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Abstract: This paper presents a novel approach to improve the usability of In-
teractive Imitation Learning (IIL) for end-to-end visuomotor control policies. The
proposed framework, Cooperative-HG-DAgger (CHG-DAgger), allows the expert
human and learned policy to collaborate in continuing the task upon task failure
without switching control between the policy and human. As a result, human
intervention time is reduced because the human can correct the motion while be-
ing guided by the policy, and they can understand when corrections are no longer
needed through physical interaction. To achieve cooperative control, we adopted
multilateral control, an extension of bilateral control, designed to avoid instability
even with low-cost hardware and long reference trajectory update cycles. En-
suring seamless integration with the Diffusion Policy, recent advances in the vi-
suomotor imitation learning method, the proposed method achieved high success
rates through retraining by leveraging the recovery motion data. Additionally, it
was shown that intervention time can be reduced in minor adjustment where hu-
man operation is close to the policy, when prior knowledge of the policy is limited.
Our results indicate that the proposed method offers a more intuitive and efficient
way of handling task failures, paving the way for continuous learning and robust
robot autonomy.
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1 Introduction

Recently, there has been a significant rise in research on end-to-end imitation learning for visuo-
motor control policies. In this field, performing tasks when there are Out of Distribution (OOD),
such as variations in the objects being manipulated or lighting conditions, presents a challenging
problem. As a result, much research has focused on constructing large-scale datasets to train [1, 2],
efficient data collection methods [3, 4], and generalization strategies [5, 6] to address these chal-
lenges. Despite various efforts, predicting all potential OOD cases, including failures, and gathering
all demonstrations before rollout is still infeasible. Consequently, the learned policy has suffered
from OOD until today.

One promising approach to addressing these issues is Interactive Imitation Learning (IIL) [7, 8].
IIL is a branch of the imitation learning where human feedback is provided intermittently during
robot execution (i.e., after rollout), enabling the robot’s behavior to be improved online or retrained
offline. This IIL can be categorized into two types. The first is robot gated IIL [9, 10], where
the robot autonomously determines when human intervention is needed. This approach offers the
advantage of high autonomy, reducing the burden on human operators. The second type is human
gated IIL [11], where humans intervene when they judge intervention is necessary. This method is
advantageous in its ability to handle complex, advanced tasks and unforeseen situations.
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Figure 1: Overview of Proposed CHG-DAgger: In Interactive Imitation Learning (IIL), the policy
is retrained with data corrected by a human expert. To enhance the usability for IIL for end-to-end
robot motion generation, the proposed method allows cooperative control between the human and
the learned policy. Humans can correct motion through co-leader robot under the policy’s guidance
and notice when it is no longer necessary through physical interaction.

A representative method of human-gated IIL is HG-DAgger [11] and its application to large-scale
datasets, BC-Z [12]. In these methods, when the human judges that intervention is necessary, the
control by policy is switched to the control by humans to correct robot motion. Once the human
judges that the corrections are complete, the control by the humans is switched back to the control
by the policy. However, there are two limitations related to this control switching. The first limitation
is full reliance on human control during the intervention: when the human is correcting the robot
motions, even if the learned policy can execute the task roughly. In other words, the learned policy
is unable to assist while the human is performing the task accurately. The second limitation is that it
is difficult for humans to decide “when to switch back to learned policy control” after correcting the
motion. To decide this, humans must be confident that the learned policy will function effectively
after the switch. However, this is difficult, so as a result, the human may end up controlling the robot
for longer than necessary. In other words, humans are unable to determine the optimal timing for
switching back to the policy while evaluating the learned policy’s task-execution capabilities.

In order to avoid these limitations, we propose a physical cooperative control system between hu-
mans and policies for human intervention. This system would allow the human to correct actions
more easily by sensing the policy’s intent through physical interaction, while deciding when to end
the intervention based on the policy’s behavior. We call this framework Cooperative-HG-DAgger
(CHG-DAgger). Figure 1 shows an overview of the system. To implement the physical cooperative
control between humans and the policy, we utilized multilateral control [13], which allows multiple
users to cooperate in remote control, adapting it to our proposed imitation learning setup. Further-
more, our design of the multilateral control system offers a more straightforward solution that can
maintain stability even in low-cost robot hardware setups and with long command update cycles
typical of visuomotor control policies.

The purpose of this study is to demonstrate the feasibility of IIL with human-policy cooperative
control and to empirically study its user friendlyness in real-world tasks. We set up three real-world
tasks for evaluation and confirmed that the success rate, which dropped below 16.6% due to OOD,
recovered to more than 77.8% after re-training with the proposed method. The usability of IIL
is difficult to evaluate because it depends on each user’s sensitivity. Therefore, in this study, we
conducted experiments on 10 subjects using ”intervention time,” which is the time required for a
human to correct the robot’s motion after a task failure, as an evaluation index. As a result, it was
confirmed that while intervention time increased for ”major correction” of motion where human
manipulation and policy control diverged significantly, intervention time was reduced in 80% of
subjects for ”minor adjustment” of motion where human actions and learned policy control were
closely aligned. Furthermore, among them, the proposed method reduced intervention time by about
8.5% on average in scenarios with no prior knowledge of the learned policy.

The contributions of this paper are as follows:

1. We introduce Cooperative-HG-DAgger, a novel HG-DAgger strategy that facilitates IIL
while reducing the supervision data collection load.
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2. We propose stable multilateral control on low-cost hardware to enable a human-policy
cooperative control framework, ensuring seamless integration with recent advances in vi-
suomotor imitation learning methods, such as Diffusion Policy [14].

3. We experimentally demonstrate that the multilateral control framework for IIL reduces
intervention time.

The structure of this paper is as follows: Chapter 2 discusses related work, Chapter 3 presents the
proposed method, Chapter 4 details the experimental setup, Chapter 5 discusses the experimental
results, and Chapter 6 provides conclusion and limitations.

2 RELATED WORK

Imitation Learning. In end-to-end imitation learning for visuomotor control policies, executing
tasks under different distributions from the training data, such as in OOD scenarios, remains a chal-
lenging issue. To address this issue, research has been conducted on efficient demonstrations, data
collection using simulators, and generalization of imitation learning, all aimed at collecting data
that covers changes in objects, lighting, and other environmental factors. However, it is difficult to
collect recovery actions by assuming all possible failure scenarios. In our study, we use IIL incorpo-
rated with multilateral control to address this issue. For end-to-end imitation learning of visuomotor
control policies, cutting edge models such as Action Chunking with Transformers (ACT) [15] and
Diffusion Policy (DP) [14] have been proposed. We integrated DP [14] to our system without any
modifications. DP is capable of multimodal representation and can train multiple behaviors with
the same objective. This feature might allows for the representation of various recovery motions
depending on the person.

Bilateral Control. In visuomotor control policy imitation learning, training data is often collected
using VR-based controllers or unilateral devices for expert demonstrations. For dexterous tasks,
bilateral control may also be used, which allows the human to feel the manipulation force while
operating. On the other hand, to enable cooperative operations by multiple human operators, mul-
tilateral control [13] has been proposed as an extension of bilateral control. However, this method
assumes the use of high-performance hardware and short, jitter-free control cycles, such as those
found in industrial manipulators. The low-cost, low-performance hardware often used in imitation
learning research typically has lower-resolution angle encoders, imprecise measurements or esti-
mations of contact forces at the end-effector and joint torques, and lower frame and joint stiffness,
along with backlash in the reduction gears. Additionally, command values derived from visuomo-
tor control policies, such as DP, are updated at significantly longer intervals than the control cycles
of the robot’s feedback control, which can lead to instability. Therefore, we adapt the multilateral
control and design to address these challenges.

3 PROPOSED METHOD

We propose the following control algorithm to correct the actions through physical cooperative
control between humans and the learned policy. Additionally, we will discuss several related con-
siderations.

3.1 Control Algorithm

First, in conventional imitation learning using bilateral control [16], training data is collected through
remote control between a leader robot and a follower robot, and during rollout with inference, the
leader robot is replaced by a learned policy. The proposed method introduces a “co-leader robot” to
enable physical cooperative control between human and policy. During rollout based on inference,
the co-leader robot can performs interventions with human at any time if necessary (Figure 2(b)).
The training data for the initial model is collected through multilateral control [13] (Figure 2(a))
with a leader, co-leader, and follower robot. It should be noted that the training data for the initial

3



(a) Demonstration for Training of Initial Policy

(b) Rollout and Intervention for Re-training
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Figure 2: Control System Block Diagram. To implement the physical cooperative control between
humans and the policy, the multilateral control [13] was adaped to our IIL system. Furthermore,
our design offers a more straightforward solution that can maintain stability even in low-cost robot
hardware setups and with long command update cycles typical of visuomotor control policies.

model can also be obtained using bilateral control, which requires fewer robots, but the proposed
method results in fewer differences in the control systems, thus reducing OOD caused by the control
systems.

To prevent instability due to low-cost hardware and long command update cycles due to inference
time, two simplifications were made to the multilateral control system:

• removing force coupling from parallel structure of position coupling and force coupling

• removing minor loop of acceleration control with disturbance observer

The block diagram of the controller is shown in Figure 2(b). Based on these, the proposed multi-
material control is expressed by the following equations (1) to (6).

ql ref =
qf msr + ql msr

2
(1)

qcl ref =
ql msr + qf msr

2
(2)

qf ref =
ql msr + qcl msr

2
(3)

τl ref = (ql ref − ql msr)×KP + (q̇l ref − q̇l msr)×KD (4)

τcl ref = (qcl ref − qcl msr)×KP + (q̇cl ref − q̇cl msr)×KD (5)

τf ref = (qf ref − qf msr)×KP + (q̇f ref − q̇f msr)×KD (6)

where q is the joint angle, τ is the joint torque, and the subscripts l, cl, and f represent the leader,
co-leader, and follower robots, respectively. ref is the reference value, msr is the measured value,
KP is the proportional gain, and KD is the differential gain.
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Generally, force feedback control and bilateral control with force coupling are prone to be more
unstable than position control and position coupling. In addition, with the low-cost hardware used
in this study, the disturbance observer exhibited unstable behavior at cutoff frequencies larger than
30rad/sec, while 1100rad/sec was set in previous studies [17, 18]. This means that the disturbance
observer could only perform at lower bandwidths in the low-cost hardware, which did not contribute
much to improved performance in multilateral control. However, even with these modified designs,
the force could be felt due to the position coupling inherent in multilateral control, and the task
performed in this study could be performed.

3.2 Learning Algorithm

As a nominal behavior cloning policy, we adopt DP [14] without any modifications as one of the con-
tenders for state-of-the-art performance. To connect the periodically inferred action space smoothly,
methods similar to the weighted averaging mentioned in ACT [15] and the countermeasures for delay
in UMI [3] were adopted. Here, the weights and delay times were determined through an experi-
mental adjustment. The observation space (input) and Action space (output) related to multilateral
control were set as follows. First, in conventional bilateral control-based imitation learning [16],
the behavior of the leader robot, including the human expert’s actions, is modeled. The observation
space is the command value for the leader (i.e., the follower’s measured value), and the output is the
next moment’s measured value of the leader (i.e., the follower’s command value). However, if the
same values are used in multilateral control, the human’s intervention operation will not be reflected.
Therefore, in proposed method, in addition to the leader robot, the co-leader robot is also considered
as the values on the control block diagram shown in Figure 2.

3.3 Data Collection and Shared Autonomy Workflow

The initial policy learning is conducted with data collected using remote operations using multilat-
eral control by a human expert using the leader robot. During this process, the co-leader robot works
but does not make contact with any person or object. Using this initial policy, tasks can be executed
autonomously. If the task fails, or if task failure is predicted and human intervention is deemed
necessary, a human intervenes to continue the task and collect data through cooperative control with
the learned policy. If human intervention is not required, the system operates autonomously with
the policy. In the intervention evaluation experiment, an additional motion data collected, including
succeeded data without interventions, are integrated with the original motion data and re-trained. In
the re-training, both original and additional data sets are treated equally. Models trained in the past
are not reused.

Learned Policy

(Leader)

Follower Robot

Intervention

(Co-Leader Robot)
�� �� ��� ⋯

��− ����−� ⋯

Diffusion Policy
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Figure 3: Training Model for CHG-DAgger. As a nominal behavior cloning policy, we adopt
DP [14].

4 EXPERIMENTAL SETUP

Our experimental setup is shown in Figure 5. The leader robot used for demonstrations, the co-
leader robot for intervention, and the follower robot for task execution were all equipped with 3D
Systems 3-degree-of-freedom haptic device, 3D Touch [19]. All robots were connected to a single
control PC, and multilateral control was performed at a 1 msec cycle. Torque commands were
sent at each control cycle, and joint angle measurements were collected. Additionally, a separate
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inference PC equipped with an NVIDIA RTX A6000 GPU was prepared. As a fixed scene camera,
an Intel RealSense D435 was connected to the inference PC. The inference PC and control PC
communicated via UDP at a 1 msec cycle. Inference was performed every 800msec, generating
reference joint trajectories every 100msec.

Table 1 and Figure 4 show the three robot tasks conducted in this study. For each task, we prepared
a scenario to occur the OOD for the evaluation experiment. One model is trained for each task.
In the ”Move Tape” task, the robot inserts the its end-effector into the hollow part of an electrical
tape and slides it on a desk to moves it to the red area. For evaluation, the initial position of the
tape was set on the right half area during the collection of training data for the initial policy, and
rollouts were performed with the initial position on the left half area. The ”Cube Rotate” task is a
simple manipulation task that involves rotating a cube. The direction of rotation and the color of the
face at the end of task are predefined. The robot is trained with data of starting from the direction
required one or two rotations. In the rollout, the task starts from a direction required three rotations
to complete it. In the ”Raise Bottle” task, the robot pushes the top of a fallen spice bottle and lifts
it up. The robot is trained using data that the initial position is close to the robot and the initial
orientation is limited to a vertical direction. However, in the OOD evaluation, the bottle starts from
a distant or tilted position. In many cases, during the early stages of the rollout, the bottle rotates
away from the vertical position, leading to failure, requiring the operator to reposition the bottle
vertically to continue the task.

The project of this investigation was approved and conducted according to the “Ethical Guidelines
for Research” of Toyota Motor Corporation. Informed consent was obtained from all participants
including details of the experimental procedures and our privacy protection policies.

Task
Name

Task Description Distribution Shift ID and OOD

Move
Tape

Move the electrical tape. The robot in-
serts the robot end into the center of the
tape and moves the tape to the red area.

Tape was set on right half
area for training and left
half for rollout.

Rotate
Cube

Rotating a Rubik’s Cube. The direction
of rotation and the color of the face at the
end are defined.

Different directions of
the cube and different
color combinations.

Raise
Bottle

Stand up fallen spice bottle by pushing
and pulling up the robot’s end. The bot-
tom of the bottle is facing the robot.

Different bottle positions
and directions.

Table 1: Tasks and Distribution Shift for Evaluation

Move Tape

Rotate Cube

Raise Bottle

Figure 4: Photo Sequence of Tasks

5 EXPERIMENTAL RESULTS

We empirically demonstrate that our proposed method, CHG-DAgger, can realize IIL through co-
operative control between humans and policies for some tasks in the real world. Furthermore, we
show that the intervention time is shorter than the conventional method HD-DAgger.

5.1 Retraining with IIL

IIL-based retraining was performed using the proposed method for the tasks ”Move Tape” and ”Ro-
tate Cube” from Table 1. The success rates are shown in Table 2. The initial policy was trained on
expert-collected demonstrations with 100 episodes. And an additional 100 motion data collected in
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OOD with intervention are integrated with the original 100 motion data and re-trained. The suc-
ceeded data without interventions in additional data was less than 10% of the motion because the
experiment was conducted in a situation where the task was likely to fail due to OOD. The success
rate was measured over approximately 25 rollouts. The randomized OOD conditions, for example,
initial positions, were predetermined and fixed in advance for the success rate evaluations under (b)
OOD conditions and (c) post-retraining success rates to ensure consistency. The success rates of the
initial policy are shown in Table 2(a). For each task, the success rate exceeded 96.0% when there
were no OOD conditions. In the ”Move Tape” task, the success rate dropped to 16.6% when OOD
conditions were introduced but increased to 77.8% after retraining. For the ”Rotate Cube” task, the
success rate decreased to 12.0% under OOD conditions but rose to 80.0% after retraining. These
results indicate that retraining was achieved using the proposed method.

5.2 Intervention Time in IIL

Co-Leader Robot

for Intervention

Follower Robot

for Manipulation

UDP

(1msec)

USB

(1msec)

Inference

(100msec)

RGB Camera

(Realsence D435 )

PC for

Inference (RTX A6000)

PC for

Multilateral Control

Figure 5: Experimental Hardware Setup

Policy

Human

Policy

Human

(a) Minor Adjustment (b) Major Correction

Figure 6: Human and Policy Trajectory

We compared the intervention time required for
the conventional HG-Dagger method and the
proposed CHG-Dagger method to recover from
failures in the tasks “rotating a cube” and “lift-
ing a bottle”. Although there was no signif-
icantly different decrease in intervention time
across all tasks, a marginally significant trend
(p = 0.06) was observed for the CHG-DAgger-
first group on the Rotate Cube task.

The subjects were 10 individuals aged 20 to
60 and were divided into two groups to con-
sider the ordeting effect: (A) a group that per-
formed HG-Dagger first, and (B) a group that
performed CHG-Dagger first. In group (B).
Hence, if the shared autonomy framework is
more user-friendly, the intervention time by the
proposal is expected to be shorter than that of
the baseline, regardless of the ordering effect.
The average time for 10 interventions using
HG-Dagger and the average time for 10 inter-
ventions using CHG-Dagger were calculated.
This was done for each subject and each task.
As shown in Figure 6, when OOD occurred in
the “Rotate Cube” task, the trajectory generated by the policy was almost the same as the one gen-
erated without OOD, but shifted approximately 2 cm upward. Therefore, the human expert needed
to make a “minor adjustment” by correcting downward while operating in the same direction as
the policy. On the other hand, “major correction” was necessary in the “Raise Bottle”. The initial
position and direction of the bottle needed to be corrected. However, the policy had not learned the
action of correcting the initial position and direction, so it generated an action to push it up. There-
fore, the expert human needed to correct in a direction different from the trajectory generated by the
policy.

Though the result indicates ”a marginal” trend in significance, the intervention time is reduced by
our proposal for a major part, 80% of the subjects. The figure 7 indicates that the distribution of inter-
vention time increases or decreases for the ”Rotate Cube” task, which required ”minor adjustment,”
is shown in Figure 7. The ratio of the average intervention times of each subject for CHG-Dagger
and HG-Dagger was calculated. Values less than 1 indicate that CHG-Dagger had shorter interven-
tion times. The table 3 shows intervention time for each task sand group. In the ”Rotate Cube” task,
where ”simple corrections” were needed, the intervention times were almost the same in Group (A),
but in Group (B), the intervention time for CHG-Dagger was 8.5% shorter. A t-test of the results
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for Group (B) showed that the results did not reach the 5% significance level, but it showed a sig-
nificant difference in the 6% level of significance. On the other hand, in the ”Raise Bottle” task,
which required ”complex corrections,” the intervention time for CHG-Dagger was 1.6 times longer
in group (A), and 1.7 times in group (B). In summary, while the intervention time was longer for
the ”Raise Bottle” task, which required ”major correction,” the intervention time using the proposed
CHG-Dagger was 8.5% shorter than HG-Dagger when prior knowledge of the policy was limited in
the ”Rotate Cube” task, where only ”minor adjustment” was needed.

Task Success Rate (%)
(a) Initial Policy

without OOD
(b) Initial Policy

with OOD
(c) Retrained

Policy
Move Tape 96.2 16.6 77.8
Rotate Cube 96.0 12.0 80.0

Table 2: Success Rate

Task
Intervention Time (sec)

(A)HG-DAgger First (B)CHG-DAgger First
HG-DAgger
(baseline))

CHG-DAgger
(proposed))

HG-DAgger
(baseline))

CHG-DAgger
(proposed))

Rotate Cube 5.5 5.4 4.7 4.3
Raise Bottle 8.7 13.8 8.9 15.2

Table 3: Intervention Time

6 Conclusion and Limitations
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Figure 7: Histogram of Intervention
Time Ratio of Rotate Cube Task

In this paper, we focused on the usability of IIL and pre-
sented a new approach to IIL through physical coopera-
tive control between humans and learned policies for vi-
suomotor control policies. In the proposed method, mul-
tilateral control was adopted and simplified for low-cost
hardware and long update cycles time of reference trajec-
tory by policy’s inference, connecting it to a representa-
tive visuomotor policy, DP. The proposed system was em-
pirically evaluated in multiple tasks on intervention time.
Although the intervention time with the proposed CHG-
DAgger was longer than HG-DAgger for the ”Raise Bot-
tle” task, which required ”major correction,” the interven-
tion time was shorter in 80% subject for ”Rotate Cube”
task which required only ”minor adjustment.” In addition,
it was 8.5% shorter for users with little prior knowledge of the policy. These results suggest that
CHG-DAgger provides a more intuitive and efficient way to handle task failures in real-world appli-
cations, paving the way for continuous learning.

However, our system has several limitations. First, while intervention times were shorter with the
proposed method for simple tasks, they became longer for more complex tasks. This is because,
in simple tasks, the actions performed by the human and the learned policy are similar, making it
easier for humans to operate. In contrast, for complex tasks, the movements executed by the learned
model differ from those performed by the human, introducing unintended actions that make it more
difficult for humans to operate. In such cases, it is easier to fully switch control to the human, but
the timing for switching control back to the learned policy is difficult to determine. Further research
is needed on how to implement cooperative control to resolve this trade-off. For example, previous
research on shared autonomy may provide useful insights. Second, evaluating only intervention
time as a performance metric is insufficient, as we cannot fully assess usability. Furthermore, this
study did not evaluate whether the system can learn multimodal recovery methods that vary between
individuals. Nevertheless, we expect this research to be a stepping stone for future studies.
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