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Abstract

Segmentation of organs-at-risk (OARs) is a critical step in radiation therapy planning
for head and neck cancer (HNC). Recent advancements in fine-tuned foundation mod-
els have demonstrated the potential to surpass conventional segmentation methods when
provided with appropriately sized box prompts. We present a practical Detegmentation
framework that integrates a detection network to autonomously generate box prompts for
training and testing a foundation model for OARs segmentation in HNC. Our approach
outperforms leading methods from the most recent HaN-Seg Challenge, highlighting its
strong potential for clinical application.
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Neck Cancer

1. Introduction

Head and neck (HNC) cancer ranks among the most prevalent malignancies worldwide.
In radiation therapy for HNC, accurate segmentation of organs at risk (OARs) is criti-
cal to minimizing post-treatment radiation-induced complications (Ye et al., 2022). Re-
cent advancements in fine-tuned foundation models have demonstrated the potential to
surpass conventional segmentation methods when provided with appropriately sized box
prompts—rectangular regions that indicate the location of the target object (Kirillov et al.,
2023; Xu et al., 2024, 2025; Fan et al., 2019; Chen et al., 2024). However, manually delin-
eating these boxes for OARs is impractical, as it requires substantial clinician input and is
susceptible to intra- and inter-rater variability. In this study, we propose a Detegmentation
framework that integrates a detection network to autonomously generate fitted box prompts
for each target OAR, enabling streamlined training and testing of a foundation segmenta-
tion model without clinician intervention. Our approach outperforms leading methods from
the most recent HaN-Seg Challenge(Podobnik et al., 2023), highlighting its strong potential
for clinical application.
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Figure 1: An overview of the proposed Detegmentation framework. D represents the incor-
porated detection model.

2. Methods

The Detegmentation framework comprises an nnDetect(Baumgartner et al., 2021) model for
object detection and a 3D adaptation of Segment Anything Model (SAM)(Chen et al., 2024),
which can be fine-tuned(Hu et al., 2021) for specific OARs segmentation. As illustrated in
Fig. 1, we first train the nnDetect model D to automatically predict the locations and
bounding box coordinates of the target OARs. These coordinates are then used as box
prompts to fine-tune the 3D SAM for enhanced OAR segmentation. During inference, the
test case is first processed by D to generate the corresponding box prompt. This prompt,
together with the input image, is then fed into the segmentation model to produce the
predicted segmentation label.

3. Experiments

We assessed the proposed framework using the brainstem and left parotid gland structures
from the publicly available HaN-Seg challenge dataset(Podobnik et al., 2023), which was
partitioned into 30 cases for training and 12 cases for testing.

Our method demonstrates reliable detection performance, achieving a sensitivity of 1.0
for both the brainstem and the left parotid gland. The Dice similarity coefficient between
the ground truth and predicted bounding boxes is 0.78. To ensure complete coverage of the
target structures during segmentation, we expanded the input bounding box by 5 voxels in
each direction.

As summarized in Table.1, the proposed Detegmentation framework yields a mean Dice
score of 0.895 and an HD95 of 1.8 mm for brainstem segmentation, and a Dice score of
0.886 with an HD95 of 2.0 mm for left parotid gland segmentation, surpassing the top
performing nnU-Net(Isensee et al., 2018) and DynUNet(Yang et al., 2025) methods in the
latest HaN-seg challenge. Fig. 2 presents qualitative results for the segmented brainstem
and left parotid gland.

4. Discussion and Conclusion

We present a practical Detegmentation framework that integrates a detection network to
autonomously generate box prompts for training and testing a foundation model for Or-
gans at Risk segmentation in Head and Neck cancer. Our method enables accurate OAR
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Table 1: Quantitave segmentation results comparing the proposed Detegmentation frame-
work with leading methods in the HaN-seg challenge

OAR Mean nnU-Net DynUNet Ours

Brainstem
DSC 0.885 0.849 0.895
HD95 3.9 4.7 1.8

Parotid gland(L)
DSC 0.867 0.851 0.886
HD95 5.1 5.1 2.0

Figure 2: Qualitative results showcasing the predicted segmented brainstem and the left
parotid gland labels, along with their 3D renderings. GT denotes the ground
truth label.

segmentation without clinician intervention, highlighting its strong potential for clinical
application.

Future research will aim to extend the proposed framework to encompass a broader
range of OARs, with particular emphasis on smaller and more challenging structures such
as the optic chiasm and optic nerves. Additionally, more advanced object detection models
will be explored to address instances where the current nnDetect model underperforms.
Another important direction involves integrating multiple imaging modalities (e.g., CT and
PET) as input, with the objective of further enhancing segmentation accuracy.

References
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