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ABSTRACT

We propose ScheduleNet, an RL-based decentralized constructive scheduler for
coordinating multi-agent to finish tasks with minimum completion time. We
formulate multi-agent scheduling problems (mSPs) as an event-based Markov
decision process (MDP) with an episodic reward (e.g., makespan) and derive a
decentralized decision-making policy using reinforcement learning. The decision
making procedure of ScheduleNet includes: (1) representing the state of a
scheduling problem with the agent-task graph, (2) extracting node embeddings
for agents and tasks by employing the type-aware graph attention (TGA), and
(3) computing the assignment probability with the computed node embeddings.
We validate the effectiveness of ScheduleNet on two types of mSPs: multiple
traveling salesmen problem (mTSP) and job-shop scheduling problem (JSP). We
empirically show that ScheduleNet can outperform other heuristic approaches and
existing deep RL approaches, particularly validating its exceptional effectiveness
in solving large and practical problems. Furthermore, we have demonstrated that
ScheduleNet can effectively solve online vehicle routing problems where the new
target customer appears dynamically during the course of scheduling.

1 INTRODUCTION

Optimal assignments of multiple autonomous agents for sequential completion of distributed tasks
are necessary to solve various types of scheduling problems in the logistics, transportation, and
manufacturing industries. Examples of such scheduling problem include finding the optimal
delivery plans for vaccines, customer pickup orders for ride-sharing services, and machine operation
sequence in modern manufacturing facilities. As the size of the problems increases, solving large-
scale scheduling problems using mathematical programming becomes infeasible or ineffective due
to the expensive computational cost. Furthermore, such optimization approaches cannot solve real-
time scheduling problems where the new tasks appear dynamically.

Target Problem & Challenges. In this paper, we propose ScheduleNet, an RL-based decentralized
constructive scheduler for coordinating multiple agents to finish tasks with minimum completion
time. The objectives of the target problems and their associated technical challenges are as follows:

• Min-Max vs Min-Sum: ScheduleNet seeks to minimize the total completion time (i.e.,
makespan) for various time-critical distributed tasks (e.g., vaccine delivery). Most multi-agent
scheduling problems are designed to minimize the total traveling distance of all agents, which
often result in unbalanced task assignments among the agents (Bakach et al., 2021). Although
the makespan is the most direct and intuitive reward for inducing coordination, it is notoriously
difficult to train the decentralized policy with this sparse and delayed reward due to the temporal
and spatial credit assignment issues.

• Construction Heuristic vs Improvement heuristic: ScheduleNet builds a solution sequentially by
assigning an idle agent to one of the remaining tasks while considering the relationships among
the remaining tasks and agents. This construction heuristic ensures that the learned policy can
reschedule whenever a new event occurs (i.e., an agent finishes the assigned task or a new task
appears). However, it is more challenging to find a better plan due to its sequential solution
construction; a wrong choice at the early stage can cause irreversible poor results at the end.
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• Decentralized vs Centralized: ScheduleNet allows each agent to choose its destination
independently while using its local observations and incorporating other agents’ assignments.
This decentralization ensures that the learned policy can solve a large-scale problem
without having to search over the joint action space for all agents. However, to make
the independently-chosen scheduling decision produce an excellent global performance,
a sophisticated coordination mechanism should be incorporated into decentralized policy
implicitly.

Proposed Decision-Making Scheme. We formulate the multi-agent scheduling problems (mSPs) as
an event-based Markov decision process (MDP) with an episodic reward, and derive a decentralized
decision-making policy using reinforcement learning. At every step, ScheduleNet accepts the MDP
state as an input and assigns an idle agent to one of the feasible tasks. The decision-making
procedure of ScheduleNet is as follows:

• ScheduleNet first represents the MDP state as an agent-task graph, which captures the complex
relationships among the entities effectively and is general enough to be applied to various mSPs.

• ScheduleNet then employs the type-aware graph attention (TGA) to extract important relational
features among the agents and tasks for making the best cooperative task assignment.

• Lastly, ScheduleNet computes the agent-task assignment probability by utilizing the computed
node embeddings.

Training Method. Although the makespan (shared team reward) is the most direct and general
reward design for solving mSPs, training a decentralized scheduling policy using this reward
is extremely difficult due to the credit assignment issues (Riedmiller et al., 2018; Hare, 2019).
Additionally, makespan is highly volatile due to the combinatorial aspect of mSPs’ solution space; a
slight change in the solution can drastically alter the outcome. To overcome these issues, we employ
the Clip-REINFORCE algorithm with normalized reward to train the decentralized cooperative
policy effectively.

Novelties. The proposed method that derives the decentralized constructive schedulers to coordinate
multiple agents has the following novelties and advantages:

• Balance between Representability & Scalability: ScheduleNet can extract crucial features
effectively using TGA and make the best cooperative task assignment (representability) in a
computationally efficient manner. The computationally-efficient representation scheme and
the constructive decision-making scheme allows ScheduleNet to solve large-scale scheduling
problems.

• Transferability & Generalizability: The type-aware graph representation allows the trained
policy to solve problems with different numbers of agents and tasks (size transferability).
Furthermore, this general state representation with the universal reward signal (i.e.,
makespan) allows ScheduleNet to be used to solve various multi-agent scheduling problems
(generalizability). We validate this by showing that ScheduleNet can learn to solve multiple
traveling salesmen problem (mTSP), as well as jop-shop scheduling problem (JSP) whose
constraints are more complex than that of mTSP.

2 RELATED WORKS

RL approaches that solve vehicle routing problems. According to Mazyavkina et al. (2020), the
RL approaches that solve vehicle routing problems can be categorized into: (1) the improvement
heuristics that rewrite the complete solution iteratively to obtain a better routing plan (Wu et al.,
2020; da Costa et al., 2020; Chen & Tian, 2019; Lu et al., 2020); (2) the construction heuristics that
construct the solution sequentially by assigning idle vehicles to unvisited cities until the complete
routing plan (sequence) is constructed (Bello et al., 2016; Nazari et al., 2018; Kool et al., 2018;
Khalil et al., 2017), and (3) the hybrid approaches that blend both approaches (Joshi et al., 2020; Fu
et al., 2021; Kool et al., 2021; Ahn et al., 2020). Typically, the improvement heuristics show better
performances than construction heuristics as they revise the complete plan iteratively. However, the
construction heuristics are more effective for online vehicle routing problems, where the routes
should be updated whenever a new customer appears. These RL approaches have exclusively
focused on static planning in a single-agent perspective, which is far from the settings of real
applications.
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RL approaches that solve min-max mTSP. There are only few RL approaches that solve min-max
mTSP, which involves minimizing the makespan for multiple salesmen to visit all cities. Hu et al.
(2020) applies RL to train the clustering algorithm that groups cities, and strong TSP heuristics
(e.g., OR-Tool) to optimize the sub-tours of the city clusters. This is fundamentally different
from ScheduleNet, which derives a complete end-to-end learned heuristic that constructs a feasible
solution from “scratch” without relying on any existing solvers. Cao et al. (2021), which proposes
a transformer-based construction policy to solve min-max mTSP, is the most similar approach to
ScheduleNet.

RL approaches that solve Job-shop scheduling problems. There are only few RL approaches
that solve the JSPs, which involves minimizing the makespan for multiple machines to finish the
sequence of operations that is required to finish their jobs. For example, Gabel & Riedmiller
(2012); Lin et al. (2019) propose to learn a scheduling policy for each machine; hence, it requires
additional training to solve JSPs with a different number of machines. Recently, Park et al. (2021);
Zhang et al. (2020) have proposed to learn a shared scheduling policy that can be used for all
machines to minimize the makespan. Similar to ScheduleNet, these studies utilize the disjunctive
graph representation of JSP. However, these methods utilize human-engineered dense reward, while
ScheduleNet uses sparse and delayed reward (i.e., makespan) to train a policy.

3 PROBLEM FORMULATION

We formulate mSP as a MDP with sparse reward, and aim to derive a decentralized scheduling
decision-making policy that can be shared by all agents. The MDP is defined as:

State. We define state sτ as the τ -th partial solution of mSP (i.e., the completed/uncompleted tasks,
the status of agents, and the sequence of the past assignments). The initial s0 and terminal state sT
are defined as an empty and a complete solution, respectively.

Action. We define action aτ as the act of assigning an idle agent to one of the feasible tasks
(unassigned tasks). We refer to aτ as the agent-to-task assignment. When the multiple agents
are idle at the same time t, we randomly choose one agent and assign an action to the agent. This
is repeated until no agent is idle. Note that such randomness does not alter the resulting solutions,
since the agents are considered to be homogeneous and the scheduling policy is shared.

Transition. The proposed MDP is formulated with an event-based transition. An event is defined
as the case where any agent finishes the assigned task (e.g., a salesman reaches the assigned city in
mTSP). Whenever an event occurs, the idle agent is assigned to a new task, and the status of the
agent and the target task are updated accordingly. We enumerate the event with τ to avoid confusion
from the elapsed time of the problem; t(τ) is a function that returns the time of event τ .

Reward. The proposed MDP uses the negative makespan (i.e. total completion time of tasks) as the
reward (i.e., r(sT) = −t(T)) that is realized only at sT.

3.1 EXAMPLE: MDP FORMULATION OF MTSP

Let us consider the single-depot mTSP with two types of entities: m salesmen (i.e., m agents) and
N cities (i.e., N tasks). All salesmen start their journey from the depot, and come back to the
depot after visiting all cities (each city can be visited by only one salesman). The solution to mTSP
is considered to be complete when all the cities have been visited, and all salesmen have returned
to the depot. The MDP formulation for mTSP is similar to that of the general mSP. The specific
definition of the state for mTSP is as follows:

State. We define sτ = ({siτ}N+m
i=1 , senv

τ ), which is composed of two types of states: entity state siτ
and environment state senv

τ .

• siτ = (piτ ,1
active
τ ,1assigned

τ ) is the state of the i-th entity. piτ is the 2D Cartesian coordinate of the
i-th entity at the τ -th event. 1active

τ indicates whether the i-th agent/task is active (agent is working/
task is not visited). Similarly, 1assigned

τ indicates whether agent/task is assigned.
• senv

τ contains the current time of the environment, and the sequences of cities visited by the
salesmen.
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Figure 1: Solving mSP with ScheduleNet. At every event of the MDP, ScheduleNet constructs the agent-task
graph Gτ from sτ , then computes the node embedding of Gτ using TGA, and finally computes the agent-task
assignment probabilities from the node embedding.

4 SCHEDULENET

In this section, we explain how ScheduleNet recommends a scheduling action aτ of an idle agent
from input sτ (partial solution). This is done by (1) constructing the agent-task graph Gτ , (2)
embedding Gτ using TGA, and (3) computing the assignment probabilities. Figure 1 illustrates
the decision-making process of ScheduleNet.

4.1 CONSTRUCTING AGENT-TASK GRAPH

ScheduleNet constructs the agent-task graph Gτ that reflects the complex relationships among the
entities in sτ . Specifically, ScheduleNet constructs a directed complete graph Gτ = (V,E) out of
sτ , where V is the set of nodes and E is the set of edges. The nodes and edges, and their associated
features are defined as:
• vi denotes the i-th node, which represents either an agent or a task. vi contains the node feature
xi = (siτ , ki), where siτ is the state of entity i, and ki is the type of vi. For example, if the entity
i is an agent and 1active

τ = 1, then ki becomes active-agent. For the full list of the types, refer to
Appendix C.2.

• eij denotes the edge between the source node vj and the destination node vi. The edge feature
wij is equal to the Euclidean distance between the two nodes.

In the following subsections, we omit the event iterator τ for notational brevity, since the action
selection procedure is only associated with the current event index τ .

4.2 GRAPH EMBEDDING USING TGA

ScheduleNet computes the node embeddings from the agent-task graph G using the TGA, which
is designed to capture the different relations among the graph entities by applying attention
mechanisms for each relational type. TGA uses three steps to compute the updated node/edge
embedding as follows:

Type-aware edge update. Given the node embedding hi and edge embedding hij , TGA computes
the type-aware edge embedding h′

ij and the attention logit zij as follows:

h′
ij = TGAE([hi, hj , hij ], kj)

zij = TGAA([hi, hj , hij ], kj)
(1)

where TGAE and TGAA are the type-aware edge update function and the type-aware attention
function, respectively. TGAE and TGAA are parameterized using multilayer perceptrons (MLPs).

Type-aware message aggregation. Each entity in the agent-task graph interacts differently with
the other entities, depending on the type of the edge between them. To preserve the different
relationships among the entities during the graph embedding procedure, TGA gathers messages
h′
ij via the type-aware message aggregation.
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First, TGA aggregates messages for each node type and produces the per-type message mk
i as

follows:

mk
i =

∑
j∈Nk(i)

αijh
′
ij (2)

where Nk(i) = {vl|kl = k, vl ∈ N (i)} is the type k neighborhood of vi, and αij is the attention
score that is computed using zij :

αij =
exp(zij)∑

j∈Nk(i)
exp(zij)

(3)

TGA aggregates the per-type messages to compute the total aggregated message mi for vi as:

mi =
∑
k∈K

mk
i (4)

where K is the set of node types.

Type-aware node update. The total aggregated message mi is then used to compute the updated
node embedding h′

i as follows:
h′
i = TGAV([hi,mi], ki) (5)

where TGAV is the type-aware node update function that is parametrized using MLP. The detailed
architectures of TGAE, TGAA, and TGAV are provided in Appendix A.

ScheduleNet computes the node embeddings from G using TGA. The embedding procedure first
encodes the features of G into the initial node embeddings {h(0)

i |vi ∈ V}, and the initial edge
embeddings {h(0)

ij |eij ∈ E}. ScheduleNet then performs TGA H times on all nodes to compute the

final node embeddings {h(H)
i |vi ∈ V} and edge embeddings {h(H)

ij |eij ∈ E}.

4.3 COMPUTING ASSIGNMENT PROBABILITY

Using {h(H)
i |vi ∈ V} and {h(H)

ij |eij ∈ E}, ScheduleNet selects the assignment action aτ for the
target idle agent. It computes the assignment probability of the target agent i to the unassigned task
j as follows:

lij = MLPactor(h
(H)
i , h

(H)
j , h

(H)
ij )

pij = softmax({lij}j∈A(Gτ ))
(6)

where A(Gτ ) denotes a set of feasible actions that is defined as {vj |kj = Unassigned-task, vj ∈ V}.
Note that ScheduleNet allows an agent to process its local state information and make the assignment
choice in a decentralized way. This enables ScheduleNet to solve mSPs with any number of agents
and tasks even when the agents or tasks appear dynamically.

5 TRAINING SCHEDULENET

We utilize the sparse team reward (makespan) as the reward to train the decentralized scheduler
(ScheduleNet) that aims complete the tasks as quickly as possible by coordinating multiple agents.
Even though this team reward is the most direct signal that can be used for solving various types
of mSPs, training a decentralized cooperative policy using a single sparse and delayed reward is
notoriously difficult (Riedmiller et al., 2018; Hare, 2019). The high variance of the reward, due
to the combinatorial nature of mSP, adds an additional difficulty. To handle such difficulties, we
employ two training stabilizers, reward normalization, and Clip-REINFORCE.

5.1 REWARD NORMALIZATION

We denote the makespan induced by policy πθ as M(πθ). We observe that M(πθ) is highly volatile
depending on the problem size (N , m) and πθ. To reduce the variance of the reward incurred from
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the problem size, we propose to use the normalized makespan M̄(πθ, πb) computed as:

M̄(πθ, πb) =
M(πθ)−M(πb)

M(πb)
(7)

where πθ, πb is the current policy and baseline policy respectively.

A similar normalization scheme that only measures the performance difference between π and πb

has been investigated in RL applications for solving single-agent scheduling problems (Kool et al.,
2018; Cao et al., 2021; Kwon et al., 2020). Such normalization can provide consistent learning
signals when the training instance sizes (i.e. N ) are fixed, which is a common practice for training
RL methods to solve single-agent scheduling problems. However, we observed that even if N is
fixed, the (optimal) makespan of mTSP can differ severely as m changes. To reduce the variability
of the makespan due to m, we further divide the makespan difference by M(πb).

Using M̄(πθ, πb), we compute the normalized return Gτ (πθ, πb) as follows:

Gτ (πθ, πb) ≜ −γT−τM̄(πθ, πb) (8)

where T is the index of the terminal state, and γ is the discount factor of MDP. The minus sign is
for minimizing the makespan. Note that, in the early phase of mSP (when τ is small), it is difficult
to estimate the makespan. Thus, we place a smaller weight (i.e, γT−τ ) on M̄(πθ, πb), which is
evaluated when τ is small (early stage).

5.2 CLIP-REINFORCE

Even a small change in a single assignment can result in a dramatic change to the makespan due
to the combinatorial nature of mSP. Hence, training the value function that predicts Gτ reliably
is difficult. We thus propose to utilize Clip-REINFORCE, a variant of PPO (Schulman et al.,
2017) without the learned value function, for training ScheduleNet. The objective of the Clip-
REINFORCE is given as follows:

L(θ) = E
(Gτ ,aτ )∼πθ

[min(clip(ρτ , 1− ϵ, 1 + ϵ)Gτ , ρτGτ )] (9)

where clip(x, a, b) = {a ifx ≤ a, x if a < x < b, b ifx ≥ b}, ϵ is the clipping parameter, Gτ

is a shorthand notation for Gτ (πθ, πb), and ρτ = πθ(aτ |Gτ )/πθold(aτ |Gτ ) is the ratio between the
current policy πθ and the policy before the update πθold .

6 EXPERIMENTS

In this section, we evaluate the performance of ScheduleNet on mTSP and JSP. To calculate the
inference time, we run all experiements on the server equipped with AMD Threadripper 2990WX
CPU. We use single CPU core for evaluating all algorithms.

6.1 MTSP EXPERIMENTS

Training. We denote (N × m) as the mTSP with N cities (tasks) and m salesmen (agents). To
generate a random mTSP instance, we sample N and m from U(15, 30) and U(3, 4), respectively.
Similarly, the Euclidean coordinates of N cities are sampled uniformly from the unit square.
ScheduleNet is trained on random mTSP instances that are generated on-the-fly. For all mTSP
experimental results, we evaluate the performance of a single trained ScheduleNet model. Please
refer to Appendix C.3 for more information regarding the training details.

Results on random mTSP datasets. To investigate the generalization capacity of ScheduleNet to
various problem sizes, we evaluate ScheduleNet on the randomly generated mTSP datasets. Each
(N ×m) dataset consists of 100 random uniform mTSP instances.

We consider the four baseline algorithms to measure the performance of ScheduleNet. As the non-
learning baselines, LKH3 (Helsgaun, 2017) and Google OR-Tools (Perron & Furnon) are used. It
is noteworthy that LKH3 is known to find the optimal solutions for the mTSP problems with the
identified optimal solutions. Thus, we use the makespans computed by LKH3 as the proxies for the
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Table 1: Random mTSP results. GNN-DisPN results are reproduced
from Hu et al. (2020).

N 30 50 100 200 Gap

m 3 5 5 7 10 5 10 15 10 15 20

LKH3 2.17 1.94 2.00 1.95 1.91 2.20 1.97 1.98 2.04 2.00 1.97 1.00
OR-Tools 2.25 1.95 2.04 1.96 1.91 2.41 2.03 2.03 2.33 2.33 2.37 1.07

GNN-DisPN - - 2.12 - 1.95 2.48 2.09 - - - - -
DAN (g.) 2.32 2.02 2.29 2.11 2.03 2.72 2.17 2.09 2.40 2.20 2.15 1.13

DAN (s.64) 2.22 1.96 2.12 1.99 1.95 2.55 2.05 2.00 2.40 2.20 2.15 1.08

ScheduleNet (g.) 2.32 2.02 2.17 2.07 1.98 2.59 2.13 2.07 2.45 2.24 2.17 1.09
ScheduleNet (s.64) 2.22 1.96 2.07 1.99 1.92 2.43 2.03 1.99 2.25 2.08 2.05 1.04
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Figure 2: mTSP runtimes

Table 2: mTSPLib results. CPLEX results with ∗ are optimal solutions. Otherwise, the known-best upper
bound of CPLEX results are reported.

Instance eil51 berlin52 eil76 rat99 Gap

m 2 3 5 7 2 3 5 7 2 3 5 7 2 3 5 7

CPLEX 222.7∗ 159.6 124.0 112.1 4110.2 3244.4 2441.4 2440.9 280.9∗ 197.3 150.3 139.6 728.8 587.2 469.3 443.9 1.00

LKH3 222.7 159.6 124.0 112.1 4110.2 3244.4 2441.4 2440.9 280.9 197.3 150.3 139.6 728.8 587.2 469.3 443.9 1.00
OR-Tools 243.3 170.5 127.5 112.1 4665.5 3311.3 2482.6 2440.9 318.0 212.4 143.4 128.3 762.2 552.1 473.7 442.5 1.03

DAN (g) 274.2 178.9 158.6 118.1 5,226.0 4,278.4 2,758.8 2,696.8 361.1 251.5 170.9 148.5 930.8 674.1 504.0 466.4 1.18
DAN (s. 64) 252.9 178.9 128.2 114.3 5,097.7 3,455.7 2,677.1 2,494.5 336.7 228.1 157.9 134.5 966.5 697.7 495.6 462.0 1.11

ScheduleNet (g.) 263.9 200.5 131.7 116.9 4,826.1 3,644.2 2,757.8 2,514.6 330.2 228.8 163.9 144.4 843.8 691.8 524.3 480.8 1.13
ScheduleNet (s.64) 239.3 173.5 125.8 112.2 4,591.6 3,276.1 2,517.3 2,441.4 317.7 220.8 153.8 131.7 781.2 627.1 502.3 464.4 1.05

optimal solutions. As the RL baselines, GNN-DisPN (Hu et al., 2020) and DAN (Cao et al., 2021)
are considered (To the best of our knowledge, these are the only RL-based algorithms tried to solve
the min-max mTSP problems).

Table 1 shows the average makespans and average gaps (i.e., the relative makespan w.r.t LKH3) of
ScheduleNet and the baseline algorithms on various-sized random mTSP instances. ScheduleNet
generally shows leading performances compared to the baseline algorithms even though it is trained
on the smallest test setup (30×3). In addition, Figure 2 compares the average computation times and
their standard deviations for each problem size, clearly indicating that ScheduleNet is significantly
faster than traditional heuristic solvers (LKH3 and OR-Tools). The computational time difference
among RL-approaches is almost not noticeable.

Results on Public Benchmarks. Next, to explore the generalization of ScheduleNet to problems
that come from completely different distributions (e.g., real-world data), we present the results on
the mTSPLib dataset defined by Necula et al. (2015). mTSPLib consists of four instances of size 51,
52, 76 and 99 from TSPLib (Reinelt, 1991), each of which is extended to multi-agent setups where
m equals to 2, 3, 5, and 7.

Table 2 shows the the makespans and average gaps w.r.t CPLEX of the algorithms. ScheduleNet still
exhibits comparable performance to OR-tools, while DAN shows significant performance drops.
From this experiment, we can observe that ScheduleNet is effective in solving both randomly
generated and real-world mTSPs problems (i.e., robust transferability over data distribution shift).

6.2 ABLATION STUDIES

In this paper, we propose TGA as the representation learning module, and Clip-REINFORCE (CR)
as the training method. Here, we provide the experimental results that show the effect of proposed
TGA and CR to the training and testing performance of ScheduleNet.

We train variants of the ScheduleNet models as the target of the ablation studies as follows:

• TGA-REINFORCE: the model using TGA and is trained by REINFORCE (Williams, 1992).

• GN-CR: the model using the graph network (GN) layer (Battaglia et al., 2018) is trained by CR.

• TGA-CR: the model using TGA and is trained by CR; the proposed ScheduleNet.

Figure 3 compares the normalized makespans of the three ablation models on the validation test
instance (30×3) during training, and Table 3 shows the makespans on the test instances.

7



Under review as a conference paper at ICLR 2022

2.0

2.5

0 2000 4000 6000 8000 10000

Training step

1.0

1.2
No

rm
.p

er
f.

TGA-REIN. GN-CR TGA-CR

Figure 3: Training curves

N m TGA-R. GN-CR TGA-CR

100
5 6.04 2.67 2.59

10 4.59 2.26 2.13
15 3.56 2.36 2.07

200
10 11.27 2.61 2.45
15 6.18 2.41 2.24
20 4.55 2.52 2.17

Table 3: mTSP ablation results
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Figure 5: Online routing scenarios

• TGA-REINFORCE vs. TGA-CR: By comparing the learning curves of these two ablation models, we
can see the effect of the proposed CR as a learning algorithm. The REINFORCE is not able to
learn meaningful policy.

• GN-CR vs. TGA-CR: By comparing the learning curves of these two models, we can see the
effect of TGA as a representation module. TGA induces more stabilized and faster performance
improvement. In addition, as shown in Table 3, TGA-CR (ScheduleNet) consistently shows better
performance than GN-CR in the test datasets. The performance difference between the two models
becomes severe as N and m increase. This again highlights the role of TGA in solving mTSP.

6.3 MTSP VARIANTS EXPERIMENTS

In this section, we further investigate the performance of ScheduleNet in more practical scenarios of
mTSP: (1) limited observation, and (2) online routing.

Limited observation scenarios. In the real-world application of mTSP, some salesmen may not
be able to gather all the information about the other salesmen due to the limited communication
capabilities (e.g., delivery trucks are located in distant). In such a scenario, the agent should decide
the next city to visit with local observations. To consider this realistic scenario, we limit the number
of observable salesmen Nr from the global state Gτ and investigate its performance.

We employ ScheduleNet to solve the test instances, whose sizes are (50×5), (100×10), and
(200×20), by varying Nr. As shown in Figure 4, the makespan decreases as Nr increases because
the extended communication scope can induce enhanced coordinations among salesmen. Note
that Nr = 0 indicates the case where each salesman makes entirely independent actions without
considering the other salesmen at all. The results implies that ScheduleNet is able to learn an
effective cooperative policy that minimizes the makespan, and can perform well robustly even with
limited communication capabilities.

Online routing scenarios. ScheduleNet, as a decentralized constructive heuristic, can solve the
dynamic scheduling problem in an online manner; it reschedules inherently whenever a new event
occurs (i.e., an agent finishes the assigned task or the new task appears) while considering the
updated agent and task distribution. We evaluate this capability by solving the online mTSP problem
where new cities arise dynamically during the course of the scheduling problem.

We first randomly generate 100 (30×3) test instances. Then, while simulating these scenarios with
the scheduling policies, we sequentially add 30 × Na% cities to the simulation (the exact addition
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Table 4: Taillard’s 80 results. The gaps are measured w.r.t. the optimal (or the best-known) makespan.

15×15 20×15 20×20 30×15 30×20 50×15 50×20 100×20 Gap

MOR 1.205 1.236 1.217 1.249 1.173 1.177 1.092 1.092 1.197
FIFO 1.239 1.314 1.275 1.319 1.310 1.206 1.239 1.136 1.255
SPT 1.258 1.329 1.278 1.349 1.344 1.241 1.256 1.144 1.275

Zhang et al. (2020) 1.259 1.300 1.316 1.319 1.336 1.224 1.264 1.136 1.269
Park et al. (2021) 1.171 1.202 1.228 1.189 1.254 1.159 1.174 1.070 1.181

ScheduleNet 1.153 1.194 1.172 1.180 1.187 1.138 1.135 1.066 1.154

moment and locations are unknown to policies before the addition) and evaluate how the policies
effectively replan the schedules according to such online scenarios. We compare the makespan
of ScheduleNet with (1) oracle planning that plans once while knowing all future demands (its
appearing locations and times), and (2) re-planing heuristics that replans the future actions whenever
sτ is updated. Please refer to Appendix C.4 for more details regarding the simulation and baselines.

Figure 5 shows the average makespans computed using 100 random online scenarios. As shown
in the left plot, ScheduleNet always produces a shorter makespan and shorter runtime than
the replanning heuristic for all Na values, proving its effective adaptability and robustness to
dynamically changing cities. Note that as Na increases, the makespan and the runtime increase
for all methods due to the increased uncertainty and the number of replanning.

6.4 JSP EXPERIMENTS

We employ ScheduleNet to solve JSP, another important class of mSP, to evaluate its generalization
capacity in solving various types of mSPs. The goal of the JSP is to schedule machines (i.e., agents)
in a manufacturing facility to complete the jobs that consist of a series of operations (tasks) while
minimizing the total completion time (makespan). Solving JSP is considered to be challenging
since it imposes additional constraints that schedulers must obey: precedence constraints (i.e., an
operation of a job cannot be processed until its precedence operation is done) and agent-sharing
constraints (i.e., each agent has a unique set of feasible tasks).

Formulation. We formulate JSP as an MDP where sτ is the partial solution of JSP, aτ is an agent-
task assignment (i.e., assigning an idle machine to one of the feasible operations), and reward is the
minus of makespan. Please refer to Appendix D.1 for the detailed formulation of MDP.

Training. We train ScheduleNet using the random JSP instances (N × m) that have N jobs and
m machines. We sample N and m from U(7, 14) and U(2, 5) respectively to generate the training
JSP instances, and randomly shuffle the order of the machines in a job to generate machine sharing
constraints. Please refer to Appendix D.3 for more information.

Results on public benchmarks. We evaluate the makespan to verify ScheduleNet’s generalization
capacity to unseen JSP distributions on the Taillard’s 80 dataset (Taillard, 1993). We compare
ScheduleNet against the deep RL baselines (Park et al., 2021; Zhang et al., 2020), as well as
three JSP heuristics; Most Operation Remaining (MOR), First-in-first-out (FIFO), and Shortest
Processing Time (SPT). Both baseline RL methods were specifically designed to solve JSP by
utilizing the well-known disjunctive JSP graph representation (Roy & Sussmann, 1964) and well-
engineered dense reward functions. Nevertheless, we can observe that ScheduleNet outperforms all
baselines in all of the cases while utilizing only a sparse episodic reward (see Table 4). Please refer
to Appendix D.5 for the extended benchmark results.

7 CONCLUSION

In this work, we propose ScheduleNet, an RL-based scheduler that can solve various types of multi-
agent scheduling problems (mSPs) in a decentralized manner. Through the extensive experiments,
we empirically verified that ScheduleNet is an effective general scheduler that can solve various
mSPs, a cooperative scheduler that induces multi-agent coordination to achieve a common objective,
and a scalable scheduler that can solve large scale static scheduling problems. Furthermore, we have
validated that ScheduleNet can be used to solve online scheduling problems.

9



Under review as a conference paper at ICLR 2022

8 ETHICS STATEMENT AND REPRODUCIBILITY DISCUSSION

Ethics statement The proposed method aims to learn a decentralized policy to solve practical
large-scale multi-agent scheduling problems. With the recent advanced robotics and communication
technologies, the proposed method can be considered and employed as a solver for real-life logistic
problems. However, our method does not consider the subjective values (social protections for the
underprivileged or expedited dispatching for life-threatening demands) in the process of decision-
making or learning. Thus, our method may produce scheduling results that are not well aligned with
human decision-makers in such cases.

reproducibility As machine learning researchers, we consider the reproducibility of numerical
results as one of the top priorities. Thus, we put a significant amount of effort into pursuing the
reproducibility of our experimental results. As such efforts, we set and tracked the random seed
used for our experiments and confirmed the experiments were reproducible. Furthermore, we also
prepare to open-source our mTSP MDP environments so that the follow-up research can be assessed
in a unified way.
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A DETAILS OF TYPE-AWARE GRAPH ATTENTION

In this section, we thoroughly describe the computation procedures of type-aware graph attention
(TGA). Similar to the main body, We overload notations for the simplicity of notation such that the
input node and edge feature as hi and hij , and the embedded node and edge feature h′

i and h′
ij ,

respectively.

The proposed TGA performs graph embedding with the following three phases: (1) type-aware edge
update, (2) type-aware message aggregation, and (3) type-aware node update.

Type-aware edge update The edge update scheme is designed to reflect the complex type
relationship among the entities while updating edge features. First, the context embedding cij of
edge eij is computed using the source and destination node type ki, kj such that:

cij = [Emb(ki),Emb(kj)] (A.1)
where Emb(·) is a trainable lookup table function. Next, the type-aware edge encoding uij is
computed using a multilayer perceptron (MLP) as follows:

uij = MLPetype(hi, hj , hij , cij) (A.2)
where MLPetype(·) is the type-aware edge encoding MLP. uij can be seen as a dynamic edge feature
which varies depending on the source and destination node type. Then, the updated edge embedding
h′
ij and its attention logit zij are obtained as:

h′
ij = MLPedge(uij) (A.3)

zij = MLPattn(uij) (A.4)

where MLPedge and MLPattn is the edge updater and logit function, respectively. The edge updater
and logit function produce updated edge embedding and logits from the type-aware edge.

The computation steps of equations A.1, A.2 and A.3 are defined as TGAE. Similarly, the
computation steps of equations A.1, A.2 and A.4 are defined as TGAA.

Type-aware message aggregation We first define the type-k neighborhood of vi as Nk(i) =
{vl|kl = k,∀vl ∈ N (i)}, where N (i) is the in-neigborhood set of vi. The proposed type-aware
message aggregation procedure computes attention score αij for the eij , which starts from vj and
heads to vi, such that:

αij =
exp(zij)∑

l∈Nkj
(i) exp(zil)

(A.5)

Intuitively speaking, The proposed attention scheme normalizes the attention logits of incoming
edges over the types. Therefore, the attention scores sum up to 1 over each type-k neighborhood.
Next, the type-k neighborhood message mk

i for node vi is computed as:

mk
i =

∑
j∈Nk(i)

αijh
′
ij (A.6)

In this aggregation step, the incoming messages of node i are aggregated per type. All incoming
type neighborhood messages are concatenated to produce (inter-type) aggregated message mi for
vi, such that:

mi =
∑
k∈K

mk
i (A.7)

Type-aware node update Similar to the edge update phase, the context embedding ci is computed
first for each node vi:

ci = Emb(ki) (A.8)
where Emb(·) is a trainable lookup table function. Then, the updated hidden node embedding h′

i is
computed as below:

h′
i = MLPnode(hi,mi, ci) (A.9)

where MLPnode(·) is the type-aware node updater. The computation steps of equations A.8, and A.9
are defined as TGAV.
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B EXTENDED DISCUSSION FOR REWARD NORMALIZATION SCHEME

In this section, we further discuss the effect of the proposed reward normalization scheme and its
variants to the performance of ScheduleNet. The proposed reward normalization (i.e. normalized
makespan) m(π, πb) is given as follows:

m(π, πb) =
M(πθ)−M(πb)

M(πb)
(A.10)

where πb is the baseline policy.

Effect of the denominator m(π, πb) measures the relative scheduling supremacy of π to the πb.
Similar reward normalization scheme, but without M(πb) division, is employed to solve single-
agent scheduling problems Kool et al. (2018). We empirically found that the division leads in much
stable learning when the scale of makespan change (e.g. the area of map change from the unit square
to different geometries or the size of training instances are varying).

Effect of the baseline selection A proper selection of πb is essential to assure stable and
asymptotically better learning of ScheduleNet. Intuitively speaking, choosing too strong baseline
(i.e. policy having smaller makespan such as LKH3 and OR-tools) can makes the entire learning
process unstable since the normalized reward tends to have larger values. On the other hand,
employing too weak baseline can leads in virtually no learning since the m(π, πb) becomes nearly
zero.

We select πb as Greedy(π) and this baseline selection has several advantages from selecting a
fixed/pre-existing scheduling policy: (1) Entire learning process becomes independent from existing
scheduling methods. Thus ScheduleNet is applicable even when the cheap-and-performing πb for
some target mSP does not exist. (2) Greedy(π) serves as an appropriate πb (either not too strong
or weak) during policy learning. We experimentally confirmed that the baseline section Greedy(π)
results in a better scheduling policy as similar to the several literature Kool et al. (2018); Silver et al.
(2016).
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C DETAILS OF MTSP EXPERIMENTS

In this section, we provide the details of mTSP exepriments.

C.1 MDP FORMULATION

The formulated mTSP MDP is event-based. Here we discuss the further details about the event-
based transitions of mTSP MDP. Whenever all agents are assigned to cities, the environment transits
in time, until any of the workers arrives to the city (i.e. completes the task). Arrival of the worker
to the city triggers an event, meanwhile the other assigned salesman are still on the way to their
correspondingly assigned cities. We assume that each worker transits towards the assigned city with
unit speed in the 2D Euclidean space, i.e. the distance travelled by each worker equals the time past
between two consecutive MDP events.

It is noteworthy that multiple events can happen at the same time, typically when time stamp t = 0.
If the MDP has multiple available workers at the same time, we repeatedly choose an arbitrary idle
agent and assign it to the one of an idle task until no agent is idle, while updating event index τ .
This random selections do not alter the resulting solutions since we do not differentiate each agent
(i.e. agents are homogeneous agents).

C.2 AGENT-TASK GRAPH FORMULATION

In this section, we present the list of all possible node types in Gτ :(1) assigned-agent, (2) unassigned-
agent (i.e. idle), (3) assigned-task, (4) unassigned-task, (5) inactive-task (i.e. visited city) and (6)
depot. Here, we do not include inactive-agent (i.e. salesmen already return to the depot) to the
graph. For edge types, we don’t define them explicitly rather we consider the combination of source
and destination types as the edge type. All nodes in the Gτ are fully connected.

C.3 TRAINING DETAILS

Network parameters. ScheduleNet is composed of three components. The first components
generates the initial node embedding {h(0)

i } and edge {h(0)
ij } by using linear projections. The

second component (TGA), which utilizes MLP(64) as MLPetype, MLPedge, MLPattn, and MLPnode,
repeatedly updates the node and edge embedding 3 times to generate {h(3)

i } and edge {h(3)
ij }. The

last component MLPactor, which is parametrized as MLP(64, 32), generates action logits from the set
of node and edge embedding. All input and output dimensions of MLPs are 64 and hidden actions
are LeakyReLU.
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Training pseudocode. We presents a pseudocode for training ScheduleNet.

Algorithm 2: ScheduleNet Training
input : Training policy πθ, baseline policy πϕ

output: Optimized policy πθ

1 Initialize the baseline policy with parameters ϕ← θ
2 for update step do
3 Initialize sample buffer D ← ∅
4 for number of episodes E do
5 Generate a random mTSP instance I
6 πb ← Greedy(πϕ)
7 Construct mTSP MDP from the instance I

8 Collect samples S = {Gτ , aτ , πθold(aτ |Gτ ), Gτ (πθ, πb)}Tτ=0 with πθ and πb from the
MDP.

9 D ← D ∪ S.
10 end
11 for inner updates K do
12 Calculate the loss L(θ) with D
13 θ ← θ + α∇θL(θ)
14 end
15 ϕ← βϕ+ (1− β)θ
16 end
17 return πθ

We set the MDP discounting factor γ to 0.99, learning rate α to 0.0001, E to 128, K to 4, β to 0.01,
and the clipping parameter ϵ of Clip-REINFORCE to 0.2. We set training seed as 1234.

C.4 ONLINE ROUTING SCENARIOS

Scenario generation In this paragraph, we thoroughly explain the online routing scenario
generation scheme. To generate the scenarios, we first fix the number of cities added during the
online routing. Once the number of cities is given, we then decide the locations of the cities by
taking midpoints of cities. We assign the location of the city that will be first added as the midpoint
between the first and second cities of the mTSP map. Similarly, the location of the second city is set
as the midpoint between the second and third cities. Using the same logic, we decide all positions
of the newly added cities. Lastly, we decide the timing of city addition by using (near) optimal
solutions (e.g., LKH3) M∗(π). We first compute divide M∗(π) by 1.0 < s and then evenly allocate
the timing of additions from 0.0 to M∗(π)/s. This ensures all “to be added” cities are added during
the online routing simulation no matter what scheduling policies are evaluated. We set s = 2.

Baseline implementations In this paragraph, we explain the implementations of baseline
algorithms. To implement the oracle planning, we reformulate the online routing problem as a
vehicle routing problem with time constraints (VRP-TW). In the VRP-TW, we set the time window
constraints for the originally existing cities as (0, M ), where M is a large number. For the newly
added cities, the lower and upper bounds of the time window are set as their addition times and M .
The re-planing heuristics are implemented with OR-tools (Perron & Furnon).

D DETAILS OF JSP EXPERIMENTS

Job-shop scheduling problem (JSP) is a mSP that can be applied in various industries including
the operation of semi-conductor chip fabrication facility and railroad system. The objective of JSP
is to find the sequence of machine (agent) allocations to finish the jobs (a sequence of operations;
tasks) as soon as possible. JSP can be seen as an extension of mTSP with two additional constraints:
(1) precedence constraint that models a scenario where an operation of a job becomes processable
only after all of its preceding operations are done; (2) agent-sharing (disjunctive) constraint that
confines the machine to process only one operation at a time. Due to these additional constraints,
JSP is considered to be a more difficult problem when it is solved via mathematical optimization
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Figure 6: Disjunctive graph representation of JSP

Figure 7: Precedence constraint

Figure 8: Agent-sharing constraint

techniques. A common representation of JSP is the disjunctive graph representation. As shown in
Figures 6, 7 and 8, JSP contains the set of jobs, machines, precedence constraints, and disjunctive
constraints as its entities. In the following sections, we provide the details of the proposed MDP
formulation of JSP, training details of ScheduleNet, and experiment results.

D.1 MDP FORMULATION

The MDP formulation of JSP is similar to that of mTSP. The specific definitions of the state and
action for JSP are as follows:

State. We define sτ = ({siτ}N+m
i=1 , senv

τ ) which is composed of two types of states: entity state siτ
and environment state senv

τ .
• siτ = (piτ ,1

processable
τ ,1assigned

τ , 1accessible
τ , 1waiting

τ ) is the state of the i-th entity. piτ is the processing
time of the i-th entity at the τ -th event. 1processable

τ indicates whether the i-th task is processable by
the target agent or not. Similar to mTSP, 1assigned

τ indicates whether an agent/task is assigned.
• senv

τ contains the current time of the environment, the sequence of tasks completed by each agent
(machine), and the precedence constraints of tasks within each job.

Action. We define the action space at the τ -th event as a set of oeprations that is both processable
and currently available. Additionally, we define the waiting action as a reservation of the target agent
(i.e. the unique idle machine) until the next event. Having waiting as an action allows the adaptive
scheduler (e.g. ScheduleNet) to achieve the optimal scheduling solution (and also makespan) from
the JSP MDP, where the optimal solution contains waiting (idle) time intervals.

D.2 AGENT-TASK GRAPH FORMULATION

ScheduleNet constructs the agent-task graph Gτ that reflects the complex relationships among the
entities in sτ . ScheduleNet constructs a directed graph Gτ = (V,E) out of sτ , where V is the set of
nodes and E is the set of edges. The nodes and edges and their associated features are defined as:

• vi denotes the i-th node and represents either an agent or a task. vi contains the node feature
xi = (siτ , ki), where siτ is the state of entity i, and ki is the type of vi (e.g. if the entity i is a task
and its 1processable

τ = 1, then the ki becomes a processable-task type.)
• eij denotes the edge between the source node vj and the destination node vi. The edge feature wij

is a binary feature which indicates whether the destination node vi is processable by the source
node vj .

All possible node types in Gτ are: (1) assigned-agent, (2) unassigned-agent, (3) assigned-task, (4)
processable-task, and (5) unprocessable-task. We do not include completed tasks in the graph. Thus,
the currently active tasks are the union of the assigned tasks, processable-tasks, and unprocessable-
tasks. The full list of node features are as follows:
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Figure 9: JSP agent-task graph representation

• 1agent
τ indicates whether the node is a agent or a task.

• 1target-agent
τ indicates whether the node is a target-agent (unique idle agent that needs to be assigned).

• 1assigned
τ indicates whether the agent/task is assigned.

• 1waiting
τ indicates whether the node is an agent in waiting state.

• 1processable
τ indicates whether the node is a task that is processable by the target-agent.

• 1accessible
τ indicates whether the node is processable by the target-agent and is available.

• Task wait time indicates the amount of time passed since the operation became accessible.
• Task processing time indicates the processing time of the operation.
• Time-to-complete indicates the amount of time it will take to complete the task, i.e. the time-

distance to the given task.
• Remain ops. indicates the number of remaining operations to be completed for the job where the

task belongs to.
• Job completion ratio is the ratio of completed operations within the job to the total amount of

operations in the job.

JSP graph connectivity. Figure 9 visualizes the proposed agent-task graph. From Figure 9, each
agent is fully connected to the set of processable tasks by that agent, and vice versa. Each task
is fully connected to the other tasks (operations) that belong to the same job. Each agent is fully
connected to the other agents.

D.3 TRAINING DETAILS

We use the same training hyperparameters as in Appendix C.3.

D.4 BASELINE IMPLEMENTATIONS

Priority dispatching rules (PDR) is one of the most common JSP solving heuristics. PDR computes
the priority of the feasible operations (i.e. the set of operations whose precedent operation is done
and, at the same time, the target machine is idle) by utilizing the dispatching rules. As the JSP
heuristic baselines, we consider the following three dispatching rules:

• Most Operation Remaining (MOR) sets the highest priority to the operation that has the most
remaining operations to finish its corresponding job.

• First-in-first-out (FIFO) sets the highest priority to the operation that joins to the feasible operation
set first.

• Shortest Processing Time (SPT) sets the highest priority to the operation that has the shortest
processing time.
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Table 5: Job-shop scheduling makespans on TA dataset (Part 1)

Instance N×m SPT FIFO MOR Park et al. (2021) Zhang et al. (2020) ScheduleNet OPT

Ta01 15× 15 1462 1486 1438 1389 1443 1452 1231
Ta02 15× 15 1446 1486 1452 1519 1544 1411 1244
Ta03 15× 15 1495 1461 1418 1457 1440 1396 1218
Ta04 15× 15 1708 1575 1457 1465 1637 1348 1175
Ta05 15× 15 1618 1457 1448 1352 1619 1382 1224
Ta06 15× 15 1522 1528 1486 1481 1601 1413 1238
Ta07 15× 15 1434 1497 1456 1554 1568 1380 1227
Ta08 15× 15 1457 1496 1482 1488 1468 1374 1217
Ta09 15× 15 1622 1642 1594 1556 1627 1523 1274
Ta10 15× 15 1697 1600 1582 1501 1527 1493 1241

Ta11 20× 15 1865 1701 1665 1626 1794 1612 1357
Ta12 20× 15 1667 1670 1739 1668 1805 1600 1367
Ta13 20× 15 1802 1862 1642 1715 1932 1625 1342
Ta14 20× 15 1635 1812 1662 1642 1664 1590 1345
Ta15 20× 15 1835 1788 1682 1672 1730 1676 1339
Ta16 20× 15 1965 1825 1638 1700 1710 1550 1360
Ta17 20× 15 2059 1899 1856 1678 1897 1753 1462
Ta18 20× 15 1808 1833 1710 1684 1794 1668 1396
Ta19 20× 15 1789 1716 1651 1900 1682 1622 1332
Ta20 20× 15 1710 1827 1622 1752 1739 1604 1348

Ta21 20× 20 2175 2089 1964 2199 2252 1921 1642
Ta22 20× 20 1965 2146 1905 2049 2102 1844 1600
Ta23 20× 20 1933 2010 1922 2006 2085 1879 1557
Ta24 20× 20 2230 1989 1943 2020 2200 1922 1644
Ta25 20× 20 1950 2160 1957 1981 2201 1897 1595
Ta26 20× 20 2188 2182 1964 2057 2176 1887 1643
Ta27 20× 20 2096 2091 2160 2187 2132 2009 1680
Ta28 20× 20 1968 1980 1952 2054 2146 1813 1603
Ta29 20× 20 2166 2011 1899 2210 1952 1875 1625
Ta30 20× 20 1999 1941 2017 2140 2035 1913 1584

Ta31 30× 15 2335 2277 2143 2251 2565 2055 1764
Ta32 30× 15 2432 2279 2188 2378 2388 2268 1784
Ta33 30× 15 2453 2481 2308 2316 2324 2281 1791
Ta34 30× 15 2434 2546 2193 2319 2332 2061 1829
Ta35 30× 15 2497 2478 2255 2333 2505 2218 2007
Ta36 30× 15 2445 2433 2307 2210 2497 2154 1819
Ta37 30× 15 2664 2382 2190 2201 2325 2112 1771
Ta38 30× 15 2155 2277 2179 2151 2302 1970 1673
Ta39 30× 15 2477 2255 2167 2138 2410 2146 1795
Ta40 30× 15 2301 2069 2028 2007 2140 2030 1669

D.5 EXTENDED PUBLIC BENCHMARK JSP RESULTS

We provide the detailed JSP results for the following public datasets: TA (Taillard, 1993) (Tables 5
and 6), ORB Applegate & Cook (1991), FT Fisher (1963), YN Yamada & Nakano (1992) (Table 7),
SWV Storer et al. (1992) (Table 8), and LA Lawrence (1984) (Table 9).
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Table 6: Job-shop scheduling makespans on TA dataset (Part 2)

Instance N×m SPT FIFO MOR Park et al. (2021) Zhang et al. (2020) ScheduleNet OPT

Ta41 30× 20 2499 2543 2538 2654 2667 2572 2005
Ta42 30× 20 2710 2669 2440 2579 2664 2397 1937
Ta43 30× 20 2434 2506 2432 2737 2431 2310 1846
Ta44 30× 20 2906 2540 2426 2772 2714 2456 1979
Ta45 30× 20 2640 2565 2487 2435 2637 2445 2000
Ta46 30× 20 2667 2582 2490 2681 2776 2541 2004
Ta47 30× 20 2620 2508 2286 2428 2476 2280 1889
Ta48 30× 20 2620 2541 2371 2440 2490 2358 1941
Ta49 30× 20 2666 2550 2397 2446 2556 2301 1961
Ta50 30× 20 2429 2531 2469 2530 2628 2453 1923

Ta51 50× 15 3856 3590 3567 3145 3599 3382 2760
Ta52 50× 15 3266 3365 3303 3157 3341 3231 2756
Ta53 50× 15 3507 3169 3115 3103 3186 3083 2717
Ta54 50× 15 3142 3218 3265 3278 3266 3068 2839
Ta55 50× 15 3225 3291 3279 3142 3232 3078 2679
Ta56 50× 15 3530 3329 3100 3258 3378 3065 2781
Ta57 50× 15 3725 3654 3335 3230 3471 3266 2943
Ta58 50× 15 3365 3362 3420 3469 3732 3321 2885
Ta59 50× 15 3294 3357 3117 3108 3381 3044 2655
Ta60 50× 15 3500 3129 3044 3256 3352 3036 2723

Ta61 50× 20 3606 3690 3376 3425 3654 3202 2868
Ta62 50× 20 3639 3657 3417 3626 3722 3339 2869
Ta63 50× 20 3521 3367 3276 3110 3536 3118 2755
Ta64 50× 20 3447 3179 3057 3329 3631 2989 2702
Ta65 50× 20 3332 3273 3249 3339 3359 3168 2725
Ta66 50× 20 3677 3610 3335 3340 3555 3199 2845
Ta67 50× 20 3487 3612 3392 3371 3567 3236 2825
Ta68 50× 20 3336 3471 3251 3265 3680 3072 2784
Ta69 50× 20 3862 3607 3526 3798 3592 3535 3071
Ta70 50× 20 3801 3784 3590 3919 3643 3436 2995

Ta71 100× 20 6232 6270 5938 5962 6452 5879 5464
Ta72 100× 20 5973 5671 5639 5522 5695 5456 5181
Ta73 100× 20 6482 6357 6128 6335 6462 6052 5568
Ta74 100× 20 6062 6003 5642 5827 5885 5513 5339
Ta75 100× 20 6217 6420 6212 6042 6355 5992 5392
Ta76 100× 20 6370 6183 5936 5707 6135 5773 5342
Ta77 100× 20 6045 5952 5829 5737 6056 5637 5436
Ta78 100× 20 6143 6328 5886 5979 6101 5833 5394
Ta79 100× 20 6018 6003 5652 5799 5943 5556 5358
Ta80 100× 20 5848 5763 5707 5718 5892 5545 5183
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Table 7: Job-shop scheduling makespans on ABZ, FT, ORB, and YN datasets.

Instance N×m SPT FIFO MOR Park et al. (2021) ScheduleNet OPT

abz5 10× 10 1352 1467 1336 1353 1336 1234
abz6 10× 10 1097 1045 1031 1043 981 943
abz7 20× 15 849 803 775 887 791 656
abz8 20× 15 929 877 810 843 787 665
abz9 20× 15 887 946 899 848 832 678

ft06 6× 6 88 65 59 71 59 55
ft10 10× 10 1074 1184 1163 1142 1111 930
ft20 20× 5 1267 1645 1601 1338 1498 1165

orb01 10× 10 1478 1368 1307 1336 1276 1059
orb02 10× 10 1175 1007 1047 1067 958 888
orb03 10× 10 1179 1405 1445 1202 1335 1005
orb04 10× 10 1236 1325 1287 1281 1178 1005
orb05 10× 10 1152 1155 1050 1082 1042 887
orb06 10× 10 1190 1330 1345 1178 1222 1010
orb07 10× 10 504 475 500 477 456 397
orb08 10× 10 1107 1225 1278 1156 1178 899
orb09 10× 10 1262 1189 1165 1143 1145 934
orb10 10× 10 1113 1303 1256 1087 1080 944

yn1 20× 20 1196 1113 1045 1118 1027 884
yn2 20× 20 1256 1148 1074 1097 1037 904
yn3 20× 20 1042 1135 1100 1083 1046 892
yn4 20× 20 1273 1194 1267 1258 1216 968
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Table 8: Job-shop scheduling makespans on SWV datasets.

Instance N×m SPT FIFO MOR Park et al. (2021) ScheduleNet OPT

swv01 20× 10 1737 2154 1971 1761 1913 1407
swv02 20× 10 1706 2157 2158 1846 1998 1475
swv03 20× 10 1806 2019 1870 1892 1830 1398
swv04 20× 10 1874 2015 2026 1908 1971 1464
swv05 20× 10 1922 2003 2049 1796 1922 1424

swv06 20× 15 2140 2519 2287 2068 2216 1671
swv07 20× 15 2146 2268 2101 2194 2037 1594
swv08 20× 15 2231 2554 2480 2191 2255 1752
swv09 20× 15 2247 2498 2553 2278 2196 1655
swv10 20× 15 2337 2352 2431 2141 2279 1743

swv11 50× 10 3714 4427 4642 3989 4390 2983
swv12 50× 10 3759 4749 4821 4136 4532 2977
swv13 50× 10 3657 4829 4755 4008 4602 3104
swv14 50× 10 3506 4621 4740 3758 4387 2968
swv15 50× 10 3501 4620 4905 3860 4402 2885
swv16 50× 10 3453 2951 2924 2924 2924 2924
swv17 50× 10 3082 2962 2848 2840 2794 2794
swv18 50× 10 3191 2974 2852 2852 2852 2852
swv19 50× 10 3161 3095 3060 2961 2992 2843
swv20 50× 10 3125 2853 2851 2823 2823 2823
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Table 9: Job-shop scheduling makespans on LA datasets.

Instance N×m SPT FIFO MOR Park et al. (2021) ScheduleNet OPT

la01 10× 5 751 772 763 805 680 666
la02 10× 5 821 830 812 687 768 655
la03 10× 5 672 755 726 862 734 597
la04 10× 5 711 695 706 650 698 590
la05 10× 5 610 610 593 593 593 593

la06 15× 5 1200 926 926 926 926 926
la07 15× 5 1034 1088 1001 931 1008 890
la08 15× 5 942 980 925 863 863 863
la09 15× 5 1045 1018 951 951 951 951
la10 15× 5 1049 1006 958 966 958 958

la11 20× 5 1473 1272 1222 1276 1254 1222
la12 20× 5 1203 1039 1039 1039 1039 1039
la13 20× 5 1275 1199 1150 1150 1150 1150
la14 20× 5 1427 1292 1292 1292 1292 1292
la15 20× 5 1339 1587 1436 1282 1395 1207

la16 10× 10 1156 1180 1108 1134 1047 945
la17 10× 10 924 943 844 953 888 784
la18 10× 10 981 1049 942 1049 947 848
la19 10× 10 940 983 1088 880 963 842
la20 10× 10 1000 1272 1130 1042 989 902

la21 15× 10 1324 1265 1251 1309 1261 1046
la22 15× 10 1180 1312 1198 1158 1027 927
la23 15× 10 1162 1354 1268 1085 1145 1032
la24 15× 10 1203 1141 1149 1129 1088 935
la25 15× 10 1449 1283 1209 1308 1117 977

la26 20× 10 1498 1372 1411 1553 1458 1218
la27 20× 10 1784 1644 1566 1624 1516 1235
la28 20× 10 1610 1474 1477 1438 1357 1216
la29 20× 10 1556 1540 1437 1582 1320 1152
la30 20× 10 1792 1648 1565 1649 1490 1355

la31 30× 10 1951 1918 1836 1817 1906 1784
la32 30× 10 2165 2110 1984 1977 1850 1850
la33 30× 10 1901 1873 1811 1795 1731 1719
la34 30× 10 2070 1925 1853 1895 1784 1721
la35 30× 10 2118 2142 2064 2041 1969 1888

la36 15× 15 1799 1516 1492 1489 1449 1268
la37 15× 15 1655 1873 1606 1623 1653 1397
la38 15× 15 1404 1475 1455 1421 1444 1196
la39 15× 15 1534 1532 1540 1555 1430 1233
la40 15× 15 1476 1531 1358 1570 1357 1222
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