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ABSTRACT

Graph Neural Networks (GNNs) have achieved remarkable success in various
graph-based learning tasks. While their performance is often attributed to the
powerful neighborhood aggregation mechanism, recent studies suggest that other
components such as non-linear layers may also significantly affecting how GNNs
process the input graph data in the spectral domain. Such evidence challenges the
prevalent opinion that neighborhood aggregation mechanisms dominate the be-
havioral characteristics of GNNs in the spectral domain. To demystify such a con-
flict, this paper introduces a comprehensive benchmark to measure and evaluate
GNNs’ capability in capturing and leveraging the information encoded in differ-
ent frequency components of the input graph data. Specifically, we first conduct
an exploratory study demonstrating that GNNs can flexibly yield outputs with di-
verse frequency components even when certain frequencies are absent or filtered
out from the input graph data. We then formulate a novel research problem of
measuring and benchmarking the performance of GNNs from a spectral perspec-
tive. To take an initial step towards a comprehensive benchmark, we design an
evaluation protocol supported by comprehensive theoretical analysis. Finally, we
introduce a comprehensive benchmark on real-world datasets, revealing insights
that challenge prevalent opinions from a spectral perspective. We believe that
our findings will open new avenues for future advancements in this area. Our
implementations can be found at: https://github.com/yushundong/
Spectral-benchmark.

1 INTRODUCTION

Graph Neural Networks (GNNs) have shown remarkable performances in modeling graphs in a
plethora of domains, such as social media analysis (Fan et al., 2019; Ying et al., 2018), molecular
biology (Wang et al., 2022; Liu et al., 2022; Gasteiger et al., 2021), and cybersecurity (Jin et al.,
2020; Zhang & Zitnik, 2020; Tang et al., 2022), to name a few. The huge success of GNNs is
generally attributed to its powerful neighborhood aggregation mechanism (Xu et al., 2018; Zhu
et al., 2020). Specifically, such a mechanism allows each node to contribute key information to its
neighbors across the graph topology (Liu & Zhou, 2022), which enables GNNs to learn informative
representations and perform accurate predictions in graph-based learning tasks (Wu et al., 2022a).

To gain a deeper understanding of the reason why such a neighborhood aggregation mechanism
brings revolutionary performance improvement, recent years have witnessed a huge amount of ex-
plorations (Jegelka, 2022; Xu et al., 2018). Currently, a widely acknowledged belief is that neigh-
borhood aggregation mechanism acts as a graph signal filter (Luan et al., 2024), which serves as the
dominant module in GNNs (Wang & Zhang, 2022; Bianchi et al., 2021). In most traditional GNNs,
such a mechanism acts as a low-passing filter (Chang et al., 2021; Nt & Maehara, 2019) to capture
the frequency components encoded with the most task-relevant information in most graph datasets.
More recent studies such as (Bo et al., 2021; Bianchi et al., 2021; Luan et al., 2022), have noticed
that the most task-relevant information is not necessarily encoded in the lowest frequencies, e.g., in
heterophilous graphs (Zheng et al., 2022; Zhu et al., 2021). To facilitate more capable GNNs to han-
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dle different types of graphs, a variety of complicated neighborhood aggregation mechanisms have
been designed to equip GNNs with more flexible filters (Li et al., 2018; Guo et al., 2023), aiming at
capturing more task-relevant information from different frequency components across the spectral
domain. Nevertheless, a significant flaw arises when we zoom in on these works. Specifically, the
motivation of designing more flexible filters is implicitly based on the assumption that it is difficult
for GNNs to yield outputs with abundant frequency components if these components are significantly
weakened or filtered out by the neighborhood aggregation mechanism. However, GNNs are more
than filters associated with neighborhood aggregation mechanisms. Other modules, e.g., non-linear
layers, are often included as well. This fact naturally undermines the validity of this assumption.
Considering such a gap, in this work, we ask:

When such filters are fixed, can GNNs still flexibly output different frequency components?
The above question is critical since its answer determines whether we should attribute most strengths
and weaknesses of GNNs from a spectral perspective to such filters or not. Despite the scarcity of
existing explorations, several studies have observed that non-linear layers can affect the frequency
components of the GNNs’ output (Balcilar et al., 2021b; Yang et al., 2024). These results imply that
GNNs as a whole may exhibit different behavioral characteristics, e.g., the GNNs’ output frequency
components given a certain input frequency component, compared with the above-mentioned neigh-
borhood aggregation mechanisms in the spectral domain. However, most existing works fail to gain
a comprehensive understanding of how the components other than those filters influence the behav-
ior of GNNs in the spectral domain and finally affect the performance in graph learning tasks.

We note that it is non-trivial to properly answer the aforementioned question. In particular, we
mainly face three fundamental challenges. (1) Complex Analytical Expressions. GNNs are usu-
ally highly complex when the components other than neighborhood aggregation mechanisms are
considered all together. Therefore, its analytical expression can hardly be exploited to perform
analysis in the spectral domain. (2) Lack of Frequency-Specific Incentives. GNNs are typically
supervised with a set of fixed ground-truth labels during training. However, these ground-truth la-
bels are usually a composition of different frequency components and do not show clear incentive
patterns preferring certain frequency components. Therefore, it becomes difficult to analyze whether
GNNs are able to yield outputs with components that they have not previously observed. (3) Lack
of Metric and Benchmark. To the best of our knowledge, there is currently no metric that measures
the flexibility of a GNN’s output frequency components in the spectral domain. On the other hand,
it is also necessary for us to understand the differences between different popular GNN models on
the question above. However, no existing benchmark can comprehensively reveal such insights.

In this paper, we take an initial step to investigate the problems above. Specifically, we first per-
form an exploratory study, where we avoid characterizing any analytical expressions to tackle our
first challenge. Instead, we propose to design appropriate supervision information as the frequency-
specific incentives for GNN training, such that the capacity of GNNs in yielding different frequency
components can be exposed and observed across the frequency axis. This helps us to properly tackle
the second challenge. The observations of the exploratory study verify that the modules other than
neighborhood aggregation can already enable GNNs to flexibly output different frequency compo-
nents at different energy levels, which challenges the prevalent opinion that neighborhood aggre-
gation typically dominates GNNs’ behavioral characteristics in the spectral domain. Furthermore,
we design evaluation protocols to evaluate the performance of different GNNs in yielding different
frequency components across the spectral domain. We finally present a comprehensive benchmark
under such protocols to introduce a comprehensive understanding on such a problem across different
popular GNNs, which properly handles the third challenge. We summarize our contributions below:

• An Exploratory Study Challenging the Common Belief. We propose a principled strategy to
characterize the flexibility of GNNs to yield different frequency components. Surprisingly, we
found that the filter resulted from the neighborhood aggregation does not dominate the behavioral
characteristics of GNNs in the spectral domain, which disagrees with the prevalent opinion.

• A Novel Research Problem. We formulate a novel research problem of Measuring and Bench-
marking the Performance of GNNs From A Spectral Perspective and take an initial step towards
properly handling it. We provide valuable insights through explorations towards understanding
the behavioral characteristics of GNNs in the spectral domain.

• A Comprehensive Benchmark with Novel Evaluation Protocol. We design a novel evaluation
protocol with solid theoretical basis and practical significance. We also conduct extensive experi-
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ments to enhance understanding of popular GNNs on real-world datasets. Notably, our benchmark
provides a consistent view directly applicable to both spatial- and spectral-based GNNs.

2 PRELIMINARIES

Notations. Throughout our work, without further specification, italic letters (e.g., X ), bold up-
percase letters (e.g., X), bold lowercase letters (e.g., x), and ordinary lowercase letters (e.g., x)
represent matrices, vectors, and scalars, respectively. For any matrix, e.g., X, we employ Xi and
Xi to indicate its i-th row and column, respectively. We denote an undirected graph as G = (V, E),
where V = {v1, ..., vn} and E are the set of nodes and edges. We denote A ∈ RN×N as the graph
adjacency matrix in which Ai,j = 1 if there exists an edge between node i and node j, other-
wise Ai,j = 0. With graph adjacency matrix A, the graph node degree matrix can be defined as
D = diag(d1, ..., dN ), where di = ΣjAi,j . The normalized graph Laplacian matrix is defined as
L = I − D− 1

2AD− 1
2 . Additionally, we define the graph node feature matrix X ∈ RN×F , where

Xj represents the j-th feature channel and F denotes the number of feature channels. We employ
the sign ⊙ as the Hadamard multiplication.

Current Progress of Gnns & Concerns From a Spectral Perspective. There are two mainstream
lines of research on GNNs, i.e., spatial- and spectral-based ones. Researchers examining the spatial
perspective consider the aggregation process of GNNs as a node attribute aggregator across the graph
topology (Kipf & Welling, 2017; Wu et al., 2020; Xu et al., 2018). In contrast, those exploring GNNs
from a spectral perspective consider the aggregation process as a filter in the spectral domain, i.e., the
eigenspace of the graph Laplacian matrix L, largely considering GNNs as low-passing filters (Nt &
Maehara, 2019; Chang et al., 2021; Yu & Qin, 2020). Recently, diverse designs of filters associated
with different neighborhood aggregation mechanisms have been proposed to help GNNs capture
the key information encoded in different frequency components (Bo et al., 2021; Guo et al., 2023;
Dong et al., 2021). In general, these explorations lay a solid mathematical foundation for GNN
with spectral-based methods. However, most current methods focus on the filters associated with
the neighborhood aggregation mechanisms rather than considering a GNN as a whole. As such, the
role of other modules such as non-linear layers in GNNs has been long neglected. In recent years,
several works (Balcilar et al., 2021b; Yang et al., 2024) have provided primary evidence that the
non-linear layers can effectively shift the behavioral characteristics of GNNs. To further bridge the
aforementioned gap, we now formally introduce the problem of Measuring and Benchmarking the
Performance of GNNs From A Spectral Perspective below.
Problem 2.1. Measuring and Benchmarking the Performance of GNNs From A Spectral Per-
spective. Our goal is to qualitatively understand and quantitatively compare the capabilities of
GNNs in capturing the key information encoded in different frequency components of input graphs
to perform graph learning tasks.

3 AN EXPLORATORY STUDY

To properly handle Problem 2.1, the prevalent strategy is to simply analyze the frequency response
function associated with the filter resulted from the neighborhood aggregation mechanism (Nt &
Maehara, 2019; Wu et al., 2019). However, such a straightforward approach may not be able to
handle Problem 2.1, since the behavioral characteristics of GNNs in the spectral domain may not be
fully dominated by such filters. Below, we show our preliminary explorations to further clarify such
a common misunderstanding.

Research Question. Here, we perform preliminary studies to explore whether the behavioral char-
acteristics of GNNs in the spectral domain are dominated by the filters associated with the neighbor-
hood aggregation mechanism (as discussed in Section 1). Specifically, we are particularly interested
in revealing whether GNNs can flexibly yield outputs with abundant frequency components that
have been significantly weakened or filtered out by the non-learnable filter.

Evaluation Protocol. In this study, we measure the influence of different frequency components
using the commonly adopted notion of Energy (Yang et al., 2022; Tang et al., 2022). We construct
our experimental datasets based on real-world graph datasets. First, we compute the normalized
Laplacian eigenvectors of the graph and sort them by eigenvalue (i.e., frequency). We then bin these
eigenvectors into even-width bins, where each bin is associated with the mean of the eigenvectors
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(b) High-frequency input; low-frequency targets.

Figure 1: A comparison between the energy of input and output frequency components of GCN on
Co-author CS dataset. The results show that the output frequency components can always flexibly
align with the target distribution in both cases of (a) inputting low-frequency components only but
aiming to output high-frequency components; and (b) inputting high-frequency components only
but aiming to output low-frequency components.

falling into that bin. The bottom, middle, and upper one third of bins are designated as low-, middle-
, and high-frequency components. We propose to conduct node-level regression tasks to answer
our research question above. Specifically, we set the target as the mean of the eigenvectors coming
from one frequency component, while the input features are the mean of eigenvectors in a different
frequency range (e.g., low-frequency eigenvectors when the target is high-frequency). In this way,
the input graph signal will have zero energy levels for the frequency components of the prediction
target, while the ground truth can serve as frequency-specific incentives. This simulates the scenarios
where certain frequency components are absent in the input or filtered out by the neighborhood
aggregation mechanism. We note that graph filters cannot generate frequency components that are
not originally contained in the input graph data. Therefore, if a GNN model can still produce outputs
with abundant target frequency components (in terms of energy levels) under various conditions,
it demonstrates that the neighborhood aggregation mechanism does not necessarily dominate the
output frequency components. In other words, GNNs can recover missing frequency components if
it benefits the optimization goal during training, even if these components are/become absent in the
forwarding process. We adopt GCN as our GNN model and conduct experiments on five real-world
datasets. We train our models using MSE loss after standardizing the input features. We show two
exemplary cases based on Co-author CS dataset in Figure 1, where the energy distribution of the
final GNN’s output signal alongside those of the input and target signals are visualized. We present
complete results in the Appendix.

Observations & Analysis. Surprisingly, our experiments reveal that GNNs demonstrate remarkable
capability to recover frequency components across diverse scenarios. As shown in Figure 1, even
when certain frequency components are filtered out or significantly weakened in the input, GNNs
can still flexibly align their output with the target distribution. This is evident in both cases: (a) where
low-frequency inputs generate high-frequency outputs, and (b) where high-frequency inputs produce
low-frequency outputs. Notably, this indicates that other modules, such as the non-linear layers, in
GNNs can also play a crucial role in altering the energy distributions across different frequency
components. Our preliminary conclusion is that the behavior of GCN in the spectral domain is not
necessarily dominated by the spectral characteristics of its neighborhood aggregator. Instead, GCN
can easily output different frequency components when appropriate frequency-specific incentives
exist in the supervision signal. Such flexibility in yielding various frequency components is even
comparable to those state-of-the-art GNNs with carefully designed learnable filters (Bo et al., 2021),
and we show a more comprehensive comparison in Appendix C.

To summarize, we conclude that the frequency response of the filter of a neighborhood aggrega-
tor does not necessarily determine the behavioral characteristics of its host GNN in the frequency
domain. In fact, GNNs as a whole have the capability to significantly modify their output energy
distribution compared with the input energy distribution in the spectral domain. Such an insight
suggests that only analyzing the flexibility of the filters associated with the neighborhood aggrega-
tion mechanism is insufficient to fully explain the strengths and weaknesses of GNNs, which is in
conflict with the traditional belief. Taking a step further, a critical question emerges: How can we ef-
fectively measure the general ”capturing and altering” capability of GNNs in the frequency domain?
This question becomes paramount for understanding the true potential and limitations of current

4



Published as a conference paper at ICLR 2025

GNNs. We address this question in the following section where we aim to provide a comprehensive
evaluation protocol for benchmarking GNN performance from a spectral perspective.

4 BENCHMARK DESIGN

In this section, we introduce the benchmark design. Specifically, we first introduce the evaluation
protocol, followed by comprehensive analysis to lay a solid theoretical foundation which will di-
rectly support the practical significance of our proposed benchmark from a spectral perspective.

4.1 EXPERIMENTAL PROTOCOL

Downstream Task & Dataset Preparations. While we used node regression for our preliminary
study in Section 3, we adopt node classification for our extensive empirical benchmark considering
its superior practical significance in graph learning tasks. Specifically, we propose to adopt the
same approach to generate continuous values corresponding to each node in the input graph (as in
Section 3) followed by an additional discretization process by giving thresholds to determine the
ground truth labels for each node. We show in Section 4.2 that the additional discretization process
only brings an upper-bounded energy distribution deviation compared with the continuous ground
truth values in the node-level regression task, which ensures satisfying consistency. Meanwhile,
such an approach ensures that the targets to predict possess the frequency-specific incentives needed
to evaluate performance on each bin in the frequency domain. We propose to adopt real-world
datasets such that we will perform evaluations on the node attributes and graph topology that bear
practical significance across different domains. We further provide more details in Appendix A.

GNNs for Benchmarking. We conduct evaluation on a total number of 14 GNNs, namely
SAGE (Hamilton et al., 2017), GCN (Kipf & Welling, 2017), GCNII (Ming Chen et al., 2020),
GAT (Veličković et al., 2018), GATv2 (Brody et al., 2022), SGC (Wu et al., 2019), FA (Bo et al.,
2021), GIN (Xu et al., 2018), ChebNet (Defferrard et al., 2016), GatedGraph (Li et al., 2016), the
Transformer (Vaswani et al., 2017), GPS (Rampášek et al., 2022), APPNP (Gasteiger et al., 2019),
and the 1-WL operator from Morris et al. (2019) (denoted as 1-GNN). These models cover a wide
range of popular and state-of-the-art GNNs designed in either spatial or spectral domain.

Real-World Datasets. We benchmark GNNs on the full versions of the Cora and DBLP citation
graphs (Bojchevski & Günnemann, 2018), the CS and Physics coauthor datasets by Shchur et al.
(2018), and the Amazon-Computers and Amazon-Photo product graphs by (Shchur et al., 2018).
These datasets vary in size, structure, spectral energy distribution, and semantic domains, allowing
us to evaluate the GNNs’ performance across diverse graph types and application areas.

Benchmark Evaluation Metrics. Following most other works, we adopt node classification ac-
curacy as the primary metric to measure the performance of GNNs. On the basis of this, we now
introduce the qualitative and quantitative performance evaluation methods. From a qualitative per-
spective, we propose the notion of Accuracy Curve in the Spectral Domain. Specifically, as intro-
duced in Section 3, each round of experiments is associated with a bin on the spectral axis, based on
which the node-level prediction target (a discrete label for node classification) is generated. When
the input graph signal contains all frequency components at the same energy level, the performance
under this bin generally reflects the capability of such a GNN model in capturing and leveraging the
information encoded in the associated frequency component to perform prediction. Accordingly,
the performance across all available bins on the spectral axis form a curve, which generally reflects
the tendency of how such capability changes w.r.t. the frequency value. From a quantitative per-
spective, we propose to utilize the Normalized Area Under the Accuracy Curve, Normalized AUAC,
to measure the general capability of each GNN model in capturing and leveraging the information
encoded in different frequency components. Specifically, it is calculated as the division between the
AUAC under the full frequency range and the largest possible AUAC under the full frequency range.
Additionally, we are also interested in the capability of GNNs in capturing the information encoded
in a certain range of frequency components. In this case, Normalized AUAC can also be adopted by
specifying a particular range of frequencies.

Implementation Details. All experiments were conducted using PyTorch (Paszke et al., 2017)
and PyTorch Geometric (Fey & Lenssen, 2019) libraries. We used 2-layer GNNs with a hidden
dimension of 64 for all runs. GNNs were trained for 500 epochs using the Adam optimizer with
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a learning rate of 0.001. We bin each frequency component with a width of 0.1. No learning rate
scheduler or early stopping was used. For each dataset and spectral bin, we report the mean and
standard deviation of the results across 3 runs. More implementation details are in Appendix A.

4.2 THEORETICAL ANALYSIS

We adopt node classification task for our main benchmark considering that it typically fosters a
stronger practical significance. To ensure the consistency between node-level regression task and
node classification tasks, in this section, we aim to reveal that the additional discretization process
in node classification does not bring significant deviation from the ground truth’s energy distribution
in the spectral domain. Below we present the theoretical analysis revealing such insights.

We refer to the matrix of one-hot vectors representing the ground truth node class labels after dis-
critization as the Node Class Label (NCL) matrix for convenience. Below we first define the Energy
Distribution Field (EDF) of a node class label distribution.
Definition 4.1. (Energy Distribution Field) The energy distribution field, denoted as FM, of an NCL
matrix M ∈ Rn×k is the set of energy distributions of the unit vectors whose corresponding NCL
matrix is M. In other words, FM := {e(v) ∈ Rn×1|||v||2 = 1, τ(v) = M}, where e(·) is the
energy distribution function mapping a vector to its energy distribution in the graph spectrum field,
τ(·) is the function mapping unit vectors to their NCL matrices.

With the concept of EDF, we then formulate the “closeness” of the energy distribution be-
tween the eigenvector v of the graph Laplacian and its corresponding NCL matrix τ(v) as
maxeu∈Fτ(v)

||eu − e(v)||2. We take two steps to verify that the optimal value of the maximiza-
tion problem is small enough: (i) We prove that the energy distribution function is Lipschitz, which
indicates that the energy distribution function is a “smooth” function where quantifying its function
value variations is equivalent to quantifying its variable variations; (ii) The inverse image of the
energy distribution function e(·) on any energy distribution field FM is small enough.

For the first step, since the energy distribution function is essentially a linear function followed by a
vector normalization procedure, we can write the energy distribution function as e(v) = (Av)⊙(Av)

||Av||2
with A being an orthonormal matrix. Actually, the energy distribution function is Lipschitz:

Theorem 4.2. The energy distribution function e(v) = (Av)⊙(Av)
||Av||2 , with A being orthonormal, is

Lipschitz on the unit sphere.

For the second step, we prove the inverse image of the energy distribution function e(·) on any EDF
FM is “small enough”. Intuitively, we can calculate the area of e−1(FM) on the unit sphere and
prove that the area is “small enough”. However, since the calculation of the area is rather complex
for a high-dimensional sphere, we instead prove that the variation of center angle in e−1(FM) is
small enough. Specifically, we have the following theorem.
Theorem 4.3. Assume that we segment [−1, 1] (i.e., the value field of any entry of an eigenvector
of a graph Laplacian matrix) into k intervals with identical lengths, as illustrated in Figure 6(a).
Consider the Euclidean space of [−1, 1]n separated into kn identical hypercubes. We claim that
each section of the unit sphere and a hypercube corresponds to a e−1(FM) for some NCL matrix
M. We denote the maximum center angular variation of e−1(FM) among all NCL matrices Ms as
θmax. For ∀ϵ ≥ 0, there exists a k0 = 2( 2

πe
1
e
)

n
2 , when k ≥ k0, then θmax ≤ ϵ.

Now, we are able to provide an upper bound for the energy distribution variance for EDF FM of any
NCL matrix M.
Theorem 4.4. Given the conditions of Theorem B.3, for any eigenvector v of Laplacian amtrix of
graph G, we have maxv∈Sn−1,eu∈Fτ(v)

||eu − e(v)||2 ≤ 2( 4nk2 )
1
n , where Sn−1 is n− 1 dimensional

unit sphere embedded in n dimensional Euclidean space.

By Theorem B.4, we are able to reveal that the additional discretization process in node classification
task does not bring significant deviation in the ground truth’s energy distribution in the spectral
domain. Meanwhile, given a tolerance of the change of energy distribution from an eigenvector
and its corresponding NCL matrix, we can also estimate the minimum number of identical interval
segments k for the specification of the discritization thresholds to satisfy precision requirements.
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Figure 2: The accuracy curves of different GNNs in the whole spectral domain. In each subplot,
the x-axis represents the frequency and the y-axis represents the accuracy of GNNs in the node
classification task with the ground truth labels derived from the associated frequency bin.

5 EMPIRICAL INVESTIGATION

5.1 RESEARCH QUESTIONS

We are interested in answering four research questions (RQs) below. RQ1: What are the trends of
GNNs’ performance in capturing the information encoded in different frequency components across
the frequency domain? RQ2: How do various GNNs compare in their ability to capture information
across different frequency components, both holistically and in specific ranges? RQ3: How will
the benchmark show its practical implications to guide a practitioner’s choice of GNN? RQ4: How
does the depth of GNNs affect the proposed accuracy curves in the spectral domain?

5.2 QUALITATIVE PERFORMANCE COMPARISON IN THE SPECTRAL DOMAIN

We first answer RQ1 by analyzing the general trends that GNNs show in our benchmark, and we
present the general tendency of the accuracy curves in the spectral domain for different GNNs in
Figure 2. We note that only partial results are presented here due to space limit, and see Appendix D
for complete results. We have the following observations.

First, from the perspective of a general tendency, we observe that GNNs show V-shaped curves in
all cases. Such a phenomenon indicates that GNNs typically have stronger capability in captur-
ing the information encoded in the lowest and highest frequency components (e.g., those associate
with the smallest and largest frequency values) compared with the middle frequency components.
Specifically, when the task-relevant information is encoded in the low frequency components, the
neighborhood aggregation can directly benefit the prediction of each node. This is because nodes
with similar labels tend to connect with each other, which can significantly facilitate predictive per-
formance. On the other hand, when the task-relevant information is encoded in the high frequency
components, the neighbors of each node can also contribute to its own prediction if the GNNs are
able to learn not to predict the same label for connected nodes. However, in contrast to the prevalent
opinion, the capability of capturing the task-relevant information encoded in the middle frequency
components is the most difficult for all adopted GNNs. A key reason for this phenomenon is that in
this case, the label distribution of each node’s neighborhood is generally uniform. Therefore, it be-
comes very difficult for GNNs to learn a general criterion to predict the label of a node based on its
neighbors. Based on the discussion above, we argue that the GNNs’ weakness in capturing the task-
relevant information encoded in the middle frequency components reveals an inherent limitation of
neighborhood aggregation mechanism.
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Table 1: Quantitative results of Normalized AUAC score in percentage for 14 GNN models across
six real-world datasets. The best ones are in Bold and the second best ones are underlined. We also
mark out the average ranking for each model across all datasets.

Model Computers Cora CS DBLP Photo Physics Avg. Ranking

APPNP 56.94 ± 1.08 54.26 ± 1.80 52.90 ± 2.16 51.69 ± 0.40 56.77 ± 1.51 53.60 ± 1.38 13.67 ± 0.75
FA 58.76 ± 1.42 54.88 ± 2.82 52.95 ± 3.79 52.76 ± 1.10 61.79 ± 1.78 55.81 ± 2.33 12.00 ± 1.41

GIN 55.39 ± 0.86 60.98 ± 2.94 57.90 ± 3.35 58.99 ± 2.95 60.57 ± 1.48 59.65 ± 3.27 10.33 ± 2.36
SGC 62.07 ± 2.38 61.09 ± 3.71 59.25 ± 4.19 56.36 ± 1.95 64.98 ± 2.59 58.87 ± 3.38 9.50 ± 1.98
GAT 63.47 ± 2.50 60.33 ± 2.26 58.28 ± 2.09 58.41 ± 1.67 65.56 ± 2.59 60.38 ± 2.10 8.67 ± 1.89
GPS 60.94 ± 1.59 58.23 ± 0.99 59.89 ± 1.73 58.94 ± 0.92 63.53 ± 1.77 62.90 ± 1.52 8.33 ± 2.13
GCN 63.42 ± 2.39 62.17 ± 4.18 59.82 ± 4.04 57.21 ± 2.09 66.20 ± 2.78 59.49 ± 3.61 7.67 ± 2.81

GatedGraph 58.67 ± 1.22 69.85 ± 2.74 66.14 ± 2.93 63.84 ± 2.56 60.41 ± 1.13 60.20 ± 2.86 6.17 ± 4.60
Transformer 64.83 ± 1.75 62.89 ± 1.75 59.43 ± 1.50 61.86 ± 1.36 65.86 ± 1.87 60.93 ± 1.49 5.50 ± 2.22

Cheb 63.63 ± 1.65 60.54 ± 1.40 60.88 ± 1.93 61.14 ± 1.28 65.88 ± 1.68 62.95 ± 2.06 5.50 ± 1.61
1-GNN 56.04 ± 1.12 68.00 ± 2.45 66.27 ± 2.77 64.16 ± 1.96 58.17 ± 1.47 65.16 ± 2.77 5.33 ± 5.44
GATv2 64.22 ± 2.46 63.05 ± 2.21 60.41 ± 2.12 59.38 ± 1.92 66.54 ± 2.73 62.58 ± 2.12 4.67 ± 1.49
GCNII 66.57 ± 2.10 60.54 ± 2.73 62.91 ± 2.75 58.13 ± 3.00 69.03 ± 2.30 66.55 ± 2.50 4.50 ± 4.03
SAGE 64.60 ± 1.69 63.97 ± 1.80 63.17 ± 2.01 62.88 ± 1.33 66.13 ± 1.88 64.29 ± 2.10 3.17 ± 0.37

Second, we are also interested in comparing tendencies across different GNNs and datasets. Specifi-
cally, we observe consistent tendencies of accuracy curves in the spectral domain for the same GNN
model across different datasets, which validates the stability of our proposed evaluation strategy.
Meanwhile, on the same dataset, different GNNs can show different tendencies across the frequency
axis, which demonstrates the difference in the capability of GNNs to capture task-relevant informa-
tion. This further reveals the significance of the proposed evaluation method in deriving a stable and
reliable evaluation for the performance of different GNNs in the spectral domain.

5.3 QUANTITATIVE PERFORMANCE COMPARISON IN THE SPECTRAL DOMAIN

We now answer RQ2 by analyzing the quantitative results of Normalized AUAC score in percentage
for 14 GNN models across six real-world datasets, and we show the results in Table 1. According
to Section 4, the quantitative value of the Normalized AUAC score reflects the general capability of
GNNs to capture the task-relevant information encoded in different frequency ranges. In addition,
we are also interested in analyzing this capability on specific ranges of frequencies. Therefore,
we split the range of frequencies evenly into three sections, namely the low frequency frange (the
components with a frequency value ranks at the bottom one third), the middle frequency range (the
components with a frequency value ranks at the middle one third), and the high frequency range (the
components with a frequency value ranks at the top one third). We show the average rankings of
GNNs by measuring their Normalized AUAC score in these three different frequency ranges above
in Figure 3. Notably, the proposed benchmark is able to analyze the performance of both spatial-
and spectral-based GNNs from a consistent spectral view. Therefore, we are able to involve both
types of GNNs into the comparison at the same time. We have the observations below.

Comparing models focusing on the general spectral domain, we observe that the performance mea-
sured by Normalized AUAC score gives a ranking that challenges the traditional assumptions on the
relative superiority of these GNNs. Specifically, SAGE, GCNII, and GATv2 are the GNNs show-
ing the best performance in terms of the average ranking across all datasets. In fact, these GNNs
are rarely discussed and evaluated from a spectral perspective. The primary reason is that they are
mostly designed in the spatial domain and most do not have a well-defined frequency response func-
tion. We argue that the advantages of these GNNs in the spectral domain are largely neglected by
the current spectral-based studies (Nt & Maehara, 2019; Wu et al., 2019) due to their reliance on an
explicit analytical form of frequency response function.

Comparing models focusing on the three specific sections of frequency components, we observe that
different GNNs specialize in extracting task-relevant information from different ranges of frequen-
cies. Specifically, GNNs specialize in learning from low (e.g., SAGE and Cheb) and high (e.g., GPS
and Transformer) frequency components typically do not show strong superiority over other GNNs
in learning from middle frequency components. Instead, GNNs such as GATv2 and GCN achieve
clear superiority over other GNNs in learning from middle frequency components, which is often
ignored by other studies relying on frequency response analysis.

5.4 CASE STUDY
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Figure 3: Performance comparison in the average ranking of 14 GNNs on six real-world datasets.
The GNNs are shown by obtaining the best rankings on low frequency components (left), on middle
frequency components (middle), and on high frequency components (right).
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Figure 4: Kendall’s τ comparison on new datasets
between a random ranking (orange), the rankings
from the original graph learning task (blue), and
the average rankings from our benchmark (green).

In this subsection, we conduct a case study
to explore RQ3. Specifically, we propose to
simulate the real-world problem of needing to
choose from a variety of different GNNs, and
we then analyze how the findings from our
benchmark can help practitioners. Specifically,
we adopt six new real-world datasets, namely
Airport-Brazil (AB), Wisconsin (Wisc.), Cor-
nell (Corn.), Squirrel (Squi.), and Chameleon
(Cham.). Most of these dataests are reported
to be difficult for node classification task with
GNNs. We first perform node classification
with all 14 GNNs based on these datasets and
then derive the ranking of all GNNs as r1. Here
r1 serves as the actual ranking we seek to know to pick the best GNNs to use. However, in practice,
we may not always be able to perform experiments prior to making a choice. Therefore, we pro-
pose to analyze how well other rankings can approximate such an actual ranking. We first analyze
the node labels in the training node set to identify the frequency component range (low, mid, or
high) where most energy falls in. According to this range, we collect the associated performance
ranking r2 from Section 5.3 as the ranking derived from our benchmark. As a comparison, we also
collect random rankings r3 and the node classification rankings r4 directly derived from the node
classification task on the chosen six datasets.

We show the average Kendall-Tau (KT) distance τ (total number of inversions for any two positions
i and j where i > j) between the actual ranking r1 and the benchmark ranking r2 in Figure 4.
Here, a smaller KT distance indicates larger similarity between the two rankings. We found that the
KT distance between r1 and r2 (Benchmark Ranking τ ) is significantly smaller than that between
r1 and r3 (Random Ranking τ ) or r4 (Original Task Ranking τ ) in most cases, which indicates a
satisfying approximation of r1 with r2. This reveals the practical significance of the benchmark in
understanding the superiority across different GNNs prior to any experiments.

5.5 PARAMETER STUDY

We finally answer RQ4 by changing the depth of each GNN to explore how the results of the pro-
posed evaluation protocol will change. We note that stacking multiple filters (by adding more itera-
tions of neighborhood aggregation) significantly affects the frequency response. Therefore, existing
studies that analyze the performance of GNNs by relying on their aggregators’ frequency response
functions typically have significantly different conclusions when the layer number of GNNs changes.
Specifically, we range the number of GNN layers from two to four, and we present an example of the
accuracy curves in the spectral domain across two-, three-, and four-layer cases in Figure 5 (see Ap-
pendix F for complete results). We observe that changing the layer number does not affect the shape
of the accuracy curves in the spectral domain. Such an observation can also be found across different
GNNs and datasets, which further validates the stability of the proposed evaluation protocol.
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Figure 5: Accuracy curves in the spectral domain across different GNNs on the Coauthor-CS dataset.
The shape of these curves does not significantly change across different layer numbers, validating
the stability of the proposed evaluation protocol.

6 RELATED WORKS

Spectral Graph Neural Network Analysis. Compared to spatial GNNs (Hamilton et al., 2017),
spectral GNNs typically offer a sound theoretical basis (Balcilar et al., 2021a; Bo et al., 2023). Re-
cent studies have shown that the neighborhood aggregation mechanism in GNNs typically acts as
a low-pass graph signal filter (Chang et al., 2021; Nt & Maehara, 2019), capturing the lowest fre-
quency components that are usually relevant for various graph learning tasks. However, while more
flexible filters have been proposed to better capture task-relevant information encoded in different
frequency components (Li et al., 2018; Guo et al., 2023; Bianchi et al., 2021), existing research typ-
ically overlook the behavioral characteristics of GNNs in the spectral domain as a whole. As such,
the roles of other modules, such as the non-linear layers, are often ignored. Recent works (Balcilar
et al., 2021b; Yang et al., 2024) have show evidence that these modules other than neighborhood
aggregation can significantly alter the frequency components of the GNN’s output, This underscores
the need for a comprehensive analysis that considers GNNs in their entirety instead of only focus-
ing on their neighborhood aggregation mechanisms. Different from existing works, we propose to
consider GNNs as a whole and conduct benchmarking form a spectral perspective.

Graph Neural Network Benchmarking. Research GNN benchmarks focus on evaluating the per-
formance of GNNs in terms of accuracy (Wu et al., 2022b; Zheng et al., 2021), scalability (Duan
et al., 2022), and efficiency (Baruah et al., 2021). For example, various benchmarks have been
proposed to evaluate the performance of GNNs in various tasks (Dwivedi et al., 2023), such as rec-
ommendations (Wu et al., 2022a) and molecular property predictions (Fung et al., 2021). In terms
of the scalability of GNNs, different benchmarks are also proposed, such as LRGB (Dwivedi et al.,
2022) for long-range dependency and LS-Bench for training on large-scale graphs. The efficiency of
GNNs is also studied in various benchmarking works (Gong & Kumar, 2024). Despite existing ef-
forts of evaluating GNNs, most benchmarks emphasize node classification accuracy, scalability, and
computational efficiency without delving into the behavioral characteristics of GNNs in the spectral
domain. This hinders a spectral understanding of the strengths and weaknesses of popular GNNs.
Different from these benchmarks, we have proposed a comprehensive benchmark to evaluate both
spatial and spectral GNNs from a consistent spectral view. To the best of our knowledge, it is a first-
of-its-kind work that reveals insights challenging prevalent opinions from a spectral perspective.

7 CONCLUSION

This paper presents a comprehensive benchmark for evaluating GNNs from a spectral perspective,
challenging common opinions about how GNNs process graph data. Through exploratory studies
and rigorous experiments on real-world datasets, we demonstrate that GNNs can flexibly generate
outputs with diverse frequency components, even when certain frequencies are absent in the input.
This finding contradicts the prevailing opinion that neighborhood aggregation mechanisms dominate
GNN behavior in the spectral domain. Our novel evaluation protocol, supported by theoretical
analysis, provides a fundamental framework to measure the capability of GNNs to capture and
leverage information across different frequency components. These findings open new avenues for
understanding and improving GNN architectures, emphasizing the need to analyze GNNs in their
entirety rather than focusing solely on their aggregation mechanisms. Our work lays the foundation
for future research in spectral analyses of GNNs and provides valuable tools for practitioners to
select and design more effective GNN models for various graph-based learning tasks.
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A REPRODUCIBILITY

All experiments were conducted using Python with the PyTorch (Paszke et al., 2017) and PyTorch
Geometric (Fey & Lenssen, 2019) libraries. We detail the exact experimental settings for the prelimi-
nary study and main benchmark below. We also list all of our experimental hyperparameters in Table
2. Implementations are at: https://github.com/yushundong/Spectral-benchmark.

A.1 PRELIMINARY STUDY

The datasets for the preliminary study are constructed by first taking each graph and computing its
eigenvectors based on the normalized graph Laplacian. We then sort the eigenvectors by eigenvalue
in ascending order and bin them into 20 uniform-width bins. Each bin contains the mean of the
eigenvectors whose corresponding eigenvalues falling into that bin. We then split the bins into 3
uniform intervals corresponding to low, medium, and high frequencies.

We then task a randomly initialized GCN and FA with predicting the mean of these low, medium,
and high frequency eigenvectors using the mean-squared error (MSE) loss using the eigenvectors
of the complementary ranges as features. For each setting (e.g. using low frequencies as fea-
tures and high frequencies as targets), we split our constructed dataset using an 80%/20%/20%
train/validation/test split under a transductive node regression setting where we randomly generate
the train/validation/test masks. During training, we standardize the eigenvector targets, subtracting
their mean and dividing by their variance, which is a common practice in machine learning to facili-
tate learning during gradient descent (Hastie et al., 2009). During evaluation, we restore the outputs
of the GNN back to the original scale.

A.2 MAIN BENCHMARK

For the main benchmark, we construct each dataset similar to the preliminary study by collecting
the normalized Laplacian eigenvectors of each graph followed by binning. Next, as this benchmark
is a node classificaiton task, each entry of each binned eigenvector is assigned a class corresponding
to that which bin it falls into between -1 and 1. For example, if the number of provided classes is 5,
and a given binned eigenvector’s entry is 0.8, then that entry will be assigned a class label of 4, the
final class label.

Next, we conduct experiments where, for every bin b of eigenvectors, we train each GNN to predict
the classes of each entry of b using the features from the original dataset, e.g. BOW text features
for Cora-Full. We train our models using the cross-entropy loss and use a random 60%/20%/20%
train/validation/test split under a transductive node classification setting. We detail our hyperparam-
eter settings for our benchmark below in Table 2.

B PROOFS

In order to support the solidity of our design of the graph node class labels matrix (NCL matrix), we
claim that the energy distribution of an eigenvector of the graph Laplacian matrix is close to that of
its corresponding NCL matrix. To verify this claim, we first define the energy distribution field of a
node class label distribution.
Definition B.1. (Energy Distribution Field) The energy distribution field, denoted as FM , of an
NCL matrix M ∈ Rn×k is the set of energy distributions of the unit vectors whose corresponding
NCL matrix is M . In other words, FM := {e(v) ∈ Rn×1|||v||2 = 1, τ(v) = M}, where e(·) is the
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Hyperparameter Preliminary study value Main benchmark value
# Layers 3 2
Hidden Dimension Size 64 64
Learning Rate 0.0002 0.001
Number of Epochs 2000 500
Optimizer Adam Adam
Dropout Rate 0.0 0.0
Learning Rate Scheduler Cosine annealing, T0 = 10 None
Initialization He (Kaiming) Default PyTorch
Early stopping None None

Table 2: Hyperparameters for preliminary study and main benchmark

energy distribution function mapping a vector to its energy distribution in the graph spectrum field,
τ(·) is the function mapping unit vectors to their NCL matrices.

With the concept of an energy distribution field (EDF), we formulate the ”closeness” between the
energy distribution between the eigenvector v of graph Laplacian and its corresponding NCL ma-
trix τ(v) as maxeu∈Fτ(v)

||eu − e(v)||2. We take two steps to validate that the optimal value of the
maximization problem is “small enough”: (i) We prove that the energy distribution function is Lip-
schitz, which indicates that it is a “smooth” function where quantifying its function value variations
is equivalent to quantifying its variable variations; (ii) We prove that the inverse image of the energy
distribution function e(·) on any energy distribution field FM is “small enough”.

For the first step, since the energy distribution function is essentially a linear function followed by a
vector normalization procedure, we can write the energy distribution function as e(v) = (Av)⊙(Av)

||Av||2
where A is an orthonormal matrix. We can show that the energy distribution function is Lipschitz:

Theorem B.2. The energy distribution function e(v) = (Av)⊙(Av)
||Av||2 , with A being orthonormal, is

Lipschitz on unit sphere.

Proof. Assume there are two unit vectors v1 and v2, then

||e(v1)− e(v2)||2 = || (Av1)⊙ (Av1)

||Av1||2
− (Av2)⊙ (Av2)

||Av2||2
||2,

= ||(Av1)⊙ (Av1)− (Av2)⊙ (Av2)||2,
= ||(Av1 −Av2)⊙ (Av1 +Av2)||2,
≤ 2||A(v1 − v2)||2,
≤ 2||A||2||(v1 − v2)||2,
= 2||v1 − v2||2.

(1)

Here, the second equation follows because A is an orthogonal matrix, which implies that ||Av1||2 =
||Av2||2 = 1. The third equation can be verified easily with the definition of Hadamard multiplica-
tion. The first “≤” is derived from the observation that any entry of Av1 and Av2 has an absolute
value less or equal to one since those two vectors are unit vectors. The second “≤” follows by the
Cauchy-Schwarz inequality. Finally, the last equality follows from the fact that ||A||2 = 1 since A
is an orthonormal matrix.

For the second step, we prove that the inverse image of the energy distribution function e(·) on any
EDF FM is “small enough”. Intuitively, we can calculate the area of e−1(FM ) on the unit sphere and
prove that the area is “small enough”. However, since the calculation of the area is rather complex
for a high-dimensional sphere, we instead prove that the variation of center angle in e−1(FM ) is
small enough. Specifically, we have the following theorem:
Theorem B.3. Assume that we segment [−1, 1] (i.e., the value field of any entry of an eigenvector
of a graph Laplacian matrix) into k intervals with identical lengths, as illustrated in Figure 6(a).
Consider the Euclidean space of [−1, 1]n separated into kn identical hypercubes. We claim that
each section of the unit sphere and a hypercube corresponds to a e−1(FM ) for some NCL matrix
M . We denote the maximum center angular variation of e−1(FM ) among all NCL matrices Ms as
θmax. For ∀ϵ ≥ 0, there exists a k0 = 2( 2

πe
1
e
)

n
2 , when k ≥ k0, then θmax ≤ ϵ.
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Figure 6: An illustration of key insights for the proof of Theorem B.4. (a) a unit sphere be-
ing sectioned by kn identical hypercubes, where each segment corresponds to a e−1(FM ) for
some NCL matrix M . (b) a 2-d tangent plane determined by point 0 and the chord with length
smaller than or equal to (n( 2k )

2)1/n, where the angle of the chord forms is smaller than or equal to
2 arcsin 1

2 (
1
n )

1
n ( 2k )

2
n .

Proof. The largest chord length of a small hypercube sectioning the inscribed sphere is at most as
long as the longest diagonal of the hypercube whose length is (n( 1k )

2)
1
n . Therefore, we consider

the 2D tangent plane determined by the point 0 and the chord with length smaller than or equal to
(n( 2k )

2)
1
n , as shown in Figure 6(b), the angle formed by 0 and the endpoints of the chord is smaller

than or equal to 2 arcsin 1
2 (

1
n )

1
n ( 2k )

2
n . Hence, we have

θmax ≤ 2 arcsin

(
1

2
(
1

n
)

1
n (

2

k
)

2
n

)
≤ 2 arcsin

(
1

2
e

1
e (

2

k
)

2
n

)
≤ π

(
1

2
e

1
e (

2

k
)

2
n

)
. (2)

Since we have k ≥ k0 = 2(πe
1
e

2 )
n
2 , we conclude that θmax ≤ θ.

Now, we are able to provide an upper bound for the energy distribution variance for EDF FM of any
NCL matrix M .
Theorem B.4. Given the conditions of Theorem B.3, for any eigenvector v of Laplacian amtrix of
graph G, we have maxv∈Sn−1,eu∈Fτ(v)

||eu − e(v)||2 ≤ 2( 4nk2 )
1
n , where Sn−1 is n− 1 dimensional

unit sphere embedded in n dimensional Euclidean space.

Proof. Since eu ∈ Fτ(v), then

max
v∈Sn−1,eu∈Fτ(v)

||eu − e(v)||2 ≤ max
v∈Sn−1;eu,el∈Fτ(v)

||eu − el||2. (3)

By Theorem B.3, we have

max
v∈Sn−1;u,l∈e−1(Fτ(v))

||u− l||2 ≤ (
4n

k2
)

1
n . (4)

With the Theorem B.2, we have

max
v∈Sn−1;eu,el∈Fτ(v)

||eu − el||2 ≤ 2 max
v∈Sn−1;u,l∈e−1(Fτ(v))

||u− l||2. (5)

Therefore, we conclude that

max
v∈Sn−1,eu∈Fτ(v)

||eu − e(v)||2 ≤ 2(
4n

k2
)

1
n . (6)
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Figure 7: Energy distributions for CS.
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Figure 8: Energy distributions for Computers.

By Theorem B.4, given a tolerance of the change of energy distribution from an eigenvector and its
corresponding NCL matrix, we can estimate the minimum number of identical interval segments k
in the design of NCL matrices to satisfy an arbitrary precision requirement.

C COMPLEMENTARY RESULTS OF EXPLORATORY STUDY

Figures 7, 8, 9, 10, 11 illustrates a comparison between the energy distributions of input and output
frequency components of FA and GCN on the CS, Computers, Cora Full, Photo and Physics datasets.
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Figure 9: Energy distributions for Cora-Full.
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Figure 10: Energy distributions for Amazon-Photo.

The plots depict the energy across 20 frequency bins, highlighting the distribution of input signals
(orange), target signals (green), and output signals (blue).

We observe that FA and GCN performs similarly across all the examined datasets. Specifically, in
each of those figures, the first subplot (top left) shows the FA model receiving an input concen-
trated in the lower frequency bins while the target signal is predominantly in the higher frequencies.
Despite this discrepancy, the model’s output aligns closely with the target frequency, successfully
capturing the desired high-frequency components. Similarly, in the top right, the GCN model, which
also starts with low-frequency input, produces an output that matches the high-frequency target dis-
tribution, demonstrating a similar flexibility. The lower two plots reverse the scenario: both models
are now tasked with generating low-frequency outputs from high-frequency inputs. The FA model
(bottom left) manages to shift the energy toward the low frequencies, although it retains some high-
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Figure 11: Energy distributions for Physics.

frequency characteristics from the input. Likewise, the GCN model (bottom right) shows a similar
ability to recover low-frequency components, albeit with a smoother transition compared to FA.

These observations reveal that both models, FA and GCN, are capable of adjusting their output to
align with the target distribution, even when the input and target signals differ significantly. This
flexibility suggests that GNNs are not constrained solely by their neighborhood aggregation mecha-
nisms in the spectral domain. Instead, other components, such as the non-linear layers in GNNs, play
a crucial role in shaping the output, allowing the models to respond to frequency-specific incentives
in the supervision signal.

D COMPLEMENTARY RESULTS FOR QUALITATIVE PERFORMANCE

We show the complete version of Fig. 2 with more GNNs and datasets involved in Fig. 12 and
Fig. 13. We have the observations as follows, which are consistent with the conclusion we draw
from the Section 5.2. Generally, we observe that the V-shape curves are maintained across all GNNs
in almost all datasets. The phenomenon indicates GNNs’ strong ability in capturing the information
encoded in the lowest and highest frequency components (e.g., those associate with the smallest and
largest frequency values). We have provided a detailed rationale in Section 5.2. Note that we also
detected a few cases such as 1-GNN on Photo and FA on DBLP which we consider to be outliers
as their curves may be noisy in terms of accuracy variance, which hinders their frequency-capturing
ability in the high frequency range. As expected, each GNN finds the most difficulty in recovering
task-relevant information in the middle frequency components of each dataset.

E COMPLIMENTARY RESULTS FOR QUANTITATIVE PERFORMANCE
COMPARISON IN THE SPECTRAL DOMAIN

To more accurately study the performance of each GNN under our benchmark, we report the average
GNN performance in capturing task-related information on different spectrum component areas.
Specifically, Tables 3, 4, and 5 report average GNN performance in low, middle, high spectrum
component areas. All metrics are multiplied by 100 for readability. We also bolden the highest
metrics and underline the second-best metrics. Ties are broken by lower standard error.

In the low-frequency range, nearly all models perform well, but GatedGraph, GATv2, and GIN
achieve particularly high accuracy, reflecting their strong low-pass filtering capabilities. For the
mid-frequency range, ChebNet and GCNII demonstrate superior performance, while models like
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Figure 12: The accuracy curves of different GNNs (Transformer, SAGE, GNNII, GATv2, GAT,
SGC, APPNP) in the whole spectral domain. In each subplot, the x-axis represents the frequency
and the y-axis represents the accuracy of GNNs in the node classification task with the ground truth
labels derived from the associated frequency bin.
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Figure 13: The accuracy curves of different GNNs (Cheb, FA, GCN, GIN, 1-GNN, GPS and Gat-
edGraph) in the whole spectral domain. In each subplot, the x-axis represents the frequency and the
y-axis represents the accuracy of GNNs in the node classification task with the ground truth labels
derived from the associated frequency bin.
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Table 3: AUC for the lower third of the spectrum (multiplied by 10)

Model Computers Cora CS DBLP Photo Physics Avg. Ranking

APPNP 66.92 ± 2.22 71.35 ± 1.42 72.01 ± 1.58 57.99 ± 0.76 68.30 ± 3.02 69.10 ± 0.96 13.33 ± 0.75

GPS 73.89 ± 2.32 68.31 ± 1.19 76.81 ± 1.25 68.18 ± 1.14 76.52 ± 2.24 78.94 ± 0.56 11.17 ± 1.57

FA 72.27 ± 2.02 77.58 ± 1.04 80.16 ± 0.85 65.46 ± 1.21 78.70 ± 1.09 76.39 ± 0.79 10.17 ± 1.77

Transformer 79.24 ± 1.53 75.01 ± 1.54 74.07 ± 1.29 72.75 ± 1.25 79.70 ± 1.53 76.10 ± 1.08 9.83 ± 2.67

Cheb 78.66 ± 1.66 73.22 ± 1.58 79.22 ± 1.08 72.16 ± 1.37 80.59 ± 1.41 82.35 ± 0.69 8.83 ± 1.77

GatedGraph 68.20 ± 2.59 84.35 ± 1.21 84.86 ± 1.79 74.95 ± 3.05 67.55 ± 1.24 81.29 ± 2.92 7.50 ± 4.35

SAGE 79.10 ± 1.50 77.50 ± 1.01 81.61 ± 0.76 73.69 ± 0.95 80.81 ± 1.72 83.48 ± 0.46 7.17 ± 1.34

GAT 84.58 ± 1.20 80.34 ± 0.77 75.99 ± 2.33 75.26 ± 1.20 85.85 ± 1.19 79.89 ± 1.14 6.33 ± 3.59

GIN 62.51 ± 2.22 82.91 ± 0.74 83.61 ± 0.60 81.31 ± 0.77 72.92 ± 2.21 84.67 ± 0.71 6.17 ± 4.74

SGC 81.45 ± 1.36 79.45 ± 1.18 85.28 ± 0.74 70.34 ± 1.77 84.15 ± 1.50 84.09 ± 0.73 5.83 ± 2.73

Graph 66.35 ± 2.42 82.15 ± 0.75 85.67 ± 0.50 77.07 ± 0.79 70.36 ± 2.62 86.96 ± 0.58 5.67 ± 4.96

GATv2 84.87 ± 1.38 81.19 ± 0.71 79.62 ± 1.22 77.35 ± 1.00 86.83 ± 1.03 82.15 ± 0.77 4.33 ± 3.14

GCN 82.20 ± 1.78 81.16 ± 1.04 85.14 ± 0.70 71.19 ± 1.60 86.40 ± 1.18 85.14 ± 0.62 4.33 ± 2.75

GCNII 84.03 ± 0.46 78.84 ± 0.35 82.22 ± 0.28 79.31 ± 0.49 85.00 ± 0.48 84.94 ± 0.18 4.33 ± 2.05

Table 4: AUC for the middle third of the spectrum (multiplied by 10)

Model Computers Cora CS DBLP Photo Physics Avg. Ranking

GCN 50.01 ± 0.18 38.00 ± 0.60 39.81 ± 0.73 42.59 ± 0.14 49.91 ± 0.23 43.15 ± 0.69 13.33 ± 0.75

SGC 48.35 ± 0.17 38.90 ± 0.50 38.87 ± 0.67 43.13 ± 0.07 49.84 ± 0.16 43.69 ± 0.46 13.33 ± 0.47

APPNP 51.00 ± 0.04 47.29 ± 0.25 46.41 ± 0.20 49.46 ± 0.03 49.45 ± 0.03 47.04 ± 0.12 10.83 ± 1.57

GIN 50.75 ± 0.01 47.55 ± 0.75 44.88 ± 0.46 46.85 ± 0.93 51.16 ± 0.01 46.81 ± 0.58 10.83 ± 1.46

FA 50.96 ± 0.04 46.16 ± 0.57 43.05 ± 0.58 48.27 ± 0.12 50.89 ± 0.13 47.11 ± 0.53 10.83 ± 1.07

Graph 51.23 ± 0.00 49.92 ± 0.56 48.64 ± 0.66 48.48 ± 0.34 50.31 ± 0.01 49.30 ± 0.45 8.17 ± 2.03

GatedGraph 51.38 ± 0.01 51.41 ± 0.27 49.43 ± 0.10 49.57 ± 0.04 50.05 ± 0.04 49.09 ± 0.03 7.33 ± 2.75

GAT 51.19 ± 0.05 49.21 ± 0.45 49.28 ± 0.08 49.89 ± 0.10 51.81 ± 0.19 50.44 ± 0.11 7.17 ± 1.07

GPS 51.39 ± 0.07 48.97 ± 0.06 50.09 ± 0.14 50.15 ± 0.02 51.82 ± 0.07 52.05 ± 0.30 5.33 ± 1.37

GATv2 52.20 ± 0.10 51.51 ± 0.96 49.90 ± 0.15 50.43 ± 0.37 51.39 ± 0.26 51.03 ± 0.19 4.50 ± 1.98

GCNII 54.93 ± 1.17 48.15 ± 2.10 49.69 ± 2.22 49.64 ± 1.99 55.50 ± 1.66 53.51 ± 2.23 4.17 ± 3.29

Transformer 52.92 ± 0.16 49.68 ± 0.17 50.10 ± 0.17 50.22 ± 0.17 52.21 ± 0.24 51.65 ± 0.19 4.17 ± 0.69

SAGE 53.24 ± 0.14 49.37 ± 0.23 51.40 ± 0.44 51.16 ± 0.31 53.45 ± 0.08 52.31 ± 0.63 3.00 ± 1.53

Cheb 53.25 ± 0.06 49.97 ± 0.05 52.06 ± 0.31 50.70 ± 0.11 54.92 ± 0.20 52.96 ± 0.49 2.00 ± 0.58

Table 5: AUC for the upper third of the spectrum (multiplied by 10)

Model Computers Cora CS DBLP Photo Physics Avg. Ranking

FA 55.00 ± 0.07 44.14 ± 0.10 39.53 ± 0.05 46.36 ± 0.02 58.19 ± 0.20 46.85 ± 0.13 13.17 ± 1.21

APPNP 54.34 ± 0.05 46.59 ± 0.09 43.01 ± 0.05 48.53 ± 0.02 54.21 ± 0.20 46.87 ± 0.03 12.83 ± 0.69

GIN 53.92 ± 0.07 55.60 ± 0.68 48.87 ± 0.11 51.99 ± 0.50 59.39 ± 0.26 51.05 ± 0.13 11.67 ± 0.75

GAT 57.66 ± 0.27 54.30 ± 0.19 52.10 ± 0.08 52.50 ± 0.10 61.90 ± 0.54 53.60 ± 0.10 10.33 ± 0.94

SGC 59.17 ± 0.19 67.54 ± 0.66 57.33 ± 0.32 57.60 ± 0.61 63.67 ± 0.41 52.44 ± 0.11 7.50 ± 2.22

GATv2 58.54 ± 0.22 59.04 ± 0.42 54.45 ± 0.15 52.92 ± 0.22 64.30 ± 0.68 57.34 ± 0.19 7.50 ± 1.50

GPS 59.38 ± 0.28 58.83 ± 0.08 55.20 ± 0.06 59.79 ± 0.20 64.09 ± 0.37 60.00 ± 0.02 6.83 ± 1.95

Cheb 61.12 ± 0.20 60.25 ± 0.16 53.97 ± 0.07 62.13 ± 0.30 64.24 ± 0.35 56.31 ± 0.03 6.67 ± 1.89

Graph 52.01 ± 0.01 73.94 ± 0.35 67.27 ± 0.29 68.78 ± 0.42 55.58 ± 0.18 62.32 ± 0.05 5.50 ± 5.68

GCNII 63.25 ± 0.35 57.26 ± 0.98 59.58 ± 0.35 48.46 ± 0.68 68.86 ± 0.53 63.84 ± 0.09 5.17 ± 4.63

GCN 60.72 ± 0.19 70.06 ± 0.62 58.13 ± 0.36 59.84 ± 0.60 65.17 ± 0.41 53.84 ± 0.16 5.17 ± 1.57

GatedGraph 57.80 ± 0.16 75.86 ± 0.92 66.80 ± 0.91 68.59 ± 1.66 64.67 ± 0.53 53.22 ± 0.12 4.83 ± 3.53

Transformer 64.40 ± 0.37 65.71 ± 0.50 56.23 ± 0.23 64.16 ± 0.28 67.64 ± 0.30 57.22 ± 0.17 4.33 ± 2.21

SAGE 63.54 ± 0.32 66.98 ± 0.22 59.13 ± 0.10 65.33 ± 0.27 66.22 ± 0.39 59.82 ± 0.05 3.50 ± 0.96
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GATv2 and Transformer also perform consistently across multiple datasets. However, surprisingly,
models such as FA and APPNP begin to show weaknesses in this region, with their performance
dropping notably. In the high-frequency domain, GCNII once again leads the pack in Photo and
Physics as well as the 1-WL graph operator while models such as GAT and FA struggle to maintain
competitive results. Interestingly, SGC performs better than expected in the upper spectrum, despite
being designed as a simplified GCN variant.

Overall, the trend shows that while most models are capable in the lower spectral ranges, only a
few—like GCNII and Graph—exhibit balanced performance across the entire spectrum, particularly
excelling in adapting to higher frequencies.

F COMPLEMENTARY RESULTS FOR PARAMETER STUDY

To demonstrate the robustness of our results, we run experiments under our benchmark settings us-
ing wider and deeper GNNs. Specifically, we re-run our benchmark using twice as many hidden
dimensions (128 versus 64) and varying layer depths (up to 4) in order to test whether these hy-
perparameters can significantly affect each GNN’s frequency adaptation abilities. In Figure 14, we
present parameter studies across co-author datasets. In all of our ablations, we observe no signifi-
cant shift in overall frequency adaptation behavior from the original plots in 2, suggesting that layer
depth and width are not enough to improve or worsen GNN frequency adaptation capabilities.
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(a) Parameter study on Photo
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(b) Parameter study on DBLP

Frequency
0

1
2

Layers
2 3

4

0.0

0.5

1.0

Transformer

Frequency
0

1
2

Layers
2 3

4

0.0

0.5

1.0

SAGE

Frequency
0

1
2

Layers
2 3

4

0.0

0.5

1.0

GATv2

Frequency
0

1
2

Layers
2 3

4

0.0

0.5

1.0

GAT

Frequency
0

1
2

Layers
2 3

4

0.0

0.5

1.0

SGC

A
cc

ur
ac

y

Figure 14: Parameter studies for Photo (top row), DBLP (moddle row) and Cora full (bottom row),
where the each subplot is a GNN’s accuracy spectral tendency curve on a certain graph dataset with
various (2 / 3 / 4) GNN layers .
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