
Under review as a conference paper at ICLR 2024

CATCODE: A STANDARD THEORETICAL FRAMEWORK
THAT SUPPORTS AUTONOMOUS CODE DATA AUGMEN-
TATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) such as ChatGPT are increasingly proficient in
understanding and generating a mixture of code and text. Evaluation based on such
mixture can lead to a more comprehensive understanding of the models’ abilities in
solving coding problems. However, in this context, current evaluation methods are
either limited in task coverage or lack standardization. To address this issue, we pro-
pose using category theory as a framework for evaluation. Specifically, morphisms
within a code category can represent code debugging and transformation, functors
between two categories represent code translation, and functors between a code
category and a natural language category represent code generation, explanation,
and reproduction. We present an automatic evaluation framework called CatCode
(Category Code) that can comprehensively assess the coding abilities of LLMs,
including ChatGPT, Text-Davinci, and CodeGeeX.

1 INTRODUCTION

The success of large language models (LLMs) as programming assistants has been widely acknowl-
edged, with their higher proficiency demonstrated in various coding tasks such as code generation Li
et al. (2022); Svyatkovskiy et al. (2020), code explanation MacNeil et al. (2022), and code translation
Zhu et al. (2022), among others. For instance, AlphaCode ranked in the top 54.3% in simulated eval-
uations on recent programming competitions on the Codeforces Li et al. (2022). The Codex-powered
programming tool Copilot Chen et al. (2021) serves as an effective tool for generating and editing
code. Undoubtedly, LLMs exhibit remarkable capabilities when addressing different coding scenarios
individually. However, what truly sets the recent LLMs apart is their ability, akin to ChatGPT-like
models, to comprehend and align with human intents by processing a mixture of natural language and
code. This unique attribute significantly lowers the entry barrier for users, leading to their widespread
adoption and notable achievements.

To assess the coding ability of LLMs, numerous efforts have been made by researchers. However,
current evaluation methods are either limited in task coverage or lack standardization. Match-based
automatic frameworks such as CodeBLEU Ren et al. (2020) rely primarily on similarity scores to
evaluate the quality of code. However, such frameworks often fail to capture the nuances of code
functionality and meaning. Execution-based evaluation methods, for example, MBXP Athiwaratkun
et al. (2022) and MultiPL-E Cassano et al. (2023), can evaluate the function accuracy of code, but
they primarily focus on code generation and translation tasks. Task-based evaluation frameworks
like CodeXGLUE Lu et al. (2021) offer a comprehensive approach but lack standardization due
to variations in datasets, task formulations, and APIs. Consequently, we still lack an evaluation
framework to adapt to the context of a mixture of natural language and code, and there is a need
to establish a comprehensive evaluation framework that not only supports diverse and novel task
definitions, but also provides a standardized approach for evaluating the model under such a mixture
context.

We aim to establish a comprehensive theoretical framework that can be open-sourced and applied to
essential coding tasks, providing standardized automatic evaluation metrics. Designing an extensive
and standardized evaluation framework becomes a challenging task in the absence of theoretical
guidance. To address this need, we seek a theory that can effectively express the structural aspects

1



Under review as a conference paper at ICLR 2024

Step 3: Model EvaluationStep 2: Categorical Task Formulation

Use categorical perspective to define coding
tasks with a mixture of natural language and 
code

Object morphisms

Translation functor

Explanation functor

morphism identification

Step 1: Construct Category

Reformat the code datasets
by objects and apply
different morphisms

Evaluate the model’s ability
by morphisms and functors

𝑜𝑏𝑗𝑒𝑐𝑡 𝐴

self-morphism

mo
rp
his
m

gcd1(x,y)

Reformat datasets
based on the definition
of different objects

Applying morphisms
for data augmentation

𝑜𝑏𝑗𝑒𝑐𝑡 𝐶

lcm(x,y)

(𝐴, 𝐴)

(𝐴, 𝐵)

(𝐴, 𝐶)

gcd2(x,y)

...

𝐴 (+𝑛𝑒𝑤)

𝐵 (𝑛𝑒𝑤)

𝐶

Code translation
Docstring translation

Code detection
Defect detection
Code repair

Code explanation
Code summarization

Original Tasks Categorical Perspective

Generation functor
Reproduction functor

Code generation
Code reproduction

model as translation functor

model as the combination
of explanation & reproduction
functor

...

Figure 1: The overall evaluation framework. We use category perspectives to reorganize and transform
data, formulate different coding tasks, and conduct model evaluations.

of code, language, and their interrelationships. In this context, we find category theory, a branch
of mathematics, to be particularly suitable for describing relationships between various elements.
Furthermore, there are existing applications for employing category theory to describe code and
language, making it an appropriate choice as a framework.

By utilizing category theory’s mathematical abstractions, we can gain insights into the relationships
among different programming languages (PLs) and natural languages (NLs). We consider PLs and
NLs as categories, functionally equivalent programs as objects, and leverage functors and morphisms
to capture the object relations within and across these categories. This gives a unified framework for
describing functional equivalence, which not only works within a single PL, but also among different
PLs, and even between PLs and NLs. By learning the morphisms within a programming language
category, the model can grasp the similarities and differences between code snippets. Additionally, by
acquiring knowledge of the functors between categories, the model can understand the relationship
between different programming languages and natural languages.

Based on the categorical perspective above, we build a standardized evaluation framework (see
Figure 1). It is standardized in terms of data definition, task formulation, and APIs. This framework
can be extended to many code-related tasks as long as a categorical definition is given. In our experi-
ments, we give some examples of common code-related tasks, and assess models such as ChatGPT
and Text-Davinci for their capabilities in identifying functional equivalence in code, performing
code translation, generating code explanations, and reconstructing code based on explanations. We
have observed that these models still struggle to differentiate between the concepts of "functional
equivalence" and "similarity" in code. While they demonstrated relatively satisfactory performance in
code translation, maintaining functional equivalence between code and its corresponding explanations
remains a persistent challenge.

Our main contributions can be listed as follows:

• We introduce CatCode, a novel evaluation perspective for code-related tasks based on category
theory, which provides a comprehensive framework that encompasses a wide range of code-related
task formulations.

• We present a standardized automatic evaluation platform within the CatCode framework, that offers
a quantitative assessment of the coding abilities of Language Models (LLMs) and can adapt to
various datasets and models, which will be publicly available.

2



Under review as a conference paper at ICLR 2024

Java

Reproduction functor
explanation functor
translation functor

self-morphism
morphism

English python

A B C

A’ B’ C’ A’’ B’’ C’’

Java

A B C

Java

python

A B C

A’’ B’’ C’’

Java

A B C

Java

English

A B C
A’

B’

C’

Java

A B C

Figure 2: Categorical framework for a mixture of code and NL. A, B and C represent different
objects, A and A′′ represent the equivalent object of A in other categories.

• We evaluate competitive LLMs, including ChatGPT and Text-DavinciOuyang et al. (2022), provid-
ing insights into their strengths and limitations in understanding the mixture of NL and code.

2 METHODS

Generally, it is difficult to achieve both comprehensiveness and standardization. In Section 2.1, we
show that the categorical perspective, with its emphasis on generalization and abstraction, offers a
valuable approach to achieving comprehensiveness in dealing with the mixture of code and natural
language. In Section 2.2, we discuss the significance of standardization and outline strategies for
achieving it.

2.1 COMPREHENSIVE CATEGORICAL PERSPECTIVE

Category Theory has been applied to different fields, ranging from functional programming to logic,
software design, and linguisticsSpivak (2014); Ahrens & Wullaert (2022); Fong & Spivak (2018);
Bradley (2018). Here we provide the basic definitions used in our work and explain their applications
to describe code and natural language. Figure 2 illustrates those concepts in a comprehensive way.

Definition 2.1. (Category, Object, Morphism). A category C consists of a set of objects Ob(C)
and a set of morphisms HomC(a, b), from a to b for every a, b ∈ Ob(C). Given two morphisms
f ∈ HomC(a, b), g ∈ HomC(b, c), we define their composition as g ◦ f ∈ HomC(a, c). The
composition of morphisms is governed by two axioms:

- Associativity: If f : a → b, g : b → c, and h : c → d then

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

- Identity: For every object x, there exists a morphism idx : x → x called the identity morphism for
x, such that for every morphism f : a → b, we have

idb ◦ f = f = f ◦ ida.

Application 2.1. (Category, Object, Morphism of Code, and NL). For describing the mixture of code
and natural languages, we first regard them as objects from different categories. We consider the code
categories that contain all executable code in a certain language: CJava, CPython, ... We define the
natural language categories which contain all description/explanation/summarization of code etc.:
CEnglish, CChinese, ... For simplicity, let’s call them C1, C2, ...

In a category, there are infinitely many different objects. We name these objects o1, o2, ... Each object
contains infinitely many programs, with the same running outcome for each valid input. We use this

3



Under review as a conference paper at ICLR 2024

Figure 3: Standardized evaluation platform. The central pipeline offers a consistent approach for all
evaluations. Behind the pipeline, we provide a variety of functions to automatically conduct the most
important steps. With our platform released, the pipeline can easily accommodate novel datasets,
tasks, and models by following the instructions outlined alongside the grey lines.

definition because we focus on the functional equivalence of code function. For example, one may
have slightly different implementations of quick sorts, but they represent exactly the same function. 1

Based on the definition of objects, we define the morphism between two objects, as “necessary edits
to convert a function to another”. In particular, we define the self-morphism for each object, as “edits
that do not change the functionality of the program”.
Definition 2.2. (Functor). A functor F from a category C to a category D, written as F : C → D,
maps an object x ∈ Ob(C) to F (x) ∈ Ob(D); as well as a morphism f : x → y in Hom(C) to
F (f) : F (x) → F (y) in D, such that the following two properties hold:

- For every object x in C, F (idx) = idF (x);

- For all morphisms f : x → y and g : y → z, F (g ◦ f) = F (g) ◦ F (f).

Application 2.2. (Functor of Mixture of Code and NL). We define the functor from C1 to C2, to
be the transform from one language to another language, but with the same functionality. When it
applies to two code categories, it usually represents code translation, and we define it as a “translation
functor”. When the functor is between a code category and a natural language category, it may
have many possible meanings, for instance, we can define “generation function” from NL to PL that
generates code solution to a problem description, “explanation functor” from PL to NL that explains
a piece of code, and “reproduction functor” from NL to PL that generates code snippets based on
code descriptions.

2.2 STANDARDIZED EVALUATION PLATFORM

Figure 3 shows the streamlined process of our standardized evaluation platform. Standardization
within the framework is achieved through a focus on three critical aspects: data definition, task
formulation, and APIs.

Data definition The original datasets may consist of a mixture of code and natural languages, so a
clear data definition is crucial. The code can be in different languages (Java, Python, JavaScript, etc.),
and on different levels (single-line, function-level, file-level). Natural language can be in different
relationships with the code (problem descriptions, code comments, demands, etc.). By establishing a
standardized data definition, we ensure compatibility and facilitate the comparison and integration
of different datasets. For implementation, we use a “data formatter” to rearrange code based on the
definition of objects and categories. Additionally, we provide “predefined morphisms” and implement
them based on JavaTransformerRabin et al. (2019) to automatically apply morphisms to code
objects, which makes it easy for data augmentation.

1We can also extend the definition of the object to be the set of code with not only the same outcome, but also
with the same time or space complexity, but due to the difficulties of automatically evaluating the complexity,
this can be extended for future work.

4



Under review as a conference paper at ICLR 2024

Task formulation We use a categorical perspective to formulate diverse code-related tasks using the
unified language of objects, morphisms, and functors. A good task formulation allows for a more
generalized and flexible approach to defining more complex code problems, enabling the inclusion
of a wide variety of code-related tasks and comparing their similarities and differences. Based
on the task formulation, we carefully decide what parts of the code and NL should be the model
input, ensuring a cleaner setting. Then we use “prompt selector” to select a suitable prompt for task
description, and use “input constructor” to combine the data and prompt as task input.

APIs After the data is ready, we focus on the standardization of model APIs and test APIs. Stan-
dardized APIs promote transparency, fairness, and efficiency in the evaluation. By defining a clear
and consistent set of APIs, we have integrated OpenAI models into the evaluation process and can
test them using parallel requests. For postprocessing the model’s output, we enable the extraction
and filtering of plain text from the code-text mixture. For test APIs, we provide a “pairing test” API
for evaluating the model’s answer based on natural language, and an “execution test” API, which
connects to MxevalAthiwaratkun et al. (2022) for compiling and running the tests for a given code.

3 EXPERIMENTS

3.1 RESEARCH QUESTIONS AND BASIC SETTINGS

In this section, we exhibit some experimental examples of how to use our platform. Meanwhile, we
explore the following three research questions (RQs) that correspond to those illustrated in Step 3 of
Figure 1.

RQ1: Can the model exactly capture code functions and identify similarities/differences?

(Related tasks: code detection, defect detection, code repair)

→ Categorical perspective: Can the model identify the self-morphisms and other morphisms within
the same code category?

RQ2: Can the model translate code between different programming languages?

(Related tasks: code translation)

→ Categorical perspective: Can the model accurately perform code translation functor?

RQ3: Can the model reproduce the code based on its explanation?

(Related tasks: code explanation, code summarization, code generation, code reproduction)

→ Categorical perspective: Can the model preserve the functional equivalence after applying an
explanation functor and then a reproduction functor?

We conduct three experiments from categorical aspects accordingly. For a common setting, we use
three multilingual datasets: HumanEval-XZheng et al. (2023), MBXPAthiwaratkun et al. (2022),
and MathQAAmini et al. (2019); Athiwaratkun et al. (2022) throughout the three experiments, and
use Text-Davinci-003 (Text-Davinci for short), gpt3.5-turbo-0301(ChatGPT for short) as common
baseline models. For more detailed experimental settings and results, please refer to Appendix A and
B.

3.2 EXPERIMENT 1: MORPHISM IDENTIFICATION WITHIN A CODE CATEGORY

3.2.1 CATEGORICAL PERSPECTIVE SETTINGS

Code Objects We conduct the experiments within the PL category and define “the function with the
same running outcome for every valid input” as the same object.

Code Morphism The general category perspectives only define morphisms between two code
snippets, but morphisms do not have distance information. Considering fine-grained evaluation, we
are curious about the model’s ability to modify or debug the code, which corresponds to the local
scale; and to write an equivalent new solution to a coding problem, which is of a global scale.

5



Under review as a conference paper at ICLR 2024

1-neq morphism

!𝑎 !𝑏 ̅𝑐
≁

𝑎!

𝑎!"
𝑎!#

𝑎$~

~

1-eq morphism

𝑑 = 2

𝑑 = 1

𝑑 = 1

∃ global morphism
𝑑 ≫ 1

𝒞

Figure 4: Morphism Identification Experiment. “1”, “2” and “global” stands for the distance of the
code.“Eq” and “neq” indicates whether the morphism is self-morphism. (Left) An illustration of
morphisms and the definition of object distance. (Right) Comparison of Text-Davinci and ChatGPT
for morphism identification.

Object Distance To test the model on both local and global scales, we define the “distance” between
two codes. As illustrated in Figure 4. In a PL Category C, we use ∼ to express functional equivalence.
ā = {x | x ∈ C, x ∼ a} means the set of all code that has the same functionality as a. In this
category, ā and c̄ are two different objects. Within ā, all code instances are functionally equivalent,
e.g. ai and aj . We can apply predefined morphisms to the objects. For example, we can apply 1-step
equivalent morphisms(1-eq morphism) on ai to get new program instances still in ā, or apply 1-step
nonequivalent morphism(1-neq morphism) to get new instance in another equivalent class b̄. Distance
d represents the minimal number of morphisms needed to transform one program to another given a
predefined morphism set. For example, Applying two different self-morphisms on ai returns a1i and
a2i , then we need at least two steps to transform from a1i to a2i . Those are local-scale equivalence. If
it is hard to transform ai to aj within just a few steps(e.g., 1 or 2 steps as illustrated here), we treat
them as global-scale equivalence.

3.2.2 IMPLEMENTATION

Dataset For local morphism, we extract the Java functions within HumanEval-X, MBXP, and MathQA
datasets. We perform the following 9 local morphisms based on AST transformations:

1. Variable Renaming (VR): rename a variable, with a new name randomly chosen from all
variable names in the dataset, or use “varN” for simplicity
2. Boolean Exchange (BE): propagate the exchange of “true” and “false” throughout the
method and preserve the same logic
3. Loop Exchange (LE): exchange for loops and while loops
4. Switch To If (SI): replace a switch statement with an equivalent if statement
5. Unused Statement(US): insert an unused string declaration to a randomly selected basic
block in a method
6. Reorder Condition (RC): write the condition in reverse order (e.g., change i < n to
n > i)
7. Permute Statement(PS): swap two independent statements (i.e. without data or control
dependence)
8. Modify Condition(MC): change the binary operation in the condition (e.g., change i < n to
i ≤ n)
9. Remove Else(RE): delete the else branch of the if-else statement

The first 7 morphisms are adopted from JavaTransformRabin et al. (2019) that conducts functionally
equivalent transformations 2, which means they are self-morphisms. Other than self-morphisms, we
add 2 morphisms: ModifyCondition and RemoveElse, that change the program’s function.

For global morphisms, since the three datasets above do not contain multiple solutions to the same
problem using the same PL, we complement with code from the test split of Code ContestLi et al.
(2022) dataset.

2Transformation samples can refer to: https://github.com/mdrafiqulrabin/tnpa-framework .

6



Under review as a conference paper at ICLR 2024

Figure 5: Comparison of model performance. (Left) Model as a translation functor. (Right) Model
as the combination of explanation functor and reproduction functor

Models We evaluate Text-Davinci and ChatGPT. We input (code, code) pairs from the datasets or
generated by morphisms, and ask the model to answer whether they are functionally equivalent.

Evaluation We collect the model’s responses and calculate the average precision for different
morphisms.

3.2.3 RESULTS

The results are demonstrated in Figure 4. Overall, Text-Davinci and ChatGPT make a tie. Locally,
ChatGPT is better at identifying nonequivalent morphisms, and worse at equivalent ones. Globally,
Text-Davinci is better at identifying global nonequivalent morphisms. Note that a random guess leads
to a precision of 50%, so both models behave just slightly better than random guesses for identifying
global equivalence.

3.3 EXPERIMENT 2: TRANSLATION FUNCTOR BETWEEN DIFFERENT PL CATEGORIES

3.3.1 CATEGORICAL PERSPECTIVE SETTINGS

We investigate the model’s ability to perform code translation by utilizing functors between two
programming language categories. To isolate the influence of natural language, we exclude problem
descriptions and code comments, forcing the models to focus solely on translating code from one
programming language (PL) category to another. The input prompt may contain a request for
translation using natural language (e.g., “translate the below Java code to Python code”).

3.3.2 IMPLEMENTATION

Datasets We conduct evaluations on the HumanEval-X, MathQA, and MBXP datasets. The input
category is Java, while the output categories are Python and JavaScript.

Models We evaluate three models: Text-Davinci, ChatGPT, and CodeGeeX. For the first two models,
we provide prompts that request the model to do the translation. However, for CodeGeeX, code
translation is supported inherently, so we simply input the Java code without additional text.

Evaluation We extract the functions from the model’s responses and assess their correctness using
the Pass@1 rates of execution-based tests.

3.3.3 RESULTS

The results are depicted in Figure 5. Among the three models, ChatGPT performs the best, exhibiting
a slight advantage over Text-Davinci. With regards to the datasets, ChatGPT and Text-Davinci achieve
nearly perfect translation accuracy on MathQA, whose data consists of functions with internal variable
initialization, and without any input arguments, loops, or conditional statements. This indicates
ChatGPT’s and Text-Davinci’s proficiency in reproducing exact numerical values and handling simple
program structures.

7



Under review as a conference paper at ICLR 2024

3.4 EXPERIMENT 3: EXPLANATION FUNCTOR AND REPRODUCTION FUNCTOR BETWEEN PL
AND NL CATEGORIES

3.4.1 CATEGORICAL PERSPECTIVE SETTINGS

Code explanation and code generation tasks have been conducted separately in previous work.
However, from a categorical perspective, we can make a combination. We define the explanation
functor as the functor that maps an object from a PL category to an NL category, with a precise
description of the code’s function. We define the reproduction functor as the functor from an NL
category to a PL category, that uses an explanation object in NL to reproduce the code of the same
function in a PL category. If the reproduced code is functionally the same as the original code, we
reckon the model preserves the functional equivalence after applying an explanation functor and then
a generation functor.

3.4.2 IMPLEMENTATION

Datasets We conduct the evaluation on three datasets: HumanEval-X, MathQA, and MBXP. For
consistency, we select Java as the programming language (PL) category for all evaluations.

Models We evaluate Text-Davinci and ChatGPT, prompting each model twice. In the first prompt,
we ask the models to describe the code using natural language, including the precise function name,
arguments, and return type, and provide sufficient information to reproduce the code. In the second
prompt, we provide the model’s explanation and ask it to translate the description back into code.

Evaluation To evaluate the correctness of the reproduced code, we extract the functions from the
model’s second responses and assess them using the Pass@1 rates of execution-based tests.

3.4.3 RESULTS

The results are depicted in Figure 5. On the same datasets and with the same two models, the average
pass@1 rate is about 30% lower compared to that of the translation functor. This indicates the model
has significant information loss in the explain-reproduce process.

3.5 SUMMARY

Based on our experiments, we have found that both Text-Davinci and ChatGPT models are capable of
identifying the impact of one or two local morphisms on code function. However, identifying global
morphisms proves to be challenging for these models. In terms of code translation, both ChatGPT and
Text-Davinci models outperform CodeGeex. They demonstrate accurate reproduction of basic syntax,
variable names, and numerical values. Nevertheless, when dealing with more intricate program
structures and aligning data types across different programming language categories, these models
encounter obstacles that hinder more precise translation. It is important to note that maintaining
functional equivalence between code and natural language presents a more formidable challenge
compared to code translation, necessitating further research in this specific domain.

4 RELATED WORK

4.1 CODING ABILITIES OF LARGE LANGUAGE MODELS

Large language models trained on code have demonstrated improvements in various coding tasks.
CodeBERT Feng et al. (2020) was one of the initial models trained on code, while GraphCodeBERT
Guo et al. (2020) incorporated program Abstract Syntax Trees (AST) and data flow information to
enhance code structure and context understanding.

The Encoder-Decoder architecture, used in models like CodeT5 Wang et al. (2021) and PLBART
Ahmad et al. (2021), enables multi-task learning for code translation, understanding, and generation.
PLBARTAhmad et al. (2021), pretrained on Java and Python functions with natural language
comments, excels in generating code from natural language descriptions.

8



Under review as a conference paper at ICLR 2024

More recently, the emergence of Codex Chen et al. (2021) and ChatGPT3 has brought GPT-based
models into the mainstream for content generation tasks, including coding. These models have shown
impressive performance across various domains, but their proprietary nature, limited access to data,
and lack of model checkpoints have made it challenging to thoroughly evaluate and understand their
capabilities and limitations. Consequently, there is a need to develop a comprehensive framework to
evaluate these black-box models.

4.2 CODE MODEL EVALUATION

There are four widely-used types of evaluation frameworks for code models: match-based, attack-
based, task-based, and execution-based.

The match-based framework includes CodeBLEURen et al. (2020) that adopts n-gram match as
BLEUPapineni et al. (2002) and further injects Abstract Syntax Tree(AST) and data-flow similarity.
However, the match-based framework may consider different solutions with varying variable names,
AST structures, and data flow as dissimilar, despite their functional equivalence.

The attack-based framework constructs adversarial program examples to assess the model’s perfor-
mance. Yefet et al. Yefet et al. (2020) generated adversarial code examples based on gradients,
uncovering vulnerabilities to variable renaming and dead code injection. Similarly, Ramakrishnan et
al.Henkel et al. (2022) and Rabin et al.Rabin et al. (2021) investigated the model’s robustness and
generalizability to semantic-preserving program transformations. However, those works primarily
focused on white-box models, and the adversarial examples are not so commonly encountered in
practice. Nevertheless, the idea of “functional equivalence” and “program transformations” in their
framework is important for related research.

Task-based evaluations focus on the model’s performance on specific coding tasks. CodeXGLUELu
et al. (2021) is a well-known task-based framework that employs diverse datasets for different coding
tasks. It provides a very comprehensive evaluation framework. However, different tasks in it do not
share enough common settings in data definition, task formulation, and test APIs. This hinders its use
in a more scalable and easy-to-follow way.

The execution-based evaluation focuses on code generation and translation tasks, evaluating the
correctness of the model-generated code based on test cases. MBXPAthiwaratkun et al. (2022)
and MultiPL-ECassano et al. (2023) are two execution-based benchmarks that support multiple
programming languages. While our work also considers test cases from execution-based benchmarks,
our focus extends beyond correctness evaluation to include code morphism and PL to NL functor
aspects.

5 LIMITATIONS

While we strive to apply categorical perspectives to offer a comprehensive and standardized way of
evaluation, we find that our current study has a number of limitations. First, more powerful concepts
and properties in category theory haven’t been fully utilized by our current study. Our experiments
primarily focus on objects, morphisms, functors, and their combinations. However, we leave it for
future work to further investigate the setting of composing many morphisms and many functors to
further explore the commutative law and isomorphism properties of categories. Second, we use
prompts to instruct the models to act as certain functors, but prompts that express similar meanings
will lead to different results, we have not investigated which prompts are more suitable for the model
or which models are more robust to different prompts. Moreover, due to limitations in computational
resources and API accessibilities, we did not test more models.

6 CONCLUSION

Our contributions include introducing CatCode as a novel evaluation perspective based on category
theory, which enables a comprehensive and mathematically abstract approach to evaluate LLMs that
excel in understanding and generating a mixture of code and text. Based on categorical perspectives,

3https://openai.com/blog/chatgpt/

9



Under review as a conference paper at ICLR 2024

we present a standardized automatic evaluation platform, which is adaptive to new datasets, tasks,
and models. We evaluate competitive LLMs to provide valuable insights, and find out current models’
deficiency in recognizing functionally equivalent code and preserving information of code function
between the code and its explanation. We plan to open-source our platform, hoping to contribute to
the comprehensive and standardized evaluation for LLMs by offering a categorical perspective to
deal with the mixture of code and text.

We believe that CatCode represents an important step towards a more comprehensive and standardized
evaluation of LLMs’ abilities in solving coding problems. By combining the power of category theory
with the growing capabilities of LLMs, we can unlock new possibilities for defining and evaluating
more diverse code-related tasks. We hope that CatCode inspires further research and development in
the field, leading to more sophisticated LLMs that can effectively assist developers in their coding
tasks and contribute to advancements in artificial intelligence and software engineering as a whole.

REFERENCES

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-training for
program understanding and generation. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer,
Dilek Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao
Zhou (eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-
11, 2021, pp. 2655–2668. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.
naacl-main.211. URL https://doi.org/10.18653/v1/2021.naacl-main.211.

Benedikt Ahrens and Kobe Wullaert. Category theory for programming. CoRR, abs/2209.01259,
2022. doi: 10.48550/arXiv.2209.01259. URL https://doi.org/10.48550/arXiv.
2209.01259.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
Mathqa: Towards interpretable math word problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319, 2019.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla, Hantian
Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng
Qian, Murali Krishna Ramanathan, Ramesh Nallapati, Baishakhi Ray, Parminder Bhatia, Sudipta
Sengupta, Dan Roth, and Bing Xiang. Multi-lingual evaluation of code generation models.
CoRR, abs/2210.14868, 2022. doi: 10.48550/arXiv.2210.14868. URL https://doi.org/10.
48550/arXiv.2210.14868.

Tai-Danae Bradley. What is applied category theory? arXiv preprint arXiv:1809.05923, 2018.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. MultiPL-E: A Scalable and Polyglot Approach to
Benchmarking Neural Code Generation. IEEE Transactions on Software Engineering, pp. 1–
17, 2023. ISSN 0098-5589, 1939-3520, 2326-3881. doi: 10.1109/TSE.2023.3267446. URL
https://ieeexplore.ieee.org/document/10103177/.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021. URL https://arxiv.
org/abs/2107.03374.

10

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.48550/arXiv.2209.01259
https://doi.org/10.48550/arXiv.2209.01259
https://doi.org/10.48550/arXiv.2210.14868
https://doi.org/10.48550/arXiv.2210.14868
https://ieeexplore.ieee.org/document/10103177/
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374


Under review as a conference paper at ICLR 2024

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Brendan Fong and David I Spivak. Seven sketches in compositionality: An invitation to applied
category theory. arXiv preprint arXiv:1803.05316, 2018.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with
data flow. arXiv preprint arXiv:2009.08366, 2020.

Jordan Henkel, Goutham Ramakrishnan, Zi Wang, Aws Albarghouthi, Somesh Jha, and Thomas W.
Reps. Semantic robustness of models of source code. In IEEE International Conference on
Software Analysis, Evolution and Reengineering, SANER 2022, Honolulu, HI, USA, March 15-
18, 2022, pp. 526–537. IEEE, 2022. doi: 10.1109/SANER53432.2022.00070. URL https:
//doi.org/10.1109/SANER53432.2022.00070.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, 2022. doi: 10.1126/science.abq1158.
URL https://www.science.org/doi/abs/10.1126/science.abq1158.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. arXiv preprint arXiv:2102.04664, 2021.

Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bernstein, Erin Ross, and Ziheng Huang. Gen-
erating diverse code explanations using the GPT-3 large language model. In Jan Vahrenhold,
Kathi Fisler, Matthias Hauswirth, and Diana Franklin (eds.), ICER 2022: ACM Conference
on International Computing Education Research, Lugano and Virtual Event Switzerland, Au-
gust 7 - 11, 2022, Volume 2, pp. 37–39. ACM, 2022. doi: 10.1145/3501709.3544280. URL
https://doi.org/10.1145/3501709.3544280.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. In
NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA, pp. 311–318. ACL, 2002.
doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040/.

Md. Rafiqul Islam Rabin, Ke Wang, and Mohammad Amin Alipour. Testing neural programs. CoRR,
abs/1908.10711, 2019. URL http://arxiv.org/abs/1908.10711.

Md. Rafiqul Islam Rabin, Nghi D. Q. Bui, Ke Wang, Yijun Yu, Lingxiao Jiang, and Mohammad Amin
Alipour. On the generalizability of neural program models with respect to semantic-preserving
program transformations. Inf. Softw. Technol., 135:106552, 2021. doi: 10.1016/j.infsof.2021.
106552. URL https://doi.org/10.1016/j.infsof.2021.106552.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis.
CoRR, abs/2009.10297, 2020. URL https://arxiv.org/abs/2009.10297.

David I. Spivak. Category Theory for the Sciences. MIT Press, 2014. ISBN 9780262028134. URL
https://mitpress.mit.edu/books/category-theory-sciences.

11

https://doi.org/10.1109/SANER53432.2022.00070
https://doi.org/10.1109/SANER53432.2022.00070
https://www.science.org/doi/abs/10.1126/science.abq1158
https://doi.org/10.1145/3501709.3544280
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://aclanthology.org/P02-1040/
http://arxiv.org/abs/1908.10711
https://doi.org/10.1016/j.infsof.2021.106552
https://arxiv.org/abs/2009.10297
https://mitpress.mit.edu/books/category-theory-sciences


Under review as a conference paper at ICLR 2024

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. Intellicode compose: code
generation using transformer. In Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann (eds.),
ESEC/FSE ’20: 28th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020, pp. 1433–
1443. ACM, 2020. doi: 10.1145/3368089.3417058. URL https://doi.org/10.1145/
3368089.3417058.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In Marie-Francine Moens,
Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 7-11 November, 2021, pp. 8696–8708. Association for Computational
Linguistics, 2021. doi: 10.18653/v1/2021.emnlp-main.685. URL https://doi.org/10.
18653/v1/2021.emnlp-main.685.

Noam Yefet, Uri Alon, and Eran Yahav. Adversarial examples for models of code. Proc. ACM
Program. Lang., 4(OOPSLA):162:1–162:30, 2020. doi: 10.1145/3428230. URL https://doi.
org/10.1145/3428230.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi
Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for code
generation with multilingual evaluations on humaneval-x, 2023.

Ming Zhu, Karthik Suresh, and Chandan K Reddy. Multilingual code snippets training for program
translation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
11783–11790, 2022.

12

https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.1145/3428230
https://doi.org/10.1145/3428230


Under review as a conference paper at ICLR 2024

Appendix
The appendix is divided into three sections, each focusing on distinct aspects of the study. These
sections are labeled as follows:

A. Implementation Details: This section covers the implementation process, including the anonymous
link to our code, dataset details, data filtering, model specifications, and evaluation metrics, providing
information on how to reproduce based on our standard evaluation pipeline.

B. Experimental Details: This part introduces the experimental settings and more experimental results
in detail. We further discuss the model’s performance on different morphism types in the identification
experiment, and the common error types in the translation and reproduction experiments.

C. Case Study: This section offers some intuitive examples of the experiments. Through analysis of
those examples, we can find some limitations of current models, prompts, and test scripts.

A IMPLEMENTATION DETAILS

We have uploaded the code to the anonymous website: https://anonymous.4open.science/r/CatCode-
6402/. A README.md file is provided, offering step-by-step instructions on how to use the evaluation
platform and replicate the entire evaluation process in a standardized way.

In this section, we will provide additional details regarding the reproduction process, including the
dataset split, data filtering, models used, and evaluation metrics.

A.1 DATASET DETAILS

The following datasets were used in our evaluation:

• HumanEval-X4: a human-crafted dataset with 164 problems, correct solutions in 5 different
languages, and test cases. It is a benchmark for evaluating code generation and translation models.
We use the Java split of HumanEval-X as input for applying morphism, code translation, and code
explanation. Although Mxeval provide multilingual solutions, they are generated by models and
do not make a distinction between correct and wrong solutions. In contrast, HumanEval-X provides
correct solutions, making it a more suitable complement.

• MBXP: a benchmark for evaluating code generation models. It covers over 10 programming
languages and is generated using a scalable conversion framework that transpiles prompts and test
cases from the original Python datasets into the corresponding data in the target language. It’s a
dataset similar to HumanEval-X but does not ensure the correctness of the transpiled code.

• MathQA: a dataset for evaluating math problem solvers. All functions in this dataset have no input
argument and return a number. The functions first initialize variables, then do some calculations,
and do not use any loops or conditional statements. Compared to HumanEval-X and MBXP, the
code in MathQA is simpler in structure and functionality.

• Code Contest: a large-scale competitive multi-language programming dataset used for training
AlphaCodeLi et al. (2022). It consists of programming problems, test cases in the form of paired
inputs and outputs, and both correct and incorrect solutions. Since the aforementioned datasets
do not provide multiple solutions within the same programming language, Code Contest serves as
a valuable complement by offering multiple solutions to the same problem, representing global
equivalence and non-equivalence.

Data filtering

• Only the Java split of HumanEval-X, MBXP, and MathQA datasets are used. The local morphism is
applied by JavaTransformer by AST edits at the function level. To use JavaTransformer, the
code must compile successfully and contain a single function. We filter out code in the Mxeval
datasets that are generated by the model and cannot compile or contain multiple functions.

4https://huggingface.co/datasets/THUDM/humaneval-x

13



Under review as a conference paper at ICLR 2024

Model Morphism Translation Functor Explanation Functor Reproduction Functor
Davinci ✓ ✓ ✓ ✓

ChatGPT ✓ ✓ ✓ ✓
CodeGeeX ✓

Table 1: Baseline Models and their supported evaluation tasks.

• Due to the large size of the Code Contest dataset, only the test set is used. Considering that the
maximum token length of Text-Davinci is 2048, we filter out solutions with a length greater than
500. This ensures that the code pair length remains ≤ 1000, allowing for additional tokens for
prompt content and response. After filtering, 97 problems remain, and a problem may have multiple
correct and incorrect solutions in different languages. We utilize the Java and Python splits of this
dataset.

A.2 MODEL DETAILS

We utilize the following baseline models by making API calls to their official endpoints: Text-Davinci-
003 (referred to as Davinci), ChatGPT, and CodeGeeX. The default hyperparameters of these models
are used, with the exception of setting max_token to 500 when an early stop of the answer is
observed.

Table 1 provides an overview of the tasks supported by each model. Since Text-Davinci-003 and
ChatGPT support various types of text inputs and outputs, they are capable of performing all tasks.
On the other hand, the CodeGeeX API does not support natural language output, so we only employ
it in translation functor experiments.

A.3 EVALUATION METRICS

To assess the performance of the model, we conduct two types of tests: pairing test and execution-
based test.

The pairing test is utilized for morphism identification. The task involves comparing two code
snippets and requesting the model to explicitly answer “True” or “False”, along with providing
a comparison. For automatic evaluation, we extract the True” or “False” answer. The precision
score is used to evaluate the model’s ability to identify different equivalence classes. For equivalent
objects, the precision is calculated as Precision(eq) = TP

TP+FN , while for nonequivalent objects,
the precision is calculated as Precision(neq) = TN

TN+FP .

The execution-based test is employed for both translation and reproduction experiments. We extract
the functions from the model’s responses and evaluate their correctness using the Pass@1 rates
of execution-based tests. This test ensures that the translated/reproduced code produces the same
expected results as the original code.

B EXPERIMENTAL DETAILS

B.1 MORPHISM IDENTIFICATION

Data statistics. Table 2 provides the statistics of the raw data, filtered data, and constructed pairs for
the morphism identification experiment. The filtering strategy, described in Section A.1, involves
removing comments and docstrings, resulting in filtered data consisting solely of Java code. The
constructed pairs are generated through sampling. It is worth noting that certain morphisms can
have multiple outputs for a given input. For instance, the Variable Renaming morphism can be
applied to all variables in a function, resulting in multiple outputs equal to the number of variables. To
balance the number of outputs across different morphism types, random sampling is employed when
there are more than two applicable morphism types. For each code sample, two types of morphisms
are first sampled, followed by sampling one output for each morphism type.

Discussion of different morphism types.

14



Under review as a conference paper at ICLR 2024

Dataset #after filter / #raw data #equivalent pair #nonequivalent pair
Humaneval-X 159 / 164 477 173

MBXP 953 / 974 2849 1010
MathQA 1734 / 1881 4852 1418

Code Contest 97 / 164 97 366

Table 2: Dataset statistics for morphism identification experiment.

HumanEval MathQA MBXP
BE-VR (66.67) MC (45.66) BE (33.33)
US (74.74) RC-US (85.71) PS-US (69.57)
LE-RC (78.57) PS-US (87.84) RC-US (70.39)

Table 3: Morphism types with the three worst average precision scores of each dataset. As an example
for notations, BE-VR (66.67) stands for a 2-eq morphism of “Boolean Exchange” and “Variable
Renaming” with a precision score of 66.67%.

Which morphism types are harder to identify, and are they hard across datasets? We calculate the
average precision scores for 1-eq, 2-eq, and 1-neq local morphisms for ChatGPT answers, as shown
in Table 3.

The following observations can be made:

• For one morphism: “Unused Statements”, “Modify Condition” and “Boolean Exchange” are
particularly difficult to identify. One possible reason for this difficulty is that these morphisms
involve subtle changes or transformations in the code that may not be easily recognizable based
on the surrounding context alone. It requires a more nuanced understanding of the code logic and
structure to detect these morphisms

• For 2-eq morphisms: The observation that “Unused Statements” remains challenging when com-
bined with other morphisms suggests that the presence of multiple morphisms in the code can
further complicate the identification task.

• Dataset-specific difficulties: The results indicate that the difficulty of identifying “Unused State-
ments” persists across datasets, suggesting that this morphism type poses inherent challenges in
code comprehension. On the other hand, the specific difficulty in identifying “Modify Condition”
in the MathQA dataset may be attributed to the nature of the dataset itself, which focuses on math
problem solvers.

B.2 TRANSLATION FUNCTOR

Data statistics. We use the filtered data in Table 2 as input, i.e. 159, 953, and 97 Java Snippets
for HumanEval-X, MBXP, and MathQA, respectively. Each model generates a Python object and a
JavaScript object for each Java object. During test phase, since the Mexeval dataset is missing 3
test cases in the Java split of HumanEval (TaskID: 32, 38, 50), we use 156, 953, and 97 Java functions
to calculate the pass@1 rates for HumanEval-X, MBXP, and MathQA respectively.

Results statistics. The pass@1 score of different models on different datasets is shown in Table 4.
Overall, ChatGPT has a relatively higher translation ability.

Discussion of failure types. Table 5 represents the most frequent failure types of translation functor
on three datasets. We observe that most errors are compilation errors rather than failures at corner
test cases.

These errors are often caused by type mismatches between different programming languages. For
instance, when translating a list in Java, there are multiple potential types in Python, including list,
tuple, and List from the typing module.

The occurrence of “NameError” and “ReferenceError” indicates an unfaithful translation of variable
names by the model or mismatched function input arguments across different languages for the same
problem. This is a limitation inherent in the current evaluation setup.

15



Under review as a conference paper at ICLR 2024

Java->Py Java->JS Java->Py Java->JS Java->Py Java->JS
Text-Davinci 80.8 79.5 99.4 99.1 66.6 64.4 81.6
ChatGPT 83.0 85.8 99.2 99.4 69.0 72.1 84.8
CodeGeeX 24.5 20.5 70.5 72.2 29.2 32.8 41.6

HumanEval MathQA MBXPModel Avg.

Table 4: Translation pass@1 score (%) statistics, corresponding to the Figure 5 (Left). The models
translate Java code to two languages Python (Py) and JavaScript (JS), on three datasets. The average
(Avg.) is the average score over the six scores.

Java->Py Java->JS Java->Py Java->JS Java->Py Java->JS
Unknown (10) ReferenceErr. (24) Unknown (9) Test Failure (10) Unknown(175) ReferenceErr. (285)
NameErr. (7) Test Failure (18) IndentationErr. (1) ReferenceErr. (2) NameErr. (47) Test Failure (174)

Test Failure (2) TypeErr. (5) NameErr. (1) SyntaxErr. (2) ReferenceErr. (26) TypeErr. (41)
Unknown (14) ReferenceErr. (21) Unknown (8) Test Failure (9) Unknown (145) ReferenceErr. (247)
NameErr. (6) Test Failure (17) SyntaxErr. (4) SyntaxErr. (1) NameErr. (81) Test Failure (101)
SyntaxErr. (2) SyntaxErr. (1) NameErr. (1) \ (0) SyntaxErr. (15) SyntaxErr. (8)
Unknown (50) Test Failure (82) ReferenceErr. (330) Test Failure (394) Unknown (175) ReferenceErr. (559)
NameErr. (31) ReferenceErr. (26) NameErr. (107) ReferenceErr. (75) NameErr. (47) Test Failure (289)

Test Failure (10) TypeErr. (6) Unknown (38) SyntaxErr. (11) ReferenceErr. (26) TypeErr. (55)

ChatGPT

CodeGeeX

HumanEval MathQA MBXPModel

Davinci

Table 5: Most frequent failure types of translation functor. The data in the table cell is written as
ErrorType (frequency), and Err. is short for Error. Specifically, the “Unknown” type only exists in
Python, and “Test Failure” represents the code that complies successfully but fails to pass some of
the test cases. Other types of errors in this table are primarily caused by compilation errors.

Overall, the models have demonstrated the ability to perform correct translations in most cases
between different programming languages. The errors mainly arise from type alignment issues
between programming languages and local variable definitions. These errors are typically easy to
debug for programmers if provided with relevant information. Future work could involve passing
error messages to the model and allowing it to debug itself.

B.3 EXPLANATION AND REPRODUCTION FUNCTOR

Data statistics. Same as Appendix B.2, we use 156, 953, and 97 Java functions to calculate the
pass@1 rates for HumanEval-X, MBXP, and MathQA separately.

Results statistics. Table 6 shows the pass@1 rates of different models. TextDavinci is better
at MathQA, while ChatGPT is better at HumanEval and MBXP datasets. The pass@1 score is
significantly lower compared to translation functor experiments, indicating that it’s a more difficult
task.

Discussion of failure types. Table 7 shows the most frequent failure types of translation functor
on the three datasets. Based on the results, it appears that both models encounter similar types
of failures across the different evaluation tasks. The “Test Failure” type is particularly prominent,
indicating that the reproduced code, although compiling successfully, fails to pass some of the test
cases. Additionally, both models also encounter errors related to symbol identification, such as
“CannotFindSymbol” and “TypeError”. These errors are primarily compilation errors.

It’s worth further investigating the causes behind these failure types and exploring strategies to
improve the models’ performance, especially in handling test cases and resolving symbol-related
errors.

C CASE STUDY

In this Section, we analyze some classical cases from our three experiments.

16



Under review as a conference paper at ICLR 2024

Model HumanEval MathQA MBXP Avg.
TextDavinci 33.0 75.5 55.2 54.6

ChatGPT 35.9 69.1 57.1 54.0

Table 6: Pass@1 score (%) statistics of the reproduced code, corresponding to the Figure 5 (Right).

Model HumanEval MathQA MBXP
CannotFindSymbol (47) Test Failure (350) Test Failure (181)

TypeError (38) UninitializedVariable (24)CannotFindSymbol (164)
Test Failure (22) CannotFindSymbol (18) TypeError (27)

CannotFindSymbol (46) Test Failure (401) CannotFindSymbol (137)
TypeError (39) DuplicateDeclaration (60) Test Failure (126)

Test Failure (17) SyntaxError (44) UnexpectedEOF (70)

TextDavinci

ChatGPT

Table 7: Most frequent failure types of the reproduced code. The data in the table cell is written
as ErrorType(frequency). Specifically, the “Test Failure” type represents the code that complies
successfully but fails to pass some of the test cases. Other types of errors in this table are primarily
caused by compilation errors.

C.1 MORPHISM IDENTIFICATION

Refer to Figure 6 and Figure 7. Those cases show the model can identify the literate differences
between the code pairs but fails to clearly interpret their functional difference.

C.2 TRANSLATION FUNCTOR

According to the previous statistics, most translation errors happen in the compilation stage. We are
also concerned about if there are no compile errors, when will the model make mistakes. Figure 8
shows such a case where some information about the numerical data type is missing when translation.

C.3 EXPLANATION FUNCTOR AND REPRODUCTION FUNCTOR

Figure 9 shows a case where information loss and hallucination happen during explanation and
reproduction. This is often the case when the model deals with the MathQA dataset. To improve
the performance of the model, using few-shot prompts to illustrate how to explain the code may be
useful.

17



Under review as a conference paper at ICLR 2024

Prompt Text:
Do the two codes below have the same output for each input? In your first sentence, answer “True” or
“False”. Then points out all the differences of the two codes.
HumanEval/154 LoopExchange-ReorderCondition
public boolean cycpatternCheck(String a, String b) {

int l = b.length();

String pat = b + b;

for (int i = 0; i <= a.length() - l; i++) {

for (int j = 0; j <= l; j++) {

if (a.substring(i, l + i).equals(pat.substring(j, j

+ l))) {

return true;

}

}

}

return false;

}

public boolean cycpatternCheck(String a, String b) {

int l = b.length();

String pat = b + b;

for (int i = 0; i <= a.length() - l; i++) {

{

int j = 0;

while (j <= l) {

if (a.substring(i, i + l).equals(pat.

substring(j, j + l))) {

return true;

}

j++;

}

}

}

return false;

}

ChatGPT Response
False. Differences:

- In code A, the while loop is used to iterate through the `l+1` possible subpatterns of `a` that have length `l`. In code B, the

for loop is used instead.

- In code B, the condition for the for loop is `j <= l`, which means it checks if `j` is less than or equal to `l`. This will result

in the last possible subpattern being ignored because `j` will stop at `l` and not check anything after it. Therefore, the correct

condition should be `j < l`.

- In code B, the condition for comparing the substrings is `if (a.substring(i, l + i).equals(pat.substring(j, j + l)))`. This checks

if the substring of `a` starting from index `i` with a length of `l` equals the corresponding substring of `pat`. In code A, the

condition is similar, except it uses `a.substring(i, i + l)` instead. Both conditions are correct, but they differ slightly in their

expression.

HumanEval/129 LoopExchange-ReorderCondition
ChatGPT Response
False. The codes have differences in their inner loops and conditions inside the loops.
Code A uses a while loop to iterate through the columns of each row, whereas Code B uses two for loops
to iterate through both rows and columns of the grid.
Code A also checks whether a cell contains a 1 before checking its neighbors, while Code B simply
iterates through every cell regardless of its value.
Finally, there is an error in Code B where it checks the neighbor to the bottom incorrectly: it should use `i
+ 1` instead of `1 + i`.

Figure 6: Two failed cases of ChatGPT in the morphism identification experiment. For “Hu-
manEval/154”, ChatGPT fails to interpret the loop execution condition correctly. For “Hu-
manEval/129” ChatGPT reckon equivalent math expression as different. To improve the model’s
reasoning ability, a possible way is to utilize the method of Chain of Thoughts(CoT) to construct
better prompts and give the model some time to think before making a decision.

18



Under review as a conference paper at ICLR 2024

Prompt Text:
Do the two codes below have the same output for each input? In your first sentence, answer “True” or
“False”. Then points out all the differences of the two codes.
HumanEval/94 BooleanExchange-VariableRenaming
public int skjkasdkd(List<Integer> lst) {

int maxx = 0;

for (int i : lst) {

if (i > maxx) {

boolean isPrime = !(i != 1);

for (int j = 2; j < Math.sqrt(i) + 1; j++) {

if (i % j == 0) {

isPrime = true;

break;

}

}

if (!(isPrime)) {

maxx = i;

}

}

}

...

return sum;

}

public int skjkasdkd(List<Integer> var) {

int maxx = 0;

for (int i : var) {

if (i > maxx) {

boolean isPrime = i != 1;

for (int j = 2; j < Math.sqrt(i) + 1; j++) {

if (i % j == 0) {

isPrime = false;

break;

}

}

if (isPrime) {

maxx = i;

}

}

}

...

return sum;

}

ChatGPT Response
False.

Differences:

- In code A, the `isPrime` boolean variable is assigned to `!(i != 1)` which is equivalent to `i == 1`. Whereas in code B, it is

assigned to `i != 1`.

- In code A, the condition for updating the `maxx` variable is `if (!(isPrime))` which means if the number is not prime.

Whereas in code B, it is `if (isPrime)` which means if the number is prime.

- ...

- Inside the inner loop of the `isPrime` check, code A sets `isPrime` to `true` if a factor of `i` is found and breaks out of the

loop. This is incorrect since it sets `isPrime` to true even when a factor is found, whereas it should set it to false because `i`

has factors other than 1 and itself. Code B correctly sets `isPrime` to `false` in this case.

- ...

Figure 7: A failed case of ChatGPT in the morphism identification experiment. ChatGPT understands
the meaning of the word “isPrime” and points out the logical error. Although logical error exists
in natural language, the code function is still the same. ChatGPT fails to find that code A is still
equivalent to B.

19



Under review as a conference paper at ICLR 2024

Prompt Text:
Translate the below Java code to JavaScript code. The function header is function isPerfectSquare(n) { {. You should only

answer the JavaScript function body without further comments and explanations.

MBXP/803
Java Code (from the dataset) JavaScript Code (by TextDavinci)

public static Boolean isPerfectSquare(int n) {

if (n < 0) {

return false;

}

int sqrt = (int) Math.sqrt(n);

return sqrt * sqrt == n;

}

if (n < 0) {

return false;

}

let sqrt = Math.sqrt(n);

return sqrt * sqrt == n;

}

Test Cases
var arg00 = 10;

var x0 = isPerfectSquare(arg00);

var v0 = false;

if(v0)){

throw 'Error at 1th assert statement. Value = ' + JSON.stringify(x)

}

var arg10 = 36;

var x1 = isPerfectSquare(arg10);

var v1 = true;

if(!compare(x1, v1)){

throw 'Error at 2th assert statement. Value = ' + JSON.stringify(x)

}

var arg20 = 14;

var x2 = isPerfectSquare(arg20);

var v2 = false;

if(!compare(x2, v2)){

throw 'Error at 3th assert statement. Value = ' + JSON.stringify(x)

}

Execution Results
...

throw 'Error at 3th assert statement.

Figure 8: A notable failure case occurred during the translation functor experiment with Text-Davinci.
Text-Davinci fails to consider data type conversions during translation. This issue becomes evident
when examining the three test cases provided in Mxeval, as the execution encounters an error in the
third case. However, if it were not for the incorrect test scripts generated by the model in Mxeval,
the translated code should have been identified as incorrect in the first case. This particular case
highlights the importance of enhancing the correctness of model-generated execution test scripts for
a more accurate test of code.

20



Under review as a conference paper at ICLR 2024

Prompt Text:
(Explanation task) Please describe the following code written in ``` using natural language. Your
description should include the exact function name, its arguments, and the return type. Additionally,
provide enough details such as variable initialization to allow someone to reproduce the code based on
your explanation.
(Reproduction task) Translate the below code description to Java code: <Explanation>
MathQA/1014

Java Code (from the dataset) Reproduced Code (by Text-Davinci)
```
public static double problem() {

double n0 = 2.0;
double n1 = 7.0;
double n2 = 57.0;
double n3 = 3.0;
double n4 = 6.0;
double n5 = 63.0;
double n6 = 5.0;
double n7 = 9.0;
double n8 = 206.0;
double n9 = 5.0;
double n10 = 8.0;
double t0 = Math.pow(n9, Math.min(n3, 5));
double t1 = Math.pow(n10, Math.min(n0, 5));
double answer = t0 + t1;
return answer;
}

```

double n0 = 2;
double n1 = 4;
double n2 = 1;
double n3 = 3;
double n4 = 2;
double n5 = 8;
double n6 = 10;
double n7 = 3;
double n8 = 14;
double n9 = 2;
double n10 = 3;
double t0 = Math.pow(n9, n10);
double t1 = Math.min(n3, n0);
return t0 + t1;

Explanation (by Text-Davinci)
This is a public static method called 'problem()' that does not take any arguments and returns a double
value. The method initializes the variables n0 to n10 with double values and assigns them to the specified
numbers. It then uses the Math.pow() method to use the variables n9 and n10 as the base for the power and
the Math.min() method to use the variables n3 or n0 as the second parameter. It then assigns these two
values, t0 and t1, as addends of a sum and returns the answer, a double value.
Execution Results
Exception -- test case 0 did not pass.

Figure 9: A failure happens in the explanation and reproduction functor experiment. Text-Davinci
doesn’t explain the code with any numerical details, and it makes up some numbers during reproduc-
tion.

21


	Introduction
	Methods
	Comprehensive Categorical Perspective
	Standardized Evaluation Platform

	Experiments
	Research Questions and Basic Settings
	Experiment 1: Morphism Identification Within a Code Category
	Categorical Perspective Settings
	Implementation
	Results

	Experiment 2: Translation Functor Between Different PL Categories
	Categorical Perspective Settings
	Implementation
	Results

	Experiment 3: Explanation Functor and Reproduction Functor Between PL and NL Categories
	Categorical Perspective Settings
	Implementation
	Results

	Summary

	Related Work
	Coding Abilities of Large Language Models
	Code Model Evaluation

	Limitations
	Conclusion
	Implementation Details
	Dataset Details
	Model details
	Evaluation Metrics

	Experimental Details
	Morphism Identification
	Translation Functor
	Explanation and Reproduction Functor

	Case Study
	Morphism Identification
	Translation Functor
	Explanation Functor and Reproduction Functor


