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ABSTRACT

The efficiency of GPU kernels is central to the progress of modern AI, yet optimiz-
ing them remains a difficult and labor-intensive task due to complex interactions
between memory hierarchies, thread scheduling, and hardware-specific character-
istics. While recent advances in large language models (LLMs) provide new op-
portunities for automated code generation, existing approaches largely treat LLMs
as single-shot generators or naive refinement tools, limiting their effectiveness in
navigating the irregular kernel optimization landscape. We introduce an LLM
agentic framework for GPU kernel optimization that systematically explores the
design space through multi-agent collaboration, grounded instruction, dynamic
context management, and strategic search. This framework mimics the workflow
of expert engineers, enabling LLMs to reason about hardware trade-offs, incorpo-
rate profiling feedback, and refine kernels iteratively. We evaluate our approach
on KernelBench, a benchmark for LLM-based kernel optimization, and demon-
strate substantial improvements over baseline agents: our system produces correct
solutions where baselines often fail, and achieves kernels with up to 16× faster
runtime performance. These results highlight the potential of agentic LLM frame-
works to advance fully automated, scalable GPU kernel optimization.

1 INTRODUCTION
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Figure 1: Speedup of STARK over baseline agents
on KernelBench (L1–L3) with same number of at-
tempts. Bars report GPU wall-clock speedups (×) rel-
ative to the Sampling and Reflexion agents; higher is
better. STARK reaches up to 16× over Reflexion (L2)
and 10.7× over Sampling (L1).

Artificial intelligence (AI) has advanced at
an unprecedented pace, transforming both re-
search and real-world applications. While in-
novations in model architectures and training
algorithms have been central to this progress,
the efficiency of the computational infrastruc-
ture that executes them is equally critical. At
the core of modern AI systems are GPU ker-
nels, which implement fundamental operations
such as matrix multiplication and convolution.
Even modest improvements in GPU kernel effi-
ciency can translate into significant reductions
in training time, inference latency, and deploy-
ment cost, making kernel optimization a corner-
stone for sustaining AI’s rapid growth.

Despite their importance, designing and opti-
mizing GPU kernels remains a major challenge.
The performance of a kernel depends on sub-
tle interactions between thread scheduling, memory hierarchy utilization, synchronization, and
hardware-specific characteristics. Small changes in tiling strategies, loop unrolling, or memory
alignment can yield disproportionate effects on runtime. As a result, the kernel optimization land-
scape is highly irregular, architecture-dependent, and difficult to navigate. Existing approaches
largely fall into two categories: manual optimization by expert engineers, which is effective but
labor-intensive and difficult to scale; and automated compilers and domain-specific languages
(DSLs) such as TVM and Triton (Chen et al., 2018; Tillet et al., 2019), which apply heuristics or
search but often struggle with irregular operators and hardware variability (Zheng et al., 2020a;b).
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The rapid progress of large language models (LLMs) opens a new opportunity for kernel optimiza-
tion. Beyond their ability to generate correct code, LLMs can be guided to reason about hardware
trade-offs, adapt to profiling feedback, and iteratively refine implementations. However, prior work
has mostly treated LLMs as single-shot code generators or simple refinement tools (Ouyang et al.,
2025), which underutilizes their potential for structured exploration of the kernel design space. To
build a more powerful agent, we identify and address three critical limitations in existing methods:

1. Naive exploration strategy. Current agents typically refine code linearly, learning only
from the immediately preceding attempt. This simplistic process neglects the rich history
of prior attempts and fails to effectively balance the exploration-exploitation trade-off, often
getting trapped in local optima.

2. Monolithic agent design. Kernel optimization is a multifaceted task requiring distinct
capabilities for planning, implementation, and reflection. By assigning all these responsi-
bilities to a single, generalist LLM, current agents operate inefficiently.

3. Planning-implementation gap. We observe a failure mode particularly acute in this do-
main: LLMs frequently devise a correct high-level optimization plan (e.g., “apply memory
tiling”) but fail to translate it into valid low-level CUDA code. This gap stems from the
relative scarcity of expert-level kernel code in the models’ training data.

To address these limitations, we introduce STARK (Strategic Team of Agents for Refining Kernels),
a novel framework for automated GPU-kernel optimization. Our contributions are threefold:

• Collaborative multi-agent workflow. We design a workflow with specialized agents for
planning, coding, and reflection, mirroring an expert development cycle and overcoming
the inefficiencies of monolithic designs.

• Bridging the planning–implementation gap. We propose two mechanisms—grounded
instruction and dynamic context windows—that translate high-level strategies into precise,
actionable code edits, ensuring robust coordination across agents.

• Strategic search for refinement. We incorporate a search policy that balances exploration
and exploitation over prior attempts, enabling systematic discovery of strong kernels.

Figure 2: Overview of STARK. (a) Prior LLM-based kernel optimizers rely on a monolithic agent with local
iterative refinement. (b) STARK replaces this with a collaborative multi-agent workflow (plan/code/debug)
coupled with strategic search over a tree memory. (c) The plan agent issues grounded instructions that anchor
edits to code spans; dynamic context windows surface role-specific history; and the debug agent repairs failures.
See Section 4 for details.
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We evaluate our framework on KernelBench Ouyang et al. (2025), a benchmark designed to as-
sess LLM-based GPU kernel optimization. Experiments show that combining these improvements
leads to an agent system significantly more competitive than the baseline agents in both runtime
performance and success rate across diverse kernel problems, authoring competitive kernels for the
challenging problems in KernelBench where the baseline agents struggle to even find a working
solution. Notably, STARK achieves more than 10× speedup over kernels produced by the base-
line agents (i.e., the optimized kernels run in under one-tenth the time of the baseline.). Overall,
our work suggests that LLM-driven agents represent a promising step toward fully automated GPU
kernel optimization.

2 RELATED WORK

Due to space constrain, we only review the most relevant prior work here and defer the complete
discussion to Appendix E.

The optimization of GPU kernels has progressed from empirical auto-tuning frameworks that
perform black-box parameter searches (van Werkhoven, 2019; Nugteren & Codreanu, 2015) and
compiler-based approaches with static heuristics (Yang et al., 2010), to the use of machine learning
(ML). ML-based techniques have been used to replace hand-tuned heuristics in production compil-
ers (Trofin et al., 2021), learn cost models to guide optimization (Chen et al., 2018), and even learn
directly from raw source code without manual feature engineering (Cummins et al., 2017). A sig-
nificant leap was the use of deep reinforcement learning to discover fundamentally new algorithms,
as demonstrated by AlphaTensor’s success in finding faster matrix multiplication methods (Fawzi
et al., 2022). While powerful, these prior works either optimize within a fixed search space or oper-
ate in purely formal domains. Our work addresses these limitations by operating directly on source
code to implement novel, structural changes.

The emergence of powerful Large Language Models (LLMs) has revolutionized programmatic in-
teraction with source code, demonstrating a remarkable proficiency in generating code for diverse
applications from competitive programming to compiler testing (Gu, 2023; Zhong & Wang, 2024;
Jain et al., 2025). This capability has catalyzed a paradigm shift away from single-shot code genera-
tion and toward the development of autonomous LLM agents. An agent enhances a base LLM with
planning, memory, and tool-use capabilities to direct its own workflow (Weng, 2023). The success
of frameworks like SWE-agent in independently resolving complex GitHub issues has validated the
power of this approach for software engineering (SWE) (Yang et al., 2024). While the application
of LLM agents to SWE is a burgeoning field of research (Yang et al., 2024; Antoniades et al., 2024;
Yang et al., 2025), their potential in the specialized domain of GPU kernel optimization remains
largely unexplored. To fill this gap, we designed STARK, an agent framework with capabilities
tailored to the unique challenges of this domain.

3 PRELIMINARY

3.1 LLMS AND AUTOREGRESSIVE GENERATION

Given an input sequence x = (x1, x2, . . . , xn) (e.g., the task instruction) as the context, an LLM pθ
with parameters θ generates an output sequence y = (y1, y2, . . . , ym) where yt ∈ Y, t ∈ {1, . . . ,m}
are tokens. Pretrained on a massive corpus of text, LLMs autoregressively generate the next token
yt conditioning on x and all the previously generated token y<t = (y1, . . . , yt−1). Specifically, at
each time t, the LLM first computes the logits zθ(y|y<t, x) for each token y in the vocabulary Y and
generate yt following the conditional distribution

pθ(yt|y<t, x) =
exp(zθ(yt|y<t, x)/τ)∑

y′∈Y exp(zθ(y′|y<t, x)/τ)
. (1)

The temperature parameter τ > 0 modulates the randomness of an LLM’s output. Higher values
of τ flatten the next token distribution in Equation 1, encouraging creative and diverse responses.
Conversely, lower values sharpen the distribution, promoting deterministic and high-fidelity outputs.

This trade-off is critical in complex tasks, as different sub-problems demand different behaviors.
For instance, planning and exploration benefit from a high temperature to generate novel strategies,
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whereas tasks requiring precision and factual correctness, such as code implementation, necessitate
a low temperature to ensure reliability. A single agent with a fixed temperature is ill-equipped to
handle this dichotomy. This observation is a core motivation for STARK’s multi-agent design, which
allows specialized agents to operate at distinct temperatures tailored to their roles, i.e., a high τ for
the creative plan agent and a low τ for the precise code agent.

3.2 KERNELBENCH

KernelBench Ouyang et al. (2025) is a recently proposed benchmark specifically designed for as-
sessing LLM-based GPU kernel optimization. Unlike prior evaluations that focus only on code cor-
rectness or small-scale operator tests, KernelBench provides a principled and reproducible testbed
that measures both correctness and runtime efficiency across a broad spectrum of GPU workloads.
KernelBench comprises a suite of optimization tasks, categorized into three difficulty levels. For
each task, the objective is to create a custom GPU kernel that is functionally equivalent to a pro-
vided PyTorch reference implementation while minimizing its wall-clock execution time. See an
example of the KernelBench task in Appendix D.

Specifically, Level 1 tasks focus on single, common operators such as matrix multiplication and
convolution, serving as a baseline for fundamental optimization capabilities; Level 2 tasks com-
prise tasks with multiple operators fused into a single kernel, testing the ability to manage more
complex dataflows and scheduling; Level 3 tasks represent the highest difficulty, featuring popular
full ML architectures such as the ResNet (He et al., 2016) and LSTM (Hochreiter & Schmidhuber,
1997), which involve highly irregular computations and intricate memory access patterns that are
challenging for both human experts and automated systems to optimize effectively.

4 STARK: STRATEGIC TEAM OF AGENTS FOR REFINING KERNELS

Framework Overview. We now present STARK, an agentic framework for GPU-kernel optimiza-
tion. STARK organizes kernel refinement into three layers: (i) a multi-agent workflow that separates
planning, coding, and debugging, (ii) coordination mechanisms with grounded instruction to anchor
planned edits to concrete code spans and dynamic context windows that surface role-specific history
(e.g., prior attempts, failures, profiler feedback) to each agent, and (iii) a strategic search policy that
balances exploration and exploitation across iterative attempts. Notably, multi-agent workflow and
grounded instruction improve reliability even under a single-attempt budget, whereas dynamic con-
text windows and strategic search deliver most of their gains when multiple attempts are allowed.
Figure 2 provides an overview; the following subsections detail each component in turn.

4.1 MULTI-AGENT COLLABORATION

Optimizing GPU kernels is inherently multifaceted and mirrors expert team workflows. A single
agent typically fails to balance correctness, performance, and exploration across a vast, irregular
design space. In particular, strategy discovery (e.g., fusion, vectorization, shared-memory tiling)
benefits from higher-temperature generation that encourages diversity whereas strategy realization,
i.e., committing those ideas to code, requires low-temperature precision to avoid errors. We therefore
adopt a multi-agent framework that enables role specialization through LLMs.

Multi-Agent Design (MAD). Specifically, STARK decomposes kernel optimization into three roles
– plan, code, and debug. Using a role-specific context window (Section 4.4) with selected prior at-
tempts and execution outcomes, the plan agent proposes targeted transformations to either the source
kernel or a candidate chosen by the strategic search policy (Section 4.2), emitting grounded instruc-
tions (Section 4.3) that anchor edits to explicit code spans. The code agent consumes grounded
instructions and translates them into executable GPU-kernel code, conditioning on its own context
window to improve adherence and code quality. The debug agent repairs promising but failing can-
didates by consulting the plan agent’s instructions and compiler/runtime diagnostics, producing a
working kernel that realizes the intended transformation.

Benefits of MAD. Role specialization lets each agent use prompts and base LLMs matched to its ob-
jective. In our instantiation, we choose Claude Sonnet 4 with temperature τ=0.8 for the plan
agent to encourage strategy diversity, and the same model with τ=0.1 for the code and debug agents

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

to enforce precision. Despite this simple setup, MAD already performs strongly (see Section 5).
We underscore that because the design is modular, we can swap in planners with richer kernel-
optimization priors or code-specialist reasoning models to further improve results. In addition,
modularity also exposes bottlenecks. We observe that the dominant bottleneck is code-synthesis
fidelity: LLMs often need multiple attempts to faithfully implement a given instruction. Finally,
MAD makes targeted post-training straightforward: we can fine-tune the base LLM for a specific
agent (e.g., the code agent) without affecting the others, improving stability and predictability. How-
ever,, a systematic study of agent-specific post-training is orthogonal to our core contributions and
is left to future work.

4.2 STRATEGIC SEARCH WITH TREE MEMORY

Prior LLM-driven kernel optimizers typically use either best-of-K sampling that generates multiple
candidates independently and select the fastest correct one or iterative refinement which repeatedly
edits the latest kernel (Ouyang et al., 2025). However, best-of-K is unguided and wasteful: all the
new attempts ignore feedback from earlier attempts and repeatedly probe redundant regions of the
design space. On the other hand, iterative refinement is feedback-aware but myopic: by building
only on the most recent candidate, it is prone to getting trapped in narrow, suboptimal basins.

To address these limitations, STARK reframes kernel optimization as strategic search over a persis-
tent tree memory. We maintain a search tree T whose nodes store candidates and their observations
(runtime, correctness, and compiler diagnostics). The root represents the source architecture; each
edge corresponds to applying a grounded instruction from the plan agent and realizing it via the code
agent (or repairing via the debug agent). Each node n is assigned a score s(n) reflecting competi-
tiveness; in our implementation we use the straightforward kernel runtime as s(n) and treat lower
is better. For kernels that are incorrect or failing to compile, we give them scores of +∞. At each
step, we (1) select a node to expand using a strategic policy, (2) expand by invoking the plan/code (or
debug) agents to produce a child candidate, (3) evaluate for correctness and runtime, and (4) record
results in T to inform subsequent selections. This converts ad-hoc trial-and-error into a directed,
feedback-driven process.

Policy choice and an adapted ϵ-greedy rule. We compared representative search policies includ-
ing Monte-Carlo Tree-Search (MCTS), evolutionary, greedy, and ϵ-greedy policies and found that
ϵ-greedy consistently performs best under the same budget constraint. Importantly, we observe that
kernel optimization poses domain-specific challenges that are root dominance (it is very challeng-
ing to even outperform the source architecture in the root node) and frequent compilation/runtime
failures. To address these challenges, we adapt the canonical rule as follows: (1) Root throttling:
cap the number of direct children of the root at nroot to avoid redundant first-hop edits; once the cap
is reached, the root is ineligible for selection; (2) Dead-branch pruning: if a node has more than
nchild children and all current children fail, mark the node ineligible to prevent wasting trials; (3)
High exploration rate: use a relatively large ϵ (empirically 0.3–0.4) to counteract local traps; (4)
Leaf-biased exploration: with probability ϵ, sample uniformly from expandable leaves (not only
failing nodes), encouraging discovery beyond the immediate failure set.

4.3 GROUNDED INSTRUCTION

We introduce grounded instruction for kernel enhancement. The plan agent must not only pro-
pose an optimization, but also insert explicit span anchors in the kernel source that mark
exactly where the change should occur. Each anchor is a short, machine-checkable tag (i.e,
<<<IMPROVE BEGINS>>> . . . <<<IMPROVE ENDS>>>) wrapped around the target site, such
as a load/store, loop body, or the launch configuration. The code agent consumes this annotated scaf-
fold and resolves each anchor by emitting concrete CUDA that realizes the instruction. Grounded in-
struction tightens plan–code alignment, curbs hallucinated guidance, and narrows the coder’s search
space. It also improves traceability: every proposal leaves a visible, verifiable footprint in the final
code. In practice, we observe fewer misinterpretations and markedly fewer faulty kernels. Despite
its simplicity, the mechanism is especially effective on Level 3 KernelBench tasks with deeper ar-
chitectures (e.g., VGG).
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4.4 DYNAMIC CONTEXT WINDOW

Past attempts provide rich, actionable signals for subsequent decisions, but different agents ben-
efit from different views of this history. We therefore maintain a dynamic, agent-specific context
window that is rebuilt at each selection step for different agents. See Figure 3 for a visual demon-
stration. Throughout this section, let node i be the node selected by the search policy defined in
Section 4.2. We useW(i) to denote the context window containing a subset of historical attempts
and their evaluation outcomes (e.g., compiler information and runtime). As we always include the
source architecture as part of the prompt for agents,W(i) always includes the root node nroot. For a
naive search algorithm without dynamic context window,W(i) = {i, nroot} only includes node i in
addition to the root.

Figure 3: Dynamic Context Window. Nodes with ✓’s represent selected nodes.

Tree relations. We use tree relations to build agent-specific context windows. Let p(i) be the parent
of node i. Define the siblings of i as S(i) = { j : p(j) = p(i) }. Moreover, define the set of child
nodes of a node i as D(i). We also maintain a small global leaderboard C of top-performing nodes.

Plan agent (local & contrastive global context). For a selected node i, the plan agent conditions
on a context window Wplan(i) that aggregates node i’s children and a small set of global leaders
from the leaderboard C. Formally,

Wplan(i) = {i, nroot} ∪ D(i) ∪ Top−r(C),

where D(i) contains all evaluated children of i with their observations, and Top−r(C) returns the
r highest-scoring distinct kernels from the global leaderboard (excluding i’s subtree) to discourage
duplication.

This design serves three purposes. (i) reflection: the plan agent can revise or stack its prior instruc-
tions rather than rediscovering them; (ii) ambition calibration: top competitors prevent redundant
exploration and provide transferable motifs such as warp-shuffle reductions, vectorized LD/ST, and
shared-memory tiling; (ii) capability estimation: by inspecting how past instructions were real-
ized or failed by the code agent, the next instruction is adapted to what the code agent can reliably
execute, improving first-pass success and avoiding instructions beyond current ability. To achieve
this, we explicitly require the plan agent to adapt its instruction to the code agent’s demonstrated
capabilities observed in D(i).
Code agent (extended context). For kernel code emission at node i, the code agent conditions on

Wcode(i) = {i, nroot} ∪ D(i) ∪ {j : p(j) ∈ S(i)}.

The nodes in {j : p(j) ∈ S(i)} are essentially the children of node i’s siblings. Our insight is that
these nodes typically share near-identical scaffolds with node i from a common planning lineage,
so successful patches and micro-optimizations transfer with high probability; conversely, seeing
failures in closely related contexts helps the coder avoid repeating the same mistakes. Hence, this
extended window serves two aims: (i) reduce implementation errors by letting the coder imitate
successful patches from closely related scaffolds and avoid previously observed failure modes; (ii)
surface stronger implementations by transferring micro-optimizations (e.g., warp-shuffle motifs,
vectorized LD/ST, shared-memory tiling) that have already worked on cousin nodes.

Debug agent (local context). For fault repair, we construct the context window for the debug code
as

Wdebug(i) = {i, nroot} ∪ S(i),

6
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We choose this design mainly for two reasons. Most fixes are structural and local, e.g., off-by-
one guards, stride/indexing alignment, launch-parameter tweaks, or shared-memory sizing often
transfer directly among siblings that share the same scaffold. Moreover, restricting the window to S
avoids distracting the debug agent with globally unrelated kernels, improving precision and reducing
hallucinated edits.

4.5 FRAMEWORK OVERVIEW

Here we provide an overview of our framework STARK and describe its execution process. Algo-
rithm 1 presents its pseudocode.

At a high level, STARK repeatedly (i) selects a promising node (a prior attempt) from a search
tree, (ii) builds agent-specific context windows from local history and global leaders, (iii) asks the
planning agent to propose a concrete optimization along with grounded instruction anchors inserted
into a scaffold, (iv) asks the code agent to realize those anchors into an executable kernel, (v) if
the selected node has a problematic kernel, we build the debugger’s dynamic context window and
request a minimal fix. The new attempt is evaluated, appended as a child node, and the leaderboard
C is updated. We repeat this process until we reach a pre-specified max attempts B.

Algorithm 1 STARK: Strategic Team of Agents for Refining Kernels

Require: Budget B (max attempts), selection policy πselect (adapted ε-greedy), leaderboard size r
1: Initialize search tree T with root nroot (PyTorch reference)
2: Initialize leaderboard C ← {nroot}
3: for t = 1, 2, . . . , B do
4: i← πselect(T, C) ▷ pick a node to refine
5: if HASBUG(i) then ▷ compile fail or unit-test fail recorded at i
6: Wdebug(i)← BUILDCONTEXTDEBUG(i, T )

7: kernel′ ← DEBUGAGENT(Wdbg, i.kernel, i.logs)
8: (ok, correct, runtime, logs)← EVALUATE(kernel′) ▷ compile, correctness check,

timing
9: (plan,anchors)← (i.plans, i.anchors)

10: else
11: Wplan(i)← BUILDCONTEXTPLAN(i, T, C)
12: (plan, anchors)← PLANAGENT(Wplan)
13: Wcode(i)← BUILDCONTEXTCODE(i, T )
14: kernel′ ← CODEAGENT(Wcode, plan, anchors)
15: (ok, correct, runtime, logs)← EVALUATE(kernel′)
16: end if
17: j ← ADDCHILD(T, i, kernel′, plan, anchors, ok, correct, runtime, logs)
18: C ← UPDATELEADERS(C, j, r)
19: end for
20: return BEST(C) ▷ fastest correct, grounded kernel

5 EXPERIMENTS

We use KernelBench (Ouyang et al., 2025), a recently proposed benchmark consisting of compre-
hensive and challenging GPU kernel tasks, to validate the effectiveness of our proposed approaches.

Baselines and Metrics. We compare our framework STARK with the following list of approaches:

• Torch Eager: the out-of-box PyTorch modules without any compilation or optimization.

• Torch Compile : We use torch.compile to produce optimized versions of the given
PyTorch modules. While torch.compile offers different compilation modes, we com-
pare to two of the most representative and competitive ones – default and max-autotune.

• Sampling Agent: the single agent framework originally proposed and used by Kernel-
Bench to evaluate the difficulty of the tasks in KernelBench and the ability of LLMs to

7
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write efficient kernels. This agent repeatedly samples responses when given the source
model to optimize and chooses the best generated custom kernel as the solution.

• Reflexion Agent: this agent follows the Reflexion paradigm (Shinn et al., 2023), where at
each optimization step, it tries to update its last attempt using its corresponding observa-
tions such as the compiler and runtime information.

We report the following metrics to comprehensively understand the agents’ performances: (i) Fast1
rate is the percentage of the problems for which the agent can generate kernels that are at least as
fast as the torch baselines; (ii) Success rate represents the percentage of the problems for which the
agent can generate compiled and correct kernels; (iii) Speed: To better understand how good the
generated kernels are, we also report the average speed across all tasks.

Comparison with Torch Baselines. In Table 1, we present the results about success rate, Fast1
rate and speed over all 3 levels of KernelBench challenges. For each task, we let all agents to
have a maximum of B = 30 attempts. Due to limited computation resource, we evaluate on the
representative subset of KernelBench (Ouyang et al., 2025). We use Claude Sonnet 4 as the
base LLMs for all the LLM-based baselines and our agents. Due to space constraint, we defer
implementation and evaluation details to Appendix B.

The results in Table 1 demonstrate that our proposed framework, STARK, consistently outperforms
both the Sampling and Reflexion baselines across all KernelBench difficulty levels. At Level 1,
STARK not only achieves a perfect 100% success rate but also delivers up to a 3.0× speedup over
Torch Eager baselines, while Sampling and Reflexion agents frequently generate kernels that are
slower than the baselines. This advantage becomes even more pronounced at Level 2, where the
complexity of the kernels increases. Here, STARK maintains a perfect success rate and achieves
speedups of 2.7×, whereas the Reflexion agent, despite attaining 100% correctness, produces ker-
nels that run slower than the baseline. At Level 3, which involves the most irregular and challenging
tasks, both Sampling and Reflexion degrade significantly, with success rates falling and runtimes
dropping below baseline. In contrast, STARK continues to maintain full success while producing
kernels that outperform the Torch implementations by up to 1.6×. These results highlight that
STARK not only generates correct kernels but also delivers substantial performance improvements,
even as task difficulty increases.

Torch Eager Default Max-autotune
Level 1 Success ↑ Fast1 ↑ Speed ↑ Fast1 ↑ Speed↑ Fast1 ↑ Speed↑
Sampling Agent 57.1% 14.3% 0.81× 7.1% 0.46× 7.1% 0.81×
Reflexion Agent 92.6% 28.6% 1.24× 14.3% 0.57× 35.7% 0.92×
STARK 100% 71.4% 3.03× 78.6% 2.37× 78.6% 2.76×
Level 2 Success Fast1 Speed Fast1 Speed Fast1 Speed
Sampling Agent 87.5% 50% 1.06× 37.5% 0.91× 37.5% 0.91×
Reflexion Agent 100% 75% 0.88× 62.5% 0.78× 62.5% 0.78×
STARK 100% 100% 2.69× 87.5% 2.51× 87.5% 2.52×
Level 3 Success Fast1 Speed Fast1 Speed Fast1 Speed
Sampling Agent 100% 50% 0.87× 12.5% 0.67× 12.5% 0.66×
Reflexion Agent 67.5% 25% 0.79× 12.5% 0.62× 12.5% 0.61×
STARK 100% 87.5% 1.58× 87.5% 1.27× 87.5% 1.26×

Table 1: Performance of LLM Agents on the KernelBench Tasks. Fast1 represents the percentage of problems
for which the agent can generate custom kernels that are correct and as fast as the Torch baselines (higher is
better). Speed is computed as the ratio of the kernel runtime of the baseline to that of the generated kernel.

Comparison between Agents. We investigate deeper into the behavior of our agent STARK with
the two baseline agents to better understand their optimization behaviors. A deeper analysis of
compile and correctness rates, shown in Table 2, provides further insight into why STARK succeeds
where baselines struggle. While all agents achieve relatively high compile rates (mostly above 80%),

8
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the fraction of kernels that are both compilable and correct varies widely. The Sampling agent,
for example, compiles over 90% of its outputs on Level 1 but only 43% of these are functionally
correct. Reflexion improves correctness slightly through iterative refinement, but its correctness
rate remains below 55% at all levels. In contrast, STARK achieves the highest correctness rates
across the board, reaching 61.2% on Level 2 tasks. This suggests that STARK ’s structured planning
and feedback-driven refinement not only increase the chance of generating efficient kernels but
also reduce wasted attempts on invalid or incorrect code. Finally, Figure 1 highlights the dramatic
runtime improvements of STARK relative to baseline agents. On Level 1 tasks, STARK achieves
over a 10× speedup compared to Sampling and a 13.7× speedup over Reflexion. On Level 2, these
gains rise as high as 16×, and even at the most challenging Level 3 tasks STARK maintains 5–6×
improvements. These relative gains indicate that while baselines occasionally achieve correctness,
they rarely deliver true runtime efficiency. By contrast, STARK ’s ability to jointly optimize for
correctness and speed allows it to close both gaps simultaneously. Taken together, these findings
confirm that multi-agent collaboration and strategic search are key enablers for scaling LLMs to the
demands of GPU kernel optimization.

Compile Rate↑ Correct Rate↑
KernelBench Level 1 2 3 1 2 3

Sampling Agent 90.8% 97.0% 84.9% 43% 44.0% 15.1%
Reflexion Agent 86.0% 86.2% 78.9% 48.3% 53.4% 28.4%
STARK 84.5% 90.7% 83.4% 50.6% 61.2% 35.5%

Table 2: Percentages of Successfully Compiled and Correct Kernels.

Ablations. We ablate the agentic components of our system. We compare (i) Search Agent, which
is a single-agent model equipped with our strategic search, and (ii) MA-only, which employs the
multi-agent workflow (plan/code/debug with grounded instruction) using best-of-K sampling in-
stead of search. As shown in Table 3, both variants outperform the Sampling baseline, confirming
that each component helps. When combined in STARK, the effects compound: strategic search
exploits the structured proposals produced by the multi-agent workflow, yielding the largest gains.

Torch Eager Default Max-autotune
Fast1 ↑ Speed↑ Fast1 ↑ Speed↑ Fast1 ↑ Speed↑

Sampling Agent 50% 0.87× 12.5% 0.67× 12.5% 0.66×
Search Agent 67.5% 0.89× 25% 0.71× 25% 0.70×
MA-Only 67.5% 1.11× 25% 0.92× 25% 0.91×
STARK 87.5% 1.58× 87.5% 1.27× 87.5% 1.26×

Table 3: Ablation on the Proposed Agentic Features.

6 CONCLUSION

In this work, we introduced an agentic framework for GPU kernel optimization that combines multi-
agent role play, dynamic context management, and strategic search. Our evaluation on KernelBench
demonstrated that the proposed framework consistently outperforms baseline methods in both suc-
cess rate and runtime efficiency, across tasks of varying complexity. These results highlight the
value of moving beyond single-agent or unguided sampling approaches, and point to the promise
of collaborative, feedback-driven optimization. Looking forward, we envision that agentic LLM
frameworks will play an increasingly important role in automated system optimization. Extend-
ing our approach to broader classes of operators, diverse hardware architectures, and cross-kernel
scheduling decisions are natural directions for future research. More broadly, our work suggests that
multi-agent LLMs can meaningfully accelerate the co-design of AI algorithms and infrastructure,
pushing the boundaries of what is possible in efficient large-scale computation.

9
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A USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used solely as general-purpose assistive tools to improve the
clarity and readability of the manuscript. Specifically, we used an LLM to help rephrase and polish
text that we had already drafted.

B IMPLEMENTATION AND EVALUATION

Agent Implementation. We use Claude Sonnet 4 as the base LLMs for all agent baselines and
agents of STARK. For both sampling and reflexion agents, we follow KernelBench to set temperature
τ = 0.7 during generating, with other generation parameters such as top-p set to the default value.
For STARK, we use Claude Sonnet 4 with temperature τ = 0.8 for the plan agent, and τ = 0.1
for the code and debug agents. For all tasks, all agent baselines and STARK have a maximum of
B = 30 attempts to optimize each task. Regarding the hyperparameters of STARK, we choose the
root throtting number to be 5, dead-branch pruning number to be 3, ϵ = 0.3 for the search, r = 2
for the leaderboard C. To prevent exploding context to the LLMs, we set an upper limit for the
number of nodes in the dynamic context window: whenever the dynamic context window has more
than 5 nodes, we randomly sample 5 from all the nodes in the window. We implement STARK with
LangGraph (LangChain Inc., 2025).

Runtime Evaluation. We evaluate all the Pytorch baselines and LLM-generated kernels on the same
NVIDIA A100 40GB GPU. We use the source code provided by KernelBench at its official repo1 to
benchmark the kernels’ runtime. In particular, to ensure stable measurement, runtime is measured
with CUDA events after warm-up runs using fixed input shapes; we choose a large number of 100
warm-up runs to ensure accurate measurement.

C PROMPTS

Our prompts follow the templates of KernelBench (Ouyang et al., 2025), which has four compo-
nents: system message, in-context example, architecture source code, and instruction.

As we have multiple agents in STARK with different tasks, they require different prompts to fulfill
their tasks. Specifically, we reuse the system message and in-context example from KernelBench
for all agents and include the architecture source code regardless of which node is selected for opti-
mization. To motivate the agents to use the already optimized modules such as cuBLAS, we include
an additional instruction in the system message to consider using existing highly optimized kernels.
We show the system prompt in Figure 7, the in-context example in Figures 11 and 12. In addition,
we include the information within the dynamic context window and role-specific instructions for dif-
ferent agents. See Figure 4 for the prompt template of STARK. We show the role-specific instruction
in Figures 8, 9, and 10.

D EXAMPLE KERNELBENCH TASKS

Here we show three examples of KernelBench tasks, one for each level. See Figures 13, 14, and 15
for example tasks in Level 1, 2, and 3. We refer interested readers to Ouyang et al. (2025) for the
complete list.

E RELATED WORK

Optimizing GPU kernels to extract maximum performance from underlying hardware is a long-
standing and formidable challenge. The vast, non-convex, and hardware-specific search space of
possible kernel implementations necessitates sophisticated optimization strategies. The evolution of
these strategies can be broadly categorized into three paradigms: empirical auto-tuning, compiler-
and model-driven optimization, and most recently, generative approaches using Large Language

1https://github.com/ScalingIntelligence/KernelBench
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1 {System Message}
2

3 Here’s an example to show you the syntax of inline embedding
custom CUDA operators in torch: The example given architecture is:

4 {Example Architecture Source Code}
5 The example new arch with custom CUDA kernels looks like this:
6 {Example New Architecture Source Code}
7

8 You are given the following architecture:
9 {Architecture Source Code}

10

11 Here is your latest attempt:
12 {Source Code of the Selected Node}
13

14 [Dynamic Context Window] You should use the following observations
regarding your historical attempts to provide better

implementations:
15 - Learn from the failed examples to avoid bugs and write

successful kernels.
16 - Learn from the successful examples to design improved kernels.
17

18 **Kernel Source Code #1**
19 {Source Code of Historical Attempt}
20

21 **Compiler Observation**
22 {Compiler Log}
23

24 **Kernel Execuation Result**
25 {Runtime or Correctness Error}
26

27 **Kernel Source Code #2**
28 [...skipped]
29

30 {Role-specific Instruction}

Figure 4: Prompt Template for Agents.

Models (LLMs). Our work builds upon this trajectory by introducing a fully autonomous agent that
manages the entire optimization lifecycle.

E.1 EMPIRICAL AND COMPILER-BASED OPTIMIZATION

The foundational approach to GPU performance tuning is empirical auto-tuning, which treats the
problem as a black-box search over a set of tunable parameters, such as thread block dimensions,
memory tiling factors, and loop unrolling factors (van Werkhoven, 2019). Traditional methods often
rely on an exhaustive or brute-force search, where thousands of potential kernel configurations are
generated, compiled, and benchmarked to identify the top performer (Kurzak et al., 2012).While
effective, this process is prohibitively time-consuming; for instance, an exhaustive search for a single
GEMM kernel can take over 700 minutes to complete (NVIDIA Developer, 2024).

To mitigate this cost, heuristic-driven methods prune the search space. NVIDIA’s
nvMatmulHeuristics, for example, uses a predictive model to recommend a small subset of
high-potential configurations, achieving near-optimal performance in a fraction of the time (NVIDIA
Developer, 2024). Frameworks like Kernel Tuner (van Werkhoven, 2019), ATF (Rasch et al., 2017),
and CLTune (Nugteren & Codreanu, 2015) provide robust environments for orchestrating these
searches and support more advanced strategies like Bayesian Optimization, which builds a prob-
abilistic performance model to guide the search more intelligently (Hellsten et al., 2023; Heldens &
van Werkhoven, 2023).

Concurrently, compiler-based approaches aim to automate optimization through a series of program
transformations applied to an intermediate representation (Yang et al., 2010). GPU compilers em-
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1 ## System Message
2

3 You are an expert in writing efficient code.
4 You write custom CUDA kernels to replace the pytorch operators in
the given architecture to get speedups.

5

6 You have complete freedom to choose the set of operators you want
to replace. You may make the decision to replace some operators
with custom CUDA kernels and leave others unchanged. You may
replace multiple operators with custom implementations, consider
operator fusion opportunities (combining multiple operators into a
single kernel, for example, combining matmul+relu), or

algorithmic changes (such as online softmax). You are only limited
by your imagination.

7

8 You should consider using CUDA’s existing highly optimized kernels
and operations whenever appropriate. Try building on these

optimized blocks and further improve it with your custom kernels.

Figure 5: System Message for All Agents.

1 ## System Message
2

3 You act as an LLM agent specializing in GPU optimization. Your
goal is to speed up a given PyTorch architecture by generating
custom CUDA kernels to replace its existing operators.

4 You may freely choose which operators to target, whether to
rewrite one operator, many operators, or none. You can pursue
kernel fusion opportunities (e.g., folding linear layers and
elementwise ops together) or restructure the computation
algorithmically to achieve higher throughput or lower memory
traffic.

5

6 There are no constraints on what transformations you may
proposeinnovation is encouraged.

7

8 Use CUDAs existing highly optimized kernel libraries whenever
advantageous; treat them as strong baselines that your custom
kernels can refine, fuse, or extend to achieve even greater
efficiency.

Figure 6: Alternate System Message V 1 for STARK.

ploy passes for memory coalescing, data prefetching, vectorization, and loop optimizations to adapt
naive code to the hardware architecture (Buck, 2008). While these approaches excel at finding op-
timal configurations within a predefined search space, they cannot fundamentally alter the kernel’s
algorithm. Our work introduces an agent that reasons about performance bottlenecks to implement
novel, structural code changes, moving beyond simple parameter tuning.

E.2 MACHINE LEARNING FOR CODE OPTIMIZATION

Machine learning (ML) has emerged as a powerful tool to transcend the limitations of hand-crafted
heuristics. Early work focused on using ML to make better decisions within existing compiler and
tuning frameworks. Systems like TVM employ a learned cost model to predict the performance of
kernel variants, guiding the search process and avoiding exhaustive empirical evaluation (Chen et al.,
2018). More recent efforts have integrated ML directly into production compilers. Google’s MLGO
framework uses reinforcement learning (RL) to train policies for classic compiler optimizations like
function inlining and register allocation, demonstrating significant improvements in code size and
performance over decades-old, manually-tuned heuristics in LLVM (Trofin et al., 2021; Marinov
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1 ## System Message
2

3 You are a GPU kernel engineer tasked with accelerating a PyTorch
model by selectively replacing its operators with custom CUDA
kernels.

4 You have full discretion in deciding which operators should be
rewritten, fused, or left as-is. You may implement multiple custom
kernels, explore operator fusion (e.g., matmul + activation), or

introduce more efficient algorithmic variants (such as online
softmax or tiled reductions).

5

6 Your design space is unrestrictedcreativity and performance
intuition should guide your choices.

7

8 Whenever beneficial, leverage CUDAs high-performance primitives (
tensor cores, cutlass, cuBLAS, cuDNN, etc.). Build upon these
optimized components and push performance further with your own
implementations.

Figure 7: Alternate System Message V 2 for STARK.

et al., 2024). These models can learn from massive code corpora and discover complex feature
interactions that are opaque to human experts (Cummins et al., 2017).

A more profound application of ML has been in algorithmic discovery. DeepMind’s AlphaTen-
sor framed the search for faster matrix multiplication algorithms as a single-player game, using a
deep RL agent based on AlphaZero to navigate the enormous search space of tensor decomposi-
tions (Fawzi et al., 2022). This approach successfully discovered novel, provably correct algorithms
that outperform human-derived state-of-the-art methods, including improving upon Strassen’s algo-
rithm for 4×4 matrices for the first time in over 50 years (Fawzi et al., 2022; DeepMind, 2022). This
work marked a critical shift from using ML to configure existing optimization strategies to using it
to invent new ones from first principles. However, AlphaTensor operated in a clean, formal mathe-
matical domain. Translating this power to the messy, syntactic, and hardware-constrained domain
of GPU kernel programming presents a distinct challenge. Our work addresses this by employing
an agent that operates directly on source code, navigating the complexities of syntax, compilation,
and hardware-specific performance characteristics.

E.3 LLM-POWERED AUTONOMOUS AGENTS

The capabilities of LLMs have given rise to a new paradigm of autonomous agents. An LLM agent
uses a core LLM as its ”brain” or controller, augmented with capabilities for planning, memory, and
tool use to perform complex tasks autonomously (Weng, 2023). The key distinction from simple
LLM prompting is the agent’s ability to decompose a high-level goal into a sequence of manageable
subtasks, execute them iteratively, and use reflection to gauge progress and self-correct. This agentic
workflow involves the LLM interacting with an external environment through a set of tools, such
as a code interpreter or a web search API, to gather information and perform actions. While this
paradigm is powerful for general problem-solving, its application to specialized domains like soft-
ware engineering requires tailored tools and reasoning processes. Our work specializes this agentic
concept for the domain of performance optimization, which presents unique challenges not found in
general-purpose agent tasks.

E.4 LLMS FOR CODE OPTIMIZATION AND GENERATION

The advent of powerful LLMs has opened a new frontier in performance engineering. To grant
LLMs greater autonomy, the agentic paradigm has been adapted specifically for software engineer-
ing. The success of systems like SWE-agent, which autonomously resolves complex bugs in large
GitHub repositories, has demonstrated the viability of this approach (Yang et al., 2024). SWE-agent
equips an LLM with a specialized Agent-Computer Interface (ACI) containing tools for file naviga-
tion, editing, and test execution, enabling it to perform long-horizon tasks far beyond the scope of
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1 ## Instruction
2

3 - Optimize the architecture named Model with custom CUDA operators
!

4 - Give explicit and actonable advice to improve the efficiency, in
terms of the GPU wall-clock time, of the architecture named Model

.
5

6 - Give ONE advice of the top priority! Don’t over-request.
7 - Include necessary details such as how to change pointers and
indices or how to achieve shared memory tiling so that your advice
can be correctly implemented.

8

9 - After your advice, modify and return the given source code in
the following way:

10 - Identify the code block whose efficiency can be improved (
that is where your advice should be implemented)

11 and mark it with comments ’<<<IMPROVE BEGIN>>>’ at the
beginning and ’<<<IMPROVE END>>>’ at the end

12 - The markers ’<<<IMPROVE BEGIN>>>’ and ’<<<IMPROVE END>>>’
should be valid comments for the marked coding language. For
example, when marking source code of custom kernels, you need to
use comments for the C++ language as ’// <<<IMPROVE BEGIN>>>’ and
’// <<<IMPROVE END>>>’; when marking source code of Python, you
should use ’## <<<IMPROVE BEGIN>>>’ and ’## <<<IMPROVE END>>>’

13 - Add your advice as comments at the identified code block to
help the following agent’s implementation

14 - There will be another agent focusing on improving the
efficiency of the identified code block.

15 - Return the complete code block with the identified code
block as its subpart.

16

17 - You should consider using CUDA’s existing highly optimized
kernels and operations whenever appropriate. Try building on these
optimized blocks and further improve it with your custom kernels.

18 - When presented with multiple prior attempts, you should consider
exploration of more diverse optimization strategies.

19 - Pay careful attention to the implementation agent’s capability
demonstrated from the historical implementations.

20 - Adjust your advice accordingly to ensure that it can
successfully implement.

Figure 8: Instruction for the Plan Agent.

simple code generation (Yang et al., 2024; Jimenez et al., 2024). While these agents are a signif-
icant step towards autonomous software engineering, their focus has primarily been on functional
correctness, such as bug fixing. Our work extends this agentic software engineering paradigm to
the non-functional, performance-oriented domain of GPU kernel optimization. We introduce an
agent that not only interacts with a codebase but also with hardware profiling tools, allowing it
to autonomously diagnose performance bottlenecks, form hypotheses, and conduct experiments to
iteratively improve kernel efficiency, thus acting as a true autonomous performance engineer.
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1 ## Instruction
2

3 Optimize the architecture named Model with custom CUDA operators!
4

5 - Think about the given advice from human experts and implement
the ones that you believe are correct and you are confident
implementing.

6 - Only focus on the code block marked with ’<<<IMPROVE BEGIN>>>’
and ’<<<IMPROVE END>>>’

7 - Write custom cuda kernel to replace the pytorch operators within
the marked code block to improve its efficiency

8 - Name your optimized output architecture ModelNew.
9 - Output the new code in codeblocks.

10 - Explain your implementation and how you follow the advice.
11 - Using the given tool to return your final structured answer.
12

13 Please generate real code, NOT pseudocode, make sure the code
compiles and is fully functional.

14

15 NO testing code!

Figure 9: Instruction for the Code Agent.

1 ## Instruction
2

3 Fix the issues of your implementation named ModelNew, which should
improve efficiency of the source model named Model.

4

5 - ModelNew and Model should have the same functionality, that is,
the same input-output mapping.

6 - The given architecture ModelNew ieither does not compile, or has
run-time error, or has different functionality to the source

Model.
7 - Use the given observations to infer bugs and then fix them.
8 - Explain how the bugs happen and how you fix it.
9 - Return the fixed bug-free code and name your optimized output
architecture ModelNew.

Figure 10: Instruction for the Debug Agent.
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1 ## Example Architecture Source Code
2 import torch
3 import torch.nn as nn
4 import torch.nn.functional as F
5

6

7 class Model(nn.Module):
8 def __init__(self) -> None:
9 super().__init__()

10

11 def forward(self, a, b):
12 return a + b
13

14

15 def get_inputs():
16 # randomly generate input tensors based on the model

architecture
17 a = torch.randn(1, 128).cuda()
18 b = torch.randn(1, 128).cuda()
19 return [a, b]
20

21

22 def get_init_inputs():
23 # randomly generate tensors required for initialization based

on the model architecture
24 return []

Figure 11: In-context Example Architecture for All Agents.
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1 ## Example New Architecture Source Code
2

3 import torch
4 import torch.nn as nn
5 import torch.nn.functional as F
6 from torch.utils.cpp_extension import load_inline
7

8 # Define the custom CUDA kernel for element-wise addition
9 elementwise_add_source = """

10 #include <torch/extension.h>
11 #include <cuda_runtime.h>
12

13 __global__ void elementwise_add_kernel(const float* a, const float
* b, float* out, int size) {

14 int idx = blockIdx.x * blockDim.x + threadIdx.x;
15 if (idx < size) {
16 out[idx] = a[idx] + b[idx];
17 }
18 }
19

20 torch::Tensor elementwise_add_cuda(torch::Tensor a, torch::Tensor
b) {

21 auto size = a.numel();
22 auto out = torch::zeros_like(a);
23

24 const int block_size = 256;
25 const int num_blocks = (size + block_size - 1) / block_size;
26

27 elementwise_add_kernel<<<num_blocks, block_size>>>(a.data_ptr<
float>(), b.data_ptr<float>(), out.data_ptr<float>(), size);

28

29 return out;
30 }
31 """
32

33 elementwise_add_cpp_source = (
34 "torch::Tensor elementwise_add_cuda(torch::Tensor a, torch::

Tensor b);"
35 )
36

37 # Compile the inline CUDA code for element-wise addition
38 elementwise_add = load_inline(
39 name="elementwise_add",
40 cpp_sources=elementwise_add_cpp_source,
41 cuda_sources=elementwise_add_source,
42 functions=["elementwise_add_cuda"],
43 verbose=True,
44 extra_cflags=[""],
45 extra_ldflags=[""],
46 )
47

48

49 class ModelNew(nn.Module):
50 def __init__(self) -> None:
51 super().__init__()
52 self.elementwise_add = elementwise_add
53

54 def forward(self, a, b):
55 return self.elementwise_add.elementwise_add_cuda(a, b)

Figure 12: In-context Optimized Example Architecture for All Agents.
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1 import torch
2 import torch.nn as nn
3

4 class Model(nn.Module):
5 """
6 Simple model that performs a LogSoftmax activation.
7 """
8 def __init__(self, dim: int = 1):
9 super(Model, self).__init__()

10 self.dim = dim
11

12 def forward(self, x: torch.Tensor) -> torch.Tensor:
13 """
14 Applies LogSoftmax activation to the input tensor.
15

16 Args:
17 x (torch.Tensor): Input tensor of shape (batch_size,

dim).
18

19 Returns:
20 torch.Tensor: Output tensor with LogSoftmax applied,

same shape as input.
21 """
22 return torch.log_softmax(x, dim=self.dim)
23

24 batch_size = 4096
25 dim = 393216
26

27 def get_inputs():
28 x = torch.rand(batch_size, dim)
29 return [x]
30

31 def get_init_inputs():
32 return [] # No special initialization inputs needed

Figure 13: Example KernelBench Level 1 Task.
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1 import torch
2 import torch.nn as nn
3

4 class Model(nn.Module):
5 """
6 Model that performs a matrix multiplication, division,

summation, and scaling.
7 """
8 def __init__(self, input_size, hidden_size, scaling_factor):
9 super(Model, self).__init__()

10 self.weight = nn.Parameter(torch.randn(hidden_size,
input_size))

11 self.scaling_factor = scaling_factor
12

13 def forward(self, x):
14 """
15 Args:
16 x (torch.Tensor): Input tensor of shape (batch_size,

input_size).
17 Returns:
18 torch.Tensor: Output tensor of shape (batch_size,

hidden_size).
19 """
20 x = torch.matmul(x, self.weight.T) # Gemm
21 x = x / 2 # Divide
22 x = torch.sum(x, dim=1, keepdim=True) # Sum
23 x = x * self.scaling_factor # Scaling
24 return x
25

26

27 batch_size = 1024
28 input_size = 8192
29 hidden_size = 8192
30 scaling_factor = 1.5
31

32 def get_inputs():
33 return [torch.rand(batch_size, input_size)]
34

35 def get_init_inputs():
36 return [input_size, hidden_size, scaling_factor]

Figure 14: Example KernelBench Level 2 Task.
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1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4 import math
5

6 class NewGELU(nn.Module):
7 """
8 Implementation of the GELU activation function currently in

Google BERT repo (identical to OpenAI GPT).
9 Reference: Gaussian Error Linear Units (GELU) paper: https://

arxiv.org/abs/1606.08415
10 """
11 def __init__(self):
12 super(NewGELU, self).__init__()
13

14 def forward(self, x):
15 return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi

) * (x + 0.044715 * torch.pow(x, 3.0))))
16

17 class CausalSelfAttention(nn.Module):
18 """
19 A vanilla multi-head masked self-attention layer with a

projection at the end.
20 It is possible to use torch.nn.MultiheadAttention here but I

am including an
21 explicit implementation here to show that there is nothing too

scary here.
22 """
23

24 def __init__(self, n_embd, n_head, attn_pdrop, resid_pdrop,
max_seqlen):

25 super().__init__()
26 assert n_embd % n_head == 0
27 # key, query, value projections for all heads, but in a

batch
28 self.c_attn = nn.Linear(n_embd, 3 * n_embd)
29 # output projection
30 self.c_proj = nn.Linear(n_embd, n_embd)
31 # regularization
32 self.attn_dropout = nn.Dropout(attn_pdrop)
33 self.resid_dropout = nn.Dropout(resid_pdrop)
34 # causal mask to ensure that attention is only applied to

the left in the input sequence
35 self.register_buffer("bias", torch.tril(torch.ones(

max_seqlen, max_seqlen))
36 .view(1, 1, max_seqlen,

max_seqlen))
37 self.n_head = n_head
38 self.n_embd = n_embd
39 [...skipped]
40

41 class Model(nn.Module):
42 """ an unassuming Transformer block """
43

44 [...skipped]
45

46 def forward(self, x):
47 x = x + self.attn(self.ln_1(x))
48 x = x + self.mlpf(self.ln_2(x))
49 return x
50

51 [...skipped]

Figure 15: Example KernelBench Level 3 Task.
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