
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WAAGENTS: A WATERFALL-INSPIRED FRAMEWORK
FOR EFFECTIVE MULTI-AGENT COLLABORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have revolutionized the construction of multi-
agent systems for complex problem solving, leveraging their prowess in natu-
ral language understanding for semantic parsing and intent recognition, alongside
robust logical reasoning for intricate task execution. Despite these advances, pre-
vailing LLM-based multi-agent frameworks suffer from a critical shortfall: the ab-
sence of explicit, predefined stage segmentation. This leads to pervasive informa-
tion redundancy in inter-agent communications, manifesting as irrelevant discus-
sions without focused topics, and exacerbates decision conflicts in free-discussion
paradigms, where agents of equal status deadlock over divergent opinions, ulti-
mately hindering effective resolutions. To address these limitations, we introduce
WaAgents, a novel multi-agent collaboration framework inspired by the Water-
fall Model in Software Engineering. WaAgents delineates the problem-solving
process into four sequential, interdependent stages: Requirement Analysis, De-
sign, Implementation, and Reflection. In the Requirement Analysis stage, Re-
quirement Analysis Agents parse user intents to produce a structured task specifi-
cation, facilitating downstream processing. Designer Agents in the Design stage
then employ this specification to decompose the task into granular sub-tasks, sys-
tematically assigning them to dedicated Worker Agents. During Implementation,
each Worker Agent executes its sub-task through targeted operations and com-
putations. Anomalies trigger the Reflection stage, where Error Analysis Agents
diagnose root causes, distinguishing design from implementation errors, and en-
act precise repairs, ensuring iterative refinement without disrupting workflow in-
tegrity. This stage-driven, highly structured workflow provides each agent role
with explicit, concentrated objectives, which substantially mitigate information re-
dundancy. Furthermore, by strictly enforcing the predefined flow, WaAgents fun-
damentally eliminates the decision conflicts inherent to free-discussion, thereby
ensuring the coherence and effectiveness of the entire solution process. Empirical
validation across challenging benchmarks, including mathematical reasoning and
open-ended problem solving, confirms the efficacy and marked superiority of the
WaAgents framework.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated exceptional capabilities in both natural lan-
guage understanding and logical reasoning, establishing a foundational core for constructing multi-
agent systems geared toward complex problem-solving (Li et al., 2024). Specifically, their robust
understanding enables LLM-based agents to perform semantic parsing and intent recognition of user
requirements, while their reasoning faculty empowers them to execute sophisticated tasks.

Recent research has explored various multi-agent collaboration frameworks based on LLMs (He
et al., 2025). A prevalent approach involves context-based communication, where LLM-based
agents, often through role-playing, collaboratively derive solutions via multi-turn dialogue. For in-
stance, methods such as Camel (Li et al., 2023) adopt a two-agent dialogue strategy, where an initial
user request guides the interaction between the two agents to complete the task. Another category
of frameworks, typified by AgentVerse (Chen et al., 2024b), utilizes a strategy of negotiation and
communication among multiple agents, primarily simulating human group brainstorming processes
to resolve problems (Wang et al., 2023). Through continuous interaction, agents contribute to a final

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

decision, returning the result upon consensus. However, these existing methods exhibit significant
limitations when tackling complex problem-solving (A detailed example showing the limitations of
existing methods can be seen in section A.1.):

• Lack of Explicit Stage Demarcation: The absence of clear, staged partitioning during the
problem-solving process hinders effective collaboration. Without well-defined discussion
topics for each step, agents are prone to generating a large volume of information redun-
dancy (Han et al., 2024) (i.e., information irrelevant to the problem’s solution), severely
impeding efficiency.

• Vulnerability to Decision Conflicts: The reliance on a free-speech discussion model for
problem-solving is particularly problematic when multiple agents have divergent opinions.
Since agents operate on an equal footing, they may become entrenched in their own view-
points, leading to decision conflicts (Sun et al., 2025) that make it difficult to arrive at a
correct and effective resolution efficiently. Furthermore, ambiguity or hallucination during
the exchange can cause agents to enter endless arguments or discussion loops (Huang et al.,
2025) without the ability to self-diagnose the root cause of the issue, ultimately preventing
a solution from being found (Xi et al., 2025).

To address these challenges, this paper proposes a Waterfall-Inspired Framework for Effective Multi-
Agent Collaboration—referred to as WaAgents. The core conceptual underpinnings of WaAgents
are derived from the engineering methodology of Software Engineering (SE), which emphasizes the
systematic division of complex system development into distinct, sequentially executed stages (Flora
& Chande, 2014). Specifically, WaAgents adopts the classic Waterfall Model (Royce, 1987) from
SE to segment the multi-agent problem-solving process into four sequential stages: Requirement
Analysis, Design, Implementation, and Reflection.

• Requirement Analysis: The Requirement Analysis Agent(s) focus exclusively on under-
standing and parsing the user’s intent. The output of this stage is a structured task specifi-
cation that is easily interpretable by subsequent agents.

• Design: The Designer Agent receives the structured task specification and systematically
decomposes the complex task into a series of sub-tasks, which are then assigned to the
respective Worker Agent(s).

• Implementation: Each Worker Agent executes specific operations and computations based
on the sub-task it has been assigned.

• Reflection: Should an anomaly occur during the Implementation Stage, the system transi-
tions to the Reflection Stage. The Error Analysis Agent is tasked with diagnosing the error
based on the anomaly information, localizing the error (identifying if the fault lies in the
Design Stage or the Implementation Stage), and then initiating the corresponding repair
and correction procedures.

This stage-driven collaboration model provides each stage with explicit objectives, enabling the
agents to concentrate their efforts on the task at hand, which substantially reduces information re-
dundancy (Rasal & Hauer, 2024). Moreover, by strictly adhering to the predefined workflow, the
framework fundamentally eliminates decision conflicts among agents that may arise from a free-
discussion mode, thereby ensuring the coherence and effectiveness of the solution process. 1. The
main contributions of the paper are:

• In terms of theoretical methodology, we propose the WaAgents multi-agent collaboration
framework based on the SE waterfall model, which effectively addresses the limitations of
existing LLM-driven multi-agent systems in complex problem-solving, such as information
redundancy and vulnerability to decision conflicts, through stage division.

• In terms of technical details, in the Reflection Stage, the Error Analysis Agent enables
precise error attribution (locating faults in the Design or Implementation Stage) during
implementation anomalies and initiates targeted repair processes, substantially improving
the robustness of multi-agent systems in handling complex problems.

1This paper involves all the source codes and specific experimental data, which can be found in the anony-
mous repository through https://anonymous.4open.science/r/WaAgents-8887/README.md

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• In terms of experimental evaluation, results across multiple challenging benchmarks, in-
cluding mathematical reasoning and open-ended problem solving, validate the efficacy and
superiority of the WaAgents framework. The framework demonstrates significant perfor-
mance improvements over existing multi-agent methodologies, particularly in task comple-
tion rate and the consistency of the output with the user’s initial requirements.

2 RELATED WORKS

LLM-based Autonomous Agents Since the concept of artificial intelligence was first introduced,
researchers have been committed to developing agents capable of solving problems autonomously
without human intervention (Xi et al., 2025). In recent years, the emergence of LLMs has opened
up new pathways for enhancing the capabilities of such agents (Barua, 2024). Notably, agent archi-
tectures like ReAct (Yao et al., 2023b) and Reflexion (Shinn et al., 2023), which integrate reasoning
with action, have laid important groundwork for the field. Building on this foundation, researchers
have been advancing agent capabilities from various angles (Xi et al., 2025). For example, the work
by Yao (Yao et al., 2023a) focuses on improving agents’ task planning and decomposition abili-
ties through Chain-of-Thought, while Schick (Schick et al., 2023) explores how agents can invoke
external tool APIs to meet specific task requirements. These efforts collectively aim to enhance
the adaptability and practicality of agents in complex real-world scenarios, in order to cope with
increasingly diverse user needs.

Multi-agent System In the real world, teams of people working together are often more efficient and
better at handling complex problems than individuals working alone (Park et al., 2023). This obser-
vation has inspired many researchers to explore multi-agent systems based on LLMs. The main goal
of such systems is to assign different roles and responsibilities to multiple LLM-powered agents,
allowing them to work together to solve complex tasks (Hong et al., 2024). Currently, most research
focuses on building multi-agent collaboration frameworks that rely on dialogue mechanisms (Guo
et al., 2024). For example, CAMEL (Li et al., 2023) is a conversational framework that uses role-
playing to enable collaboration between agents, but it only supports interaction between two agents.
To extend this type of dialogue-based collaboration to more agents and improve problem-solving
capabilities, later studies have developed more advanced group discussion mechanisms (Becker,
2024). For instance, AutoGen (Wu et al., 2024) allows multiple interactive agents to solve problems
through group discussion, while AutoAgents (Chen et al., 2024a) introduces an observer role to bet-
ter guide the discussion process and prevent confusion. However, the performance of these systems
heavily depends on the quality of the discussions among agents. If disagreements arise and no con-
sensus can be reached, the conversation may fall into loops, which can reduce overall collaboration
efficiency.

3 THE DETAILS OF WAAGENTS

This framework strictly divides the problem-solving workflow into four sequential stages: Require-
ment Analysis, Design, Implementation, and Reflection, as shown in Fig 1. Each stage produces a
verifiable intermediate result. This staged approach ensures an orderly and traceable collaboration
process, thereby significantly enhancing the overall effectiveness of the system.

3.1 REQUIREMENT ANALYSIS

User requirements often suffer from issues such as semantic ambiguity and unclear intent, which can
lead to outcomes generated by multi-agent collaboration deviating from the user’s true intentions.
Existing research is increasingly recognizing the importance of clarifying user requirements. To
address this, we first introduce a Clarification Question Expert to identify vague or ambiguous points
in the original requirements and generate a set of clarification questions for the user to answer. After
the user responds to these questions one by one, we leverage a Requirement Optimization Expert to
refine the requirements based on the clarification feedback, producing content that is more logically
precise while eliminating ambiguous and insufficient descriptions.

Gherkin is a structured, natural-language-based requirements specification language. It uses key-
words like Feature, Scenario, Given, When, and Then to describe requirement behaviors. Compared

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Input
User Requirement
Which university did the
screenwriter of a film
festival's top award winner
graduate from? The capital
city of the festival's host
nation happens to be the
very city that once set a
single-match scoring record
during a major international
sporting event.

Requirement Analysis

Clarification
Question

Expert

Clarification
Question 1：

Requirement
Optimization Expert

Refined
Requirement

Input
User's response
It is the 2023 tournament
I am referring to, the
European Championship
. . .

Requirement
Transformation Expert

Gherkin
Scenario

Feature: Identify the university . . .
Scenario: Determine the university . . .

 Given

Design

Task 1
Task:Identify the countries in Europe that have hosted. . .
Primary Agent: Film industry expert
Alternative Agents: Film_Critic

Worker
Profile

Gherkin
Scenario

Task N
Task:Identify the university where the screenwriter. . .
Primary Agent: News expert
Alternative Agents: Paparazzi

Pseudocode
Generation

Expert

Agent Orchestration Pseudocode
function Identify the countries
 agent_name ="Film industry expert"
.

Review
Results

Implementation

def Identify_the_countries()

def Identify_Winning_Film()

Agent Orchestration Code

Requirement
Verification

 Expert

User Log
User Requirement
Which university did the
screenwriter of a film . . .
. . Clarification
questions
Which major international
sporting event

Review
Results

Accepted:"True",
Reason:"The Gherkin
Scenario aligns with
the user's
requirement."

Pseudocode
Verification Expert

Review
Results

Code Execution Log

Response

Review
Results

Response
Verification Expert

Output
System Respone
The screenwriter of the
2023 Cannes Film
Festival's top prize-
winning film is Justine
Triet, a graduate of the
Ecole Nationale
Superieure des Beaux-
Arts.

Review
Results

Reflection

Error
Message

Error
Message

Error Analyst

Source of Error

Reason for the
Error

Design Or
Implement-

ation

Pseudocode
Fixer

Code Fixer

Agent
Orchestration
Pseudocode

Agent
Orchestration

Code

Code
Execution Log

Worker
Profile

Fixed
pseudocode

Fixed Code

Film industry expert：
#Task
I am a seasoned film
industry expert
. . .
Input:
Identify the countries in
Europe that have
hosted film festivals?
Response:
Italy, France, Germany
.

Advertiser

I will create a
campaign to
promote a
product

Agent Action

Rapper

Math
Teacher

User's response
to the questions
It is the 2023 tournament
I am referring to,

Identify the university where the
screenwriter of the film

Code Generation
Expert

.

.

.

Doctor

I will come up
with creative

treatments for
illnesses or
diseases.

Web
Browsing CalculatorAPI

Call

Worker
ProfileY

Accepted
is True?

Accepted
is True?

User
Log

Accepted
is True?

Agent
Orchestration
Pseudocode

User
Log

Y

Y

N

N

N

Desgin

Implement
-ation

Clarification
Question N：

Which major international sporting
event is being referred to?

What is the specific single-game
goal-scoring record mentioned?

Review Results

Code
Execution

.

..
.
.
.
.
.
.
.

Task Decomposition
Expert

.

..

NY

Worker
Profile
Gherkin
Scenario

User Log

User
Log

Figure 1: The overview of our WaAgents approach

to informal natural language, this structured format offers higher readability and comprehensibility
for agents. The AgileGen framework proposed by (Zhang et al., 2025). also indicates that con-
verting user requirements into structured descriptions using Gherkin effectively enhances semantic
consistency between requirements and generated code. The clarified and optimized user require-
ments are then converted into a standardized Gherkin format. This structured representation not
only removes the inherent ambiguity of natural language but also provides clear task steps for sub-
sequent stages, thereby supporting more accurate task decomposition and code generation.

To fully ensure alignment with user intent, we further validate the Gherkin-formatted requirements
using a User Log. This log, composed of the initial user requirements, the clarification questions,
and the user’s responses, comprehensively reflects the user’s actual needs. If the validation passes,
it indicates a high consistency between the Gherkin requirements and user intent, and the process
proceeds to the Design stage. Otherwise, the Requirement Verification Expert provides reasons for
the failure, and the Requirement Optimization Expert subsequently re-optimizes the requirements
based on this feedback. A more detailed prompt can be found in the appendix A.2.1.

3.2 DESIGN

Although the Requirement Analysis stage effectively addresses the challenge of ambiguous user re-
quirements, directly generating code from Gherkin requirements still presents issues. At its core,
this approach remains reliant on a single agent tackling complex problems directly. When code
generation errors occur, this method makes identifying and rectifying faults considerably more dif-
ficult. To address this issue, we adopt the principle of separation of concerns by dividing the code
generation process into two distinct stages: Design and Implementation. This division enables our
framework to focus separately on task logic design and concrete code realisation, thereby signifi-
cantly reducing the complexity of individual stages, enhancing the precision of error diagnosis, and
improving the maintainability of the entire workflow.

Within the Design stage, we introduce the Task Decomposition Expert. This agent takes the clarified
Gherkin requirements as input and performs task decomposition and worker selection based on a
Worker Profile. Decomposing complex tasks into smaller, more manageable subtasks is a core strat-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

egy for handling requirement complexity. It not only reduces the cognitive load on individual agents
but also facilitates error localization and repair. Related research has confirmed its effectiveness in
multi-agent systems (Park et al., 2023; Sumers et al., 2023). The Worker Profile is a knowledge
base composed of various specialized agents and tools (Deng et al., 2023) within the Worker layer.
In this study, these worker agents are sourced from a curated collection selected from a high-star
open-source project on GitHub. This collection covers multiple domains such as education, finance,
and news. We manually fine-tuned them, enabling capabilities like web search and API calls, to
ensure they adapt to our framework. The Task Decomposition Expert strictly follows the Single
Responsibility Principle, breaking down complex user requirements into a series of subtasks. Each
subtask focuses on a single, clear objective and is assigned to the most suitable worker agent from
the Worker profile for execution.

Next, the Pseudocode Generation Expert is responsible for converting the set of subtasks into pseu-
docode. Pseudocode is a natural-language-based intermediate representation for describing algo-
rithmic logic. Due to its high alignment with the logical flow of tasks, it effectively expresses task
sequences in a form that is easy for agents to understand and process. Furthermore, as an abstrac-
tion layer between design intent and concrete code implementation, pseudocode plays a key role
in effectively decoupling design from implementation. It allows the framework to independently
design and optimize task logic without getting prematurely bogged down in the syntactic details
of programming languages. To ensure the generated design aligns with the user’s original intent,
the Pseudocode Verification Expert validates the generated pseudocode. This expert compares the
pseudocode against the User Log from the requirements analysis stage to verify that its semantics
and logic fully conform to the user’s true requirements. If the verification passes, the process pro-
ceeds to the implementation stage. If it fails, the verification Expert provides Review Results to
the Pseudocode Generation Expert, which then regenerates or revises the pseudocode accordingly.
More detailed prompts can be found in the appendix A.2.2.

3.3 IMPLEMENTATION

In the Implementation stage, we introduce the Code Generation, which is responsible for converting
the pseudocode from the Design stage into executable Python code. Each subtask is implemented
as a specific function, and worker agents are mapped as units that execute these functions. Using
code as the method for multi-agent collaboration offers clear advantages over approaches based on
informal dialogue: code can precisely and unambiguously represent task flows and provide verifi-
able intermediate results for complex tasks. Existing research, such as the “ Code-As-Language ”
paradigm proposed by Schick et al. (2023), also indicates that translating natural language intents
into code behaviors can significantly improve the accuracy and verifiability of task execution.

The generated Python code is executed directly using an embedded Python interpreter. If the code
runs successfully, the output is validated by the Response Verification Expert to ensure it semanti-
cally aligns with the user’s requirements. Should validation fail, it indicates that the outcome fails
to meet user requirements at the semantic level. The issue may stem from Design flaws within the
pseudocode, such as incorrectly defined input-output specifications for the agent. Consequently, the
Pseudocode Generation Expert must revise the pseudocode based on the Review Results. If an error
occurs during execution, the system captures complete error information and transfers it, together
with the corresponding Python source code and Code Execution Log, to the Reflection stage. This
provides full context for subsequent error diagnosis and repair. More detailed prompts can be found
in the appendix A.2.3.

3.4 REFLECTION

If the code execution fails, the process proceeds to the Reflection stage. First, the Error Analyst ana-
lyzes the error information to diagnose the root cause and determine whether the error originated in
the Design stage or the Implementation stage. This step is crucial as it prevents indiscriminate fixes
and ensures that corrective actions are targeted. For example, a Design-level error might manifest
as pseudocode that omits output specifications for a worker agent, leading to abnormal responses,
while an Implementation-level error could be an incorrect reference to an undefined variable during
code generation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

If the error is determined to originate from the Design stage, the Pseudocode Fixer initiates a repair
process. It corrects the flawed pseudocode logic by consulting the complete Code Execution Log,
the Worker Profile, and the Reason for the Error. If the error is confirmed to stem from the Imple-
mentation stage, it indicates that the assigned agents and subtask set are correct, but there is an issue
in the code generation. In this case, the Code Fixer performs the repair based on the Code Execution
Log, the Worker Profile, and the diagnosed error reason. More detailed prompts can be found in the
appendix A.2.4.

4 EXPERIMENTS AND EVALUATION

4.1 EXPERIMENTAL SETUPS

Benchmarks To comprehensively evaluate the performance of WaAgents, we selected three bench-
mark datasets covering different task types, namely MGSM (Shi et al., 2022), BFCL (Patil et al.),
and MT-Bench (Bai et al., 2024). Specifically, we adopt the English subset of MGSM proposed by
Shi et al. (Shi et al., 2022), which originates from GSM-8K (Cobbe et al., 2021) and contains mul-
tiple elementary school-level mathematical problems. This benchmark is mainly used to assess the
logical reasoning and numerical calculation capabilities of the model. BFCL (Patil et al.) focuses
on the tool-use capabilities of LLMs in real-world scenarios, covering single-/multi-turn dialogue
and serial/parallel function calling. It can effectively evaluate the task planning and collaborative
consistency of multi-agent frameworks. MT-Bench (Bai et al., 2024) consists of 80 high-quality
multiturn questions, covering 8 core scenarios including writing, role-playing, information extrac-
tion, reasoning, mathematics, coding, STEM knowledge, and humanities / social science knowledge.
Each scenario contains 10 manually designed challenging questions, which are used to evaluate the
coherence of multi-turn dialogue and the instruction-following ability of the LLM.

Evaluation Metrics Depending on the task characteristics of each dataset, we employ a combina-
tion of automatic2 evaluation and subjective human evaluation for experimental evaluation. For
the MGSM dataset, since its tasks involve closed mathematical problem solving, we use Suc-
cess Rate as the evaluation metric. The Success Rate is defined as the proportion of samples
where the model’s output completely matches the standard answer, which directly reflects the
model’s mathematical reasoning and calculation accuracy. For the open-ended tasks in BFCL
and MT-Bench datasets, we use the Win Rate as the core evaluation metric to quantify the per-
formance advantage of WaAgents over baseline methods such as Camel (Li et al., 2023), Agent-
Verse (Chen et al., 2024b), and AutoAgents (Chen et al., 2024a). The calculation formula is defined
as (Numwin + 0.5 ∗ Numequal)/Numtotal, in which, Numwin refers to the number of sam-
ples where WaAgents outperforms the baseline methods, Numequal refers to the number of sam-
ples where WaAgents performs equally to the baseline methods, and Numtotal refers to the total
number of samples. The determination of the Win Rate is implemented through two evaluators:
FairEval (Sah et al., 2025) and HumanEval. FairEval reduces evaluation biases through multiple
strategies to align well with human judgments. In the BFCL scenario, the win/loss is determined
based on the function calling success rate and user consistency. In the MT-Bench scenario, it is
determined based on usefulness, reliability, accuracy, and detail level. As for HumanEval, we re-
cruit 3 master students with research experience in multi-agent systems to conduct manual scoring
according to the same dimensions as FairEval, and the win/loss is determined based on the scoring
results. These annotators received unified training to clarify scoring criteria (e.g., output quality,
consistency with requirements). During the evaluation, we hide the method names to avoid bias,
and the final score is the average of the 3 evaluators’ ratings to reduce subjective deviation. Through
the two evaluators, we not only verify the reliability of win rate determination via automatic evalu-
ation (FairEval) but also compensate for the limitations of automatic tools in the depth of semantic
understanding.

Foundation Large Language Models To verify the adaptability and performance stability of our
WaAgents, we select two base LLMs with different capability levels: GPT-3.5-Turbo and GPT-4o.
Among them, GPT-3.5-Turbo represents an LLM with a medium capability level, while GPT-4o
represents an LLM with a relatively high capability level. We implement the calling of these two
LLMs by accessing OpenAI’s API. Meanwhile, to ensure the consistency and reproducibility of

2The prompt for the scoring agent are provided in the appendix. A.3

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

experimental results, we uniformly set the model’s Temperature parameter to 0, so as to avoid result
fluctuations caused by excessively high randomness.

4.2 COMPARING WITH THE BASELINE METHODS

Table 1: Success rates comparison on the MGSM dataset
Model WaAgents Single Camel AgentVerse AutoAgents
GPT-3.5-Turbo 64.8% 33.6% 84.4% 83.6% 12.8%
GPT-4o 97.6% 61.6% 95.2% 94.8% 89.2%

Table 2: Win Rate of WaAgents against other methods on the BFCL and MT-Bench
Dataset Evaluator Model Single Camel AgentVerse AutoAgents

BFCL
FairEval GPT-3.5-Turbo 54.0% 58.0% 41.0% 84.5%

GPT-4o 63.5% 95.5% 74.5% 57.5%

HumanEval GPT-3.5-Turbo 56.5% 52.5% 44.5% 80.0%
GPT-4o 64.5% 92.5% 72.0% 56.5%

MT-Bench
FairEval GPT-3.5-Turbo 46.3% 45.0% 51.2% 88.7%

GPT-4o 62.6% 53.1% 52.5% 60.3%

HumanEval GPT-3.5-Turbo 48.7% 46.2% 50.8% 86.1%
GPT-4o 58.4% 52.7% 51.1% 58.5%

In this subsection, we compare WaAgents with four baseline methods, namely Single Agent, Camel,
AgentVerse, and AutoAgents. For the Single Agent method, we directly invoke LLMs to generate
results without any collaboration or process optimization, relying solely on the inherent capabilities
of the LLM to complete tasks. The experimental results can be seen in Table 1 and Table 2.

In the MGSM dataset, WaAgents shows efficient adaptability to both LLMs, with particularly promi-
nent advantages on high-performance models. As shown in Table 1, when using the GPT-3.5-Turbo
model, WaAgents achieves a Success Rate of 64.8%, which is significantly higher than the 33.6%
of Single Agent and 12.8% of AutoAgents, and only lower than the 84.4% of Camel and 83.6%
of AgentVerse. This is because the task reasoning chains of MGSM are relatively short, typically
requiring only 2–3 steps of reasoning logic. Camel’s fixed “user-assistant” dual-agent dialogue can
quickly decompose simple problems, and the multi-agent system of AgentVerse can quickly cover
basic problem-solving paths. Although WaAgent’s structured process has shown optimization value
compared with Single Agent, the efficiency of medium-capability models in handling procedural
tasks (such as pseudocode generation and error detection) is limited, and the potential of the pro-
cess has not been fully unleashed. However, when using the GPT-4o model, WaAgent’s Success
Rate increases to 97.6%, significantly outperforming all baseline methods. This indicates that high-
performance LLMs can fully exploit the value of WaAgents’ workflow, while the limitations of
baseline methods become more apparent. Camel lacks dynamic task decomposition ability, mak-
ing it prone to reasoning gaps when faced with multi-step tasks. The negotiation redundancy of
AgentVerse occupies the context window, leading to the omission of key calculation steps. While
the AutoAgents’ feedback mechanism can only fix surface-level errors and cannot avoid deviations
in the initial problem-solving ideas, resulting in inferior performance compared to WaAgents.

As shown in Table 2, on the BFCL dataset, we observe that WaAgents achieves its highest Win
Rate against AutoAgents, with FairEval at 84.5% and HumanEval at 80.0% when using the GPT-
3.5-Turbo model. This is because AutoAgents relies on conversational feedback for behavior
optimization, which tends to introduce ambiguity in instruction invocation, whereas WaAgents’
“pseudocode-to-executable code” workflow precisely aligns with the syntactic and logical require-
ments of function calls. WaAgents exhibited the lowest win rate when competing against Agent-
Verse, with 41.0% on FairEval and 44.5% on HumanEval. The reason lies in the fact that Agent-
Verse’s negotiation mechanism occasionally forms local advantages during step adjustment. How-
ever, such advantages only manifest in simple scenarios involving models with moderate capabil-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

ities. When compared with Camel and Single Agent, WaAgents achieved comparable or slightly
better performance, with FairEval scores of 58.0% and 54.0%, respectively. On GPT-4o, WaAgents’
win rate against Camel increases to 95.5% (FairEval). High-performance models significantly en-
hance WaAgents’ call planning capability, enabling it to automatically generate pseudocode snip-
pets. In contrast, Camel’s natural language conversations still suffer from ambiguity, preventing it
from accurately matching tool-calling requirements. The win rate against AgentVerse increases to
74.5% (FairEval), as the redundancy in AgentVerse’s negotiation process becomes more pronounced
on high-performance models. The win rate against AutoAgents decreases to 57.5% (FairEval), since
AutoAgents’ error intervention ability improves under GPT-4o, allowing it to quickly detect issues
such as missing parameters. However, due to the inherent limitations of its conversational feedback
mechanism, it still cannot match the precision of WaAgents’ structured workflow.

On the MT-Bench dataset, WaAgents’ workflow advantages contribute to its increasing competitive-
ness when using high-performance models. With GPT-3.5-Turbo, WaAgents achieves a high Win
Rate against AutoAgents, with a FairEval score of 88.7%. However, its win rates against Camel and
AgentVerse are relatively close, at 45.0% and 51.2% respectively on FairEval. This is because MT-
Bench tasks are more based on human-like interactive naturalness. Camel’s dual-agent role-playing
dialogue aligns more closely with human conversational conventions, while AgentVerse’s multi-
agent negotiation enriches dialogue details through role supplementation. In contrast, WaAgents’
ability to optimize coherence is limited on medium-capacity models. WaAgents’ Win Rate against
Single Agent is moderate (FairEval: 46.3%), as the native dialogue capability of Single Agent al-
ready meets basic interactive needs, and WaAgents’ procedural optimization does not yet yield a
significant advantage in this context. When evaluated on GPT-4o, WaAgents’ Win Rate against Sin-
gle Agent increases to 62.6% (FairEval), as the high-performance model improves the WaAgents’
error correction capability during the reflection stage. WaAgents also shows slight improvements in
Win Rates against Camel and AgentVerse, with FairEval scores of 53.1% and 52.5%, respectively.
In contrast, WaAgents’ Win Rate against AutoAgents declines to 60.3% (FairEval).

4.3 ABLATION EXPERIMENTS

To systematically evaluate the necessity and contribution of the core stages in WaAgents, we design
three variant methods by removing the Requirement Analysis stage (w/o RA), the Design stage (w/o
Design), and the Reflection stage (w/o Reflection), respectively. These three variants are applied
to three datasets, and we calculated their Success Rates on MGSM as well as the Win Rates of the
complete WaAgents against each variant on the BFCL and MT-Bench datasets. In this experiment,
we use GPT-4o as the foundation LLM. The experimental results are presented in Table 3.

Across all tasks, the complete WaAgents achieves significantly higher win rates over the w/o RA
variant, with its advantages showing cross-task consistency. On the MGSM dataset, the complete
WaAgents achieves an accuracy of 97.6%, while the w/o RA variant only achieves 70.4%. On
BFCL, the Win Rates of the complete WaAgents over w/o RA are 56.5% on FairEval and 58.0%
on HumanEval. Similarly, on MT-Bench, the Win Rates are 54.4% on FairEval and 57.2% on
HumanEval. These results indicate that the Requirements Analysis stage serves as the directional
guarantee for WaAgents. It can extract key task constraints, such as implicit calculation conditions in
MGSM, function parameter requirements in BFCL, and dialogue objectives in MT-Bench. Without
this stage, the framework tends to deviate in execution direction due to misunderstandings of task
requirements, thereby leading to a decline in performance.

The complete WaAgents also outperforms the w/o Design variant across all datasets, and the stage’s
value is more prominent in structured tasks, highlighting its role in optimizing task execution logic.
On the MGSM dataset, the complete WaAgents’ Success Rate is 9.4% higher than the w/o Design
variant’s 89.2%. This is because the pseudocode generated by the Design stage prevents logical con-
fusion in multi-step reasoning. On the BFCL dataset, the win rates of the complete WaAgents over
the w/o Design variant reach 70.5% (FairEval) and 73.5% (HumanEval). In MT-Bench, the win rates
reach 65.6% in FairEval and 62.7% in HumanEval, demonstrating that the stage’s structural plan-
ning for dialogue enhances information coherence, while its absence tends to result in fragmented
responses.

On the MGSM dataset, the w/o Reflection variant’s 70.0% success rate is 39.4% lower than the com-
plete WaAgents, indicating that the Reflection stage is essential for correcting calculation errors and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

logical flaws. On the BFCL dataset, the complete WaAgents achieves win rates of 72.5% (FairEval)
and 71.0% (HumanEval) over the w/o Reflection variant, demonstrating the stage’s role in verify-
ing whether function call results meet user requirements. On the MT-Bench dataset, the Win Rates
achieve 68.1% on FairEval and 70.3% on HumanEval. These results demonstrate the important role
of the Reflection stage in verifying the validity of invocation results and handling exceptions.

Table 3: Ablation study of WaAgents stages across three datasets
Dataset Evaluator WaAgents w/o RA w/o Design w/o Reflection
MGSM Success Rate 97.6% 70.4% 89.2% 70.0%

BFCL FairEval - 56.5% 70.5% 72.5%
HumanEval - 58.0% 73.5% 71.0%

MT-Bench FairEval - 54.4% 65.6% 68.1%
HumanEval - 57.2% 62.7% 70.3%

5 LIMITATIONS AND DISCUSSION

Limitations of WaAgents Although WaAgents effectively improve the efficiency of multi-agent
collaboration in solving complex problems, their design still has certain limitations. The current
framework relies on the ability of agents to generate pseudocode during the design stage and exe-
cute code during the implementation stage. This dependency means that its performance is closely
tied to the capabilities of the underlying large language model. Experimental results show that when
using relatively weaker models (such as GPT-3.5-turbo), WaAgents may perform even worse than
baseline methods. This is mainly because weaker models tend to produce pseudocode and code
with insufficient logical rigor and accuracy, making it difficult to clearly and precisely express the
problem-solving steps, which ultimately affects the framework’s execution. Additionally, the ex-
periments in this study were only validated using two models, GPT-3.5-turbo and GPT-4o, which
somewhat limits the generalizability of our conclusions. The adaptability of the WaAgents frame-
work to large language models of different sizes and architectures still needs further investigation.
In the future, we plan to apply the framework to a wider variety of large language models to com-
prehensively evaluate its robustness and broad applicability.

Coverage of the Datasets The evaluation in this study is primarily based on three datasets: MGSM
(focusing on mathematical reasoning), BFCL (focusing on tool usage), and MT-Bench (covering
various scenarios such as writing, role-playing, and coding). Although these datasets cover several
important areas and can effectively assess the multi-agent framework’s capabilities on specific tasks,
their scenarios and problem types are still insufficient to fully simulate the complex, ambiguous, and
dynamic needs presented by users in the real world. Real-world problems are often more open-ended
and involve the integration of knowledge across different fields. Therefore, the current experimental
results have limitations in proving the general applicability of WaAgents. An important direction
for future work is to extend the evaluation to broader and more complex domains, such as software
development and programming, to further validate its generality.

6 CONCLUSIONS

This study introduces WaAgents, an innovative framework for multi-agent collaboration. Inspired by
the classic waterfall model in software engineering, WaAgents systematically divides the problem-
solving process into four distinct stages: requirement analysis, design, implementation, and re-
flection. Comprehensive experimental results demonstrate that WaAgents outperforms both single-
agent models and other multi-agent frameworks across a variety of complex tasks involving reason-
ing, comprehension, and tool usage. Ablation studies further validate the critical contribution of
each stage within the framework. By integrating software engineering principles, WaAgents pio-
neers new pathways for multi-agent collaboration. We are confident that this work paves the way
for tackling broader task scenarios and advancing the development of assistive AI.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ge Bai, Jie Liu, Xingyuan Bu, Yancheng He, Jiaheng Liu, Zhanhui Zhou, Zhuoran Lin, Wenbo
Su, Tiezheng Ge, Bo Zheng, and Wanli Ouyang. MT-bench-101: A fine-grained benchmark
for evaluating large language models in multi-turn dialogues. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 7421–7454, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.401. URL
https://aclanthology.org/2024.acl-long.401/.

Saikat Barua. Exploring autonomous agents through the lens of large language models: A review.
arXiv preprint arXiv:2404.04442, 2024.

Jonas Becker. Multi-agent large language models for conversational task-solving. arXiv preprint
arXiv:2410.22932, 2024.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje Karlsson, Jie Fu, and Yemin
Shi. Autoagents: A framework for automatic agent generation. In IJCAI, 2024a.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, et al. Agentverse: Facilitating multi-agent collaboration and
exploring emergent behaviors. In ICLR, 2024b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Gelei Deng, Yi Liu, Vı́ctor Mayoral-Vilches, Peng Liu, Yuekang Li, Yuan Xu, Tianwei Zhang, Yang
Liu, Martin Pinzger, and Stefan Rass. Pentestgpt: An llm-empowered automatic penetration
testing tool. arXiv preprint arXiv:2308.06782, 2023.

Harleen K Flora and Swati V Chande. A systematic study on agile software development method-
ologies and practices. International Journal of Computer Science and Information Technologies,
5(3):3626–3637, 2014.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. In IJCAI, 2024.

Shanshan Han, Qifan Zhang, Yuhang Yao, Weizhao Jin, Zhaozhuo Xu, and Chaoyang He. Llm
multi-agent systems: Challenges and open problems. CoRR, 2024.

Junda He, Christoph Treude, and David Lo. Llm-based multi-agent systems for software engineer-
ing: Literature review, vision, and the road ahead. ACM Transactions on Software Engineering
and Methodology, 34(5):1–30, 2025.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. International Conference on Learning Representations,
ICLR, 2024.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information
Systems, 43(2):1–55, 2025.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for” mind” exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008, 2023.

Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on llm-based multi-agent systems:
workflow, infrastructure, and challenges. Vicinagearth, 1(1):9, 2024.

10

https://aclanthology.org/2024.acl-long.401/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th annual acm symposium on user interface software and technology, pp. 1–22, 2023.

Shishir G Patil, Huanzhi Mao, Fanjia Yan, Charlie Cheng-Jie Ji, Vishnu Suresh, Ion Stoica, and
Joseph E Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agen-
tic evaluation of large language models. In Forty-second International Conference on Machine
Learning.

Sumedh Rasal and EJ Hauer. Navigating complexity: Orchestrated problem solving with multi-
agent llms. arXiv preprint arXiv:2402.16713, 2024.

Winston W Royce. Managing the development of large software systems: concepts and techniques.
In Proceedings of the 9th international conference on Software Engineering, pp. 328–338, 1987.

Chandan Kumar Sah, Xiaoli Lian, Tony Xu, and Li Zhang. Faireval: Evaluating fairness in llm-
based recommendations with personality awareness. arXiv preprint arXiv:2504.07801, 2025.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–
68551, 2023.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, et al. Language models are multi-
lingual chain-of-thought reasoners. arXiv preprint arXiv:2210.03057, 2022.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Theodore Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas Griffiths. Cognitive architectures
for language agents. Transactions on Machine Learning Research, 2023.

Chuanneng Sun, Songjun Huang, and Dario Pompili. Llm-based multi-agent decision-making:
Challenges and future directions. IEEE Robotics and Automation Letters, 2025.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-
agent conversations. In First Conference on Language Modeling, 2024.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. Science China Information Sciences, 68(2):121101, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Sai Zhang, Zhenchang Xing, Ronghui Guo, Fangzhou Xu, Lei Chen, Zhaoyuan Zhang, Xiaowang
Zhang, Zhiyong Feng, and Zhiqiang Zhuang. Empowering agile-based generative software de-
velopment through human-ai teamwork. ACM Trans. Softw. Eng. Methodol., January 2025. ISSN
1049-331X. doi: 10.1145/3702987. URL https://doi.org/10.1145/3702987.

11

https://doi.org/10.1145/3702987

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LIMITATIONS OF EXISTING METHODS

Which city's university produced the screenwriter who won the
film festival's top award? The capital of the festival's host nation
happens to be the city that once set a single-match scoring
record during a major international sporting eventUser

Generate multi-agent
based on user questions

Agents Team

 Film
historian

Sports
statistician

Cultural
geographer

Education
expert

Collaborative Decision-
making

Film expert

Failure to clarify requirements
may ultimately result in outcomes
that do not align with user needs.

Error:Does not
meet user

requirements

Without task decomposition, substantial
resources will be expended on

discussion rather than on the process of
step-by-step resolution.

Film festivals include the Cannes Film Festival, the Berlin
International Film Festival, and the Venice Film Festival. if we
consider the Cannes Film Festival, a notable winner is Bong
Joon-ho's "Parasite".

Education
expert

Bong Joon-ho graduated from Yonsei University in Seoul with
a degree in Sociology.

Cultural
geographer

Cannes, Berlin, and Venice are cities known for hosting major
film festivals. However, Seoul, South Korea, is not known for
hosting a major international film festival like Cannes, Berlin,
or Venice.

Sports
statistician

However, Seoul is renowned for setting multiple single-match
scoring records during the 1988 Summer
Olympics—an international multi-sport event.

First
round

Education
expert

Cultural
geographer

Sports
statistician

Bong Joon-ho graduated from Yonsei University in Seoul, South
Korea. Seoul hosted the Olympic Games in 1988, during which a
single-game scoring record was set. This fulfils the requirement
that the host city of the film festival must be the same city that set
a major international sporting event scoring record. Therefore, the
answer is: Yonsei University in Seoul, South Korea.

We agree!!! Evaluate Answer Quality

Evaluator

False!!!The answer provided is inadequate because it incorrectly identifies
Seoul as the city hosting a major international film festival. Seoul is not
known for hosting a prestigious film festival like Cannes, Berlin, or Venice.

Second Round

Education
expert

I disagree Film expert.The answer does not adequately
address the requirement that the city hosting the film festival is
the same city that set a single-game scoring record in a major
international competition.

I disagree Film expert.The answer incorrectly identifies Seoul
as the city hosting a major international film festival. Sports

statistician

Cultural
geographer

I disagree Film expert.The answer needs to accurately identify
a city that hosts a major international film festival and has set a
sports scoring record. Seoul does not fit this criterion.

Multiple
Rounds

Response

The Cannes Film Festival ranks among the world's most prestigious cinematic
events. Bong Joon-ho's film Parasite, which he both directed and wrote,
secured the Palme d'Or at the 2019 edition. Bong Joon-ho graduated from
Yonsei University in Seoul. However, Seoul is not renowned for hosting
international film festivals such as Cannes, Berlin or Venice. The city is
instead widely known for setting a single-game scoring record during the
1988 Olympics. Therefore, the correct answer is: Yonsei University in Seoul,
South Korea.

Film expert

I disagree. In truth, this is not the screenwriter I had
in mind. You have misunderstood my meaning

User

The previous
logical error

remains
unresolved.

Various redundant exchanges
led to logical inconsistencies in

the answers.

Any misunderstanding will
be magnified in

conversation, thereby
leading to errors.

Logic Error

The absence of authoritative
arbitration makes it easy to become

embroiled in endless debate.

Logic Error

Figure 2: Flowchart of Existing Methods for Problem Resolution

Existing multi-agent collaboration methods based on dialogue mechanisms have been widely stud-
ied. However, these methods heavily rely on the quality of discussion among agents, often leading
to circular debates and difficulty in reaching effective decisions. As shown in Fig 2, we use a spe-
cific example to illustrate the common limitations of such methods. The user’s question is: “Which
city’s university produced the screenwriter who won the film festival’s top award? The capital of
the festival’s host nation happens to be the city that once set a single-match scoring record during
a major international sporting event.”. This question contains several potential ambiguities. For
example, the “international sports event” could refer to different types, such as football or track and
field. If the task is solved directly without clarifying these needs, the result may easily deviate from
the user’s true intention.

In the example, the multi-agent team did not break down the task effectively but started a collab-
orative discussion directly. The film expert and education expert correctly pointed out that Bong
Joon-ho, the director and screenwriter of Parasite, won the Palme d’Or at the Cannes Film Festival,
and that he graduated from Yonsei University in Seoul. However, the cultural geographer mistakenly
assumed that the “ city where the screenwriter’s university is located ” must be the same as the “
city where the film festival was held ” leading to a chain of logical errors. The sports statistician
then argued based on this information, stating that Seoul set a single-game scoring record during the
1988 Summer Olympics, which matched the description in the question. Thus, the team concluded
that the answer was “ Yonsei University in Seoul, South Korea. ”

However, the team failed to recognize the core logical relationship in the question: the city that
hosted the film festival should itself be the one that set the record in the sports event. The goal
was to start from that city and identify the screenwriter and the university they graduated from.
Although the reviewer noticed this logical error during the evaluation, it was not corrected after
multiple rounds of discussion. As a result, the final response did not meet the user’s needs. This
case shows that without structured task decomposition and a clear collaboration process, multi-agent
dialogue systems struggle to handle complex reasoning tasks that involve multiple layers of logic.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.2 PROMPT OF EACH STAGE

A.2.1 REQUIREMENT ANALYSIS

Figure 3: The prompt of Clarification Question Expert

Clarification Question Expert During the Requirement analysis stage, we first introduce a Clarifi-
cation Question Expert. Its core function is to analyze the user’s original requirements, identify any
ambiguous or unclear parts, and generate targeted clarification questions. The prompt design for
this agent is shown in Figure 3. In our design, we primarily refer to the requirement clarification di-
mensions proposed by the KPL method, which include: Event, State, Type, Purpose, and Condition.
The Event dimension clarifies the specific action the user wants to perform. The state defines the
condition of the relevant objects when the action occurs. Type categorizes the action or the objects
involved. The purpose aims to uncover the user’s underlying goal or reason for the action. Condition
specifies the prerequisites that must be met for the requirement to be valid. Furthermore, if the initial

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

requirements are already clear and unambiguous, the Clarification Question Expert will not generate
any clarification questions.

Figure 4: The prompt of Requirement Optimization Expert

Requirement Optimization Expert After the user provides responses to the clarification questions,
the Requirement Optimization Expert integrates the original user requirements with the clarification
feedback to refine the initial requirement description. This process aims to eliminate ambiguities
in the original requirements while supplementing key details, thereby generating a more complete
and precisely articulated set of user requirements that are easier for downstream agents to accurately
understand. The prompt design for this agent is shown in Figure 4

Requirement Transformation Expert Gherkin is a structured requirements specification language
built on natural language grammar. It uses keywords (such as Feature, Scenario, Given, When,
and Then) to organize and describe feature behaviors, ensuring high readability and machine inter-
pretability. User requirements are converted into the standardized Gherkin format. This structured
representation not only eliminates the ambiguity often found in free-form natural language but also
provides clear task sequences and data dependencies. As a result, it supports accurate subtask plan-
ning and reliable code generation in later stages. The related prompt is shown in Figure 5.

Requirement Verification Expert As shown in the Figure 6, the input includes the processed
Gherkin scenarios and the user’s original requirements. Specifically, the Requirement Verification
Expert compares the expected behavior extracted from the Gherkin scenarios with the original user
requirements. If the verification is successful, the process moves to the design stage. If it fails, the
review result is sent back to the Requirement Transformation Expert to regenerate the requirements.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 5: Requirement Transformation Expert

A.2.2 DESIGN

Task Decomposition Expert Task Decomposition Expert focuses on breaking down the structured
Gherkin requirements into smaller subtasks based on the single-responsibility principle. Each sub-
task concentrates on one specific functional goal. These subtasks are then assigned to the most
suitable worker agent from the Worker profiles. The related prompt is shown in Figure 7.

Pseudocode Generation Expert The goal of this agent is to convert the set of subtasks into clear
and logical pseudocode. Because pseudocode closely follows the logical flow of the tasks, it makes
it easier for subsequent agents to understand the execution order and function dependencies. As
shown in Figure 8, the input for this agent includes the Gherkin scenario, the task plan, the refined
requirements, and the Agent Documentation(Worker Profile). When generating the pseudocode, the
Pseudocode Generation Expert only uses the primary worker agent assigned to each subtask in the
subtask plan to build the pseudocode.

A.2.3 IMPLEMENTATION

Code Generation Expert The agent converts the pseudocode generated in the design stage into exe-
cutable Python code. This Python code is then directly executed by an embedded Python interpreter.
This agent uses the Gherkin scenarios, refined requirements, pseudocode, and Agent Documentation
as input to generate the executable code, As shown in Figure 10.

Response Verification Expert It primarily checks whether the response generated after code ex-
ecution matches the user’s requirements. As shown in the figure, the input includes the Gherkin
requirements, the refined requirements, and the response produced by the code executed through
multi-agent collaboration,As shown in Figure 11.

A.2.4 REFLECTION

Error Analyst The Error Analyst performs error analysis based on the error messages generated
during code execution. This process has two main goals. First, it aims to determine whether the
error originated from the design stage or the implementation stage. Design-stage errors are typically
caused by unreasonable subtask planning that leads to conflicts. For example, failing to standardize
the output format can result in structural issues like missing data fields or mismatched return for-
mats. In contrast, implementation-stage errors are related to the specific construction of the code,
such as type mismatches or incorrect parameter concatenation. Second, the Error Analyst generates
a concise yet informative error description. This description serves as a detailed record and expla-
nation of the identified problem, clearly stating its root cause. It provides the necessary context for
the subsequent Repair Expert, aiding in more accurate and targeted modifications to the code or
design,,As shown in Figure 12.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 6: Requirement Verification Expert

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 7: Task Decomposition Expert

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 8: Pseudocode Generation Expert

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 9: Pseudocode Verification Expert

Pseudocode Fixer If the error originates from the design stage, the Pseudocode Fixer will take over.
As shown in the prompt in Fig 13, to support the repair process, we provide it with comprehensive
contextual information. This includes the Worker profile assigned to each subtask during the design
stage, the original pseudocode, and the error description generated by the Error Analyst.

Code Fixer If the error originates from the implementation stage, it indicates that the task plan from
the design stage is sound, and the error lies primarily in the construction of the executable code. As
shown in Fig 14, we provide the Gherkin requirements, agent documentation, the error description,
and the problematic code as contextual prompts to guide the Code Fixer in fixing the issue. The
repair process may involve correcting syntax errors, adding type conversions, or fixing improper
parameter usage.

A.3 PROMPT OF FAIREVAL

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 10: Code Generation Expert

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 11: Response Verification Expert

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 12: Error Analyst

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 13: Pseudocode Fixer

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 14: Code Fixer

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 15: The prompt of FairEval

25

	Introduction
	Related Works
	The Details of WaAgents
	Requirement Analysis
	Design
	Implementation
	Reflection

	Experiments and Evaluation
	Experimental Setups
	Comparing with the Baseline Methods
	Ablation Experiments

	Limitations and Discussion
	Conclusions
	Appendix
	Limitations of Existing Methods
	Prompt of Each Stage
	Requirement Analysis
	Design
	Implementation
	Reflection

	Prompt of FairEval

