1, 128).cuda()
19 return [a, b]
20

21

22 def get_init_inputs():
23 # randomly generate tensors required for initialization based

on the model architecture
24 return []

Figure 11: In-context Example Architecture for All Agents.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

1 ## Example New Architecture Source Code
2

3 import torch
4 import torch.nn as nn
5 import torch.nn.functional as F
6 from torch.utils.cpp_extension import load_inline
7

8 # Define the custom CUDA kernel for element-wise addition
9 elementwise_add_source = """

10 #include <torch/extension.h>
11 #include <cuda_runtime.h>
12

13 __global__ void elementwise_add_kernel(const float* a, const float
* b, float* out, int size) {

14 int idx = blockIdx.x * blockDim.x + threadIdx.x;
15 if (idx < size) {
16 out[idx] = a[idx] + b[idx];
17 }
18 }
19

20 torch::Tensor elementwise_add_cuda(torch::Tensor a, torch::Tensor
b) {

21 auto size = a.numel();
22 auto out = torch::zeros_like(a);
23

24 const int block_size = 256;
25 const int num_blocks = (size + block_size - 1) / block_size;
26

27 elementwise_add_kernel<<<num_blocks, block_size>>>(a.data_ptr<
float>(), b.data_ptr<float>(), out.data_ptr<float>(), size);

28

29 return out;
30 }
31 """
32

33 elementwise_add_cpp_source = (
34 "torch::Tensor elementwise_add_cuda(torch::Tensor a, torch::

Tensor b);"
35)
36

37 # Compile the inline CUDA code for element-wise addition
38 elementwise_add = load_inline(
39 name="elementwise_add",
40 cpp_sources=elementwise_add_cpp_source,
41 cuda_sources=elementwise_add_source,
42 functions=["elementwise_add_cuda"],
43 verbose=True,
44 extra_cflags=[""],
45 extra_ldflags=[""],
46)
47

48

49 class ModelNew(nn.Module):
50 def __init__(self) -> None:
51 super().__init__()
52 self.elementwise_add = elementwise_add
53

54 def forward(self, a, b):
55 return self.elementwise_add.elementwise_add_cuda(a, b)

Figure 12: In-context Optimized Example Architecture for All Agents.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

1 import torch
2 import torch.nn as nn
3

4 class Model(nn.Module):
5 """
6 Simple model that performs a LogSoftmax activation.
7 """
8 def __init__(self, dim: int = 1):
9 super(Model, self).__init__()

10 self.dim = dim
11

12 def forward(self, x: torch.Tensor) -> torch.Tensor:
13 """
14 Applies LogSoftmax activation to the input tensor.
15

16 Args:
17 x (torch.Tensor): Input tensor of shape (batch_size,

dim).
18

19 Returns:
20 torch.Tensor: Output tensor with LogSoftmax applied,

same shape as input.
21 """
22 return torch.log_softmax(x, dim=self.dim)
23

24 batch_size = 4096
25 dim = 393216
26

27 def get_inputs():
28 x = torch.rand(batch_size, dim)
29 return [x]
30

31 def get_init_inputs():
32 return [] # No special initialization inputs needed

Figure 13: Example KernelBench Level 1 Task.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

1 import torch
2 import torch.nn as nn
3

4 class Model(nn.Module):
5 """
6 Model that performs a matrix multiplication, division,

summation, and scaling.
7 """
8 def __init__(self, input_size, hidden_size, scaling_factor):
9 super(Model, self).__init__()

10 self.weight = nn.Parameter(torch.randn(hidden_size,
input_size))

11 self.scaling_factor = scaling_factor
12

13 def forward(self, x):
14 """
15 Args:
16 x (torch.Tensor): Input tensor of shape (batch_size,

input_size).
17 Returns:
18 torch.Tensor: Output tensor of shape (batch_size,

hidden_size).
19 """
20 x = torch.matmul(x, self.weight.T) # Gemm
21 x = x / 2 # Divide
22 x = torch.sum(x, dim=1, keepdim=True) # Sum
23 x = x * self.scaling_factor # Scaling
24 return x
25

26

27 batch_size = 1024
28 input_size = 8192
29 hidden_size = 8192
30 scaling_factor = 1.5
31

32 def get_inputs():
33 return [torch.rand(batch_size, input_size)]
34

35 def get_init_inputs():
36 return [input_size, hidden_size, scaling_factor]

Figure 14: Example KernelBench Level 2 Task.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4 import math
5

6 class NewGELU(nn.Module):
7 """
8 Implementation of the GELU activation function currently in

Google BERT repo (identical to OpenAI GPT).
9 Reference: Gaussian Error Linear Units (GELU) paper: https://

arxiv.org/abs/1606.08415
10 """
11 def __init__(self):
12 super(NewGELU, self).__init__()
13

14 def forward(self, x):
15 return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi

) * (x + 0.044715 * torch.pow(x, 3.0))))
16

17 class CausalSelfAttention(nn.Module):
18 """
19 A vanilla multi-head masked self-attention layer with a

projection at the end.
20 It is possible to use torch.nn.MultiheadAttention here but I

am including an
21 explicit implementation here to show that there is nothing too

scary here.
22 """
23

24 def __init__(self, n_embd, n_head, attn_pdrop, resid_pdrop,
max_seqlen):

25 super().__init__()
26 assert n_embd % n_head == 0
27 # key, query, value projections for all heads, but in a

batch
28 self.c_attn = nn.Linear(n_embd, 3 * n_embd)
29 # output projection
30 self.c_proj = nn.Linear(n_embd, n_embd)
31 # regularization
32 self.attn_dropout = nn.Dropout(attn_pdrop)
33 self.resid_dropout = nn.Dropout(resid_pdrop)
34 # causal mask to ensure that attention is only applied to

the left in the input sequence
35 self.register_buffer("bias", torch.tril(torch.ones(

max_seqlen, max_seqlen))
36 .view(1, 1, max_seqlen,

max_seqlen))
37 self.n_head = n_head
38 self.n_embd = n_embd
39 [...skipped]
40

41 class Model(nn.Module):
42 """ an unassuming Transformer block """
43

44 [...skipped]
45

46 def forward(self, x):
47 x = x + self.attn(self.ln_1(x))
48 x = x + self.mlpf(self.ln_2(x))
49 return x
50

51 [...skipped]

Figure 15: Example KernelBench Level 3 Task.

23

	Introduction
	Related Work
	Preliminary
	LLMs and Autoregressive Generation
	KernelBench

	STARK: Strategic Team of Agents for Refining Kernels
	Multi-Agent Collaboration
	Strategic Search with Tree Memory
	Grounded Instruction
	Dynamic Context Window
	Framework Overview

	Experiments
	Conclusion
	Use of Large Language Models (LLMs)
	Implementation and Evaluation
	Prompts
	Example KernelBench Tasks
	Related Work
	Empirical and Compiler-Based Optimization
	Machine Learning for Code Optimization
	LLM-Powered Autonomous Agents
	LLMs for Code Optimization and Generation

