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Abstract. Despite significant progress on domain and camera-specific
models for monocular depth estimation, accurate metric depth estima-
tion for images in the wild remains largely unsolved. Challenges include
the joint modeling of indoor and outdoor scenes, which often exhibit sig-
nificantly different distributions of RGB and depth, and the depth-scale
ambiguity due to varying camera intrinsics. We propose a generic, task-
agnostic diffusion model for monocular metric depth estimation, with
several key advancements such as a log-scale depth parameterization to
enable joint modeling of indoor and outdoor scenes and use of a diverse
training data mixture with further synthetic augmentations to generalize
beyond the limited camera intrinsics in training datasets. We show that
conditioning on the field-of-view (FOV), instead of the much stronger en-
tire intrinsics [23], is sufficient to handle scale ambiguity. Finally, we show
that with an efficient parameterization of the reverse process, inference
is remarkably fast, requiring just a few denoising iterations. Our method,
dubbed DMD (Diffusion for Metric Depth), significantly outperforms re-
cent methods on diverse indoor and outdoor zero-shot benchmarks.

1 Introduction

Monocular estimation of metric depth remains largely unsolved. Key challenges
stem from (1) the large differences in RGB and depth distributions in indoor
and outdoor data, and (2) depth scale ambiguity when one lacks knowledge
of camera intrinsics. Not surprisingly, most recent works in monocular depth
estimation train separate models for indoor and outdoor scenes, often on a single
dataset with fixed camera intrinsics (e.g., an RGBD camera, or RGB+LIDAR
for outdoor scenes). This avoids aforementioned challenges but at the cost of
generality, i.e., overfitting to the camera intrinsics of the training data, and
performing poorly on out-of-distribution data.

The predominant approach to jointly modeling indoor and outdoor data is
to estimate scale- and shift-invariant depth, rather than metric depth (e.g., Mi-
DaS [40]). Normalizing the depth distributions brings indoor and outdoor depth
distributions closer and also avoids the problems of scale ambiguities in the
presence of variable camera intrinsics. Recently there has been growing inter-
est in bridging these different approaches, training joint indoor-outdoor models
† Correspondence to srbs@google.com
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Fig. 1: Relative depth error for DMD (ours) compared to recent state-of-the-art joint
indoor-outdoor models on zero-shot indoor and outdoor benchmarks. Overall DMD out-
performs all baselines reducing relative error (REL) by 29% over ZoeDepth [5], by 9%
over ZeroDepth [23] and by 49% over Metric3D [55]. Note that certain results for
Metric3D are truncated for better visualization. Results for Metric3D on DDAD are
omitted since DDAD is included in the training data for Metric3D.

that estimate metric depth. To cope with both indoor and outdoor domains,
ZoeDepth [5] adds two heads to MiDaS [40], one for each domain, to convert
from scale-invariant depth to metric depth. In order to handle diverse camera
intrinsics, Metric3D [55] transforms images and depths to a canonical camera in-
trinsic. ZeroDepth [23] proposes conditioning on the entire intrinsics by building
a dense ray map.

In this paper we introduce, for the first time, a diffusion model for zero-shot
metric monocular depth estimation, outperforming previous approaches. To this
end we leverage several key insights and innovations: i) representing depth in
the log domain allocates model capacity in a more balanced way for indoor and
outdoor scenes, greatly improving performance on regions with shallower depths;
ii) Field-of-view (FOV) conditioning allows mixing datasets of varying intrinsics
during training and helps resolve intrinsic scale ambiguities during inference; iii)
FOV augmentation during training improves generalization to different camera
intrinsics; iv) careful parameterization of the diffusion model dramatically re-
duces inference time; and v) using a diverse training mixture provides an addi-
tional boost in performance. The resulting model, dubbed DMD (Diffusion for
Metric Depth), outperforms recently proposed indoor-outdoor monocular depth
models [5], including those leveraging camera intrinsics [23,55].
To summarize, we make the following contributions:
– We introduce DMD, a simple yet effective diffusion model for zero-shot met-

ric depth estimation on general scenes, establishing a new SOTA.
– We identify key ingredients that greatly affect model performance, including

log-scale depth, FOV conditioning, FOV augmentations, data mixtures, and
denoising parameterization.

– For zero-shot metric depth estimation, DMD improves relative error (REL)
by 29% over ZoeDepth [5], by 9% over ZeroDepth [23] and by 49% over
Metric3D [55] using only a few denoising steps.
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2 Related Work

Monocular depth (fine-tuned and evaluated in-domain). Given the chal-
lenges of learning a joint indoor-outdoor model, most approaches have restricted
models to target a single dataset (either indoor or outdoor) with fixed intrin-
sics. In this setting, great progress has been made with advancements in spe-
cialized architectures [15, 16] such as the use of binning [1, 3, 8, 18, 34] or loss
functions [15, 32] that are suited for this task. [2] proposed combining multiple
training datasets with variable intrinsics by normalizing the images to the same
camera intrinsic.
Joint indoor-outdoor models. To train joint indoor-outdoor models, one can
mitigate the difficulty of learning diverse scene statistics by estimating scale-
and shift-invariant depth instead. MiDaS [40] trains their model on diverse
indoor-outdoor datasets and demonstrates good generalization to various unseen
datasets. However, they do not provide metric depth. DPT [39] leverages this
for pre-training and further fine-tunes separately for metric depth on NYU and
KITTI. ZoeDepth [5] proposes adding a mixture-of-experts head, supervised by
scene type, on top of a similarly pre-trained model, thereby handling indoor and
outdoor scenes. In contrast, our model, DMD, uses a relatively generic frame-
work, without domain-specific architectural components.
Intrinsics-conditioning for monocular depth. Incorporating camera intrin-
sics for depth estimation has been briefly explored in previous work [17,24]. They
argue that intrinsics-conditioning allows one to train on multiple datasets with
varying intrinsics, but this is only demonstrated with small-scale experiments.
Recently, ZeroDepth [23] introduces an intrinsic-conditioned metric-scale depth
estimator via a variational latent representation and trains it on large-scale train-
ing datasets. However, using the full camera intrinsics limits the types of data
augmentation. Metric3D [55] transforms images and depths to a canonical cam-
era intrinsic, a hyperparameter that needs tuning.

In this paper, we condition on a weaker signal, i.e., the input field of view
(FOV), and introduce a novel FOV augmentation scheme that augments training
data by cropping or uncropping to simulate diverse FOVs.
Diffusion for vision. Denoising diffusion models [25,48] have recently emerged
as a powerful class of generative models. Although initially proposed for natural
image generation [13, 26, 37, 43], they have recently been shown to be effective
for several computer vision tasks such as semantic segmentation [28], panoptic
segmentation [9], optical flow [45] and monocular depth estimation [14, 28, 45].
Ours is the first demonstration that diffusion models can also support state-of-
the-art zero-shot metric depth estimation for general indoor or outdoor scenes.

3 Diffusion for Metric Depth (DMD)
We cast monocular depth estimation as a generative RGB-to-depth translation
task using probabilistic denoising diffusion models. To this end, we introduce
several technical innovations to conventional diffusion models and training pro-
cedures to accommodate zero-shot, metric depth. In what follows we provide the
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Fig. 2: The architecture of DMD consists of an Efficient UNet [43] backbone that
denoises depth conditioned on an RGB image. Depth is parameterized in log-scale to
equitably allocate representation capacity for shallow and deep depths. Each layer of
the UNet is modulated by the timestep and FOV embeddings using FiLM [38] layers.
FOV conditioning enables our models to predict the correct depth scales across diverse
camera intrinsics. Furthermore, the denoising process is v-parameterized which greatly
reduces the number of sampling steps needed for inference.

necessary context and the design decisions that significantly impact the perfor-
mance of DMD on zero-shot metric depth estimation for indoor and outdoor
scenes.

3.1 Diffusion models

Diffusion models are probabilistic models that assume a forward process that
gradually transforms a target distribution into a tractable noise distribution. A
learned neural denoiser is trained to reverse this process, iteratively converting a
noise sample to a sample from the target distribution. They have been shown to
be remarkably effective with images and video, and they have recently begun to
see use for dense vision tasks like segmentation, tracking, optical flow, and depth
estimation. They are attractive as they exhibit strong performance on regression
tasks, capturing posterior uncertainty, without task specific architectures, loss
functions and training procedures.

For DMD we build on the task-agnostic Efficient U-Net architecture from
DDVM [45]. While DDVM used the ε-parameterization for training the neural
depth denoiser, here instead we use the v-parameterization [44]. We find that
the v-parameterization yields remarkably efficient inference, using as few as one
or two refinement steps, without the need for progressive distillation [44].

Under the v-parameterization, the denoising network is given a noisy target
image (in our case a depth map), zt = αtx+ σtε, where x is the noiseless target
input (depth map), ε ∼ N (0, I), t ∼ U(0, 1), σ2

t = 1−α2
t , and αt > 0 is computed

with a pre-determined noise schedule, and the denoising network predicts v ≡
αtε−σtx. From the output of the denoising network, i.e., vθ(zt,y, t), where y is
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an optional conditioning signal (RGB image in this case), one obtains an estimate
of x at step t, i.e., x̂t = αtzt − σtvθ(zt,y, t), and the corresponding estimate of
the noise, denoted ε̂t. Under this parameterization, with a conventional L2 norm,
the training objective is based on the expected ‘truncated SNR weighting’ loss,
i.e., max(‖x − x̂t‖22, ‖ε − ε̂t‖22) [44]. Motivated by the superior performance of
the L1 loss in training DDVM [45] compared to the L2, we similarly employ a
L1 loss for DMD as well, yielding the objective

Ex,y,t,ε [max(‖x− x̂t‖1, ‖ε− ε̂t‖1)] . (1)

3.2 Joint indoor-outdoor modeling

Training a joint indoor-outdoor model can be difficult because of the large dif-
ferences in depth distributions one finds in indoor and outdoor scenes. Much of
the available indoor training data have depths up to 10m, while outdoor scenes
include ground truth depths up to 80m. Further, training data is often lacking
the variation in camera intrinsics needed for robustness to images from different
cameras. Rather, many datasets are captured with a fixed camera. To mitigate
these issues we propose three innovations: the use of log depth; field of view
augmentation; and field of view conditioning.
Log depth. Diffusion models assume data are normalized to [−1, 1]. While out-
door datasets comprise depths up to 80m, depths in indoor scenes are usually less
than 10m. One might compress depth d linearly, with dlin = normalize(d/dmax),
where normalize(d) = clip(2 ∗ d− 1,−1, 1). This, however, allocates little repre-
sentation capacity to indoor scenes with a small depth range.

Fig. 3: Modelling depth in the log
space allocates more representation
capacity to regions with smaller
depths, say <10 meters (shown by
shaded region), which improves per-
formance on such regions.

Instead, we compress depth on a log scale
as the target for inference; i.e.,

dlog = normalize

(
log(d/dmin)

log(dmax/dmin)

)
, (2)

where dmin and dmax denote the minimum
and maximum supported depths (e.g., 0.5m
and 80m). This provides more representa-
tional capacity to small depths (Fig. 3).
It also helps to account for non-stationary
noise in depth data, where noise in depth
maps increases with depth [30, 35]; this is
at odds with the least-squares objective in
diffusion model training that which assumes
IID noise. But when the variance of depth er-
rors increases with squared depth, log depth

compression produces (approximately) additive IID noise. That is, if depth mea-
surements have the form d = d̂ (1 + αη), where d̂ is the true depth, η ∼ N (0, 1)
and α is a small positive constant, then the effective noise variance increases with
d̂2. To first order, log d ≈ log d̂ + αη, in which case the noise variance becomes
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constant across the depth map, consistent with a simple squared loss. This yields
a better balance between loss terms for pixels at different depths.
Field-of-view conditioning. Metric depth estimation from a single image

f

s

D

H
h

θ/2

is ill-posed when camera intrinsics are un-
known. As depicted in the figure to the left,
consider an object of height H at distance D,
and a pinhole camera with focal length f , sen-
sor half-height s and pixel size ρ. Then

D = H
f

h
. (3)

where h/ρ is the object height in pixels. And if H was learned from training data
(e.g., for common objects), and one were to condition on f/ρ (focal length in
pixels), then this should be sufficient to infer D. However, while this condition-
ing signal depends on pixel size ρ, we would rather the conditioning signal be
independent of the training image resolution (e.g., so that fine-tuning at larger
resolutions does not require re-learning the intrinsic embeddings). Rewriting
depth in quantities relative to the sensor half-height yields

D = H
f/s

h/s
, (4)

where h/s is the size of the object relative to the image size, which can be inferred
since the model has global context (via global self-attention layers). We thus use
s/f = tan(θ/2) as the conditioning signal where θ is the vertical angular FOV.

Compared with the full camera intrinsics, FOV is a weaker conditioning
signal. This allows us to use simpler augmentations, as discussed below. Future
work could investigate even weaker or ideally no conditional signals. We explored
conditioning on the horizontal FOV as well, but that did not improve results
substantially.
Field-of-view augmentation. Because datasets for depth estimation often
have little or no variation in the field of view, it is easy for models to over-fit and
thus generalize poorly to images with different camera intrinsics. To encourage
models to generalize well to different fields of view, we propose to augment
training data by cropping or uncropping to simulate diverse FOVs. Given a
fixed focal length, this effectively changes the sensor size and thus the FOV.
Given an image, one can straightforwardly simulate a smaller FOV via centered
image crops. Simulating larger FOVs, e.g., via uncrop, is not as straightforward.
Our preliminary experiments used generative uncropping for RGB images with
Palette [42]; however, we found that padding the RGB image with Gaussian
noise (mean-zero, variance 1) works as well, is simpler, and more efficient.

For handling missing ground truth depth with uncropping augmentation, we
adopt the approach in [45], using a combination of near-neighbor in-filling and
step-unrolled denoising during training. It is shown in [45] that this technique
is effective in coping with the inherent distribution shift between training and
testing when ground truth data are noisy or incomplete. This allows our models
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to support even larger FOV than the training datasets without requiring any
sophisticated generative uncropping techniques. Note that while FOV augmen-
tation does help simulate some variation in camera intrinsics, variations in other
factors, like focal length, are much harder to simulate well.

4 Experiments

4.1 Training data

DDVM [45] shows that using large amounts of diverse training data is impor-
tant for generic models. We follow the pre-training strategy proposed in [45]:
initializing the model with unsupervised pre-training on ImageNet [12] and
Places365 [58], with tasks proposed in [42], followed by supervised pre-training
on ScanNet [11], SceneNet-RGBD [36], and Waymo [50]. Unlike [45], we also
include the DIML Indoor [10] dataset for more diversity. No FOV augmentation
or conditioning is used at this pre-training stage.

For the final training stage we train on a mixture of NYU [47], Taskonomy
[57], KITTI [19] and nuScenes [7]. At this stage we apply FOV augmentation to
NYU, KITTI and nuScenes, but not Taskonomy as it is large and has substantial
FOV diversity.

4.2 Design choices

Denoiser Architecture. We adopt the modifications of the Efficient U-Net
[43] proposed in DDVM [45], with one further modification to support FOV
conditioning. The FOV embedding, like the timestep embedding, is constructed
by first building a sin-cos positional embedding [52] followed by linear projection.
The sum of these two embeddings is used to modulate different layers of the
denoiser backbone using FiLM [38] layers. The predicted depth maps are resized
to the ground-truth resolution for evaluation, following prior work [5]. Other
training hyper-parameters such as the batch size and optimizer details are like
those in [45].
Augmentations. In addition to the FOV augmentation (Sec. 3.2) we use ran-
dom horizontal flip augmentation, like many prior works.
Training details. We perform supervised depth pre-training for a total of 1.5M
steps. We train at a low resolution of 240×320 for the first 1.4M steps and then
finetune at 384×512 for 100k steps for compute efficiency. The models are then
trained for 50k steps for the final supervised training stage.
Sampler. We use the DDPM [25] sampler with eight denoising steps for indoor
datasets. For outdoor datasets we find that two denoising steps suffice. We report
results using a mean of eight samples, following [45].

Evaluation. We adopt the evaluation protocol of ZoeDepth [5]. We report in-
distribution performance on the NYU [47] and KITTI [19] datasets, and gen-
eralization performance on eight unseen datasets [5], namely, SunRGBD [49],
iBims-1 [31], DIODE Indoor [51], Hypersim [41] for indoors, and Virtual KITTI
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2 [6], DDAD [20], DIML Outdoor [10], DIODE Outdoor [51] for outdoors. We
closely follow the evaluation protocol, including depth ranges and cropping, used
in [5] and report results using the standard error and accuracy metrics that are
used in literature.

Table 1: Zero-shot results on unseen indoor datasets. Best and second-best
results amongst joint indoor-outdoor models are highlighted. Performance of domain-
specific models trained on NYU are also provided for reference. DMD outperforms all
baselines on all datasets except DIODE Indoor where it outperforms all baselines except
Metric3D. Note, however, that overall DMD substantially outperforms Metric3D.

Method SUN RGB-D iBims-1 DIODE Indoor HyperSim
REL ↓ RMSE ↓ REL ↓ RMSE ↓ REL ↓ RMSE ↓ REL ↓ RMSE ↓

Domain-specific models:
BTS [33] 0.172 0.515 0.231 0.919 0.418 1.905 0.476 6.404
AdaBins [3] 0.159 0.476 0.212 0.901 0.443 1.963 0.483 6.546
LocalBins [4] 0.156 0.470 0.211 0.880 0.412 1.853 0.468 6.362
NeWCRFs [56] 0.151 0.424 0.206 0.861 0.404 1.867 0.442 6.017
DDVM [45] 0.123 0.350 0.169 0.719 0.339 1.557 0.363 2.175

Joint indoor-outdoor models:
ZoeDepth [5] 0.123 0.356 0.186 0.777 0.331 1.598 0.419 5.830
Metric3D [55] 1.457 3.043 0.169 0.535 0.263 1.087 1.082 8.199
ZeroDepth [23] 0.126 0.372 0.159 0.630 0.297 1.435 0.415 5.978
DMD 0.091 0.275 0.118 0.447 0.291 1.292 0.318 4.394

Table 2: Zero-shot results on four unseen outdoor datasets. Best and second-best
results amongst joint indoor-outdoor models are highlighted. Performance of domain-
specific models trained on KITTI are also provided for reference. Metric3D’s DDAD
result is omitted because their training datasets include DDAD. DMD outperforms
baselines on the Virtual KITTI 2 and DIML Outdoor datasets. On DIODE Outdoor
DMD outperforms ZoeDepth and performs competitively with ZeroDepth and Met-
ric3D on relative error. On DDAD, ZeroDepth significantly outperforms which may be
attributable to their use of a more diverse outdoor training mixture including Parallel
Domain [21,22], TartanAir [53], and proprietary Large-Scale Driving (LSD) data.

VKITTI 2 DDAD DIML Outdoor DIODE Outdoor
Method REL ↓ RMSE ↓ REL ↓ RMSE ↓ REL ↓ RMSE ↓ REL ↓ RMSE ↓

Domain-specific models:
BTS [33] 0.115 5.368 0.147 7.550 1.785 5.908 0.837 10.48
AdaBins [3] 0.122 5.420 0.154 8.560 1.941 6.272 0.863 10.35
LocalBins [4] 0.127 5.981 0.151 8.139 1.820 6.706 0.821 10.27
NeWCRFs [56] 0.117 5.691 0.119 6.183 1.918 6.283 0.854 9.228
DDVM [45] 0.098 4.963 0.126 7.083 2.000 7.302 0.660 8.766

Joint indoor-outdoor models:
ZoeDepth [5] 0.105 5.095 0.138 7.225 0.641 3.610 0.757 7.569
Metric3D [55] 1.437 24.316 - - 0.576 3.066 0.540 7.300
ZeroDepth [23] 0.129 5.668 0.077 5.168 0.194 2.117 0.552 8.943
DMD 0.092 4.387 0.108 5.365 0.190 2.089 0.553 8.943

4.3 Results

Zero-shot. Tables 1 and 2 report zero-shot performance on eight OOD datasets.
In the indoors setting, DMD outperforms all baselines with the single exception
of Metric3D on DIODE Indoors; however, note that Metric3D underperforms on
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Fig. 4: Qualitative comparison between ZoeDepth [5], Metric3D [55], ZeroDepth [23],
and ours on indoor scenes. Compared to other methods, our method estimates depths
at more accurate scale over diverse datasets.

Image Ground Truth ZoeDepth [5] Metric3D [55] ZeroDepth [23] DMD (ours)

D
D
A
D

D
IM

L
O
ut
do

or
D
IO

D
E

O
ut
do

or
K
IT

T
I

V
ir
tu
al

K
IT

T
I
2

Fig. 5: Qualitative comparison between ZoeDepth [5], Metric3D [55], and ZeroDepth
[23], and ours on outdoor scenes. Compared with other methods, our method is able
to estimate a more accurate depth scale.
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Image Ground Truth DMD (ours)

ZoeDepth [5] Metric3D [55] ZeroDepth [23]

Fig. 6: Qualitative comparison between ZoeDepth [5], Metric3D [55], and ZeroDepth
[23], and ours by visualizing 3D point clouds obtained using the predicted depth map
for a scene in the Hypersim dataset (the roof is omitted from the point clouds for
better visualization). All renders use the same camera intrinsics and pose. ZoeDepth
and ZeroDepth fail to recover depth for the dining area at the far end of the room and
have distorted (wavy) walls. Metric3D fails to recover correct depth for the left half of
the scene. Ours is the most faithful to the ground truth.

all other datasets. In the outdoors setting, DMD outperforms the baselines on
the majority of datasets. Figures 4 and 5 compare depth maps from DMD against
other baselines on indoor and outdoor datasets respectively. Fig. 6 further visu-
alizes a point cloud for a scene in the Hypersim dataset illustrating the ability
of DMD to recover better depth scale and overall detail compared to baselines.
In-distribution. On NYU, DMD outperforms both ZoeDepth and ZeroDepth
on relative error. On KITTI, DMD outperforms ZoeDepth and is competitive
with ZeroDepth on relative error. See Tab. 3 for detailed results.

4.4 Ablations

We next consider several ablations to test different components of the model.
All models reported in the ablations were only fine-tuned on NYU and KITTI
for expedience unless otherwise specified.
Log vs linearly scaled depth. Table 4 shows that parameterizing depth in
log scale (Sec. 3.2) improves quantitative performance. As expected, this is ben-
eficial for datasets of indoor scenes and also for datasets of outdoor scenes with
shallower depths, like DIML Outdoor and DIODE Outdoor.
Field-of-view conditioning. Table 5 shows that FOV conditioning achieves
the best performance. Fig. 7 perturbs the conditioning FOV signal during in-
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Table 3: In-domain results showing that DMD outperforms both ZoeDepth and
ZeroDepth on NYU for relative error (top) and is competitive with ZeroDepth on
KITTI for relative error (bottom). Best results (amongst indoor-outdoor models only)
are bolded. For reference, we include baselines trained separately for the indoor and
outdoor domains showing that DMD is competitive despite being a more general model.

Method NYU

δ1↑ δ2↑ δ3 ↑ REL ↓ RMS ↓ log10 ↓

Domain-specific models:
BTS [33] 0.885 0.978 0.994 0.110 0.392 0.047
DPT [39] 0.904 0.988 0.998 0.110 0.357 0.045
AdaBins [3] 0.903 0.984 0.997 0.103 0.364 0.044
NeWCRFs [56] 0.922 0.992 0.998 0.095 0.334 0.041
BinsFormer [34] 0.925 0.989 0.997 0.094 0.330 0.040
PixelFormer [1] 0.929 0.991 0.998 0.090 0.322 0.039
IEBins [46] 0.936 0.992 0.998 0.087 0.314 0.038
MIM [54] 0.949 0.994 0.999 0.083 0.287 0.035
DDVM [45] 0.946 0.987 0.996 0.074 0.315 0.032

Joint indoor-outdoor models:
ZoeDepth [5] 0.953 0.995 0.999 0.077 0.277 0.033
ZeroDepth [23] 0.954 0.995 1.000 0.074 0.269 -
DMD (ours) 0.953 0.989 0.996 0.072 0.296 0.031

Method KITTI

δ1↑ δ2↑ δ3↑ REL ↓ Sq-rel ↓ RMS ↓ RMS log ↓

Domain-specific models:
BTS [33] 0.956 0.993 0.998 0.059 0.245 2.756 0.096
DPT [39] 0.959 0.995 0.999 0.062 – 2.573 0.092
AdaBins [3] 0.964 0.995 0.999 0.058 0.190 2.360 0.088
NeWCRFs [56] 0.974 0.997 0.999 0.052 0.155 2.129 0.079
BinsFormer [34] 0.974 0.997 0.999 0.052 0.151 2.098 0.079
PixelFormer [1] 0.976 0.997 0.999 0.051 0.149 2.081 0.077
IEBins [46] 0.978 0.998 0.999 0.050 0.142 2.011 0.075
MIM [54] 0.977 0.998 1.000 0.050 0.139 1.966 0.075
DDVM [45] 0.965 0.994 0.998 0.055 0.292 2.613 0.089

Joint indoor-outdoor models:
ZoeDepth [5] 0.966 0.993 0.996 0.057 0.204 2.362 0.087
ZeroDepth [23] 0.968 0.995 0.999 0.053 0.164 2.087 0.083
DMD (ours) 0.967 0.995 0.999 0.053 0.203 2.411 0.084

ference, showing that optimal performance occurs at or close to the true FOV.

No FOV augmentation or conditioning. ZoeDepth found that without
scene-type supervision for the experts (i.e., Auto Router), ZoeDepth’s perfor-
mance degrades, even for in-domain data. To compare against ZoeDepth in this
setting, we fine-tune a model on NYU and KITTI without FOV augmentations
or conditioning. Interestingly, DMD performs relatively well in this setting for
in-domain data (Table 7). Nevertheless, as shown in Table 6, OOD performance
is better with FOV augmentation and conditioning.

ε vs v diffusion parameterization. Inference latency is a concern with dif-
fusion models for vision. DDVM [45], for example, uses 128 denoising steps for
depth estimation which can be prohibitive. We find that using the v parameteri-
zation dramatically reduces the number of denoising steps required for good per-
formance. As shown in Table 8, ε-parameterization requires 64 denoising steps
to match the performance of a model with v-parameterization using only 1 de-



12 S. Saxena et al.

Table 4: Ablation showing that log depth improves quantitative performance on indoor
datasets (top) since log-scaling increases the share of representation capacity allocated
to shallow depths. On outdoor datasets (bottom) the performance remains mostly
unchanged except for DIML Outdoor which has outdoor scenes with shallow depths
and benefits from log-parameterized depth.

Experiment NYU SunRGBD DIODE Indoor iBims-1 Hypersim

REL Linear scaling 0.082 0.108 0.324 0.146 0.398
Log scaling 0.076 0.109 0.298 0.130 0.382

RMS Linear scaling 0.340 0.314 1.526 0.612 5.693
Log scaling 0.313 0.306 1.407 0.563 5.527

Experiment KITTI DIML Outdoor DIODE Outdoor Virtual KITTI 2 DDAD

REL Linear scaling 0.056 0.467 0.630 0.092 0.122
Log scaling 0.055 0.300 0.628 0.093 0.122

RMS Linear scaling 2.516 3.126 10.129 4.788 6.288
Log scaling 2.527 2.522 9.577 4.828 6.740

Table 5: Depth errors for models trained with and without field-of-view conditioning
on zero-shot indoors (top) and outdoors (bottom) datasets. Results shows that FOV
conditioning provides a substantial boost in performance. DIML Outdoor benefits the
most, which is understandable given its large FOV, for which generalization is a major
challenge for simple FOV augmentation.

Metric Experiment NYU SunRGBD DIODE Indoor iBims-1 Hypersim

REL No FOV cond 0.081 0.116 0.316 0.18 0.400
With FOV cond 0.076 0.109 0.298 0.130 0.382

RMS No FOV cond 0.319 0.325 1.474 0.712 5.196
With FOV cond 0.313 0.306 1.407 0.563 5.527

Metric Experiment KITTI DIML Outdoor DIODE Outdoor VKITTI 2 DDAD

REL No FOV cond 0.057 1.257 0.613 0.100 0.121
With FOV cond 0.055 0.300 0.628 0.093 0.122

RMS No FOV cond 2.574 5.382 8.582 5.021 6.826
With FOV cond 2.527 2.522 9.577 4.828 6.740

noising step. Intuitively, v-parameterization ensures that the model accurately
recovers the signal at both ends of the noise schedule, unlike ε-parameterization
where estimating the noise is easy for low SNR inputs.
Training data mixture. We compare between DMD-NK which is fine-tuned
on NYU and KITTI, and DMD which adds Taskonomy and NuScenes to the
fine-tuning mix. As shown in Table 9 and Fig. 8, these additional datasets sig-
nificantly improve performance; DMD significantly improves the depth scale and
fine-grained depth details near object boundaries.

Limitation. While RGB camera intrinsics are available for most practical uses
of monocular depth estimators (e.g. cell phones, robot platforms or self-driving
cars), they may sometimes be unknown (e.g. internet images or generative im-
agery). One solution to handle the unknown FOV would be to estimate the
camera intrinsics from the RGB image. To test this, we train a simple neural
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In-distribution Zero-shot

Fig. 7: Plots showing the effect of perturbing the FOV during inference. Optimal
performance is at or near the true FOV. Performance degrades with larger perturbation.

Table 6: Ablation showing that training without FOV augmentations and conditioning
hurts generalization to out-of-domain indoor (top) and outdoor (bottom) datasets due
to overfitting on the training data intrinsics.

Metric Experiment NYU SunRGBD DIODE Indoor iBims-1 Hypersim

REL No FOV aug or cond 0.074 0.124 0.337 0.180 0.479
W/ FOV aug and cond 0.076 0.109 0.298 0.130 0.382

RMS No FOV aug or cond 0.310 0.348 1.535 0.722 5.247
W/ FOV aug and cond 0.313 0.306 1.407 0.563 5.527

Metric Experiment KITTI DIML Outdoor DIODE Outdoor VKITTI 2 DDAD

REL No FOV aug or cond 0.055 1.399 0.615 0.095 0.116
W/ FOV aug and cond 0.055 0.300 0.628 0.093 0.122

RMS No FOV aug or cond 2.597 5.919 8.529 4.874 6.476
W/ FOV aug and cond 2.527 2.522 9.577 4.828 6.740

Table 7: Comparison against ZoeDepth without scene type supervision. ZoeDepth
performance degrades significantly when the scene type (indoor or outdoor) is not
provided. DMD learns well without such supervision.

REL ↓ RMSE ↓
NYU KITTI NYU KITTI

ZoeDepth w/o Auto Router 0.102 0.075 0.377 2.584
Ours w/o fov aug / cond 0.074 0.055 0.310 2.597

Table 8: Reduced inference latency: On the left, we report relative error on
NYU and KITTI for DMD-NK (without FOV augmentation or conditioning). v-
parameterization achieves optimal performance with as few as 4 denoising steps whereas
ε-parameterization requires 64 steps to reach the same performance. This dramatically
reduces inference latency (right) with DMD being 6× faster than DDVM [45], despite
the higher resolution, and 14× faster than the ε-parameterized version.

NYU KITTI
Steps ε v ε v

1 2.374 0.077 0.596 0.056
4 1.484 0.075 0.406 0.055
16 0.409 0.074 0.141 0.055
64 0.077 0.074 0.056 0.055

Method Steps Resolution Time [ms]

DDVM 64 240× 320 248
DMD (ε) 64 384× 512 543
DMD (v) 4 384× 512 38

network to regress to the FOV on a mixture of NYU and KITTI using the
same FOV augmentations as DMD-NK. The results are promising, performing
competitively with those using the true FOV (see appendix for details). We hy-
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Fig. 8: Qualitative comparison between DMD-NK (fine-tuned on NYU and KITTI)
and DMD (fine-tuned on KITTI, NYU, nuScenes, and Taskonomy). DMD further im-
proves depth scale estimation as well as fine details on depth boundaries.

Table 9: Data mixture ablation: We compare DMD (trained on NYU, KITTI,
Taskonomy and NuScenes) against DMD-NK (trained on NYU and KITTI alone).
Increasing the diversity of training mixture significantly improves performance.

Metric Experiment NYU SunRGBD DIODE Indoor ibims-1 Hypersim

REL DMD-NK 0.076 0.109 0.298 0.130 0.382
DMD 0.072 0.091 0.291 0.118 0.318

RMS DMD-NK 0.313 0.306 1.407 0.563 5.527
DMD 0.296 0.275 1.292 0.447 4.394

Metric Experiment KITTI DIML Outdoor DIODE Outdoor VKITTI 2 DDAD

REL DMD-NK 0.055 0.300 0.628 0.093 0.122
DMD 0.053 0.190 0.553 0.092 0.108

RMS DMD-NK 2.527 2.522 9.577 4.828 6.740
DMD 2.411 2.089 8.943 4.387 5.365

pothesize that field-of-view estimates can be further improved using a better
camera intrinsics estimators [27,29], thereby further improving depth estimates.

5 Conclusion

We propose a generic diffusion-based monocular metric depth generator with
no specialized architectures and minimal task-specific inductive biases for han-
dling diverse indoor and outdoor scenes. Our log-scale depth parameterization
adequately allocates representation capacity to different depth ranges. We advo-
cate augmenting the FOV of training data through simple cropping/uncropping
to enable generalization to fields-of-view beyond those in the training datasets
and show that simply uncropping with noise padding is effective for simulating a
larger FOV. We find that conditioning on the FOV is essential for disambiguating
depth-scale. We further propose a new fine-tuning dataset mixture that dramat-
ically improves performance. With these innovations combined, we establish a
new state of the art outperforming the existing methods across diverse zero-shot
and in-domain datasets by a substantial margin.
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