Under review as a conference paper at ICLR 2026

STARK: STRATEGIC TEAM OF AGENTS FOR REFINING

KERNELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The efficiency of GPU kernels is central to the progress of modern Al, yet optimiz-
ing them remains a difficult and labor-intensive task due to complex interactions
between memory hierarchies, thread scheduling, and hardware-specific character-
istics. While recent advances in large language models (LLMs) provide new op-
portunities for automated code generation, existing approaches largely treat LLMs
as single-shot generators or naive refinement tools, limiting their effectiveness in
navigating the irregular kernel optimization landscape. We introduce an LLM
agentic framework for GPU kernel optimization that systematically explores the
design space through multi-agent collaboration, grounded instruction, dynamic
context management, and strategic search. This framework mimics the workflow
of expert engineers, enabling LLMs to reason about hardware trade-offs, incorpo-
rate profiling feedback, and refine kernels iteratively. We evaluate our approach
on KernelBench, a benchmark for LLM-based kernel optimization, and demon-
strate substantial improvements over baseline agents: our system produces correct
solutions where baselines often fail, and achieves kernels with up to 16x faster
runtime performance. These results highlight the potential of agentic LLM frame-

works to advance fully automated, scalable GPU kernel optimization.

1 INTRODUCTION

Artificial intelligence (AI) has advanced at
an unprecedented pace, transforming both re-
search and real-world applications. While in-
novations in model architectures and training
algorithms have been central to this progress,
the efficiency of the computational infrastruc-
ture that executes them is equally critical. At
the core of modern Al systems are GPU ker-
nels, which implement fundamental operations
such as matrix multiplication and convolution.
Even modest improvements in GPU kernel effi-
ciency can translate into significant reductions
in training time, inference latency, and deploy-
ment cost, making kernel optimization a corner-
stone for sustaining AI’s rapid growth.

Despite their importance, designing and opti-
mizing GPU kernels remains a major challenge.
The performance of a kernel depends on sub-

17.5 Sampling Agent
: 16x Reflexion Agent
15.0
13.7x
~ 12.5
X
; 10.7x
3 10.0
T
]
g- 7.5
wn 6.54%
5.51x
5.0
2.5 2.35x
0.0 Level 1 Level 2 Level 3

Figure 1: Speedup of STARK over baseline agents
on KernelBench (L1-L3) with same number of at-
tempts. Bars report GPU wall-clock speedups () rel-
ative to the Sampling and Reflexion agents; higher is
better. STARK reaches up to 16x over Reflexion (L2)
and 10.7x over Sampling (L1).

tle interactions between thread scheduling, memory hierarchy utilization, synchronization, and
hardware-specific characteristics. Small changes in tiling strategies, loop unrolling, or memory
alignment can yield disproportionate effects on runtime. As a result, the kernel optimization land-
scape is highly irregular, architecture-dependent, and difficult to navigate. Existing approaches
largely fall into two categories: manual optimization by expert engineers, which is effective but
labor-intensive and difficult to scale; and automated compilers and domain-specific languages
(DSLs) such as TVM and Triton (Chen et al., 2018 [Tillet et al., 2019), which apply heuristics or
search but often struggle with irregular operators and hardware variability (Zheng et al., 2020azb)).

Under review as a conference paper at ICLR 2026

The rapid progress of large language models (LLMs) opens a new opportunity for kernel optimiza-
tion. Beyond their ability to generate correct code, LLMs can be guided to reason about hardware
trade-offs, adapt to profiling feedback, and iteratively refine implementations. However, prior work
has mostly treated LLMs as single-shot code generators or simple refinement tools (Ouyang et al.|
2025])), which underutilizes their potential for structured exploration of the kernel design space. To
build a more powerful agent, we identify and address three critical limitations in existing methods:

1. Naive exploration strategy. Current agents typically refine code linearly, learning only
from the immediately preceding attempt. This simplistic process neglects the rich history
of prior attempts and fails to effectively balance the exploration-exploitation trade-off, often
getting trapped in local optima.

2. Monolithic agent design. Kernel optimization is a multifaceted task requiring distinct
capabilities for planning, implementation, and reflection. By assigning all these responsi-
bilities to a single, generalist LLM, current agents operate inefficiently.

3. Planning-implementation gap. We observe a failure mode particularly acute in this do-
main: LLMs frequently devise a correct high-level optimization plan (e.g., “apply memory
tiling”) but fail to translate it into valid low-level CUDA code. This gap stems from the
relative scarcity of expert-level kernel code in the models’ training data.

To address these limitations, we introduce STARK (Strategic Team of Agents for Refining Kernels),
a novel framework for automated GPU-kernel optimization. Our contributions are threefold:

* Collaborative multi-agent workflow. We design a workflow with specialized agents for
planning, coding, and reflection, mirroring an expert development cycle and overcoming
the inefficiencies of monolithic designs.

* Bridging the planning—-implementation gap. We propose two mechanisms—grounded
instruction and dynamic context windows—that translate high-level strategies into precise,
actionable code edits, ensuring robust coordination across agents.

* Strategic search for refinement. We incorporate a search policy that balances exploration
and exploitation over prior attempts, enabling systematic discovery of strong kernels.

Strategic
a)’ ke Search
-

:‘ Kernel #3:' -——

ﬁa) LLM Agent for GPU Kernel Optimization \ (b) Tree Memory
& Strategic Search

System Prompt | ____
& Task Instruction g Optimized GPU Kernels Memory Node [§8
:‘“) LLM > lobal id [T S
ey e - S .

class Model heans :
(nn.module) { a Feedbacks

Compiler Info ;
Correctness Info P o
Runtime Info :
3)

Kernel #5 € -

Y TIterative Refinement
~/

Feedbacks

A

5
Compiler Info (Syntax Error,
. <« —
Compile Error, ...) %
Correctness Info Timer Correctness Compiler
Qnﬂme Info Check

Grounded Instruction

Context Window

class Model(nn.module)

1
1 Plan | _ <<<IMPROVE BEGINS>>> | _y Code
|_J-> Agent # fuse the addition and relu Agent
into a single operator
x = x + relu(x)
<<<IMPROVE ENDS>>>

(¢) Grounded Instruction & Dynamic Context Window Co-nfexf Window /

Figure 2: Overview of STARK. (a) Prior LLM-based kernel optimizers rely on a monolithic agent with local
iterative refinement. (b) STARK replaces this with a collaborative multi-agent workflow (plan/code/debug)
coupled with strategic search over a tree memory. (¢) The plan agent issues grounded instructions that anchor
edits to code spans; dynamic context windows surface role-specific history; and the debug agent repairs failures.
See Section[d]for details.

Under review as a conference paper at ICLR 2026

We evaluate our framework on KernelBench Ouyang et al.| (2025)), a benchmark designed to as-
sess LLM-based GPU kernel optimization. Experiments show that combining these improvements
leads to an agent system significantly more competitive than the baseline agents in both runtime
performance and success rate across diverse kernel problems, authoring competitive kernels for the
challenging problems in KernelBench where the baseline agents struggle to even find a working
solution. Notably, STARK achieves more than 10x speedup over kernels produced by the base-
line agents (i.e., the optimized kernels run in under one-tenth the time of the baseline.). Overall,
our work suggests that LLM-driven agents represent a promising step toward fully automated GPU
kernel optimization.

2 RELATED WORK

Due to space constrain, we only review the most relevant prior work here and defer the complete
discussion to Appendix [E]

The optimization of GPU kernels has progressed from empirical auto-tuning frameworks that
perform black-box parameter searches (van Werkhoven, 2019; Nugteren & Codreanu, |2015) and
compiler-based approaches with static heuristics (Yang et al.,|2010), to the use of machine learning
(ML). ML-based techniques have been used to replace hand-tuned heuristics in production compil-
ers (Trofin et al., 2021)), learn cost models to guide optimization (Chen et al.,[2018]), and even learn
directly from raw source code without manual feature engineering (Cummins et al.; [2017). A sig-
nificant leap was the use of deep reinforcement learning to discover fundamentally new algorithms,
as demonstrated by AlphaTensor’s success in finding faster matrix multiplication methods (Fawzi
et al.| 2022). While powerful, these prior works either optimize within a fixed search space or oper-
ate in purely formal domains. Our work addresses these limitations by operating directly on source
code to implement novel, structural changes.

The emergence of powerful Large Language Models (LLMs) has revolutionized programmatic in-
teraction with source code, demonstrating a remarkable proficiency in generating code for diverse
applications from competitive programming to compiler testing (Gul, 2023} |Zhong & Wang| [2024;
Jain et al.| |2025)). This capability has catalyzed a paradigm shift away from single-shot code genera-
tion and toward the development of autonomous LLLM agents. An agent enhances a base LLM with
planning, memory, and tool-use capabilities to direct its own workflow (Weng| [2023). The success
of frameworks like SWE-agent in independently resolving complex GitHub issues has validated the
power of this approach for software engineering (SWE) (Yang et al., 2024). While the application
of LLM agents to SWE is a burgeoning field of research (Yang et al.,[2024; |Antoniades et al., [2024;
Yang et al., 2025), their potential in the specialized domain of GPU kernel optimization remains
largely unexplored. To fill this gap, we designed STARK, an agent framework with capabilities
tailored to the unique challenges of this domain.

3 PRELIMINARY

3.1 LLMsS AND AUTOREGRESSIVE GENERATION

Given an input sequence © = (21, Z2, ..., Z,) (e.g., the task instruction) as the context, an LLM py
with parameters 6 generates an output sequence y = (y1, Y2, - - -, Ym) Wherey, € Y, t € {1,...,m}
are tokens. Pretrained on a massive corpus of text, LLMs autoregressively generate the next token
y+ conditioning on z and all the previously generated token y<; = (y1,...,y:—1). Specifically, at
each time ¢, the LLM first computes the logits zg (y|y<¢, «) for each token y in the vocabulary) and
generate y; following the conditional distribution

exp (2o (yt|y<t, x)/T)
> ey exp(20(Y'[y<i,) /T)
The temperature parameter 7 > 0 modulates the randomness of an LLM’s output. Higher values

of 7 flatten the next token distribution in Equation (1| encouraging creative and diverse responses.
Conversely, lower values sharpen the distribution, promoting deterministic and high-fidelity outputs.

Po(Ytly<t,) = (D

This trade-off is critical in complex tasks, as different sub-problems demand different behaviors.
For instance, planning and exploration benefit from a high temperature to generate novel strategies,

Under review as a conference paper at ICLR 2026

whereas tasks requiring precision and factual correctness, such as code implementation, necessitate
a low temperature to ensure reliability. A single agent with a fixed temperature is ill-equipped to
handle this dichotomy. This observation is a core motivation for STARK’s multi-agent design, which
allows specialized agents to operate at distinct temperatures tailored to their roles, i.e., a high 7 for
the creative plan agent and a low 7 for the precise code agent.

3.2 KERNELBENCH

KernelBench Ouyang et al.| (2025) is a recently proposed benchmark specifically designed for as-
sessing LLM-based GPU kernel optimization. Unlike prior evaluations that focus only on code cor-
rectness or small-scale operator tests, KernelBench provides a principled and reproducible testbed
that measures both correctness and runtime efficiency across a broad spectrum of GPU workloads.
KernelBench comprises a suite of optimization tasks, categorized into three difficulty levels. For
each task, the objective is to create a custom GPU kernel that is functionally equivalent to a pro-
vided PyTorch reference implementation while minimizing its wall-clock execution time. See an
example of the KernelBench task in Appendix [D]

Specifically, Level 1 tasks focus on single, common operators such as matrix multiplication and
convolution, serving as a baseline for fundamental optimization capabilities; Level 2 tasks com-
prise tasks with multiple operators fused into a single kernel, testing the ability to manage more
complex dataflows and scheduling; Level 3 tasks represent the highest difficulty, featuring popular
full ML architectures such as the ResNet (He et al.l [2016) and LSTM (Hochreiter & Schmidhuber,
1997), which involve highly irregular computations and intricate memory access patterns that are
challenging for both human experts and automated systems to optimize effectively.

4 STARK: STRATEGIC TEAM OF AGENTS FOR REFINING KERNELS

Framework Overview. We now present STARK, an agentic framework for GPU-kernel optimiza-
tion. STARK organizes kernel refinement into three layers: (i) a multi-agent workflow that separates
planning, coding, and debugging, (ii) coordination mechanisms with grounded instruction to anchor
planned edits to concrete code spans and dynamic context windows that surface role-specific history
(e.g., prior attempts, failures, profiler feedback) to each agent, and (iii) a strategic search policy that
balances exploration and exploitation across iterative attempts. Notably, multi-agent workflow and
grounded instruction improve reliability even under a single-attempt budget, whereas dynamic con-
text windows and strategic search deliver most of their gains when multiple attempts are allowed.
Figure 2] provides an overview; the following subsections detail each component in turn.

4.1 MULTI-AGENT COLLABORATION

Optimizing GPU kernels is inherently multifaceted and mirrors expert team workflows. A single
agent typically fails to balance correctness, performance, and exploration across a vast, irregular
design space. In particular, strategy discovery (e.g., fusion, vectorization, shared-memory tiling)
benefits from higher-temperature generation that encourages diversity whereas strategy realization,
i.e., committing those ideas to code, requires low-temperature precision to avoid errors. We therefore
adopt a multi-agent framework that enables role specialization through LLMs.

Multi-Agent Design (MAD). Specifically, STARK decomposes kernel optimization into three roles
— plan, code, and debug. Using a role-specific context window (Section [d.4) with selected prior at-
tempts and execution outcomes, the plan agent proposes targeted transformations to either the source
kernel or a candidate chosen by the strategic search policy (Section[d.2)), emitting grounded instruc-
tions (Section .3) that anchor edits to explicit code spans. The code agent consumes grounded
instructions and translates them into executable GPU-kernel code, conditioning on its own context
window to improve adherence and code quality. The debug agent repairs promising but failing can-
didates by consulting the plan agent’s instructions and compiler/runtime diagnostics, producing a
working kernel that realizes the intended transformation.

Benefits of MAD. Role specialization lets each agent use prompts and base LLMs matched to its ob-
jective. In our instantiation, we choose Claude Sonnet 4 with temperature 7=0.8 for the plan
agent to encourage strategy diversity, and the same model with 7=0.1 for the code and debug agents

Under review as a conference paper at ICLR 2026

to enforce precision. Despite this simple setup, MAD already performs strongly (see Section [5).
We underscore that because the design is modular, we can swap in planners with richer kernel-
optimization priors or code-specialist reasoning models to further improve results. In addition,
modularity also exposes bottlenecks. We observe that the dominant bottleneck is code-synthesis
fidelity: LLMs often need multiple attempts to faithfully implement a given instruction. Finally,
MAD makes targeted post-training straightforward: we can fine-tune the base LLM for a specific
agent (e.g., the code agent) without affecting the others, improving stability and predictability. How-
ever,, a systematic study of agent-specific post-training is orthogonal to our core contributions and
is left to future work.

4.2 STRATEGIC SEARCH WITH TREE MEMORY

Prior LLM-driven kernel optimizers typically use either best-of-K sampling that generates multiple
candidates independently and select the fastest correct one or iterative refinement which repeatedly
edits the latest kernel (Ouyang et al., 2025). However, best-of-K is unguided and wasteful: all the
new attempts ignore feedback from earlier attempts and repeatedly probe redundant regions of the
design space. On the other hand, iterative refinement is feedback-aware but myopic: by building
only on the most recent candidate, it is prone to getting trapped in narrow, suboptimal basins.

To address these limitations, STARK reframes kernel optimization as strategic search over a persis-
tent tree memory. We maintain a search tree T' whose nodes store candidates and their observations
(runtime, correctness, and compiler diagnostics). The root represents the source architecture; each
edge corresponds to applying a grounded instruction from the plan agent and realizing it via the code
agent (or repairing via the debug agent). Each node n is assigned a score s(n) reflecting competi-
tiveness; in our implementation we use the straightforward kernel runtime as s(n) and treat lower
is better. For kernels that are incorrect or failing to compile, we give them scores of +o0o. At each
step, we (1) select a node to expand using a strategic policy, (2) expand by invoking the plan/code (or
debug) agents to produce a child candidate, (3) evaluate for correctness and runtime, and (4) record
results in T to inform subsequent selections. This converts ad-hoc trial-and-error into a directed,
feedback-driven process.

Policy choice and an adapted c-greedy rule. We compared representative search policies includ-
ing Monte-Carlo Tree-Search (MCTS), evolutionary, greedy, and e-greedy policies and found that
e-greedy consistently performs best under the same budget constraint. Importantly, we observe that
kernel optimization poses domain-specific challenges that are root dominance (it is very challeng-
ing to even outperform the source architecture in the root node) and frequent compilation/runtime
failures. To address these challenges, we adapt the canonical rule as follows: (1) Root throttling:
cap the number of direct children of the root at n to avoid redundant first-hop edits; once the cap
is reached, the root is ineligible for selection; (2) Dead-branch pruning: if a node has more than
Nehila children and all current children fail, mark the node ineligible to prevent wasting trials; (3)
High exploration rate: use a relatively large e (empirically 0.3-0.4) to counteract local traps; (4)
Leaf-biased exploration: with probability €, sample uniformly from expandable leaves (not only
failing nodes), encouraging discovery beyond the immediate failure set.

4.3 GROUNDED INSTRUCTION

We introduce grounded instruction for kernel enhancement. The plan agent must not only pro-
pose an optimization, but also insert explicit span anchors in the kernel source that mark
exactly where the change should occur. Each anchor is a short, machine-checkable tag (i.e,
<<<IMPROVE BEGINS>>> ... <<<IMPROVE ENDS>>>) wrapped around the target site, such
as a load/store, loop body, or the launch configuration. The code agent consumes this annotated scaf-
fold and resolves each anchor by emitting concrete CUDA that realizes the instruction. Grounded in-
struction tightens plan—code alignment, curbs hallucinated guidance, and narrows the coder’s search
space. It also improves traceability: every proposal leaves a visible, verifiable footprint in the final
code. In practice, we observe fewer misinterpretations and markedly fewer faulty kernels. Despite
its simplicity, the mechanism is especially effective on Level 3 KernelBench tasks with deeper ar-
chitectures (e.g., VGG).

Under review as a conference paper at ICLR 2026

4.4 DYNAMIC CONTEXT WINDOW

Past attempts provide rich, actionable signals for subsequent decisions, but different agents ben-
efit from different views of this history. We therefore maintain a dynamic, agent-specific context
window that is rebuilt at each selection step for different agents. See Figure 3| for a visual demon-
stration. Throughout this section, let node ¢ be the node selected by the search policy defined in
Section We use V(i) to denote the context window containing a subset of historical attempts
and their evaluation outcomes (e.g., compiler information and runtime). As we always include the
source architecture as part of the prompt for agents, W(i) always includes the root node 740 For a
naive search algorithm without dynamic context window, W(i) = {1, 1100t } 0only includes node ¢ in
addition to the root.

Context Window Best Node

1
1
1
1
1
1
’

Figure 3: Dynamic Context Window. Nodes with v"’s represent selected nodes.

Tree relations. We use tree relations to build agent-specific context windows. Let p(i) be the parent
of node i. Define the siblings of i as S(i) = {j : p(j) = p(i) }. Moreover, define the set of child
nodes of a node 7 as D(i). We also maintain a small global leaderboard C of top-performing nodes.

Plan agent (local & contrastive global context). For a selected node i, the plan agent conditions
on a context window W, (@) that aggregates node ’s children and a small set of global leaders
from the leaderboard C. Formally,

Wilan(2) = {&, oot} U D(i) U Top—r(C),

where D(i) contains all evaluated children of ¢ with their observations, and Top —r(C) returns the
r highest-scoring distinct kernels from the global leaderboard (excluding ¢’s subtree) to discourage
duplication.

This design serves three purposes. (i) reflection: the plan agent can revise or stack its prior instruc-
tions rather than rediscovering them; (ii) ambition calibration: top competitors prevent redundant
exploration and provide transferable motifs such as warp-shuffle reductions, vectorized LD/ST, and
shared-memory tiling; (ii) capability estimation: by inspecting how past instructions were real-
ized or failed by the code agent, the next instruction is adapted to what the code agent can reliably
execute, improving first-pass success and avoiding instructions beyond current ability. To achieve
this, we explicitly require the plan agent to adapt its instruction to the code agent’s demonstrated
capabilities observed in D(3).

Code agent (extended context). For kernel code emission at node ¢, the code agent conditions on
Wcode(i) = {ianrool} U D(Z) U {j :p(]) E S(Z)}'

The nodes in {j : p(j) € S(7)} are essentially the children of node ¢’s siblings. Our insight is that
these nodes typically share near-identical scaffolds with node ¢ from a common planning lineage,
so successful patches and micro-optimizations transfer with high probability; conversely, seeing
failures in closely related contexts helps the coder avoid repeating the same mistakes. Hence, this
extended window serves two aims: (i) reduce implementation errors by letting the coder imitate
successful patches from closely related scaffolds and avoid previously observed failure modes; (ii)
surface stronger implementations by transferring micro-optimizations (e.g., warp-shuffle motifs,
vectorized LD/ST, shared-memory tiling) that have already worked on cousin nodes.

Debug agent (local context). For fault repair, we construct the context window for the debug code
as

Wdebug(i) = {ivnroot} U S(Z)v

Under review as a conference paper at ICLR 2026

We choose this design mainly for two reasons. Most fixes are structural and local, e.g., off-by-
one guards, stride/indexing alignment, launch-parameter tweaks, or shared-memory sizing often
transfer directly among siblings that share the same scaffold. Moreover, restricting the window to S
avoids distracting the debug agent with globally unrelated kernels, improving precision and reducing
hallucinated edits.

4.5 FRAMEWORK OVERVIEW

Here we provide an overview of our framework STARK and describe its execution process. Algo-
rithm 1| presents its pseudocode.

At a high level, STARK repeatedly (i) selects a promising node (a prior attempt) from a search
tree, (ii) builds agent-specific context windows from local history and global leaders, (iii) asks the
planning agent to propose a concrete optimization along with grounded instruction anchors inserted
into a scaffold, (iv) asks the code agent to realize those anchors into an executable kernel, (v) if
the selected node has a problematic kernel, we build the debugger’s dynamic context window and
request a minimal fix. The new attempt is evaluated, appended as a child node, and the leaderboard
C is updated. We repeat this process until we reach a pre-specified max attempts 5.

Algorithm 1 STARK: Strategic Team of Agents for Refining Kernels

Require: Budget B (max attempts), selection policy 7elect (adapted e-greedy), leaderboard size r
1: Initialize search tree T with root .. (PyTorch reference)

2: Initialize leaderboard C <— {00t }

3: fort=1,2,...,Bdo

4: 1+ Tselect (T, C) > pick a node to refine
5: if HASBUG(¢) then > compile fail or unit-test fail recorded at 4
6 Weebug (2) <~ BUILDCONTEXTDEBUG (4, T')

7 kernel’ < DEBUGAGENT (Wi, i.kernel, i.logs)

8 (ok, correct, runtime, logs) < EvaLUATE(kernel’) > compile, correctness check,

timing

9: (plan, anchors) « (i.plans,i.anchors)

10: else

11: Whoian (i) <= BUILDCONTEXTPLAN(4, T',C)

12: (plan, anchors) <— PLANAGENT (W)an)

13: Weode () <~ BUILDCONTEXTCODE(z, T')

14 kernel’ + CODEAGENT(W,., plan, anchors)

15: (ok, correct, runtime, logs) < EVALUATE(kernel’)

16: end if

17: j < ADDCHILD(T, i, kernel’, plan, anchors, ok, correct, runtime, logs)

18: C < UPDATELEADERS(C, j, r)

19: end for
20: return BEST(C) > fastest correct, grounded kernel

5 EXPERIMENTS

We use KernelBench (Ouyang et al., [2025)), a recently proposed benchmark consisting of compre-
hensive and challenging GPU kernel tasks, to validate the effectiveness of our proposed approaches.

Baselines and Metrics. We compare our framework STARK with the following list of approaches:

* Torch Eager: the out-of-box PyTorch modules without any compilation or optimization.

* Torch Compile : We use torch.compile to produce optimized versions of the given
PyTorch modules. While torch. compile offers different compilation modes, we com-
pare to two of the most representative and competitive ones — default and max-autotune.

» Sampling Agent: the single agent framework originally proposed and used by Kernel-
Bench to evaluate the difficulty of the tasks in KernelBench and the ability of LLMs to

Under review as a conference paper at ICLR 2026

write efficient kernels. This agent repeatedly samples responses when given the source
model to optimize and chooses the best generated custom kernel as the solution.

* Reflexion Agent: this agent follows the Reflexion paradigm (Shinn et al., 2023)), where at
each optimization step, it tries to update its last attempt using its corresponding observa-
tions such as the compiler and runtime information.

We report the following metrics to comprehensively understand the agents’ performances: (i) Fast
rate is the percentage of the problems for which the agent can generate kernels that are at least as
fast as the torch baselines; (ii) Success rate represents the percentage of the problems for which the
agent can generate compiled and correct kernels; (iii) Speed: To better understand how good the
generated kernels are, we also report the average speed across all tasks.

Comparison with Torch Baselines. In Table|I] we present the results about success rate, Fast;
rate and speed over all 3 levels of KernelBench challenges. For each task, we let all agents to
have a maximum of B = 30 attempts. Due to limited computation resource, we evaluate on the
representative subset of KernelBench (Ouyang et al., |2025). We use Claude Sonnet 4 as the
base LLMs for all the LLM-based baselines and our agents. Due to space constraint, we defer
implementation and evaluation details to Appendix [B}

The results in Table [T] demonstrate that our proposed framework, STARK, consistently outperforms
both the Sampling and Reflexion baselines across all KernelBench difficulty levels. At Level 1,
STARK not only achieves a perfect 100% success rate but also delivers up to a 3.0x speedup over
Torch Eager baselines, while Sampling and Reflexion agents frequently generate kernels that are
slower than the baselines. This advantage becomes even more pronounced at Level 2, where the
complexity of the kernels increases. Here, STARK maintains a perfect success rate and achieves
speedups of 2.7x, whereas the Reflexion agent, despite attaining 100% correctness, produces ker-
nels that run slower than the baseline. At Level 3, which involves the most irregular and challenging
tasks, both Sampling and Reflexion degrade significantly, with success rates falling and runtimes
dropping below baseline. In contrast, STARK continues to maintain full success while producing
kernels that outperform the Torch implementations by up to 1.6x. These results highlight that
STARK not only generates correct kernels but also delivers substantial performance improvements,
even as task difficulty increases.

Torch Eager Default Max-autotune
Level 1 | Success T | Fast; T Speedt | Fast; T Speed | Fast; T Speed! |
Sampling Agent 57.1% 14.3% 0.81x 71% 0.46 x 7.1% 0.81x
Reflexion Agent 92.6% 28.6% 1.24x 14.3% 0.57x 35.7% 0.92x
STARK 100% 71.4% 3.03x 78.6% 2.37x 78.6% 2.76x
Level 2 | Success | Fast,; Speed | Fast, Speed | Fast; Speed |
Sampling Agent 87.5% 50% 1.06 x 37.5% 0.91x 37.5% 0.91x
Reflexion Agent 100% 5% 0.88x 62.5% 0.78x 62.5% 0.78x
STARK 100% 100% 2.69x | 87.5% 251x | 87.5% 2.52x
Level 3 | Success | Fast; Speed | Fast, Speed | Fast; Speed |
Sampling Agent | 100% 50% 0.87x | 125% 0.67x | 12.5% 0.66x
Reflexion Agent | 67.5% 25% 0.79x 12.5% 0.62x 12.5% 0.61x
STARK 100% 87.5% 1.58% 87.5% 1.27x 87.5% 1.26x

Table 1: Performance of LLM Agents on the KernelBench Tasks. Fast; represents the percentage of problems
for which the agent can generate custom kernels that are correct and as fast as the Torch baselines (higher is
better). Speed is computed as the ratio of the kernel runtime of the baseline to that of the generated kernel.

Comparison between Agents. We investigate deeper into the behavior of our agent STARK with
the two baseline agents to better understand their optimization behaviors. A deeper analysis of
compile and correctness rates, shown in Table 2] provides further insight into why STARK succeeds
where baselines struggle. While all agents achieve relatively high compile rates (mostly above 80%),

Under review as a conference paper at ICLR 2026

the fraction of kernels that are both compilable and correct varies widely. The Sampling agent,
for example, compiles over 90% of its outputs on Level 1 but only 43% of these are functionally
correct. Reflexion improves correctness slightly through iterative refinement, but its correctness
rate remains below 55% at all levels. In contrast, STARK achieves the highest correctness rates
across the board, reaching 61.2% on Level 2 tasks. This suggests that STARK ’s structured planning
and feedback-driven refinement not only increase the chance of generating efficient kernels but
also reduce wasted attempts on invalid or incorrect code. Finally, Figure [T| highlights the dramatic
runtime improvements of STARK relative to baseline agents. On Level 1 tasks, STARK achieves
over a 10x speedup compared to Sampling and a 13.7x speedup over Reflexion. On Level 2, these
gains rise as high as 16, and even at the most challenging Level 3 tasks STARK maintains 5—6 X
improvements. These relative gains indicate that while baselines occasionally achieve correctness,
they rarely deliver true runtime efficiency. By contrast, STARK ’s ability to jointly optimize for
correctness and speed allows it to close both gaps simultaneously. Taken together, these findings
confirm that multi-agent collaboration and strategic search are key enablers for scaling LLMs to the
demands of GPU kernel optimization.

Compile Rate? Correct Ratet
KernelBench Level 1 2 30 1 2 3
Sampling Agent 90.8% 97.0% 84.9% | 43% 44.0% 15.1%
Reflexion Agent 86.0% 86.2% 78.9% | 48.3% 53.4% 28.4%
STARK 84.5% 90.7% 83.4% | 50.6% 61.2% 35.5%

Table 2: Percentages of Successfully Compiled and Correct Kernels.

Ablations. We ablate the agentic components of our system. We compare (i) Search Agent, which
is a single-agent model equipped with our strategic search, and (ii) MA-only, which employs the
multi-agent workflow (plan/code/debug with grounded instruction and dynamic context) using best-
of-K sampling instead of search. As shown in Table [3] both variants outperform the Sampling
baseline, confirming that each component helps. When combined in STARK, the effects compound:
strategic search exploits the structured proposals produced by the multi-agent workflow, yielding the
largest gains.

| Torch Eager | Default | Max-autotune |
| Fast; T Speed! | Fast; T Speedf | Fast; T Speed? |

Sampling Agent 50% 0.87x 12.5% 0.67x 12.5% 0.66x
Search Agent 67.5% 0.89x 25% 0.71x 25% 0.70x
MA-Only 67.5% 1.11x 25% 0.92x 25% 0.91x
STARK 87.5% 1.58x 87.5% 1.27x | 87.5% 1.26x

Table 3: Ablation on the Proposed Agentic Features.

6 CONCLUSION

In this work, we introduced an agentic framework for GPU kernel optimization that combines multi-
agent role play, dynamic context management, and strategic search. Our evaluation on KernelBench
demonstrated that the proposed framework consistently outperforms baseline methods in both suc-
cess rate and runtime efficiency, across tasks of varying complexity. These results highlight the
value of moving beyond single-agent or unguided sampling approaches, and point to the promise
of collaborative, feedback-driven optimization. Looking forward, we envision that agentic LLM
frameworks will play an increasingly important role in automated system optimization. Extend-
ing our approach to broader classes of operators, diverse hardware architectures, and cross-kernel
scheduling decisions are natural directions for future research. More broadly, our work suggests that
multi-agent LLMs can meaningfully accelerate the co-design of Al algorithms and infrastructure,
pushing the boundaries of what is possible in efficient large-scale computation.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This study complies with the ICLR Code of Ethics. All datasets employed are publicly available
and open-source under licenses that permit research use. No private or personally identifiable in-
formation was accessed, and no new data were collected from human subjects. The research does
not pose privacy, security, or fairness concerns. The authors declare no conflicts of interest and no
external sponsorship.

REPRODUCIBILITY STATEMENT

We document all algorithmic and implementation details in the paper and appendix, including the
exact prompts for every agent, full hyperparameters, and ablation settings. Upon acceptance, we
will release an open-source repository with configuration files, an environment file and Dockerfile,
and step-by-step commands to recreate every table and figure.

REFERENCES

Miltiadis Allamanis, Earl T Barr, Prem Devanbu, and Charles Sutton. A survey of machine learning
for big code and naturalness. ACM Computing Surveys (CSUR), 51(4):1-37, 2018.

Jason Ansel et al. Baco: A bayesian optimization framework for compiler autotuning. In Proceed-
ings of the 32nd International Conference on Compiler Construction, 2021.

Antonis Antoniades, Albert Orwall, Kexun Zhang, Yuxi Xie, Anirudh Goyal, and William Wang.
Swe-search: Enhancing software agents with monte carlo tree search and iterative refinement.
arXiv preprint arXiv:2410.20285, 2024.

Simran Arora, Alex L Zhang, William Hu, and Christopher Ré. Kernelbench: Can llms write
efficient gpu kernels? arXiv preprint arXiv:2502.10517, 2025.

Ian Buck. Gpu program optimization. In Matt Pharr (ed.), GPU Gems 2. NVIDIA, 2008.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Hangu Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Tvm:
An automated end-to-end optimizing compiler for deep learning. In /3th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), 2018.

Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. End-to-end deep learning
of optimization heuristics. In 2017 26th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 219-232. IEEE, 2017.

DeepMind. Discovering faster matrix multiplication algorithms
with alphatensor. https://www.deepmind.com/blog/
discovering-faster-matrix-multiplication-algorithms-with-alphatensor,
2022. Accessed: 2024.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mo-
hammadamin Barekatain, Alexander Novikov, Francisco JR Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, et al. Discovering faster matrix multiplication algorithms with reinforcement learning.
Nature, 610(7930):47-53, 2022.

Martin Fowler. Some initial thoughts on ai in software development. 2025. Accessed: 2024.

Flavius Gruian. Estimating performance gains of compiler optimizations for gpu applications. In
MSc Thesis, Lund University, 2021.

Qiuhan Gu. Llm-based code generation method for golang compiler testing. In Proceedings of the

31st ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 2201-2203, 2023.

10

https://www.deepmind.com/blog/discovering-faster-matrix-multiplication-algorithms-with-alphatensor
https://www.deepmind.com/blog/discovering-faster-matrix-multiplication-algorithms-with-alphatensor

Under review as a conference paper at ICLR 2026

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Stijn Heldens and Ben van Werkhoven. Kernel launcher: C++ library for optimal-performance
portable cuda applications. In 2023 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW), pp. 556-565. IEEE, 2023.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Shu Ishida, Gianluca Corrado, George Fedoseev, Hudson Yeo, Lloyd Russell, Jamie Shotton, Jodo F
Henriques, and Anthony Hu. Langprop: A code optimization framework using large language
models applied to driving. arXiv preprint arXiv:2401.10314, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamina-
tion free evaluation of large language models for code. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
chfJJYC31iLl

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In Interna-
tional Conference on Learning Representations, 2024.

Jakub Kurzak, Stanimire Tomov, and Jack Dongarra. Autotuning gemm kernels for the fermi gpu.
IEEE Transactions on Parallel and Distributed Systems, 23(11):2045-2054, 2012.

LangChain Inc. Langgraph: Build resilient language agents as graphs, 2025. URL https://
github.com/langchain—ai/langgraph. Version 0.6.7; accessed 2025-09-24.

Milo Lurati. Bringing concurrency to kernel tuner: Gpu auto-tuning in multi-node systems. MSc
Thesis, University of Amsterdam, 2024.

Teodor V Marinov and Alekh Agarwal. Offline imitation learning from multiple baselines with
applications to compiler optimization. In NeurIPS 2024 Workshop on Machine Learning for
Systems, 2024.

Cedric Nugteren and Valeriu Codreanu. Cltune: A generic auto-tuner for opencl kernels. In
2015 IEEE International Parallel and Distributed Processing Symposium Workshop, pp. 846—
851. IEEE, 2015.

NVIDIA Developer. Automating gpu kernel generation with deepseek-rl
and inference-time scaling. https://developer.nvidia.com/blog/
automating—gpu—kernel-generation-with—-deepseek-rl-and-inference-time—-scaling/,
2024a. Accessed: 2024.

NVIDIA Developer. Improving gemm kernel auto-tuning efficiency on nvidia gpus
with heuristics and cutlass 4.2. https://developer.nvidia.com/blog/
improving-gemm-kernel-auto-tuning-efficiency-on-nvidia-gpus-with-heuristics—and-ct
2024b. Accessed: 2024.

Anne Ouyang, Simon Guo, Simran Arora, Alex L Zhang, William Hu, Christopher Re, and Azalia
Mirhoseini. Kernelbench: Can LLMs write efficient GPU kernels? In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
veoN1iQT1x.

Zhaoran Qian et al. Message-passing graph neural networks can simulate interior-point methods for
linear optimization. arXiv preprint arXiv:2402.13825, 2024.

Ari Rasch, Markus Haidl, and Sergei Gorlatch. Atf: A generic auto-tuning framework. In 2017 IEEE
19th International Conference on High Performance Computing and Communications (HPCC),
pp. 64-71. IEEE, 2017.

11

https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://github.com/langchain-ai/langgraph
https://github.com/langchain-ai/langgraph
https://developer.nvidia.com/blog/automating-gpu-kernel-generation-with-deepseek-r1-and-inference-time-scaling/
https://developer.nvidia.com/blog/automating-gpu-kernel-generation-with-deepseek-r1-and-inference-time-scaling/
https://developer.nvidia.com/blog/improving-gemm-kernel-auto-tuning-efficiency-on-nvidia-gpus-with-heuristics-and-cutlass-4-2/
https://developer.nvidia.com/blog/improving-gemm-kernel-auto-tuning-efficiency-on-nvidia-gpus-with-heuristics-and-cutlass-4-2/
https://openreview.net/forum?id=yeoN1iQT1x
https://openreview.net/forum?id=yeoN1iQT1x

Under review as a conference paper at ICLR 2026

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634—-8652, 2023.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10-19, 2019.

Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choromanski, and David
Li. Mlgo: a machine learning guided compiler optimizations framework. arXiv preprint
arXiv:2101.04808, 2021.

Ben van Werkhoven. Kernel tuner: A search-optimizing gpu code auto-tuner. In Future Generation
Computer Systems, volume 90, pp. 347-358. Elsevier, 2019.

Lilian Weng. Llm-powered autonomous agents. https://lilianweng.github.io/
posts/2023-06—-23—-agent/, 2023. Accessed: 2024.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik R Narasimhan,
and Ofir Press. SWE-agent: Agent-computer interfaces enable automated software engineering.
In Thirty-eighth Conference on Neural Information Processing Systems, 2024.

John Yang, Kilian Lieret, Carlos E Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents. arXiv preprint arXiv:2504.21798, 2025.

Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. A gpgpu compiler for memory optimiza-
tion and parallelism management. In Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 86-97. ACM, 2010.

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang,
Jun Yang, Danyang Zhuo, Koushik Sen, et al. Ansor: Generating {High-Performance} tensor
programs for deep learning. In /4th USENIX symposium on operating systems design and imple-
mentation (OSDI 20), pp. 863-879, 2020a.

Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. Flextensor: An automatic
schedule exploration and optimization framework for tensor computation on heterogeneous sys-
tem. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 859-873, 2020b.

Li Zhong and Zilong Wang. Can llm replace stack overflow? a study on robustness and reliability
of large language model code generation. In Proceedings of the AAAI conference on artificial
intelligence, volume 38, pp. 21841-21849, 2024.

12

https://lilianweng.github.io/posts/2023-06-23-agent/
https://lilianweng.github.io/posts/2023-06-23-agent/

Under review as a conference paper at ICLR 2026

A USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used solely as general-purpose assistive tools to improve the
clarity and readability of the manuscript. Specifically, we used an LLM to help rephrase and polish
text that we had already drafted.

B IMPLEMENTATION AND EVALUATION

Agent Implementation. We use Claude Sonnet 4 asthe base LLMs for all agent baselines and
agents of STARK. For both sampling and reflexion agents, we follow KernelBench to set temperature
7 = 0.7 during generating, with other generation parameters such as top-p set to the default value.
For STARK, weuse Claude Sonnet 4 with temperature 7 = 0.8 for the plan agent, and 7 = 0.1
for the code and debug agents. For all tasks, all agent baselines and STARK have a maximum of
B = 30 attempts to optimize each task. Regarding the hyperparameters of STARK, we choose the
root throtting number to be 5, dead-branch pruning number to be 3, ¢ = 0.3 for the search, r = 2
for the leaderboard C. To prevent exploding context to the LLMs, we set an upper limit for the
number of nodes in the dynamic context window: whenever the dynamic context window has more
than 5 nodes, we randomly sample 5 from all the nodes in the window. We implement STARK with
LangGraph (LangChain Inc., 2025).

Runtime Evaluation. We evaluate all the Pytorch baselines and LLM-generated kernels on the same
NVIDIA A100 40GB GPU. We use the source code provided by KernelBench at its official rep(ﬂ to
benchmark the kernels’ runtime. In particular, to ensure stable measurement, runtime is measured
with CUDA events after warm-up runs using fixed input shapes; we choose a large number of 100
warm-up runs to ensure accurate measurement.

C PROMPTS

Our prompts follow the templates of KernelBench (Ouyang et al., [2025), which has four compo-
nents: system message, in-context example, architecture source code, and instruction.

As we have multiple agents in STARK with different tasks, they require different prompts to fulfill
their tasks. Specifically, we reuse the system message and in-context example from KernelBench
for all agents and include the architecture source code regardless of which node is selected for opti-
mization. To motivate the agents to use the already optimized modules such as cuBLAS, we include
an additional instruction in the system message to consider using existing highly optimized kernels.
We show the system prompt in Figure[5] the in-context example in Figures[9]and[I0] In addition, we
include the information within the dynamic context window and role-specific instructions for differ-
ent agents. See Figure {4 for the prompt template of STARK. We show the role-specific instruction

in Figures[6] [7] and[8]

D EXAMPLE KERNELBENCH TASKS

Here we show three examples of KernelBench tasks, one for each level. See Figures [T} [T2] and [I3]
for example tasks in Level 1, 2, and 3. We refer interested readers to |(Ouyang et al.[(2025)) for the
complete list.

E RELATED WORK

Optimizing GPU kernels to extract maximum performance from underlying hardware is a long-
standing and formidable challenge. The vast, non-convex, and hardware-specific search space of
possible kernel implementations necessitates sophisticated optimization strategies. The evolution of
these strategies can be broadly categorized into three paradigms: empirical auto-tuning, compiler-
and model-driven optimization, and most recently, generative approaches using Large Language

'"https://github.com/ScalingIntelligence/KernelBench

13

https://github.com/ScalingIntelligence/KernelBench

Under review as a conference paper at ICLR 2026

1| {System Message}

3|Here’s an example to show you the syntax of inline embedding
custom CUDA operators in torch: The example given architecture is:
4| {Example Architecture Source Code}

5| The example new arch with custom CUDA kernels looks like this:

6| {Example New Architecture Source Code}
;
8
9

You are given the following architecture:
{Architecture Source Code}

11| Here is your latest attempt:
12| {Source Code of the Selected Node}

14| [Dynamic Context Window] You should use the following observations
regarding your historical attempts to provide better

implementations:

15| - Learn from the failed examples to avoid bugs and write
successful kernels.

16| - Learn from the successful examples to design improved kernels.

18| **Kernel Source Code #1xx
19| {Source Code of Historical Attempt}

21| **Compiler Observationxx
2| {Compiler Log}

24| xxKernel Execuation Resultxx
25| {Runtime or Correctness Error}

27| **Kernel Source Code #2xx%
28| [...skipped]

30| {Role-specific Instruction}

Figure 4: Prompt Template for Agents.

Models (LLMs). Our work builds upon this trajectory by introducing a fully autonomous agent that
manages the entire optimization lifecycle.

E.1 EMPIRICAL AND COMPILER-BASED OPTIMIZATION

The foundational approach to GPU performance tuning is empirical auto-tuning, which treats the
problem as a black-box search over a set of tunable parameters, such as thread block dimensions,
memory tiling factors, and loop unrolling factors [Lurati| (2024); [van Werkhoven| (2019). Tradi-
tional methods often rely on an exhaustive or brute-force search, where thousands of potential ker-
nel configurations are generated, compiled, and benchmarked to identify the top performer Kurzak:
et al.|(2012). While effective, this process is prohibitively time-consuming; for instance, an exhaus-
tive search for a single GEMM kernel can take over 700 minutes to complete NVIDIA Developer
(2024b).

To mitigate this cost, heuristic-driven methods prune the search space. NVIDIA’s
nvMatmulHeuristics, for example, uses a predictive model to recommend a small subset of
high-potential configurations, achieving near-optimal performance in a fraction of the time NVIDIA
Developer| (2024b). Frameworks like Kernel Tuner van Werkhoven|(2019), ATF Rasch et al.|(2017),
and CLTune Nugteren & Codreanu, (2015) provide robust environments for orchestrating these
searches and support more advanced strategies like Bayesian Optimization, which builds a prob-
abilistic performance model to guide the search more intelligently |/Ansel et al|(2021); Heldens &
van Werkhoven|(2023)).

14

Under review as a conference paper at ICLR 2026

System Message

You are an expert in writing efficient code.
You write custom CUDA kernels to replace the pytorch operators in
the given architecture to get speedups.

N

[

6| You have complete freedom to choose the set of operators you want
to replace. You may make the decision to replace some operators
with custom CUDA kernels and leave others unchanged. You may
replace multiple operators with custom implementations, consider
operator fusion opportunities (combining multiple operators into a
single kernel, for example, combining matmul+relu), or
algorithmic changes (such as online softmax). You are only limited
by your imagination.

8| You should consider using CUDA’s existing highly optimized kernels
and operations whenever appropriate. Try building on these
optimized blocks and further improve it with your custom kernels.

Figure 5: System Message for All Agents.

Concurrently, compiler-based approaches aim to automate optimization through a series of program
transformations applied to an intermediate representation |Yang et al.| (2010). GPU compilers em-
ploy passes for memory coalescing, data prefetching, vectorization, and loop optimizations to adapt
naive code to the hardware architecture Buck|(2008)). However, these two paradigms exist in a state
of tension. Compilers must employ conservative heuristics that are generally applicable but rarely
optimal for a specific kernel, as they lack runtime context|Gruian|(2021). Auto-tuners achieve high,
specialized performance but are constrained to a fixed, human-defined parameter space. While these
approaches excel at finding optimal configurations within a predefined search space, they cannot
fundamentally alter the kernel’s algorithm. Our work introduces an agent that reasons about perfor-
mance bottlenecks to implement novel, structural code changes, moving beyond simple parameter
tuning.

E.2 MACHINE LEARNING FOR CODE OPTIMIZATION

Machine learning (ML) has emerged as a powerful tool to transcend the limitations of hand-crafted
heuristics. Early work focused on using ML to make better decisions within existing compiler and
tuning frameworks. Systems like TVM employ a learned cost model to predict the performance of
kernel variants, guiding the search process and avoiding exhaustive empirical evaluation |Chen et al.
(2018)). More recent efforts have integrated ML directly into production compilers. Google’s MLGO
framework uses reinforcement learning (RL) to train policies for classic compiler optimizations like
function inlining and register allocation, demonstrating significant improvements in code size and
performance over decades-old, manually-tuned heuristics in LLVM |Trofin et al.| (2021); Marinov
& Agarwal| (2024). These models can learn from massive code corpora and discover complex fea-
ture interactions that are opaque to human experts |(Cummins et al.| (2017). Further, Graph Neural
Networks (GNNs) have shown promise in learning from the inherent graph structure of programs
to inform decisions on complex combinatorial problems like parallelism mapping and scheduling
Allamanis et al.| (2018);|Qian et al.| (2024).

A more profound application of ML has been in algorithmic discovery. DeepMind’s AlphaTen-
sor framed the search for faster matrix multiplication algorithms as a single-player game, using a
deep RL agent based on AlphaZero to navigate the enormous search space of tensor decompositions
Fawzi et al.| (2022). This approach successfully discovered novel, provably correct algorithms that
outperform human-derived state-of-the-art methods, including improving upon Strassen’s algorithm
for 4 x 4 matrices for the first time in over 50 years Fawzi et al.| (2022)); DeepMind (2022). This
work marked a critical shift from using ML to configure existing optimization strategies to using it
to invent new ones from first principles. However, AlphaTensor operated in a clean, formal mathe-
matical domain. Translating this power to the messy, syntactic, and hardware-constrained domain
of GPU kernel programming presents a distinct challenge. Our work addresses this by employing

15

Under review as a conference paper at ICLR 2026

an agent that operates directly on source code, navigating the complexities of syntax, compilation,

Instruction

— Optimize the architecture named Model with custom CUDA operators
!

- Give explicit and actonable advice to improve the efficiency, in
terms of the GPU wall-clock time, of the architecture named Model

— Give ONE advice of the top priority! Don’t over-request.

— Include necessary details such as how to change pointers and
indices or how to achieve shared memory tiling so that your advice
can be correctly implemented.

- After your advice, modify and return the given source code in
the following way:

— Identify the code block whose efficiency can be improved (
that is where your advice should be implemented)

and mark it with comments ’<<<IMPROVE BEGIN>>>’ at the

beginning and ’<<<IMPROVE END>>>’ at the end

— The markers ’<<<IMPROVE BEGIN>>>’ and ’'<<<IMPROVE END>>>'
should be valid comments for the marked coding language. For
example, when marking source code of custom kernels, you need to
use comments for the C++ language as ’// <<<IMPROVE BEGIN>>>’ and
"// <<<IMPROVE END>>>’; when marking source code of Python, you
should use ’## <<<IMPROVE BEGIN>>>’ and ’'## <<<IMPROVE END>>>’

- Add your advice as comments at the identified code block to
help the following agent’s implementation

— There will be another agent focusing on improving the
efficiency of the identified code block.

- Return the complete code block with the identified code
block as its subpart.

— You should consider using CUDA’s existing highly optimized

kernels and operations whenever appropriate. Try building on these
optimized blocks and further improve it with your custom kernels.

— When presented with multiple prior attempts, you should consider
exploration of more diverse optimization strategies.

- Pay careful attention to the implementation agent’s capability

demonstrated from the historical implementations.

- Adjust your advice accordingly to ensure that it can
successfully implement.

Figure 6: Instruction for the Plan Agent.

and hardware-specific performance characteristics.

E.3 LLM-POWERED AUTONOMOUS AGENTS

The capabilities of LLMs have given rise to a new paradigm of autonomous agents. An LLM agent
uses a core LLM as its ’brain” or controller, augmented with capabilities for planning, memory, and
tool use to perform complex tasks autonomously [Weng| (2023)); Fowler| (2025)). The key distinction
from simple LLM prompting is the agent’s ability to decompose a high-level goal into a sequence of
manageable subtasks, execute them iteratively, and use reflection to gauge progress and self-correct.
This agentic workflow involves the LLM interacting with an external environment through a set of
tools, such as a code interpreter or a web search API, to gather information and perform actions.
While this paradigm is powerful for general problem-solving, its application to specialized domains
like software engineering requires tailored tools and reasoning processes. Our work specializes this
agentic concept for the domain of performance optimization, which presents unique challenges not

found in general-purpose agent tasks.

16

Under review as a conference paper at ICLR 2026

Instruction

Optimize the architecture named Model with custom CUDA operators!

(O N N

— Think about the given advice from human experts and implement
the ones that you believe are correct and you are confident
implementing.

6| — Only focus on the code block marked with ’<<<IMPROVE BEGIN>>>’
and ’<<<IMPROVE END>>>'

7| - Write custom cuda kernel to replace the pytorch operators within
the marked code block to improve its efficiency

8| — Name your optimized output architecture ModelNew.

9| — Output the new code in codeblocks.

10| - Explain your implementation and how you follow the advice.

11| - Using the given tool to return your final structured answer.

13| Please generate real code, NOT pseudocode, make sure the code
compiles and is fully functional.

15| NO testing code!

Figure 7: Instruction for the Code Agent.

1| ## Instruction

3|Fix the issues of your implementation named ModelNew, which should
improve efficiency of the source model named Model.

5| — ModelNew and Model should have the same functionality, that is,
the same input-output mapping.

6|— The given architecture ModelNew ieither does not compile, or has
run-time error, or has different functionality to the source
Model.

N

— Use the given observations to infer bugs and then fix them.

— Explain how the bugs happen and how you fix it.

— Return the fixed bug-free code and name your optimized output
architecture ModelNew.

© =

Figure 8: Instruction for the Debug Agent.

E.4 LLMS FOR CODE OPTIMIZATION AND GENERATION

The advent of powerful LLMs has opened a new frontier in performance engineering. Instead of
being confined to specific heuristic decisions or mathematical domains, LLMs can directly generate
and reason about source code. Initial work has demonstrated that while one-shot generation is often
suboptimal, LLMs excel within an iterative refinement loop where they receive feedback from the
execution environment. Frameworks like LangProp |[shida et al.|(2024]) and conceptual systems like
the “GPU Kernel Scientist” ? formalize this process: an LLM generates code, the code is compiled
and benchmarked, and the resulting performance data and errors are fed back to the LLM to guide
the next iteration. To systematically evaluate these capabilities, the KernelBench benchmark was
introduced, which tasks an LLM with converting a PyTorch reference implementation into a correct
and performant CUDA kernel Arora et al.| (2025); NVIDIA Developer| (2024a). However, these
systems represent a form of orchestrated refinement, where the high-level optimization strategy is
still encoded in a human-written script.

To grant LLMs greater autonomy, the agentic paradigm has been adapted specifically for software
engineering. The success of systems like SWE-agent, which autonomously resolves complex bugs
in large GitHub repositories, has demonstrated the viability of this approach [Yang et al. (2024).
SWE-agent equips an LLM with a specialized Agent-Computer Interface (ACI) containing tools for

17

Under review as a conference paper at ICLR 2026

T T R N T S

file navigation, editing, and test execution, enabling it to perform long-horizon tasks far beyond the
scope of simple code generation |Yang et al.|(2024); Jimenez et al.| (2024)). While these agents are a
significant step towards autonomous software engineering, their focus has primarily been on func-
tional correctness, such as bug fixing. Our work extends this agentic software engineering paradigm
to the non-functional, performance-oriented domain of GPU kernel optimization. We introduce an
agent that not only interacts with a codebase but also with hardware profiling tools, allowing it
to autonomously diagnose performance bottlenecks, form hypotheses, and conduct experiments to

Example Architecture Source Code
import torch

import torch.nn as nn

import torch.nn.functional as F

class Model (nn.Module) :
def _ init_ (self) -> None:
super () .__init__ ()

def forward(self, a, b):
return a + b

def get_inputs():

randomly generate input tensors based on the model
architecture

a = torch.randn (1, 128).cuda/()

b = torch.randn (1, 128) .cuda()

return [a, Db]

def get_init_inputs():

randomly generate tensors required for initialization based
on the model architecture

return []

Figure 9: In-context Example Architecture for All Agents.

iteratively improve kernel efficiency, thus acting as a true autonomous performance engineer.

18

Under review as a conference paper at ICLR 2026

© ® N L R WD =

=3

21
2
23
24
25
26
27

28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55

Example New Architecture Source Code

import torch

import torch.nn as nn

import torch.nn.functional as F

from torch.utils.cpp_extension import load_inline

Define the custom CUDA kernel for element-wise addition
elementwise_add_source = """

#include <torch/extension.h>

#include <cuda_runtime.h>

__global _ void elementwise_add _kernel (const floatx* a, const
* b, float* out, int size) {
int idx = blockIdx.x #* blockDim.x + threadIdx.x;
if (idx < size) |
out [idx] = al[idx] + b[idx];

float

}
}
torch::Tensor elementwise_add _cuda (torch::Tensor a, torch::Tensor
b) {

auto size = a.numel ();

auto out = torch::zeros_ like(a);

const int block_size = 256;

const int num_blocks = (size + block_size — 1) / block_size;

elementwise_add_kernel<<<num_blocks, block_size>>>(a.data_ptr<

float>(), b.data_ptr<float>(), out.data_ptr<float>(), size);

return out;

}

mmon

elementwise_add_cpp_source = (

"torch::Tensor elementwise_add_cuda (torch::Tensor a, torch::

Tensor b);"

)

Compile the inline CUDA code for element-wise addition
elementwise_add = load_inline(
name="elementwise_add",
cpp_sources=elementwise_add_cpp_source,
cuda_sources=elementwise_add_source,

functions=["elementwise_add_cuda"],
verbose=True,
extra_cflags=[""],

extra_ldflags=[""],

class ModelNew (nn.Module) :
def _ init_ (self) -> None:
super () .__init__ ()
self.elementwise_add = elementwise_add

def forward(self, a, b):
return self.elementwise_add.elementwise_add_cuda (a,

b)

Figure 10: In-context Optimized Example Architecture for All Agents.

19

Under review as a conference paper at ICLR 2026

© % N R WD =

21
22
23
24
25
26
27
28
29
30
31
32

import torch
import torch.nn as nn

class Model (nn.Module) :

mmn

Simple model that performs a LogSoftmax activation.

mmn

def _ init_ (self, dim: int =
super (Model,
self.dim = dim

def forward(self, x:

mmn

torch.Tensor)

1):
self).__init__ ()

-> torch.Tensor:

Applies LogSoftmax activation to the input tensor.

Args:
X (torch.Tensor) :
dim) .

Input

Returns:
torch.Tensor:
same shape as input.

mmn

return torch.log_softmax(x,
batch_size = 4096
dim = 393216

def get_inputs():
x = torch.rand(batch_size,
return [x]

dim)

def get_init_inputs():
return []

tensor of shape (batch_size,

Output tensor with LogSoftmax applied,

dim=self.dim)

No special initialization inputs needed

Figure 11: Example KernelBench Level 1 Task.

20

Under review as a conference paper at ICLR 2026

[< N B SO VO R SR

import torch
import torch.nn as nn

class Model (nn.Module) :

mon

Model that performs a matrix multiplication, division,
summation, and scaling.

mmn

def _ init__ (self, input_size, hidden_size, scaling_factor):
super (Model, self)._ _init__ ()
self.weight = nn.Parameter (torch.randn (hidden_size,
input_size))
self.scaling_factor = scaling_factor

def forward(self, x):
mmwn
Args:
x (torch.Tensor): Input tensor of shape (batch_size,
input_size) .
Returns:
torch.Tensor: Output tensor of shape (batch_size,
hidden size).
mmn
x = torch.matmul (x, self.weight.T) # Gemm
b4 x / 2 # Divide
x = torch.sum(x, dim=1, keepdim=True) # Sum
x = x * self.scaling_factor # Scaling
return x

batch_size = 1024
input_size = 8192
hidden_size = 8192
scaling_factor = 1.5

def get_inputs():
return [torch.rand(batch_size, input_size)]

def get_init_inputs():
return [input_size, hidden_size, scaling_factor]

Figure 12: Example KernelBench Level 2 Task.

21

Under review as a conference paper at ICLR 2026

® NN AW —

20

21

2
23
24

25
26
27

28
29
30
31
32
33
34

35

36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

import torch

import torch.nn as nn

import torch.nn.functional as F
import math

class NewGELU (nn.Module) :

mmn

Implementation of the GELU activation function currently in
Google BERT repo (identical to OpenAI GPT).

Reference: Gaussian Error Linear Units (GELU) paper: https://
arxiv.org/abs/1606.08415

mimn

def _ init__ (self):
super (NewGELU, self)._ _init__ ()

def forward(self, x):
return 0.5 » x » (1.0 + torch.tanh(math.sqrt (2.0 / math.pi
) * (x + 0.044715 x torch.pow(x, 3.0))))

class CausalSelfAttention (nn.Module) :
mmmn
A vanilla multi-head masked self-attention layer with a
projection at the end.
It is possible to use torch.nn.MultiheadAttention here but I
am including an
explicit implementation here to show that there is nothing too

scary here.
mmn

def _ _init__ (self, n_embd, n_head, attn_pdrop, resid_pdrop,
max_seqglen) :

super () .__init__ ()

assert n_embd % n_head == 0

key, query, value projections for all heads, but in a
batch

self.c_attn = nn.Linear (n_embd, 3 * n_embd)

output projection

self.c_proj = nn.Linear (n_embd, n_embd)

regularization
self.attn_dropout = nn.Dropout (attn_pdrop)
self.resid_dropout = nn.Dropout (resid_pdrop)
causal mask to ensure that attention is only applied to
the left in the input sequence
self.register_buffer ("bias", torch.tril (torch.ones(
max_seqglen, max_seqglen))
.view(l, 1, max_seqglen,
max_seqglen))
self.n_head = n_head
self.n_embd = n_embd
[...skipped]

class Model (nn.Module) :
""" an unassuming Transformer block """

[...skipped]

def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlpf (self.ln_2(x))
return x

[...skipped]

Figure 13: Example KernelBench Level 3 Task.

22

	Introduction
	Related Work
	Preliminary
	LLMs and Autoregressive Generation
	KernelBench

	STARK: Strategic Team of Agents for Refining Kernels
	Multi-Agent Collaboration
	Strategic Search with Tree Memory
	Grounded Instruction
	Dynamic Context Window
	Framework Overview

	Experiments
	Conclusion
	Use of Large Language Models (LLMs)
	Implementation and Evaluation
	Prompts
	Example KernelBench Tasks
	Related Work
	Empirical and Compiler-Based Optimization
	Machine Learning for Code Optimization
	LLM-Powered Autonomous Agents
	LLMs for Code Optimization and Generation

