
Scaling Laws for Nearest Neighbor Search

Philip Sun 1 Felix Chern 1 Yaroslav Akhremtsev 1 Ruiqi Guo 1 David Simcha 1 Sanjiv Kumar 1

Abstract
This paper investigates the scaling laws that char-
acterize the performance of various nearest neigh-
bor search algorithms across a number of opera-
tional scenarios. We analyze the asymptotic costs
of indexing, storage, and compute for the three
dominant paradigms in nearest neighbor search
algorithms: brute-force, partitioning-based, and
graph-based. We find that these three families of
algorithms make fundamentally different trade-
offs between the three costs, leading to each al-
gorithm having its own advantages and disadvan-
tages. Our work challenges prior notions of a sin-
gle “best” nearest neighbor search algorithm, in-
stead suggesting the optimum is setup-dependent.

1. Introduction
Nearest neighbor search is a foundational problem in com-
puter science and machine learning, concerned with finding
the points in a given dataset D ∈ RN×d that are closest to a
query q ∈ Rd. Its applications include retrieval-augmented
generation and recommender systems, among many others.
One important subproblem within this field is approximate
nearest neighbor (ANN) search algorithms, which sacrifice
some loss in accuracy for a potentially significant increase
in search throughput and/or reduction in latency.

ANN algorithm research is concerned with minimizing the
costs associated with handling nearest neighbor queries at
a given accuracy. This, however, is difficult to quantify
because there is a heterogeneous mix of costs: before any
ANN queries can be handled, an index must first be created,
often at non-trivial expense, leading to an indexing cost
(I). And at query time, answering the queries themselves
incurs computational cost (C), but additionally the index
itself must be persisted in some storage medium, leading to
a fixed storage cost (S) that must be paid regardless of the
query frequency. We therefore have three cost components,

1Google Research, New York, USA. Correspondence to: Philip
Sun <sunphil@google.com>.

Proceedings of the 1 st Workshop on Vector Databases at Interna-
tional Conference on Machine Learning, 2025. Copyright 2025 by
the author(s).

Table 1. Asymptotic cost of the three components of nearest neigh-
bor search cost with respect to dataset size, N .

Algorithm
Indexing
Cost (I)

Compute
Cost (C)

Storage
Cost (S)

Brute Force O(N) O(N) O(N)
Partitioning-Based ω(N) o(N) O(N)
Graph (1-Machine) ω(N) o(N) O(N)
Graph (Distributed) O(N) O(N) O(N)

two of which (indexing and querying) must be multiplied by
their respective frequency of occurrence, which we denote
fI and fC . This results in a total cost of fI · I + fC ·C +S.

Optimizing ANN index efficiency is therefore complex, in-
volving tradeoffs across these components, and also im-
plicitly dependent on fI and fC . Moreover, these three
components are not static, but rather dependent upon the
dataset size, N . ANN cost J for a given algorithm can
therefore be defined as the following, with respect to N :

J(N) = fI · I(N) + fC · C(N) + S(N). (1)

The field of ANN algorithms has a substantial history with
numerous proposed techniques, but past works have pri-
marily focused on the comparison and improvement of
query-time compute cost C while neglecting analysis of
the other cost components I and S, which are often signifi-
cant and sometimes even dominant. Additionally, relatively
little work has been done quantifying how modern ANN
algorithms scale with respect to N; even algorithms with
abundant theoretical analysis, e.g. LSH and k-d tree, rarely
can predict search cost or recall on modern datasets and
hardware with substantial accuracy.

This paper presents an analysis of these scaling laws for
nearest neighbor search. Our primary contributions are:

• We systematically analyze the asymptotic costs of in-
dexing, storage, and query computation for three domi-
nant nearest neighbor search paradigms: brute-force,
partitioning-based, and graph-based algorithms. Our
analysis (summarized in Table 1) shows fundamental
tradeoffs these families make, resulting in different
optimal use cases.

1

Scaling Laws for Nearest Neighbor Search

• Through empirical investigation, we observe a con-
sistent power-law query cost scaling relationship for
ANN algorithms, where query compute C(N) scales
proportionally toNα with α < 1. This furthermore im-
plies indexing costs generally scale as O(N1+α) due
to ANN indexing’s current recursive dependence on
nearest neighbor search itself.

• We re-evaluate brute-force search, demonstrating that
with modern hardware accelerators (e.g., Tensor Pro-
cessing Units), its high arithmetic intensity and regular
memory access can lead to competitive throughput
and total cost of ownership, particularly for datasets
with millions or fewer vectors, avoiding the complex
and often superlinear indexing costs of approximate
methods.

• Finally, we investigate the impact of distributed en-
vironments on ANN scaling, necessary for datasets
exceeding single-machine capacity. We show that dis-
tributing via random sharding increases query cost to
O(N). Meanwhile, distributing via a globally trained
index can maintain more favorable sublinear scaling,
but incurs network communication overhead. This
overhead is significant for graph-based algorithms and
explains why thus far, only partitioning-based algo-
rithms have achieved sublinear scaling for distributed-
scale ANN datasets.

By clarifying these scaling behaviors, this work suggests
that there is no single “best” nearest neighbor search algo-
rithm. Instead, we argue that the optimal choice depends on
the specific operational scenario, including dataset charac-
teristics, query load, latency requirements, hardware avail-
ability, and cost constraints. We expect these findings will
guide practitioners in making informed architectural deci-
sions and encourage further theoretical work and empirical
evaluation.

2. Preliminaries
This section formally defines the nearest neighbor search
problem, the metrics used to evaluate approximate solutions,
and introduces the core algorithmic paradigms discussed in
this work.

2.1. Nearest Neighbor Search

Let D = {x1,x2, . . . ,xN} be a dataset of N data points,
where each point xi ∈ Rd is a d-dimensional vector. Given
a query q ∈ Rd and a distance metric δ : Rd × Rd → R≥0

or a similarity score that can be transformed into a metric
(e.g., Euclidean distance δ(a,b) = ‖a − b‖2, or cosine
similarity), the Nearest Neighbor Search problem is to

find a point x∗ ∈ D such that:

δ(q,x∗) ≤ δ(q,xi) ∀xi ∈ D.

This also generalizes to finding the k nearest neighbors that
minimize δ, which is commonly used in practice and will
be the focus of our remaining analysis.

2.2. Approximate Nearest Neighbor Search and Recall

For large datasets or in high dimensions, finding the ex-
act nearest neighbors can be computationally prohibitive.
Approximate Nearest Neighbor (ANN) search algorithms
aim to find points that are “close enough” to the true nearest
neighbors with significantly reduced computational cost.

A primary metric to evaluate the quality of ANN algorithms
is recall. For a given query q and a desired number of
neighbors k, let Tk(q) be the set of true k nearest neighbors
and Ak(q) be the set of k neighbors returned by an ANN
algorithm. The recall for this query is defined as:

Recall@k(q) =
|Tk(q) ∩Ak(q)|

k

In practice, recall is often averaged over a representative set
of queries. Many applications target a specific recall level
(e.g., 90% or 99% for k = 1) as a quality threshold.

2.3. Query Cost C(N)

We defineC(N) as the query-time compute cost for a dataset
of size N . This represents the computational resources
required to process a single query and return its approxi-
mate nearest neighbors at a pre-defined target recall. C(N)
implicitly depends on the dimensionality d, the chosen al-
gorithm, its specific hyperparameters, and the underlying
hardware. Throughout this paper, when discussing C(N),
we assume these other factors are held constant or scaled
appropriately as N changes, allowing us to focus on the
relationship between query cost and dataset size.

2.4. Dominant ANN Paradigms

The vast landscape of ANN algorithms can be broadly cat-
egorized. We focus on three dominant paradigms whose
scaling properties are central to this work:

• Brute-Force (Linear Scan): This straightforward ap-
proach computes the distance from the query q to
every point xi ∈ D and returns the points with the
smallest distances. While guaranteeing perfect re-
call, its query cost C(N) scales linearly with N , i.e.,
C(N) = Θ(Nd). Its simplicity and amenability to
hardware acceleration are key characteristics.

• Partitioning-Based Methods: These algorithms build
an index by recursively dividing the vector space (e.g.,

2

Scaling Laws for Nearest Neighbor Search

k-d trees) or the dataset itself (e.g., k-means clustering)
into smaller regions or clusters. At query time, only
a subset of these regions—those likely to contain the
nearest neighbor—are explored. This pruning aims to
achieve sub-linear query cost C(N) = o(N).

• Graph-Based Methods: These methods construct a
proximity graph where data points are nodes, and
an edge exists between two nodes if they are consid-
ered ”close” under some heuristic (e.g., HNSW, NSG).
Queries are answered by traversing this graph, typi-
cally starting from an entry point and greedily moving
towards nodes closer to the query, also striving for
C(N) = o(N).

The specific mechanisms by which these paradigms achieve
their respective cost-recall tradeoffs, and how these mecha-
nisms influence their scaling with N , form the core investi-
gation of this paper.

3. Related Work
3.1. Theoretical Guarantees for ANN Algorithms

3.1.1. LSH

Locality-sensitive hashing (LSH) techniques for ANN have
very thorough theoretical analyses, but their results are typi-
cally done for the c-approximate nearest neighbors problem,
where the goal is to return any vector whose distance is
within a multiplicative factor of c of the true closest vector
(Andoni et al., 2015). When a typical 90% recall target is
translated into a c-approximation ratio, the resulting c is
usually very close to 1, making LSH degenerate into an
O(N1−ε) algorithm roughly equivalent to linear scan, but
with much higher memory usage and constant factor over-
head. Indeed, LSH-style ANN libraries have not demon-
strated competitive empirical results on modern datasets
relative to graph-based or partitioning-based algorithms.

3.1.2. k-D TREE VARIANTS

A number of k-d tree variants have also been developed for
the ANN problem, using techniques such as randomization
(Dasgupta & Freund, 2008) and overlapping cells (Dasgupta
& Sinha, 2013) to improve performance over the standard
k-d tree. These algorithms have rigorous upper bounds for
their time complexity and probability of failing to find the
true nearest neighbor, but the failure probability bound is
typically trivial (near 1) on real-world datasets.

3.1.3. GRAPH ALGORITHMS

With regards to graph-based ANN algorithms, the Delaunay
triangulation of the datapoints is frequently leveraged in the-
oretical analyses, because as discussed in (Navarro, 1999),

greedily walking along the Delaunay triangulation allows
the nearest neighbor for any query vector to be found, with
no backtracking needed. However, the Delaunay triangula-
tion may be nearly fully-connected, making graph search
equivalent to brute-force. The paper (Dwyer, 1989), notably
cited in the HNSW analysis (Malkov & Yashunin, 2020),
shows that the Delaunay triangulation of points uniformly
sampled from a d-dimensional ball has constant expected av-
erage degree. This constant, however, is extremely loosely
bounded and greater than 1013 for d = 16, making such
analysis serve little practical use.

Sparsifying the Delaunay graph makes the graph search pro-
cedure less-obviously brute force in nature, but also greatly
weakens guarantees that the search procedure will find the
true nearest neighbor. For example, the sparse neighborhood
graph (Arya & Mount, 1993) has much stricter conditions
for creating an edge, leading to lower average vertex degree,
but also only guarantees finding a query q’s nearest neighbor
if q was in the indexed dataset already. Note this is a triv-
ial guarantee solvable with a hash map and no specialized
nearest neighbor data structure at all. Even for this graph,
the degree bound is weak, and exponential with respect to
dimensionality.

While graph-based ANN indices have empirically shown
their ability to produce high-performing and high-recall
results, current theory cannot fully explain their success.

3.2. LLM Scaling Laws

Our work is more similar in nature to the literature in LLM
scaling laws. The foundational paper in this field was writ-
ten by Kaplan et al. (2020) and found power laws relating
model size, dataset size, and training-time compute with the
cross-entropy language modeling loss. Further works in this
field include (Hoffmann et al., 2022), which highlighted the
importance of training with more data, and (Muennighoff
et al., 2025), which tried to extrapolate an analogous scaling
law for increased inference-time compute. In a different
vein, (Sharma & Kaplan, 2020) tried to derive a theoretical
justification for the observed scaling laws. We hope that,
similar to the works in LLM scaling laws, our observations
can improve ANN efficiency by better allocating hardware
resources to match the specific demands of the ANN work-
load, while also laying the groundwork for more theoretical
justifications of these results in the future.

4. Querying Cost Scaling
From empirical observations, we find a trend between
dataset size and query-time compute cost that is remark-
ably consistent over a range of ANN algorithms and three
orders of magnitude of dataset size; when targeting 90%

3

Scaling Laws for Nearest Neighbor Search

Recall@10, we find that

C(N) ∝ N1/3. (2)

The groundwork for our observation is shown in Figure 1,
where we perform a log-log linear regression betweenN and
ANN throughput per unit of computational power. Across
all three algorithms evaluated, we find a fairly consistent
slope of approximately −1/3, which implies

log

(
k1

C(N)

)
≈ −1

3
logN + k2

for some constants k1 and k2, which after exponentiation
lead to our result in equation 2.

Figure 1. Across three orders of magnitude of dataset size and three
ANN algorithm implementations, we see the N1/3 relationship
holding with quite strong consistency.

We caveat equation 2 with the fact that computing the exact
trend of nearest neighbor search cost with respect to dataset
size is difficult due to the number of hyperparameters most
ANN algorithms have. It is particularly difficult to deter-
mine how indexing time should be scaled with dataset size
(linear, quadratic, or otherwise); allocating relatively greater
amounts of indexing compute budget towards larger datasets
would give the appearance that C(N) grows more slowly.

An additional difficulty encountered in computing this trend
is dataset distribution differences. The ScaNN (Guo et al.,
2020; Sun et al., 2023) and DiskANN (Subramanya et al.,
2019) datapoints were taken from three different datasets
(see Appendix A.1), so differences in intrinsic dataset di-
mensionality contribute to performance differences in addi-
tion to the effect of scaling N , adding noise to our analysis.
The datasets used all had dimensionality between 100 and
200, and the cube root law is likely particular to this range.
Other datasets with greater intrinsic dimensionality will re-
quire more search effort to achieve the same recall, resulting
in similar scaling to higher recall targets (discussed in the
following Section 4.1) on the analyzed datasets.

4.1. Generalization to Additional Recall Targets

The N1/3 scaling seems particular to the 90% Recall@10
target, and we expect this to generalize to a power law for
other recall targets, i.e. C(N) ∝ Nα for some α. Indeed,
(Douze et al., 2025) observed α = 0.29 and α = 0.45
for the 50% and 99% recall targets, respectively. At the
limit, we expect α → 0 as the recall target approaches
zero, because returning an arbitrary k elements in O(1)
time satisfies the zero-recall target. Conversely, we expect
α→ 1 as the recall target approaches one, where only linear
scan can guarantee exact results. Interpolating a curve to
exactly model the relationship between recall target and α
is a promising direction for future work.

4.2. C(N): Further Breakdown and Analysis

We can decompose C(N) as follows:

C(N) = c0 ·Nd · f(N) (3)

where c0 is the computational cost associated with access-
ing one byte of the ANN index and f(N) is the filtration
ratio, equal to the proportion of the entire ANN index that
must be accessed in order to answer a query with a given
expected recall. In essence, Nd · f(N) is the amount of
memory read to answer the query, and c0 is the cost per
read. The choice of a constant c0 independent of dataset
size can be justified by noting most ANN index data will fit
on one uniform storage medium and disregarding caching
effects; c0 is determined by the raw performance of the stor-
age medium itself, and the read access pattern (granularity,
predictability) determined by the algorithm. Rearranging
our terms we find that

f(N) ∝ N−2/3

with the intuitive interpretation that the larger the dataset,
the more effectively an ANN algorithm can prune the search
space.

4.3. Brute Force Scaling

The above analysis only applies to approximate algorithms
that index and prune the search space; for linear scan algo-
rithms:

1. C(N) = Θ(N)

2. f(N) = O(1)

3. c0 is typically much lower than that of other ANN
algorithms, due to contiguous memory access and
amenability to SIMD acceleration. In the case of
batched search, matrix multiplication hardware and
high-bandwidth memory may be used, leading to ex-
tremely efficient implementation.

4

Scaling Laws for Nearest Neighbor Search

While (1) and (2) are well-known and fairly trivial algorith-
mic observations, we believe that the power of observation
(3) may be underrecognized. This is highlighted in Figure
2, where we show nearest neighbor performance on a TPU
(Chern et al., 2022) that provides > 10x the QPS/TCO of a
CPU-based ANN solution.

Dataset

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t/C

os
t (

TP
U

-K
N

N
=1

)

0.00

0.25

0.50

0.75

1.00

OpenAI-Arxiv-2M Cohere-10M Text2Image (10M)

TPU-KNN ScaNN HNSWLib

Figure 2. Brute force algorithms can uniquely leverage the ex-
tremely high bandwidth memory and high-throughput matrix mul-
tiplication units present on a TPU to significantly outperform more
algorithmically sophisticated CPU techniques.

We can see that on millions-scale vector datasets, a size
not uncommon for many real-world ANN deployments,
accelerator-optimized linear scans can be the most TCO-
optimal way to serve the ANN workload.

In addition to the cost advantage, linear scan has a number
of other operational advantages: the algorithm has far fewer
tuning knobs to configure, its recall is generally less data-
dependent and therefore much more robust to distributional
shifts or quirks, and indexing is trivial. The indexing cost ad-
vantage is discussed further in Section 6. The advantage of
TPU-KNN is relatively smaller on the 10M vector datasets
than the 2M vector datasets, which can likely be attributed
to the sublinear C(N) of ScaNN and HNSW providing a
greater advantage for largerN . However, even at 10M scale,
the TPU-based solution is the most cost-competitive.

5. Storage Cost Scaling
All practical nearest neighbor search algorithms have Θ(N)
space complexity. More space is not needed because ANN
algorithms only need a multiplicative constant overhead
over the dataset itself, and from information theory, it is
clear that arbitrary datasets cannot be compressed to occupy
sublinear space without severe recall loss, because doing so
would imply the compressibility of arbitrary information.

Among various Θ(N) approaches, however, constant fac-
tors differ significantly. First, the dataset’s values can be
stored in a number of binary formats; common choices in-
clude scalar-quantized 8-bit integers and 16, 32, and 64 bit

floating point. For a dataset of N vectors and d dimensions,
such encodings would lead to storage costs of Nd, 2Nd,
4Nd, and 8Nd bytes, respectively.

Next, ANN indices generally need to store additional index
data besides the quantized dataset. Brute force indices have
no such metadata, and their storage costs are exactly equal
to the size of the underlying quantized dataset, making them
a succinct data structure. Partitioning-based indices must
store the partition centers and each datapoint’s partition as-
signments, and frequently utilize further quantized datapoint
representations to accelerate their search. This additional
data is typically 10−30% of the dataset’s size. Graph-based
indices typically have the highest storage overhead, because
they require each datapoint to store its respective out-edges,
sometimes more than doubling storage requirements relative
to the dataset itself.

Finally, different storage technologies have widely varying
costs. Examples of storage mediums include: bandwidth-
optimized memory, such as HBM or GDDR6; standard CPU
RAM, such as DDR5; and flash storage. Higher-bandwidth
and lower-latency storage types enable greater ANN per-
formance, but come at a greater cost, as shown in Table
2:

Table 2. Memory costs from Google Cloud Compute Engine

Product
Memory

Type
Cost/GB
/Month

Bandwidth
/Cost

(GB/s/$)

TPU v6e Chip HBM $61.59 0.832
c4-highmem-32 DDR5 $6.14 0.105
6TB NVMe SSD Flash $0.08 0.013

Optimizing S, the ANN index storage cost, is critical yet un-
deracknowledged. Considering total ANN serving cost from
Equation 1, for low query traffic volumes fC , the storage
cost can dominate the query-time compute cost: S � fC ·C,
so switching to cheaper storage can significantly decrease
total serving cost J(N). Conversely, for extremely high fC ,
the proportion of cost coming from compute rises, and it
becomes cost-advantageous to upgrade to faster storage to
maximally utilize the computational resources (for example,
moving from flash storage to RAM so that the CPU spends
less time waiting on data, allowing fewer CPUs to be used).

6. Indexing Cost Scaling
ANN algorithms face a tradeoff between indexing speed
and index quality: currently, algorithms cannot achieve
sublinear query complexity without spending superlinear
indexing time.

5

Scaling Laws for Nearest Neighbor Search

6.1. Brute Force Indexing

Brute-force ANN indices require minimal preparatory work,
all of which can be done in linear time. Examples of neces-
sary indexing operations include transposing between row-
major and column-major storage formats, performing per-
element quantization (for example, re-encoding 32-bit floats
into the bfloat16 format), or copying data from host into
accelerator memory.

6.2. Graph Indexing

Graph-based ANN algorithms typically create their index
by incrementally inserting datapoints one by one. Each dat-
apoint queries for the nearest neighbors among the already-
inserted datapoints. These nearest neighbor results are used
as the candidate set of vertices to connect to the current dat-
apoint. The total computational complexity of these queries
is
∑N
x=1 C(x).

6.3. Partition-Based Indexing

The most expensive step in partition-based indexing is com-
puting a k-means clustering of the dataset. This is typically
done with Lloyd’s algorithm, which alternates between as-
signing each datapoint to its closest center, and updating
each center to equal the mean of its assignments. The latter
step can be done in linear time and is not asymptotically
significant in its costs. The former step is expensive; as-
suming the average cluster size is kept at a constant M ,
there are N/M cluster centers and N datapoints to assign to
the clusters, leading to an assignment cost of N · C(N/M)
per iteration of Lloyd’s algorithm. A constant number of
Lloyd’s algorithms has empirically been sufficient for creat-
ing an effective ANN index, leading to a total computational
complexity of N · C(N/M).

6.4. Asymptotic Analysis

Both graph-based and partitioning-based ANN algorithms
run O(N) nearest neighbor queries during indexing. As-
suming, as discussed in Section 4, that C(x) = O(xα),
this leads to both procedures having O(Nα+1) indexing
complexity:

N∑
x=1

C(x) = O(Nα+1), (Graph-Based)

N · C(N/M) = O(Nα+1). (Partitioning-Based)

Despite the equivalent asymptotic indexing costs of graph-
based and partitioning-based ANN algorithms, the latter
have generally demonstrated notably faster indexing per-
formance in practice. This can be attributed to the fact
that partition assignment in Lloyd’s algorithm is trivially
batchable and parallelizable. In contrast, graph-based index-

Randomly Sharded Graph Randomly Sharded Tree

Shard 1 Shard 2 Shard 3

Request

Response

….

….

Request

….

….

….

….

Shard 1

Shard 2

Shard 3

Response

Figure 3. Random sharding for graph-based and partitioning-based
ANN algorithms.

ing is sequential by nature and less amenable to efficient
implementation, leading to a higher constant factor.

7. Distributed ANN and its Impact on Scaling
For sufficiently large datasets, a single machine no longer
has the memory to serve the index by itself, and a distributed
ANN setup is needed. Even disk-based ANN solutions
are not exempt from this problem, because such solutions
still typically require a significant portion of the index to
be resident in RAM; flash memory has too coarse a read
granularity and too little bandwidth to efficiently serve an
entire ANN index without a faster storage medium for more
frequently accessed data. For instance, DiskANN stores
product-quantized vector representations in RAM, making
its RAM footprint typically at least 10% of its disk footprint
(Subramanya et al., 2019).

At a high level, there are two approaches to distributing an
ANN index, each of which is discussed below.

7.1. Random Sharding

In random sharding, a dataset X ∈ RN×d is arbitrarily split
into S shards of N/S datapoints each. This results in S
datasets of size N/S; we independently construct an ANN
index for every dataset, and during query time, we forward
the query to every shard and then aggregate the final results
together. A diagram of the query-time information flow is
shown above, in Figure 3.

Critically, in random sharding, each shard works indepen-
dently, and no inter-shard communication is necessary other
than the final aggregation. This is in contrast to a globally
partitioned setup, as discussed in Section 7.2.

7.1.1. RANDOM SHARDING: ASYMPTOTIC ANALYSIS

Suppose that the maximum number of datapoints servable
from a single machine isN0. This constraint typically arises
from a machine’s memory capacity, and is therefore con-

6

Scaling Laws for Nearest Neighbor Search

Dataset Size

Co
st

/Q
ue

ry

Random Sharding
Globally Partitioned

Figure 4. Random sharding leads to a discontinuity in search cost
each time an additional shard is introduced. Asymptotically, this
leads to linear scaling.

stant. The minimum number of shards necessary to serve a
dataset of size N is therefore S = dN/N0e.

Intuitively, by bounding the shard size to N0, we are also
bounding the filtration ratio f(N) from Equation 3 to a
constant, preventing further efficiency gains from pruning
further on larger indices. Formally, random sharding leads
to linear asymptotic query cost:

S · C(N/S) ≤ S · C(N0) = dN/N0e ·O(1) = O(N).

This is illustrated in Figure 4. Indexing cost also becomes
linear with respect to N :

S · I(N/S) ≤ S · I(N0) = dN/N0e ·O(1) = O(N).

Altogether, random sharding is asymptotically equivalent
to linear scan, albeit with vastly different constant factors.
For query-time compute C, random sharding and linear
scan have constant factors of c(a)0 Nα

0 and c(b)0 , respectively,
where c(a)0 and c(b)0 denote the respective per-byte read costs
for approximate and brute-force. For sufficiently large N0,
approximate algorithms may achieve a significant advantage.
Conversely, the indexing time constant factors vastly favor
linear-scan.

7.2. Globally Indexed

In global partitioning, a single unified index is created for
the entire dataset, and then this index is sharded to fit in
multiple machines. How this sharding is performed depends
on the exact ANN algorithm used, which will be discussed
below.

7.2.1. GLOBAL PARTITION-BASED ANN

The k-means tree used in partitioning-based ANN algo-
rithms is fairly straightforward to shard due to its relatively

constrained structure. As shown in Figure 5, the upper levels
of a recursive k-means tree are typically replicated across all
shards, which reduces cross-shard communication overhead
for a negligible increase in memory usage. The remaining
levels of the tree are randomly sharded across the machines.
Note that even though the partitions are randomly assigned
to machines, the partitions themselves were first trained
globally, distinguishing this scheme from the random shard-
ing described in Section 7.2 and allowing the continuation
of sublinear query cost scaling.

The query-time procedure for this index walks and prunes
through the k-means tree in a breadth-first, beam search-like
manner; at layer L, it finds the closest tL partition centers
and proceeds to evaluate the vectors contained within those
partitions at layer L + 1. If this layer is sharded across
machines rather than replicated, a round of network calls
must be done to aggregate the global best partitions and then
communicate the necessary work to be done at the next layer.
This implies that logM N network round trips are necessary
if the average partition size is M ; for a typical setup where
M is in the hundreds, even trillions-scale datasets can be
served with minimal communication overhead.

….

Globally
Replicated

Request

Gather/
Top-K/Scatter

Response

…. …. …. …. ….

Shard 1 Shard 2 Shard 3

Figure 5. Partitioning-based ANN algorithms can be effectively
sharded to maintain sublinear query cost even when dataset scale
reaches a size requiring distributed serving.

7.2.2. GLOBAL GRAPH-BASED ANN

Graphs, due to their inherently diminished structure relative
to trees, are harder to partition and serve in a global index.
The core problem is minimizing the number of inter-shard

7

Scaling Laws for Nearest Neighbor Search

(“cut”) edges between shards to minimize communication
overhead, while keeping the partitions balanced in size. Ex-
amples of attempting to shard a graph, and the cut edges
that result, are shown in Figure 6. Each cut edge is a point
where a query’s graph traversal must make a network hop to
another machine. These network hops introduce significant
latency, which can quickly dominate the overall query time.

Shard 1
Shard 2

Shard 3

Figure 6. Unlike trees, which can be fairly trivially sharded with
minimal cross-shard edges, the graphs used for graph-based ANN
indices do not have this property. Sharding a single, globally
trained, graph leads to many cross-shard edges and high communi-
cation overhead.

Standard graph partitioning algorithms are not only compu-
tationally intensive (often NP-hard for optimal solutions) but
their heuristics may not be well-suited to the specific struc-
tural properties and traversal dynamics of ANN proximity
graphs. For instance, the long-range links crucial for effi-
cient greedy search in many graph-based ANN algorithms
are particularly problematic; if these links frequently span
across different shards, the very mechanism that enables
fast convergence to the nearest neighbor is undermined by
network delays.

As a result, the communication overhead from frequent
cross-shard traversals can become a critical bottleneck. Each
step in the graph walk that crosses a shard boundary re-
quires fetching data (node features and neighbors) from a
remote machine. If a sufficiently high number of edges are
cross-shard edges, then more time will be spent on network
overhead than on actual ANN computation. This problem
increases in magnitude as the dataset, and therefore the num-
ber of shards, grows, because the proportion of cross-shard
edges grows as the graph is partitioned more finely.

Furthering the network overhead problem is the relatively

large amount of state that must be passed in every cross-
shard request. Unlike the k-means trees used in partitioning-
based algorithms, graphs are typically full of cycles and
have no natural topological ordering. A cross-shard edge
must therefore not only specify the receiving vertex and the
query q, but also somehow encode information to prevent
walking indefinitely in a cycle. In the single-machine case,
this is handled by keeping track of visited vertices, but in a
distributed setting, passing the visited set between machines
can be prohibitively expensive as the visited set grows.

Consequently, while the notion of a distributed, globally
indexed graph is theoretically attractive for preserving sub-
linear query cost scaling, the fine-grained exploration depen-
dencies inherent in this style of algorithm likely preclude a
practical implementation of such a style ANN index, and
no competitive, globally indexed graph ANN algorithm has
been created thus far.

8. Conclusion
ANN search efficiency is a multifaceted objective where
different contexts lead to different optima. Approximate
algorithms scale roughly with the cube root of dataset size,
but require superlinear amounts of indexing cost to do so.
Brute force linear scans have linear query cost and indexing
cost, both with small constant factors, which can be advan-
tageous in situations with small datasets or particularly high
index refresh rates.

Our work highlights the importance of algorithmic advances
that could reduce the need to trade off between query-time
and indexing-time efficiency. Additionally, so long as this
tradeoff exists, ANN libraries could improve their usabil-
ity by better assisting users in choosing the most suitable
algorithmic approach for their needs.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., and

Schmidt, L. Practical and optimal lsh for angular dis-
tance. In Proceedings of the 29th International Confer-
ence on Neural Information Processing Systems - Volume
1, NIPS’15, pp. 1225–1233, Cambridge, MA, USA, 2015.
MIT Press.

Arya, S. and Mount, D. M. Approximate nearest neigh-
bor queries in fixed dimensions. In Proceedings of the

8

Scaling Laws for Nearest Neighbor Search

Fourth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’93, pp. 271–280, USA, 1993. Society for
Industrial and Applied Mathematics. ISBN 0898713137.

Aumüller, M., Bernhardsson, E., and Faithfull, A. Ann-
benchmarks: A benchmarking tool for approximate near-
est neighbor algorithms, 2018. URL https://arxiv.
org/abs/1807.05614.

Chern, F., Hechtman, B., Davis, A., Guo, R., Majnemer,
D., and Kumar, S. Tpu-knn: K nearest neighbor
search at peak flop/s. In Koyejo, S., Mohamed, S.,
Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems,
volume 35, pp. 15489–15501. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.
cc/paper_files/paper/2022/file/
639d992f819c2b40387d4d5170b8ffd7-Paper-Conference.
pdf.

Dasgupta, S. and Freund, Y. Random projection trees
and low dimensional manifolds. In Proceedings
of the Fortieth Annual ACM Symposium on Theory
of Computing, STOC ’08, pp. 537–546, New York,
NY, USA, 2008. Association for Computing Machin-
ery. ISBN 9781605580470. doi: 10.1145/1374376.
1374452. URL https://doi.org/10.1145/
1374376.1374452.

Dasgupta, S. and Sinha, K. Randomized partition trees
for exact nearest neighbor search. In Shalev-Shwartz,
S. and Steinwart, I. (eds.), Proceedings of the 26th An-
nual Conference on Learning Theory, volume 30 of
Proceedings of Machine Learning Research, pp. 317–
337, Princeton, NJ, USA, 12–14 Jun 2013. PMLR.
URL https://proceedings.mlr.press/v30/
Dasgupta13.html.

Douze, M., Guzhva, A., Deng, C., Johnson, J., Szilvasy, G.,
Mazaré, P.-E., Lomeli, M., Hosseini, L., and Jégou, H.
The faiss library, 2025. URL https://arxiv.org/
abs/2401.08281.

Dwyer, R. A. Higher-dimensional voronoi diagrams in
linear expected time. In Proceedings of the Fifth Annual
Symposium on Computational Geometry, SCG ’89, pp.
326–333, New York, NY, USA, 1989. Association for
Computing Machinery. ISBN 0897913183. doi: 10.1145/
73833.73869. URL https://doi.org/10.1145/
73833.73869.

Guo, R., Sun, P., Lindgren, E., Geng, Q., Simcha, D., Chern,
F., and Kumar, S. Accelerating large-scale inference with
anisotropic vector quantization. In III, H. D. and Singh, A.
(eds.), Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of

Machine Learning Research, pp. 3887–3896. PMLR, 13–
18 Jul 2020. URL https://proceedings.mlr.
press/v119/guo20h.html.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E.,
Millican, K., van den Driessche, G., Damoc, B., Guy,
A., Osindero, S., Simonyan, K., Elsen, E., Rae, J. W.,
Vinyals, O., and Sifre, L. Training compute-optimal large
language models, 2022. URL https://arxiv.org/
abs/2203.15556.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J.,
and Amodei, D. Scaling laws for neural language mod-
els, 2020. URL https://arxiv.org/abs/2001.
08361.

Malkov, Y. A. and Yashunin, D. A. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs. IEEE Trans. Pattern Anal.
Mach. Intell., 42(4):824–836, April 2020. ISSN 0162-
8828. doi: 10.1109/TPAMI.2018.2889473. URL https:
//doi.org/10.1109/TPAMI.2018.2889473.

Muennighoff, N., Yang, Z., Shi, W., Li, X. L., Fei-Fei, L.,
Hajishirzi, H., Zettlemoyer, L., Liang, P., Candès, E., and
Hashimoto, T. s1: Simple test-time scaling, 2025. URL
https://arxiv.org/abs/2501.19393.

Navarro, G. Searching in metric spaces by spatial ap-
proximation. In 6th International Symposium on String
Processing and Information Retrieval. 5th International
Workshop on Groupware (Cat. No.PR00268), pp. 141–
148, 1999. doi: 10.1109/SPIRE.1999.796589.

Sharma, U. and Kaplan, J. A neural scaling law from the
dimension of the data manifold, 2020. URL https:
//arxiv.org/abs/2004.10802.

Subramanya, S. J., Devvrit, Kadekodi, R., Krishaswamy,
R., and Simhadri, H. V. DiskANN: fast accurate billion-
point nearest neighbor search on a single node. Curran
Associates Inc., Red Hook, NY, USA, 2019.

Sun, P., Simcha, D., Dopson, D., Guo, R., and Kumar,
S. Soar: Improved indexing for approximate nearest
neighbor search. In Oh, A., Naumann, T., Globerson,
A., Saenko, K., Hardt, M., and Levine, S. (eds.),
Advances in Neural Information Processing Systems,
volume 36, pp. 3189–3204. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.
cc/paper_files/paper/2023/file/
0973524e02a712af33325d0688ae6f49-Paper-Conference.
pdf.

9

https://arxiv.org/abs/1807.05614
https://arxiv.org/abs/1807.05614
https://proceedings.neurips.cc/paper_files/paper/2022/file/639d992f819c2b40387d4d5170b8ffd7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/639d992f819c2b40387d4d5170b8ffd7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/639d992f819c2b40387d4d5170b8ffd7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/639d992f819c2b40387d4d5170b8ffd7-Paper-Conference.pdf
https://doi.org/10.1145/1374376.1374452
https://doi.org/10.1145/1374376.1374452
https://proceedings.mlr.press/v30/Dasgupta13.html
https://proceedings.mlr.press/v30/Dasgupta13.html
https://arxiv.org/abs/2401.08281
https://arxiv.org/abs/2401.08281
https://doi.org/10.1145/73833.73869
https://doi.org/10.1145/73833.73869
https://proceedings.mlr.press/v119/guo20h.html
https://proceedings.mlr.press/v119/guo20h.html
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2004.10802
https://arxiv.org/abs/2004.10802
https://proceedings.neurips.cc/paper_files/paper/2023/file/0973524e02a712af33325d0688ae6f49-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0973524e02a712af33325d0688ae6f49-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0973524e02a712af33325d0688ae6f49-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0973524e02a712af33325d0688ae6f49-Paper-Conference.pdf

Scaling Laws for Nearest Neighbor Search

A. Appendix
A.1. Query Compute Cost Regression: Experimental Setup

The Faiss performance numbers were all taken from Section 5.1 of (Douze et al., 2025). Douze et al. used various sized
samples of BigANN (SIFT) vectors to obtain their results.

ScaNN and DiskANN numbers were taken from three benchmark sources:

1. Glove (1M) from ann-benchmarks (Aumüller et al., 2018).

2. Text2Image (10M) from the OOD track of the 2023 version of big-ann-benchmarks.

3. MS-Turing (1B) from the 2021 version of big-ann-benchmarks.

10

https://big-ann-benchmarks.com/neurips23.html
https://big-ann-benchmarks.com/neurips21.html

